
Backdoor Attacks to Graph Neural Networks
Zaixi Zhang, Jinyuan Jia, Binghui Wang, Neil Zhenqiang Gong

Duke University
{zaixi.zhang,jinyuan.jia,binghui.wang,neil.gong}@duke.edu

Abstract
In this work, we propose the first backdoor attack to graph neural
networks (GNN). Specifically, we propose a subgraph based backdoor
attack to GNN for graph classification. In our backdoor attack, a
GNN classifier predicts an attacker-chosen target label for a testing
graph once a predefined subgraph is injected to the testing graph.
Our empirical results on three real-world graph datasets show
that our backdoor attacks are effective with a small impact on
a GNN’s prediction accuracy for clean testing graphs. Moreover,
we generalize a randomized smoothing based certified defense to
defend against our backdoor attacks. Our empirical results show
that the defense is effective in some cases but ineffective in other
cases, highlighting the needs of new defenses for our backdoor
attacks.

CCS Concepts
• Security andprivacy; Computingmethodologies→Machine
learning.

Keywords
backdoor attacks; graph neural networks; certified defenses

ACM Reference Format:
Zaixi Zhang, Jinyuan Jia, Binghui Wang, Neil Zhenqiang Gong. 2021. Back-
door Attacks to Graph Neural Networks. In Proceedings of the 26th ACM
Symposium on Access Control Models and Technologies (SACMAT ’21), June
16–18, 2021, Virtual Event, Spain. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3450569.3463560

1 Introduction
Graphs have been widely used to model complex interactions be-
tween entities. For instance, in online social networks, a user and
its friends can be modeled as a graph (called ego network in network
science), where the user and its online friends are nodes, and an
edge between two nodes indicates online friendship or interaction
between them. Likewise, a Bitcoin transaction can be modeled as
an ego network, where the nodes are the transaction and the trans-
actions that have Bitcoin flow with it, and an edge between two
transactions indicates the flow of Bitcoin from one transaction to
the other. Graph classification, which takes a graph as an input and

The first two authors made equal contributions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT ’21, June 16–18, 2021, Virtual Event, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8365-3/21/06. . . $15.00
https://doi.org/10.1145/3450569.3463560

outputs a label for the graph, is a basic graph analytics tool and
has many applications such as fraud detection [14, 21, 43, 44, 48],
malware detection [18, 23, 37, 51], and healthcare [1, 5, 29]. Graph
neural network (GNN) based graph classification has attracted in-
creasing attention due to its superior prediction accuracy. Given a
graph, a GNN uses a neural network to analyze the complex graph
structure and predict a label for the graph. For instance, to detect
fake users in online social networks, a user is predicted to be fake
if a GNN predicts the label “fake” for the user’s ego network. To
detect fraudulent transactions in Bitcoin, a transaction is fraudulent
if a GNN predicts the label “fraudulent” for the transaction’s ego
network.

Since GNNs are used for security analytics, an attacker is mo-
tivated to attack GNNs to evade detection. For instance, a fake
user can attack GNNs such that it is misclassified as a genuine
user. However, GNN based graph classifications in such adversarial
settings are largely unexplored. Most existing studies [3, 42, 56, 57]
on GNNs in adversarial settings focused on node classification in-
stead of graph classification. Node classification aims to predict a
label for each node in a graph, while graph classification aims to
predict a label for the entire graph. One exception is that Dai et
al. [11] proposed adversarial examples to attack GNN based graph
classification, where an attacker perturbs the structure of a testing
graph such that the target GNN misclassifies the perturbed testing
graph (i.e., the perturbed testing graph is an adversarial example).
However, such attacks require optimized (different) perturbations
for different testing graphs and have limited success rates when
the target GNN is unknown [11].

Our work: In this work, we propose the first backdoor attack
to GNNs. Unlike adversarial examples, a backdoor attack applies
the same trigger to testing graphs and does not need knowledge
of the target GNN to be successful. Backdoor attacks have been
extensively studied in the image domain [6, 15, 30, 34, 38, 39, 53].
However, backdoor attacks to GNNs are unexplored. Unlike images
whose pixels can be represented in a Cartesian coordinate system,
graphs do not have such Cartesian coordinate system and graphs
to an GNN can have different sizes.

Subgraph based backdoor attacks. We propose a subgraph
based backdoor attack to GNN based graph classification. Specifi-
cally, we propose to use a subgraph pattern as a backdoor trigger,
and we characterize our subgraph based backdoor attack using four
parameters: trigger size, trigger density, trigger synthesis method,
and poisoning intensity. Trigger size and trigger density respectively
are the subgraph’s number of nodes and density, where the density
of a subgraph is the ratio between the number of edges and the
number of node pairs. Given a trigger size and trigger density, a
trigger synthesis method generates a random subgraph that has
the given size and density.

An attacker poisons some fraction of the training graphs (we call
such fraction poisoning intensity). Specifically, the attacker injects

https://doi.org/10.1145/3450569.3463560
https://doi.org/10.1145/3450569.3463560

the subgraph/trigger to each poisoned training graph and sets its
label to an attacker-chosen target label. Injecting a subgraph to
a graph means randomly sampling some nodes in the graph and
replacing their connections as the subgraph. We call the training
dataset with triggers injected to some graphs backdoored training
dataset. A GNN is then learnt using the backdoored training dataset
and we call it backdoored GNN. Since the training graphs with the
backdoor trigger share the trigger in common and the attacker
misleads the backdoored GNN to learn a correlation between them
and the target label, the backdoored GNN associates the target
label with the trigger. Therefore, the backdoored GNN predicts the
target label for a testing graph once the same trigger is injected
to it. Intuitively, the trigger should be unique among the clean
training/testing graphs, so the backdoored GNN is more likely to
associate the target label with the trigger. Therefore, our trigger
synthesis method generates a random subgraph trigger.

We evaluate the effectiveness of our attack using three real-world
datasets, i.e., Bitcoin, Twitter, and COLLAB. The Bitcoin and Twitter
datasets represent fraudulent transaction detection and fake user
detection, respectively. COLLAB is a scientific collaboration dataset.
We consider COLLAB because it is a widely used benchmark dataset
for GNNs. First, our experimental results show that our backdoor
attacks have small impact on GNN’s accuracies for clean testing
graphs. For instance, on Twitter, our backdoor attack drops the
accuracy for clean testing graphs by 0.03 even if the trigger size is
30% of the average number of nodes per graph. Second, our attacks
have high success rates. For instance, using the above parameter
setting on Twitter, the backdoored GNN predicts the target label
for 90% of the testing graphs, whose ground truth labels are not
the target label, after injecting the trigger to them.

Certified defense. Generally speaking, there are two types
of defenses to build robust machine learning systems: empirical
defenses and certified defenses. Empirical defenses defend against
specific attacks and are often broken by strong adaptive attacks.
For instance, in the image domain, Salem et al. [38] proposed
dynamic backdoor attacks and showed that it can bypass state-
of-the-art backdoor defense mechanisms [12, 33, 45]. Therefore,
we focus on certified defenses in this work. Randomized smooth-
ing [4, 10, 24, 28, 32] is state-of-the-art technique to build provably
robust machine learning, which is applicable to arbitrary classifiers
and is scalable to large-scale neural networks. Specifically, given
an arbitrary classifier, randomized smoothing builds a smoothed
classifier via randomizing the input. The label predicted by the
smoothed classifier for an input provably remains the same when
the ℓ𝑝 norm of the adversarial perturbation added to the input is
less than a threshold.

Graph is binary data, i.e., a pair of nodes can be connected or
unconnected. Randomized subsampling [27] is state-of-the-art ran-
domized smoothing method for binary data. Therefore, we general-
ize randomized subsampling to defend against our backdoor attacks.
When applied to our problem, to predict the label of a testing graph,
randomized subsampling creates 𝑑 subsampled graphs via random-
izing the testing graph, uses the GNN to predict labels of the 𝑑
subsampled graphs, and takes majority vote among the 𝑑 labels
as the predicted label for the testing graph. To create a subsam-
pled graph, we randomly subsample some node pairs in the testing
graph, keep their connection status (connected or unconnected),

and remove the edges (if any) between the remaining node pairs.
With such randomized subsampling, a GNN provably predicts the
same label for a testing graph once the size of the trigger injected
to the testing graph is less than a threshold. We call the threshold
certified trigger size. Note that certified trigger size may be different
for different testing graphs.

