
When the Dike Breaks:
Dissecting DNS Defenses During DDoS

Giovane C. M. Moura
SIDN Labs and TU Delft

John Heidemann
USC/Information Sciences Institute

Moritz Müller
SIDN Labs and University of Twente

Ricardo de O. Schmidt
University of Passo Fundo

Marco Davids
SIDN Labs

ABSTRACT
The Internet’s Domain Name System (DNS) is a frequent target

of Distributed Denial-of-Service (DDoS) attacks, but such attacks

have had very different outcomesÐsome attacks have disabled ma-

jor public websites, while the external effects of other attacks have

been minimal. While on one hand the DNS protocol is relatively

simple, the system has many moving parts, with multiple levels

of caching and retries and replicated servers. This paper uses con-

trolled experiments to examine how these mechanisms affect DNS

resilience and latency, exploring both the client side’s DNS user

experience, and server-side traffic. We find that, for about 30% of

clients, caching is not effective. However, when caches are full they

allow about half of clients to ride out server outages that last less

than cache lifetimes, caching and retries together allow up to half of

the clients to tolerate DDoS attacks longer than cache lifetimes, with

90% query loss, and almost all clients to tolerate attacks resulting

in 50% packet loss. While clients may get service during an attack,

tail-latency increases for clients. For servers, retries during DDoS

attacks increase normal traffic up to 8×. Our findings about caching

and retries help explain why users see service outages from some

real-world DDoS events, but minimal visible effects from others.

KEYWORDS
DNS, recursive DNS servers, caching, DDoS attacks, authoritative

servers

ACM Reference Format:

Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O.

Schmidt, and Marco Davids. 2018. When the Dike Breaks:, Dissecting DNS

Defenses During DDoS . In 2018 Internet Measurement Conference (IMC ’18),

October 31-November 2, 2018, Boston, MA, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3278532.3278534

1 INTRODUCTION
DDoS attacks have been growing in frequency and intensity for

more than a decade. Large attacks have grown from 100Gb/s in

2012 [4] to over 1 Tb/s in 2017 [31], and 1.7 Tb/s in 2018 [16, 20].

Such attacks are sourced from large botnets (for example, withMirai

peaking at 600k hosts [3]), fueled by the continued deployment of

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

IMC ’18, October 31-November 2, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5619-0/18/10. . . $15.00
https://doi.org/10.1145/3278532.3278534

new devices. Gigabit-size attacks are commodities today, selling for

a few dollars via DDoS-as-a-Service [41].

The Internet’s Domain Name System (DNS) is a popular target of

DDoS attacks. DNS is a very visible target, since name resolution is

a necessarily step in almost any Internet activity. Root DNS servers

have seen multiple attacks over more than a decade [21, 30, 38,

39, 50], as well as threats of attacks [46]. Other authoritative DNS

servers have also been attacked, with the huge October 2016 attack

against Dyn [12] resulting in disruptions at a number of prominent

websites, including Twitter, Netflix and the New York Times [31].

The outcome of these attacks on services has varied considerably.

The October 2016 Dyn attack is noted for disruption to websites

that were using Dyn as their DNS provider, and extortion attempts

often include DDoS [32]. However, multiple attacks on the DNS

Root have occurred with, as far as has been reported, no visible

service outages [38, 39].

An important factor in DNS resilience is heavy use of cachingÐ

we believe that differences in use of DNS caching contribute to the

very different outcomes when DNS is subject to DDoS attack. Yet

understanding DNS caching is difficult, with requests traveling from

stub resolvers in web browsers and at client computers, to recursive

resolvers at ISPs, which in turn talk to multiple authoritative DNS

servers. There are many parts involved to fully resolve a DNS name

like www.example.com: while the goal is an IP address (an A or

AAAADNS record), multiple levels of the hierarchy (root, .com, and

.example.com) are often on different servers (requiring NS records),

and DNSSEC may require additional information (RRSIG, DNSKEY,

and DS records). Each of these records may have different cache

lifetimes (TTLs), by choice of the operator or because of DNS cache

timeouts. We explore caching through controlled experiments (ğ3)

and analysis of real-world use (ğ4).

Another factor in DNS resilience is recursives that retry queries

when they do not receive an answer. Recursives fail to receive

answers occasionally due to packet loss, but pervasively during

a DDoS attack. We examine how retries interact with caching to

mitigate DDoS attacks for loss during DDoS attacks (ğ5) and their

effects on authoritatives (ğ6).

This paper assesses DNS resilience during DDoS attacks, with

the goal of explaining different outcomes from different attacks

(ğ8) through understanding the role of DNS caching, retries, and

use of multiple DNS recursive resolvers. It is common knowledge

that these factors łhelpž, but knowing how and how much each

contributes builds confidence in defenses. We consider this question

both as an operator of an authoritative server, and as a user, defining

the DNS user experience latency and reliability users should expect.

IMC ’18, October 31-November 2, 2018, Boston, MA, USA G. C. M. Moura et al.

Our first contribution is to build an end-to-end understanding

of DNS caching. Our key result is that caching often behaves as

expected, but about 30% of the time clients do not benefit from caching.

While prior work has shown DNS resolution infrastructure can be

quite complex [45], we establish a baseline DNS user experience

by assessing the prevalence of DNS caching in the łwildž through

both active measurements (ğ3) and through analysis of passive data

from two DNS zones (.nl and the root zone ğ4).

Our second contribution is to show that DNS mechanisms of