We empirically evaluate the randomized subsampling based de-
fense on the three datasets. On one hand, our results show that
randomized subsampling can effectively defend against our back-
door attacks in some cases. For instance, on the Twitter dataset,
randomized subsampling drops the attack success rates by 0.39 with
only 0.02 accuracy drop for clean testing graphs, when the trigger
size is 20% of the average number of nodes per graph. On the other
hand, randomized subsampling is ineffective in other cases, e.g.,
when the trigger size is large. For instance, on Twitter, randomized
subsampling can only reduce the attack success rates by <0.01 when
the trigger size is 30% of the average number of nodes per graph.
The reason is that randomized subsampling only achieves small
certified trigger sizes. For instance, on Twitter, all testing graphs
have certified trigger sizes less than 10% of the average number of
nodes per graph. Our results highlight the needs of new defenses
against our subgraph based backdoor attacks.

Our contributions can be summarized as follows:

• We perform the first systematic study on backdoor attacks
to GNNs.

• We propose subgraph based backdoor attacks to GNNs. We
extensively evaluate our attacks on three real-world datasets.

• We generalize a state-of-the-art certified defense to defend
against our backdoor attacks. Our empirical results highlight
the needs of new defenses against our backdoor attacks.

2 Background and Problem Setup

2.1 Graph Neural Networks (GNNs)

Graph classification: Suppose we are given a graph 𝐺 . We focus
on undirected graphs for simplicity, though our methods can also
be extended to directed graphs. A node in the graph may or may
not have features. When a node has features, they may describe
certain attributes of the node. Graph classification takes a graph as
input and outputs a label for the graph. Formally, we have 𝑓 : 𝐺 −→
{1, 2, · · · , 𝑐}, where 𝑓 is a graph classifier and {1, 2, · · · , 𝑐} is the set
of labels. GNN based graph classification [17, 22, 40, 50] extends
neural networks to graph data. Roughly speaking, a GNN iteratively
maps a node to a feature vector via aggregating the feature vectors
of the node’s neighbors, and the last layer of the neural network
outputs a label for the graph. Note that the graph does not need to
be connected, i.e., GNN can still predict a label for a graph even if
the graph consists of multiple disconnected components.

Training GNNs for graph classification: Suppose we are given
a training dataset D𝑡𝑟={(𝐺1, 𝑦1), (𝐺2, 𝑦2), · · · , (𝐺𝑁 , 𝑦𝑁)}, where
𝐺𝑖 and 𝑦𝑖 respectively are the 𝑖th training graph and its true label,
𝑖 = 1, 2, · · · , 𝑁 . Stochastic gradient descent (SGD) is often used
to learn a GNN classifier from a training dataset. In particular,
we randomly sample a batch of training graphs and compute the
gradient of the loss function with respect to the model parameters
for the batch. The loss function is usually cross-entropy loss. Then,

label 0

Training

label 1

Testing

target label: 1

trigger: …label 0:

label 1: …

backdoored training dataset

trigger
configuration

true label: 0 true label: 1

backdoored GNN

backdoored GNN

Figure 1: Illustration of our subgraph based backdoor attack.

we move the model parameters towards the inverse direction of the
gradient by a small step. Formally, we have𝜃 = 𝜃−𝑙𝑟 ·∇𝜃L(𝜃 ;𝑏𝑎𝑡𝑐ℎ),
where 𝜃 is the model parameters of the GNN classifier 𝑓 , 𝑙𝑟 is called
learning rate, ∇𝜃 is gradient with respect to 𝜃 , L is loss function,
and 𝑏𝑎𝑡𝑐ℎ is a batch of training graphs randomly sampled from
the training dataset. This process is repeated until convergence
or the maximum number of iterations is reached. The learnt GNN
classifier 𝑓 is then used to predict labels for testing graphs.

2.2 Threat Model
Our threat model is largely inspired by backdoor attacks in the
image domain [6, 15, 30, 34, 38, 39]. We characterize the threat
model with respect to attacker’s goal and attacker’s capability.
Attacker’s goal: An attacker has two goals. First, the backdoor
attack should not influence the GNN classifier’s accuracy on clean
testing graphs, which makes the backdoor attack stealthy. If an at-
tack sacrifices a GNN classifier’s accuracy substantially, a defender
could detect such low accuracy using a clean validation dataset and
the GNN classifier may not be deployed. Second, the backdoored
GNN classifier should predict an attacker-chosen target label for
any testing graph once a trigger is injected to the testing graph.
Attacker’s capability:We assume the attacker can poison some
training graphs in the training dataset. Specifically, the attacker
can inject a trigger to each poisoned training graph and change
its label to an attacker-chosen target label. For instance, when the
training graphs are crowdsourced from users, malicious users under
an attacker’s control can provide such poisoned training graphs.
Moreover, the attacker can inject the same trigger to testing graphs,
e.g., the attacker’s own testing graphs.

3 Our Subgraph based Backdoor Attacks

3.1 Attack Overview
Figure 1 illustrates the pipeline of our subgraph based backdoor
attack. Our backdoor attack uses a subgraph as a backdoor trigger.
Suppose a subgraph consists of 𝑡 nodes. Injecting the subgraph to a
graph means that we sample 𝑡 nodes from the graph uniformly at
random, map them to the 𝑡 nodes in the subgraph randomly, and
replace their connections as the subgraph. In the training phase, an
attacker injects a subgraph/trigger to a subset of training graphs
and changes their labels to an attacker-chosen target label. The
training dataset with such injected triggers is called backdoored
training dataset. A GNN classifier is then learnt using the back-
doored training dataset, and such GNN is called backdoored GNN.
The backdoored GNN correlates the target label with the trigger

because the backdoored training graphs share the trigger in com-
mon and the backdoored GNN is forced to associate the backdoored
training graphs with the target label. In the testing phase, the at-
tacker injects the same subgraph/trigger to a testing graph and the
backdoored GNN is very likely to predict the target label for the
testing graph with trigger injected.

3.2 Attack Design
Our backdoor attack involves injecting a backdoor trigger, i.e., a
subgraph, to a graph. Designing the subgraph is key to our back-
door attack. Intuitively, the subgraph should be unique among the
clean training/testing graphs, so the backdoored GNN is more likely
to associate the target label with the subgraph. A naive method is
to construct a complete subgraph (i.e., every pair of nodes in the
subgraph is connected) as a backdoor trigger. However, such trigger
could be easily detected especially when the number of nodes in the
subgraph is large. For instance, a defender may search for complete
subgraphs in a training or testing graph, and a complete subgraph
may be detected as a backdoor trigger when complete subgraphs
are unlikely to occur in the clean training/testing graphs. Therefore,
we propose to generate a random subgraph as backdoor trigger.
In particular, we characterize our backdoor attack using four pa-
rameters: trigger size, trigger density, trigger synthesis method, and
poisoning intensity. Next, we describe each of them.
Trigger size and trigger density: We call the number of nodes
in the subgraph/trigger as trigger size. We denote the trigger size
as 𝑡 . Given 𝑡 nodes, there are 𝑡 · (𝑡−1)

2 pairs of nodes, which is the
maximum number of edges that a subgraph with 𝑡 nodes could have.
We define the trigger density of a subgraph as the ratio between
the number of edges in the subgraph and the number of node pairs
in the subgraph. We denote 𝜌 as the trigger density. Formally, we
have 𝜌 = 2𝑒

𝑡 · (𝑡−1) , where 𝑒 is the number of edges in the subgraph.

Trigger synthesis method: Given a trigger size 𝑡 and trigger den-
sity 𝜌 , a trigger synthesis method generates a subgraph that has the
given size and density. We generate a random subgraph using the
Erdős-Rényi (ER) model [13]. In particular, given 𝑡 nodes, ER creates
an edge for each pair of nodes with probability 𝑝 independently. 𝑝
is the expected density of the subgraph generated by ER. Therefore,
we set 𝑝 = 𝜌 , which means that the generated subgraph has the
given trigger density 𝜌 on average. In our experiments, we also
evaluate triggers generated by the Small World (SW) model [47]
and Preferential Attachment (PA) model [2], which are popular gen-
erative graph models developed by the network science community.
Unlike ER, SW and PA generate subgraphs that are more similar to

Table 1: Statistics of datasets.

Datasets #Graphs #Classes Avg. #nodes Avg. density #Training graphs #Testing graphs
Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

Bitcoin 658 2 11.53 0.342 219 219 - 110 110 -
Twitter 1,481 2 63.10 0.523 489 498 - 245 249 -
COLLAB 5,000 3 73.49 0.510 517 1,589 1,215 258 794 608

subgraphs in natural clean graphs, e.g., they are small-world graphs
and have power-law degree distributions. As a result, our backdoor
attack with ER is more effective than that with SW and PA.

In a nutshell, SW model first creates a ring in which each node
is connected with its 𝑘 nearest neighbors. Then, for each edge in
the ring, SW randomly rewires it with a certain probability, i.e., we
move one of its end to a new node chosen uniformly at random
from the rest of nodes with a certain probability. The parameter 𝑘 is
related to the density of the subgraph. We set 𝑘 = ⌈(𝑡 − 1)𝜌⌉, with
which the generated subgraph roughly has density 𝜌 . PA adds nodes
to the subgraph in a step-by-step manner. Initially, the subgraph
has 𝑘 nodes and no edges. In each step, a new node is added to the
subgraph and the new node is connected with randomly picked 𝑘
existing nodes in the subgraph, where the probability that a node is
picked is proportional to its degree. Intuitively, a new node prefers
to connect with nodes who are already connected with many other
nodes. The parameter 𝑘 is related to the density of the generated

subgraph. Formally, we set 𝑘 = ⌈ 𝑡−
√
𝑡2−2·𝑡 · (𝑡−1) ·𝜌

2 ⌉, which allows
the generated subgraph to roughly have density 𝜌 . Note that PA
requires 𝜌 to be smaller than some threshold (i.e., the subgraph
cannot be too dense) such that 𝑘 is a positive integer.
Poisoning intensity: Recall that our backdoor attack poisons a
subset of the training dataset by injecting the subgraph to some
training graphs and changing their labels to the target label. Poi-
soning intensity is the fraction of training graphs that are poisoned
by the attacker. We denote by 𝛾 the poisoning intensity.

4 Attack Evaluation

4.1 Experimental Setup

Datasets: We evaluate our attacks on three publicly available real-
world graph datasets. Table 1 shows the statistics of our datasets.

Bitcoin [48]. This dataset is used for graph-based fraudulent
Bitcoin transaction detection. The original dataset has Bitcoin trans-
actions collected at more than 40 different timestamps. Some trans-
actions are manually labeled as illicit, some transactions are man-
ually labeled as licit, while the remaining ones are unlabeled. We
extracted 658 labeled transactions. We represent each transaction
as a graph. Specifically, in a graph, nodes are a transaction and the
transactions that have Bitcoin flowwith it and an edge between two
transactions means that there was Bitcoin currency flow between
them. Therefore, there are 658 graphs and each graph has a label 0
or 1, which corresponds to illicit and licit transaction, respectively.

Twitter [46]. This dataset is used for graph-based fake user
detection. In the original dataset, some users are labeled as fake,
some are labeled as genuine, and the remaining are unlabeled. We
randomly picked 1, 481 labeled users. We represent each user using
its ego network. In particular, in a user’s ego network, the user
and its followers/followees are nodes and an edge between two
users indicates that they follow each other. A user’s ego network

is labeled as 0 if the user is fake and 1 otherwise. Therefore, this
dataset includes 1,481 graphs and each graph has a label 0 or 1.

COLLAB [52]. COLLAB is a scientific collaboration dataset. A
graph corresponds to a researcher’s ego network, i.e., the researcher
and its collaborators are nodes and an edge indicates collaboration
between two researchers. A researcher’s ego network has three
possible labels, i.e., High Energy Physics, CondensedMatter Physics,
and Astro Physics, which are the fields that the researcher belongs
to. The dataset has 5,000 graphs and each graph has label 0, 1, or 2.

The Bitcoin and Twitter datasets represent GNN-based fraud
detection. Both of them are binary classification tasks. We consider
the COLLAB dataset because it is a widely used benchmark for
GNNs and it represents a multi-class classification task. For all
three datasets, we extract a node’s degree as its node feature. These
diverse datasets can demonstrate the effectiveness of our backdoor
attacks in different domains.
Dataset splits and construction:We split each dataset to training
dataset and testing dataset. Moreover, we construct backdoored
training dataset and backdoored testing dataset via injecting a
trigger to the graphs. In particular, we have the following datasets:

Clean training dataset. For each dataset, we sample 2/3 of the
graphs uniformly at random as the training dataset. We call it clean
training dataset.

Clean testing dataset. For each dataset, we treat the remaining
graphs as clean testing dataset.

Backdoored training dataset. Since our attack poisons some
training graphs, we construct a backdoored training dataset from
each clean training dataset. In particular, we randomly sample 𝛾
fraction of graphs from a clean training dataset. Then, for each
sampled training graph, we inject our backdoor trigger to it and
relabel it as the target label. We assume label 1 as target label. In
Bitcoin and Twitter, selecting label 1 as target label means evading
fraud detection.

Backdoored testing dataset. To evaluate the effectiveness of
our attack, we create a backdoored testing dataset for each dataset.
For each testing graph whose true label is not the target label, we
inject our trigger to it. These testing graphs with injected trigger
constitute our backdoored testing dataset.
GNN classifiers: Our attack does not rely on the architecture of
GNN classifiers. We show our attacks for three popular GNN clas-
sifiers, i.e., GIN [50], SAGPool [26], and HGP-SL [55]. We use their
publicly available implementations. When a classifier is learnt using
a clean training dataset, we call the classifier clean classifier and
we denote it as 𝑓𝑐 . When a classifier is learnt using a backdoored
training dataset, we call the classifier backdoored classifier and we
denote it as 𝑓𝑏 . Due to limited space, we show results on GIN unless
otherwise mentioned.
Evaluation metrics:We use Clean Accuracy, Backdoor Accuracy,
and Attack Success Rate as evaluation metrics. Clean accuracy and
backdoor accuracy respectively measure the accuracies of a clean

20% 30% 40% 50%

Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

5% 10% 20% 30% 40% 50%

Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

5% 10% 20% 30% 40% 50%

Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

0.2 0.4 0.6 0.8 1.0

Trigger density

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

0.2 0.4 0.6 0.8 1.0

Trigger density

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

0.2 0.4 0.6 0.8 1.0

Trigger density

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

1% 2% 5% 10%

Poisoning intensity

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

(a) Bitcoin

1% 2% 5% 10%

Poisoning intensity

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

(b) Twitter

1% 2% 5% 10%

Poisoning intensity

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy

Backdoor Accuracy

Attack Success Rate

(c) COLLAB

Figure 2: Impact of trigger size (first row), trigger density (second row), and poisoning intensity (third row).

classifier and a backdoored classifier for a clean testing dataset,
while attack success rate is the fraction of graphs in the backdoored
testing dataset that are predicted to have the target label by a
backdoored classifier. Next, we describe them in detail.

Clean Accuracy. Given a clean classifier 𝑓𝑐 and a clean test-
ing dataset D𝑐𝑡 = {(𝐺1, 𝑦1), (𝐺2, 𝑦2), · · · , (𝐺𝑛, 𝑦𝑛)}, we define the
clean accuracy as the fraction of graphs in the clean testing dataset
that are correctly predicted by the clean classifier 𝑓𝑐 . Formally, we
have the following: Clean Accuracy =

∑︁𝑛
𝑖=1 I(𝑓𝑐 (𝐺𝑖)=𝑦𝑖)

𝑛 , where I is
an indicator function.

Backdoor Accuracy. The backdoor accuracy measures the ac-
curacy of a backdoored classifier on the clean testing dataset. In
particular, we define backdoor accuracy as the fraction of graphs
in the clean testing dataset that can be correctly predicted by the
backdoored classifier. Formally, we have: Backdoor Accuracy =∑︁𝑛

𝑖=1 I(𝑓𝑏 (𝐺𝑖)=𝑦𝑖)
𝑛 , where I is an indicator function. The difference

between backdoor accuracy and clean accuracy measures the im-
pact of our backdoor attack on accuracy for clean testing graphs.
Recall that one of our attacker’s goals is that the accuracy on clean
testing graphs should not be influenced by our attack, i.e., backdoor
accuracy and clean accuracy should be close.

Attack SuccessRate.Given a backdoored testing datasetD𝑏𝑡 =

{(𝐺1, 𝑦1), (𝐺2, 𝑦2), · · · , (𝐺𝑚, 𝑦𝑚)}, we define attack success rate

as the fraction of graphs in D𝑏𝑡 for which the backdoored clas-
sifier predicts the target label. Formally, we have the following:
Attack Success Rate =

∑︁𝑚
𝑖=1 I(𝑓𝑏 (𝐺𝑖)=𝑙)

𝑛 , where 𝑙 is the attacker-chosen
target label.
Parameter setting: Our attack has the following parameters: trig-
ger size 𝑡 , trigger density 𝜌 , trigger synthesis method𝑀 , and poi-
soning intensity 𝛾 . Different datasets have different graph sizes.
Therefore, for each dataset, we set the trigger size 𝑡 to be 𝜑 frac-
tion of the average number of nodes per graph in the dataset (we
use ceiling to obtain an integer number as the trigger size). Unless
otherwise mentioned, we adopt the following default parameter
settings: 𝜑 = 20%, 𝜌 = 0.8,𝑀 = 𝐸𝑅, and 𝛾 = 5% in all three datasets.
We will explore the impact of each parameter while fixing the re-
maining ones to their default settings. Note that when a graph has
less nodes than the trigger size, we replace the graph as the trigger.
ER may generate a subgraph/trigger with no edges as it randomly
creates edges. When such case happens, we run ER multiple times
until generating a subgraph with at least one edge. SW rewires an
edge with a probability, which we set to be 0.8.

4.2 Results

Impact of trigger size, trigger density, and poisoning inten-
sity: Figure 2 shows the impact of trigger size, trigger density, and

Clean Accuracy Backdoor Accuracy Attack Success Rate
0.4

0.5

0.6

0.7

0.8

0.9 ER

SW

PA

(a) Bitcoin

Clean Accuracy Backdoor Accuracy Attack Success Rate
0.4

0.5

0.6

0.7

0.8

0.9 ER

SW

PA

(b) Twitter

Clean Accuracy Backdoor Accuracy Attack Success Rate
0.4

0.5

0.6

0.7

0.8

0.9 ER

SW

PA

(c) COLLAB

Figure 3: Comparing trigger synthesis methods.

0.1 0.2 0.3 0.4 0.5

Average graph density

0.5

0.6

0.7

0.8

0.9

1.0

A
tt

ac
k

su
cc

es
s

ra
te

Figure 4: Attack success rate as a function of the average
graph density on Twitter, where our trigger density is 0.3.

poisoning intensity on the three datasets. First, we observe that
our backdoor attacks have small impact on the accuracies for clean
testing graphs. Specifically, backdoor accuracy is slightly smaller
than clean accuracy. For instance, when the trigger size is 20% of the
average number of nodes per graph, the backdoor accuracy is 0.03
smaller than the clean accuracy on Twitter. Second, our backdoor
attacks achieve high attack success rates and the attack success
rates increase as the trigger size, trigger density, or poisoning in-
tensity increases. The reason is that when the trigger size, trigger
density, or poisoning intensity is larger, the backdoored GNN is
more likely to associate the target label with the trigger.
Comparing trigger synthesis methods: Figure 3 compares ER,
SW, and PA as trigger synthesis methods on the three datasets,
where we set 𝜌 = 0.4 since PA requires it to be small (see Section 3.2).
Our results show that ER has higher attack success rates than SW
and PA.We suspect the reason is that the subgraph generated by SW
and PA is more similar to subgraphs in the clean graphs, e.g., they
are small-world graphs and have power-law degree distributions,
and thus the backdoored GNN is less likely to associate the target
label with the subgraph.
Impact of graph density: Intuitively, for a given trigger, the effec-
tiveness of our backdoor attack may depend on the density of the
clean training/testing graphs. To study the impact of the density
of clean graphs, we randomly delete some edges in the Twitter
graphs such that the average graph density ranges from 0.1 to 0.5.
Figure 4 shows the attack success rate of our attack as a function of
the average graph density, where we set the trigger density to be
0.3 and the trigger size to be 20% of the average number of nodes
per graph. We observe a decreasing trend of attack success rate
as the average graph density increases. One exception is that our
attack success rate has a “local minimum” at the point where the

average graph density is the trigger density. In other words, among
the average graph densities that are around the trigger density, our
attack is the least effective when the average graph density is the
same as the trigger density. The reason is that it is harder for GNN
to distinguish between the trigger and other subgraphs in the clean
graphs when they have the same density, and thus it is harder for
the backdoored GNN to associate the trigger with the target label.

Injecting trigger in training vs. testing graphs: Backdoor at-
tacks inject a trigger to some training graphs and also testing graphs.
One natural question is how successful a backdoor attack is if we
only inject the trigger to the training graphs or testing graphs alone.
Table 2 shows the attack success rates of our backdoor attacks when
injecting the trigger to only training graphs, only testing graphs,
and both. We denote by D𝑐 the set of clean testing graphs whose
true labels are not the target label. Attack Success Rate-Baseline is
the fraction of clean testing graphs inD𝑐 that are predicted to have
the target label by the clean GNN. Attack Success Rate-Baseline
measures an attacker’s success rate without injecting a trigger to
any training/testing graph. Attack Success Rate-Train is the frac-
tion of clean testing graphs in D𝑐 that are predicted to have the
target label by the backdoored GNN. Attack Success Rate-Test is the
fraction of testing graphs inD𝑐 that are predicted to have the target
label by the clean GNN when injecting the trigger to them. Attack
Success Rate corresponds to our attack that injects the trigger to
both training and testing graphs.

We observe that injecting trigger to both training and testing
graphs does improve attack success rates substantially. We also
observe that injecting trigger to either training graphs or testing
graphs alone increases the attack success rate upon the baseline.
This is because injecting trigger to training or testing graphs makes
the GNN classifiers less accurate. For Bitcoin and Twitter, being less
accurate is equivalent to higher attack success rate since the two
datasets are binary classification. For COLLAB, the GNN classifiers
are biased to be more likely to predict label 1 (i.e., target label) when
making an incorrect prediction because label 1 has more training
graphs (see Table 1), and thus being less accurate increases the
attack success rate.

Fixed vs. random triggers: In all our experiments above, we use
the same trigger in the training graphs and testing graphs. Table 3
compares the backdoor accuracy and attack success rate when we
use ER to generate one trigger and fix it (corresponding to “Fixed
trigger”) and when we use ER to generate a random trigger with

Table 2: Attack success rates when injecting the trigger to
only training graphs, only testing graphs, and both.

Bitcoin Twitter COLLAB
Attack Success Rate-Baseline 0.40 0.19 0.25
Attack Success Rate-Train 0.45 0.28 0.37
Attack Success Rate-Test 0.51 0.24 0.52
Attack Success Rate 0.78 0.82 0.75

Table 3: Fixed trigger vs. random trigger on Twitter.

Backdoor Accuracy Attack Success Rate
Fixed trigger 0.67 0.82

Random trigger 0.66 0.81

Table 4: Our attack on different GNN classifiers on Twitter.

GIN SAGPool HGP-SL
Clean Accuracy 0.71 0.69 0.72

Backdoor Accuracy 0.69 0.68 0.69
Attack Success Rate 0.82 0.81 0.84

the given trigger size and density for each poisoned training graph
and testing graph (corresponding to “Random trigger”). Our results
show that random trigger is nearly as effective as fixed trigger.
We suspect the reason is that the random triggers are structurally
similar, e.g., they may be isomorphic, and a backdoored GNN can
associate the structurally similar triggers with the target label.
Different GNN classifiers: Table 4 shows the attack results for
three popular GNN classifiers on Twitter.We observe that our attack
is effective for different GNN classifiers. This is because our attack
does not rely on the architecture of GNN classifiers.
Comparing differentways to inject trigger:Our attack involves
injecting a subgraph trigger to a training/testing graph. In partic-
ular, we pick 𝑡 nodes in a graph and replace their connections as
the trigger, where 𝑡 is the trigger size. One natural question is how
to select the 𝑡 nodes in a graph. In all our above experiments, we
pick the 𝑡 nodes in a graph uniformly at random. We compare this
random strategy with three other strategies. Two strategies (called
max degree andmin degree) are to select the 𝑡 nodes with the largest
and smallest degrees, respectively. The third strategy (called densely
connected) is to select 𝑡 nodes that are densely connected, i.e., a set
of 𝑡 nodes with the largest density, and we leverage the method in
[54] to find such 𝑡 nodes. Table 5 compares different strategies to
select the 𝑡 nodes. We find that the random strategy has the most
stable results. In particular, it achieves similar backdoor accuracy
with other strategies on the three datasets. However, the random
strategy achieves either much higher attack success rates (e.g., on
Twitter) or ones comparable with other strategies.

5 Certified Defense

5.1 Overview
Generally speaking, there are two types of defenses to build robust
machine learning systems, i.e., empirical defenses and certified de-
fenses. Empirical defenses are usually designed to defend against
specific attacks and are often broken by strong adaptive attacks,
which leads to a cat-and-mouse game between attackers and de-
fenders. For instance, for backdoor attacks in the image domain,
Salem et al. [38] proposed dynamic backdoor attacks and showed

Table 5: Comparing different ways to inject the trigger.

Bitcoin random max degree min degree densely connected
Clean Accuracy 0.73 0.73 0.73 0.73

Backdoor Accuracy 0.7 0.71 0.71 0.69
Attack Success Rate 0.78 0.78 0.83 0.82

Twitter random max degree min degree densely connected
Clean Accuracy 0.71 0.71 0.71 0.71

Backdoor Accuracy 0.69 0.7 0.69 0.7
Attack Success Rate 0.82 0.68 0.55 0.28

COLLAB random max degree min degree densely connected
Clean Accuracy 0.78 0.78 0.78 0.78

Backdoor Accuracy 0.75 0.73 0.72 0.75
Attack Success Rate 0.76 0.76 0.74 0.76

it can bypass state-of-the-art empirical defenses [12, 33, 45]. In Sec-
tion 7, we show that an empirical defense based on dense subgraph
detection is not effective for our attacks. Therefore, we focus on
certified defenses in this work. A certified defense provably pre-
dicts the same label for all data points in a certain region around
an input.

Randomized smoothing [4, 10, 24, 28, 32] is state-of-the-art tech-
nique to build provably robust machine learning. In particular, given
an arbitrary classifier (called base classifier), randomized smoothing
builds a smoothed classifier via randomizing an input, e.g., adding
Gaussian noise to the input or randomly subsampling some fea-
tures of the input. Roughly speaking, given an input, the smoothed
classifier predicts the label that is the most likely to be returned
by the base classifier when randomizing the input. Such predicted
label for an input by the smoothed classifier certifiably remains the
same when the ℓ𝑝 norm of the perturbation added to the input is
less than a certain threshold.

Graph is essentially binary data, i.e., a pair of nodes can be ei-
ther connected or unconnected. For binary data, a randomized
smoothing method called randomized subsampling [27] achieves
state-of-the-art certified robustness. Therefore, we design our cer-
tified defense based on randomized subsampling. Next, we first
introduce randomized subsampling and then discuss how to extend
it to defend against our backdoor attacks.

5.2 Randomized Subsampling

Building a smoothed classifier via subsampling: Suppose we
have a 𝑠-dimensional input x and a base classifier ℎ which maps x
to a set of 𝑐 labels {1, 2, · · · , 𝑐}.

Randomized subsampling creates a subsampled input via keep-
ing 𝑧 randomly subsampled features in x and setting the remain-
ing features in x to a special value (e.g., 0). We denote such sub-
sampled input as S(x, 𝑧). Since the subsampled input S(x, 𝑧) is
random, the output of the base classifier ℎ for the subsampled
input is also random. We denote 𝑝 𝑗 as the probability that the
base classifier ℎ outputs label 𝑗 when taking S(x, 𝑧) as input, i.e.,
𝑝 𝑗 = Pr(ℎ(S(x, 𝑧)) = 𝑗),∀𝑗 ∈ {1, 2, · · · , 𝑐}. Then, randomized sub-
sampling builds a smoothed classifier ℎ̄, which returns the label
with the largest probability 𝑝 𝑗 for the input x. Formally, we have:

ℎ̄(x) = argmax
𝑗 ∈{1,2, · · · ,𝑐 }

Pr(ℎ(S(x, 𝑧)) = 𝑗) = argmax
𝑗 ∈{1,2, · · · ,𝑐 }

𝑝 𝑗 , (1)

where ℎ̄(x) is the label that the smoothed classifier predicts for
x. In practice, to calculate the predicted label ℎ̄(x), we create 𝑑
subsampled inputs from x, use the base classifier to predict their
labels, and take a majority vote among the 𝑑 labels as the predicted
label ℎ̄(x) (the majority vote label has the largest probability 𝑝 𝑗).
Certified robustness: Suppose an attacker adds a perturbation 𝛿

to an input x. The smoothed classifier certifiably predicts the same
label for x when the ℓ0 norm of the perturbation is no larger than
a threshold 𝑅, i.e., ℎ̄(x + 𝛿) = ℎ̄(x), ∀||𝛿 | |0 ≤ 𝑅. Moreover, 𝑅 is the
maximum integer that satisfies the following inequality:(︃

𝑠 − 𝑅

𝑧

)︃
> (1.5 − 𝑝𝑙)

(︃
𝑠

𝑧

)︃
, (2)

where
(︁𝑠−𝑅
𝑧

)︁
is the combination of 𝑠 − 𝑅 things taken 𝑧 at a time,

𝑙 is the predicted label for x by the smoothed classifier (i.e., 𝑙 =

argmax𝑗 ∈{1,2, · · · ,𝑐 } 𝑝 𝑗), and 𝑝𝑙 is a lower bound of 𝑝𝑙 .
Estimating 𝑙 and 𝑝𝑙 : To calculate 𝑅 in Equation (2), we need to
know 𝑙 and 𝑝𝑙 , which can be estimated using a Monte-Carlo sam-
pling method with a probabilistic guarantee [10]. Specifically, we
randomly create 𝑑 subsampled inputs from x. We use the base clas-
sifier to predict the labels of the𝑑 subsampled inputs. The smoothed
classifier takes a majority vote among the 𝑑 labels, i.e., the most
frequent label among the 𝑑 subsampled inputs is predicted as the
label 𝑙 for x. Moreover, we denote by 𝑑𝑙 the number of subsampled
inputs for which the base classifier predicts label 𝑙 . Theoretically,

𝑑𝑙 follows a binomial distribution with parameters 𝑑 and 𝑝𝑙 .
Therefore, according to the Clopper-Pearson method [9], a lower
bound 𝑝𝑙 of 𝑝𝑙 can be estimated with a confidence level 1 − 𝛼 as
follows:

𝑝𝑙 = 𝐵(𝛼 ;𝑑𝑙 , 𝑑 − 𝑑𝑙 + 1), (3)

where 𝐵(𝛼 ;𝜈, 𝜇) is the 𝛼th quantile of the Beta distribution with
shape parameters 𝜈 and 𝜇.

5.3 Defending against our Backdoor Attacks
We leverage randomized subsampling to defend against our back-
door attacks. Next, we discuss how to predict label for a testing
graph using a smoothed GNN classifier, the certified robustness
guarantee of the smoothed GNN classifier, and our method of train-
ing a base GNN classifier to improve the accuracy and robustness
of the smoothed GNN classifier.
Smoothed GNN: Suppose we are given an GNN classifier (called
base GNN classifier) and a testing graph𝐺 . The base GNN classifier
can be a backdoored GNN classifier. We can represent the structure
of a graph as a binary vector (called structure vector), where each en-
try of the vector corresponds to the connection status (connected or
unconnected) of a pair of nodes in the graph. We view the structure
vector as an input x in randomized subsampling. The smoothed
GNN classifier predicts label for the testing graph𝐺 following three
steps. First, we create 𝑑 subsampled graphs from the testing graph𝐺 .
Specifically, to create a subsampled graph, we randomly sample 𝑧
entries in the testing graph’s structure vector, keep their values, set
the remaining entries of the structure vector to be 0, and convert
the perturbed structure vector to a graph. Note that when a node
feature (e.g., node degree) is derived from the graph structure, the
feature should also be recalculated for nodes in the subsampled

Algorithm 1 Training with Subsampling
Input: D𝑡𝑟 ,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 , 𝛽 , and 𝑙𝑟 (learning rate).
Output: Model parameter 𝜃
1: Initialize 𝜃
2: 𝑖𝑡𝑒𝑟 = 0
3: while 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
4: 𝑏𝑎𝑡𝑐ℎ = MiniBatch(D𝑡𝑟)
5: //we adapt the following two steps
6: 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑏𝑎𝑡𝑐ℎ = Subsample_batch(𝑏𝑎𝑡𝑐ℎ, 𝛽)
7: 𝜃 = 𝜃 − 𝑙𝑟 · ∇𝜃L(𝜃 ; 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑏𝑎𝑡𝑐ℎ)
8: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
9: end while
10: return 𝜃

graph. We set 𝑧 as 𝛽 fraction of the entries in the testing graph’s
structure vector in our experiments, i.e., 𝑧 = ⌈𝛽 |𝐺 | (|𝐺 | − 1)/2⌉. We
call 𝛽 subsampling ratio. Second, we use the base GNN classifier to
predict labels of the 𝑑 subsampled graphs. Note that the base GNN
can still predict a label even if a subsampled graph is disconnected.
Third, the smoothed GNN classifier takes majority vote among the
𝑑 labels as the predicted label for the testing graph 𝐺 . We denote
the predicted label as 𝑙 and by 𝑑𝑙 the number of subsampled graphs
that are predicted to have label 𝑙 by the base GNN classifier.
Certified robustness: Intuitively, when the trigger is small, a ma-
jority of the𝑑 subsampled graphs do not include edges in the trigger.
Therefore, a majority of the predicted labels for the subsampled
graphs are not influenced by the trigger and the majority vote
among the predicted labels of the subsampled graphs (i.e., the label
predicted by the smoothed GNN classifier) is not influenced by the
trigger. Formally, the smoothed GNN classifier provably predicts
the same label for a testing graph 𝐺 once the ℓ0 norm of the per-
turbation added to the graph’s structure vector is bounded by 𝑅 in
Equation (2), where 𝑠 = |𝐺 | (|𝐺 | − 1)/2 is the number of entries in
the graph’s structure vector. Our attack injects a trigger to a graph,
which can be viewed as flipping some entries of the graph’s binary
structure vector. Therefore, the ℓ0 norm of the perturbation intro-
duced by our attack is the number of entries of a graph’s structure
vector that are flipped by our trigger, i.e., the number of edges that
are deleted or added by our trigger. Injecting a trigger with size 𝑡
to a graph deletes or adds at most 𝑡 (𝑡 − 1)/2 edges in the graph.
Therefore, we know that the smoothed GNN classifier predicts the
same label for a testing graph once the size of the trigger added to
the testing graph is no larger than a threshold 𝑇 . Formally, based
on Equation (2) with 𝑠 = |𝐺 | (|𝐺 | − 1)/2 and 𝑅 = 𝑇 (𝑇 − 1)/2, we
have 𝑇 is the largest integer that satisfies the following:(︃

|𝐺 | (|𝐺 | − 1)/2 −𝑇 (𝑇 − 1)/2
𝑧

)︃
> (1.5 − 𝑝𝑙)

(︃
|𝐺 | (|𝐺 | − 1)/2

𝑧

)︃
, (4)

where 𝑝𝑙 is estimated using Equation (3). We call the threshold 𝑇
certified trigger size. When estimating 𝑝𝑙 , we set the confidence
level 1 − 𝛼 to be 0.999 in experiments.
Training base GNN classifier with subsampling:We can build
a smoothed GNN classifier from any base GNN classifier, e.g., a
backdoored GNN classifier. In our smoothed GNN classifier, the
base GNN classifier is used to predict labels for subsampled graphs

Table 6: Training with subsampling vs. training without sub-
sampling on Twitter.

Clean Accuracy Backdoor AccuracyAttack Success Rate
Training without
subsampling 0.48 0.43 0.97

Training with
subsampling 0.71 0.69 0.35

instead of the original testing graph. Therefore, the testing data
distribution for the base GNN classifier is different from its train-
ing data distribution, which limits the accuracy of the base GNN
classifier on the subsampled graphs and thus limits the accuracy
and robustness of the smoothed GNN classifier. To overcome the
distribution shift issue, we propose to train the base GNN classifier
with subsampling. Algorithm 1 shows our training with subsam-
pling. When using a random batch of training graphs to calculate
the gradient of the loss function, we create a subsampled graph for
each training graph in the batch and use the subsampled graphs
to calculate the gradient and update the model parameters. Our
experimental results demonstrate that training the base GNN clas-
sifier with subsampling significantly improves the accuracy and
robustness of the smoothed GNN classifier.

6 Defense Evaluation

6.1 Experimental Setup

Datasets:We also evaluate our defense on the three datasets, i.e.,
Bitcoin, Twitter, and COLLAB. Moreover, the dataset splits are the
same as those in our attack evaluation in Section 4.1.
Smoothed GIN classifiers:We consider GIN as the GNN classifier.
When building our smoothed GIN classifier, we train the base GIN
classifier with subsampling. Specifically, we train a clean base GIN
classifier and a backdoored base GIN classifier using a clean training
dataset and a backdoored training dataset, respectively. Then, we
build a smoothed clean GIN classifier and a smoothed backdoored GIN
classifier from them, respectively. We also train a clean GIN classifier
and a backdoored GIN classifier using a clean training dataset and a
backdoored training dataset, respectively. The clean/backdoored
GIN classifiers are used as baselines to evaluate the performance of
the smoothed clean/backdoored GIN classifiers. They are trained in
the same way as those in our attack evaluation. In particular, they
are not trained with subsampling since they are not used to build
smoothed classifiers.
Evaluation metrics: We also consider Clean Accuracy, Backdoor
Accuracy, and Attack Success Rate as our evaluation metrics. The
clean accuracy of a smoothed clean GIN classifier is the fraction of
testing graphs in the clean testing dataset whose labels are correctly
predicted by the classifier. The backdoor accuracy of a smoothed
backdoored GIN classifier is the fraction of testing graphs in the
clean testing dataset whose labels are correctly predicted by the
classifier. The attack success rate of a smoothed backdoored GIN
classifier is the fraction of testing graphs in the backdoored testing
dataset whose labels are predicted as the target label by the classifier.
Parameter setting: The attack parameter settings are the same as
those in Section 4.1. Our defense has two parameters: number of
subsampled graphs 𝑑 and subsampling ratio 𝛽 . Unless otherwise

0% 10% 20% 30% 40% 50%

Certified trigger size

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

di
st

ri
bu

ti
on

fu
nc

ti
on

Figure 5: Cumulative distribution function of the certified
trigger size on Twitter dataset.

mentioned, we adopt the following default setting: 𝑑 = 100 and
𝛽 = 10% on all three datasets. We will explore the impact of one
parameter while fixing the other parameter to its default setting.

6.2 Results

Trainingwith subsampling vs. trainingwithout subsampling:
Table 6 shows the clean accuracy of our smoothed clean GIN clas-
sifier, and the backdoor accuracy and attack success rate of our
smoothed backdoored GIN classifier, when the base GIN classifiers
are trained with or without subsampling. We observe that training
with subsampling substantially improves our smoothed classifiers.
Moreover, the clean accuracy and backdoor accuracy are close, espe-
cially after training with subsampling. Therefore, we will only show
backdoor accuracy in the remaining experiments for simplicity.
Impact of the number of subsampled graphs 𝑑 and subsam-
pling ratio 𝛽: Figure 6 and Figure 7 show the impact of 𝑑 and
𝛽 on the backdoor accuracies and the attack success rates of the
backdoored GIN classifier and our smoothed backdoored GIN clas-
sifier, respectively. The curves corresponding to the backdoored
GIN classifier are straight lines in the figures as they do not rely
on 𝑑 nor 𝛽 . Our results show that our smoothed classifiers achieve
a tradeoff between backdoor accuracy and attack success rate. In
particular, our smoothed backdoored GIN has lower backdoor ac-
curacies than the backdoored GIN, but our smoothed backdoored
GIN also has lower attack success rates. 𝑑 has a negligible impact
on the smoothed backdoored GIN classifier when it is larger than
10. Our results indicate that our smoothed classifiers predict labels
stably with only dozens of subsampled graphs. The reason may be
that our datasets are binary or three-class classification problems.
As 𝛽 increases, our smoothed backdoored GIN classifier has higher
backdoor accuracy but also higher attack success rate. The reason
is that a higher subsampling ratio keeps more information of a
testing graph in a subsampled graph but the subsampled graph is
also more likely to include edges from the backdoor trigger.
Impact of trigger size: Figure 8 shows the impact of trigger size
on the backdoor accuracy and attack success rate on the three
datasets. When the trigger size is small, the smoothed backdoored
GIN can reduce the attack success rate with some backdoor accu-
racy drop, compared to the backdoored GIN. In some scenarios, the
attack success rate drops substantially with a small backdoor accu-
racy drop, indicating that randomized subsampling is an effective
defense against our backdoor attacks. For instance, the smoothed
backdoored GIN drops the attack success rate by 0.39 with only 0.02
backdoor accuracy drop on Twitter, when the trigger size is 20% of
the average number of nodes per graph. However, as the trigger

101 102 103

d

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(a) Bitcoin

101 102 103

d

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(b) Twitter

101 102 103

d

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(c) COLLAB
Figure 6: Impact of the number of subsampled graphs 𝑑 .

5% 10% 20% 30%

β

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(a) Bitcoin

5% 10% 20% 30%

β

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(b) Twitter

5% 10% 20% 30%

β

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(c) COLLAB
Figure 7: Impact of the subsampling ratio 𝛽 .

20% 30% 40% 50%

Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(a) Bitcoin

5% 10% 20% 30% 40% 50%

Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(b) Twitter

5% 10% 20% 30% 40% 50%

Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

Backdoored GIN, Backdoor Accuracy

Smoothed Backdoored GIN, Backdoor Accuracy

Backdoored GIN, Attack Success Rate

Smoothed Backdoored GIN, Attack Success Rate

(c) COLLAB
Figure 8: Impact of the trigger size.

size increases, the drops of the attack success rate become negligi-
ble in some scenarios. One notable example is that the smoothed
backdoored GIN and backdoored GIN have almost the same attack
success rate when the trigger size is 30% of the average number of
nodes per graph on Twitter. The reason is that the smoothed back-
doored GIN has small certified trigger sizes. For instance, Figure 5
shows the cumulative distribution function of the certified trigger
sizes of the testing graphs under the default parameter setting on
Twitter. All testing graphs have trigger sizes less than 10% of the av-
erage number of nodes per graph on Twitter. Our results highlight
the needs of new defenses against our backdoor attacks, especially
when the triggers are large.

7 Discussion and Limitations

Detecting triggers via dense-subgraph detection: One poten-
tial way to defend against our backdoor attacks is to detect our
trigger via dense-subgraph detection. This is an empirical defense

and may be effective when our trigger is very dense, e.g., when
our trigger is a complete subgraph. However, an attacker can use
a sparser trigger to evade detection. In particular, it may be hard
to detect our trigger via dense-subgraph detection if our trigger is
sparser than the clean graphs. However, our empirical results in
Figure 2 (second row) and Figure 4 show that our attacks are still
effective even if our triggers are sparser than the clean graphs on
average. Next, we further empirically evaluate detecting our trigger
using dense-subgraph detection.

We adopt a state-of-the-art dense subgraph detection method
[18] to detect our subgraph trigger. Specifically, given a graph
with our trigger injected, we use the method to detect a dense
subgraph in the graph. The method requires to specify the size of
the dense subgraph. We assume the method knows our trigger size,
which gives advantages to the detection method. Table 7 shows
the detection success rate, which is the fraction of training/testing
graphs with our trigger injected whose detected dense subgraphs

Table 7: Dense subgraph detection based defense.

Bitcoin Twitter COLLAB
Detection Success Rate 0.13 0.05 0.02
Backdoor Accuracy 0.53 0.58 0.59
Attack Success rate 0.71 0.77 0.74

match our trigger. We observe that the detection success rate is very
low on all three datasets. When a dense subgraph is detected, the
defender can remove its edges from the graph. Table 7 also shows
the backdoor accuracy and attack success rate when the defender
removes the detected dense subgraph from each graph, where the
same experimental settings in Section 4.1 are used. We find that
the backdoor accuracy drops significantly while our attack success
rate remains high, demonstrating the ineffectiveness of the dense
subgraph detection based defense.
Applying our certified defense to image backdoor attacks:Our
randomized subsampling based certified defense can be applied to
image backdoor attacks. In particular, given a testing image and a
base classifier (e.g., a backdoored neural network classifier), we can
create multiple subsampled images from the testing image, use the
base classifier to predict their labels, and take majority vote among
the labels as the predicted label for the testing image. To create a
subsampled image from the testing image, we randomly subsample
some pixels, keep their values, and set the remaining pixels to a
special value (e.g., 0). Such defense can certifiably predict the same
label for a testing image when the size of the trigger injected to it
is smaller than some threshold. We suspect that the defense may be
effective in some scenarios, e.g., when the trigger is small. However,
based on our empirical results in Section 6.2, we suspect the defense
may have limited effectiveness when the trigger is large.

8 Related Work

Backdoor attacks and their defenses in image domain: Deep
neural networks in the image domain were shown to be vulner-
able to backdoor attacks [6, 8, 15, 30, 34, 38, 39, 53]. Specifically,
a backdoored neural network classifier produces attacker-desired
behaviors when a trigger is injected into a testing example. For
instance, Gu et al. [15] proposed BadNets, which injects a backdoor
trigger (e.g., a patch) to some training images and changes their
labels to the target label. A neural network classifier trained on the
backdoored training dataset predicts the target label for a testing
image when the trigger is injected to it. Liu et al. [34] proposed to
inject a backdoor to a neural network via fine tuning, which does
not need to poison the training dataset. Yao et al. [53] developed
latent backdoor attacks for transfer learning.

To mitigate backdoor attacks, many defenses [6, 12, 16, 31, 33–
35, 45] have been proposed in the literature. Liu et al. [31] proposed
Fine-Pruning to remove backdoor from a neural network via prun-
ing its redundant neurons.Wang et al. [45] proposed Neural Cleanse
to detect and reverse engineer the trigger. Gao et al. [12] tried to
detect whether an input image includes a trigger or not via lever-
aging the input-agnostic characteristic of the backdoor trigger. Liu
et al. [33] proposed ABS to detect whether a neural network is
backdoored or not via analyzing the behaviors of its internal neu-
rons. We note that two work [41, 49], which are concurrent to ours,
studied randomized smoothing based certified defenses against

backdoor attacks in image domain. However, they use random-
ized smoothing with additive noise, e.g., Gaussian noise, uniform
noise, or discrete noise, which has limited effectiveness at defending
against backdoor attacks. For instance, Wang et al. [41] showed
that the certified accuracy drops to 0 when the attacker perturbs 3
pixels on MNIST 1/7 dataset. We explored randomized subsampling
based certified defense against our backdoor attacks to GNN. Our
results show that such certified defense can reduce attack success
rates with small accuracy drops when the trigger size is small, but
it is less effective or ineffective when the trigger size is large.

Attacks to GNNs: Several studies [3, 11, 42, 56, 57] showed that
GNNs for node classification are vulnerable to adversarial struc-
tural perturbations. Specifically, an attacker can perturb the graph
structure such that a GNN based node classifier misclassifies many
nodes in the graph indiscriminately or misclassifies some attacker-
chosen nodes. For instance, Zügner et al. [56] proposed an attack
that can manipulate the graph structure while preserving important
characteristics of the graph. Wang et al. [42] attacked collective
classification via formulating the attack as an optimization prob-
lem and proposing several approximation techniques to solve the
optimization problem. Moreover, their attacks can also transfer to
GNN based node classifiers. Dai et al. [11] proposed a reinforcement
learning method to attack GNNs for both node and graph classi-
fication. For graph classification, their method perturbs a testing
graph to be an adversarial example such that a GNN misclassifies it.
Chen et al. [7] proposed an attack for graph-based clustering. Our
work is different from these studies because we focus on backdoor
attacks to GNN based graph classification.

Randomized smoothing: Randomized smoothing [4, 10, 19, 24,
25, 27, 28, 32] is state-of-the-art technique to build provably robust
machine learning. Compared with other certified defense mecha-
nisms, randomized smoothing has two key advantages: 1) scalable
to large neural networks, and 2) applicable to arbitrary classifiers.
Randomized smoothing was initially proposed as an empirical de-
fense [4, 32]. For instance, Cao & Gong [4] proposed to use uniform
noise in a hypercube centered at a testing example to smooth the
prediction for the testing example (they called their method Region-
based Classification). Lecuyer et al. [24] derived the first certified
robustness guarantee for randomized smoothing with Gaussian or
Laplacian noise via differential privacy. Cohen et al. [10] derived the
first tight certified robustness guarantee for randomized smoothing
with Gaussian noise by Neyman-Pearson Lemma [36]. Jia et al. [19]
generalized the tight certified robustness guarantee to general top-𝑘
predictions for randomized smoothing with Gaussian noise. Jia et
al. [20] leveraged randomized smoothing to certify robustness of
community detection against structural perturbations. All these
randomized smoothing methods add additive noise to a testing ex-
ample. Levine et al. [27] proposed randomized subsampling, which
does not use additive noise and achieves state-of-the-art ℓ0 norm
certified robustness. We extend randomized subsampling to defend
against our backdoor attacks. Our results show that randomized
subsampling is ineffective in some scenarios.

9 Conclusion and Future Work
In this work, we showed that graph neural networks are vulnerable
to backdoor attacks. Specifically, an attacker can inject a subgraph to

some training graphs and change their labels to an attacker-chosen
target label. A GNN classifier that is trained on the backdoored
training dataset is very likely to predict the target label for any
testing graph when the same subgraph is injected to it. Our em-
pirical evaluation results on three real-world datasets show that
our backdoor attacks achieve high success rates with a small im-
pact on the GNN’s accuracies for clean testing graphs. We also
explored a randomized smoothing based certified defense against
our backdoor attacks. Our empirical results show that the certified
defense is ineffective in some scenarios, highlighting the needs of
new defenses against our backdoor attacks. Interesting future work
includes: 1) detecting whether a GNN classifier is backdoored or
not, and 2) designing new defenses against our backdoor attacks.
ACKNOWLEDGMENTS
We thank the anonymous reviewers for insightful reviews. This
work was supported by NSF grant No. 1937787.

References
[1] Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. 2017.

Low data drug discovery with one-shot learning. ACS central science (2017).
[2] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science (1999).
[3] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial Attacks on

Node Embeddings via Graph Poisoning. In ICML.
[4] Xiaoyu Cao and Neil Zhenqiang Gong. 2017. Mitigating evasion attacks to deep

neural networks via region-based classification. In ACSAC.
[5] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas

Blaschke. 2018. The rise of deep learning in drug discovery. Drug Discov. (2018).
[6] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted

backdoor attacks on deep learning systems using data poisoning. arXiv (2017).
[7] Yizheng Chen, Yacin Nadji, Athanasios Kountouras, Fabian Monrose, Roberto

Perdisci, Manos Antonakakis, and Nikolaos Vasiloglou. 2017. Practical Attacks
Against Graph-based Clustering. In CCS.

[8] Joseph Clements and Yingjie Lao. 2018. Hardware trojan attacks on neural
networks. arXiv preprint arXiv:1806.05768 (2018).

[9] Charles J Clopper and Egon S Pearson. 1934. The use of confidence or fiducial
limits illustrated in the case of the binomial. Biometrika (1934).

[10] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified Adversarial
Robustness via Randomized Smoothing. In ICML.

[11] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial Attack on Graph Structured Data. In ICML.

[12] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe,
and Surya Nepal. 2019. Strip: A defence against trojan attacks on deep neural
networks. In ACSAC.

[13] Edgar N Gilbert. 1959. Random graphs. Ann. Math. Stat. (1959).
[14] Neil Zhenqiang Gong, Mario Frank, and Prateek Mittal. 2014. Sybilbelief: A

semi-supervised learning approach for structure-based sybil detection. IEEE
Trans. Inf. Forensics Secur. 9 (2014).

[15] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. In Proc. of Machine
Learning and Computer Security Workshop.

[16] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. 2019. Tabor:
A highly accurate approach to inspecting and restoring trojan backdoors in ai
systems. arXiv preprint arXiv:1908.01763 (2019).

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

[18] Mehadi Hassen and Philip K Chan. 2017. Scalable function call graph-based
malware classification. In CODASPY.

[19] Jinyuan Jia, Xiaoyu Cao, Binghui Wang, and Neil Zhenqiang Gong. 2020. Cer-
tified Robustness for Top-k Predictions against Adversarial Perturbations via
Randomized Smoothing. In ICLR.

[20] Jinyuan Jia, BinghuiWang, Xiaoyu Cao, and Neil Zhenqiang Gong. 2020. Certified
Robustness of Community Detection against Adversarial Structural Perturbation
via Randomized Smoothing. InWWW.

[21] Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2017. Random walk based
fake account detection in online social networks. In DSN.

[22] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[23] Deguang Kong and Guanhua Yan. 2013. Discriminant malware distance learning
on structural information for automated malware classification. In KDD.

[24] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. 2019. Certified robustness to adversarial examples with differential privacy.

In IEEE S & P.
[25] Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi Jaakkola. 2019. Tight cer-

tificates of adversarial robustness for randomly smoothed classifiers. In NeurIPS.
[26] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.

arXiv preprint arXiv:1904.08082 (2019).
[27] Alexander Levine and Soheil Feizi. 2020. Robustness Certificates for Sparse

Adversarial Attacks by Randomized Ablation. In AAAI.
[28] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. 2019. Certified

Adversarial Robustness with Additive Noise. In NeurIPS.
[29] Junying Li, Deng Cai, and Xiaofei He. 2017. Learning graph-level representation

for drug discovery. arXiv preprint arXiv:1709.03741 (2017).
[30] Wenshuo Li, Jincheng Yu, Xuefei Ning, Pengjun Wang, Qi Wei, Yu Wang, and

Huazhong Yang. 2018. Hu-fu: Hardware and software collaborative attack frame-
work against neural networks. In ISVLSI. IEEE.

[31] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: De-
fending against backdooring attacks on deep neural networks. In RAID.

[32] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. 2018. Towards
robust neural networks via random self-ensemble. In ECCV. 369–385.

[33] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. ABS: Scanning neural networks for back-doors by artificial
brain stimulation. In SIGSAC.

[34] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang,
and Xiangyu Zhang. 2018. Trojaning attack on neural networks. In NDSS.

[35] Yuntao Liu, Yang Xie, and Ankur Srivastava. 2017. Neural trojans. In 2017 IEEE
International Conference on Computer Design (ICCD). IEEE.

[36] Jerzy Neyman and Egon Sharpe Pearson. 1933. IX. On the problem of the most
efficient tests of statistical hypotheses. Philosophical Transactions of the Royal
Society of London. Series A (1933).

[37] Stavros D Nikolopoulos and Iosif Polenakis. 2017. A graph-based model for mal-
ware detection and classification using system-call groups. Journal of Computer
Virology and Hacking Techniques (2017).

[38] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. 2020.
Dynamic Backdoor Attacks Against Machine Learning Models. arXiv (2020).

[39] Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral signatures in
backdoor attacks. In NeurIPS.

[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[41] Binghui Wang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2020. On
Certifying Robustness against Backdoor Attacks via Randomized Smoothing. In
CVPR Workshop.

[42] Binghui Wang and Neil Zhenqiang Gong. 2019. Attacking graph-based classifica-
tion via manipulating the graph structure. In SIGSAC.

[43] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. 2017. GANG: Detecting
fraudulent users in online social networks via guilt-by-association on directed
graphs. In ICDM.

[44] BinghuiWang, Jinyuan Jia, and Neil Zhenqiang Gong. 2019. Graph-based Security
and Privacy Analytics via Collective Classification with Joint Weight Learning
and Propagation. In NDSS.

[45] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying andmitigating backdoor
attacks in neural networks. In IEEE S&P.

[46] Binghui Wang, Le Zhang, and Neil Zhenqiang Gong. 2017. SybilSCAR: Sybil
detection in online social networks via local rule based propagation. In INFOCOM.

[47] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature (1998).

[48] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio
Bellei, Tom Robinson, and Charles E Leiserson. 2019. Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks for financial forensics.
arXiv preprint arXiv:1908.02591 (2019).

[49] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. 2020. RAB:
Provable Robustness Against Backdoor Attacks. arXiv (2020).

[50] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks?. In ICLR.

[51] Jiaqi Yan, Guanhua Yan, and Dong Jin. 2019. Classifying Malware Represented as
Control Flow Graphs using Deep Graph Convolutional Neural Network. In DSN.

[52] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In KDD.
[53] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent Backdoor

Attacks on Deep Neural Networks. In CCS.
[54] Ganzhao Yuan and Bernard Ghanem. 2017. An exact penalty method for binary

optimization based on MPEC formulation. In AAAI.
[55] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and

Can Wang. 2019. Hierarchical Graph Pooling with Structure Learning. arXiv
preprint arXiv:1911.05954 (2019).

[56] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD. 2847–2856.

[57] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on graph
neural networks via meta learning. In ICLR.

	Abstract
	1 Introduction
	2 Background and Problem Setup
	2.1 Graph Neural Networks (GNNs)
	2.2 Threat Model

	3 Our Subgraph based Backdoor Attacks
	3.1 Attack Overview
	3.2 Attack Design

	4 Attack Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Certified Defense
	5.1 Overview
	5.2 Randomized Subsampling
	5.3 Defending against our Backdoor Attacks

	6 Defense Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Discussion and Limitations
	8 Related Work
	9 Conclusion and Future Work
	References

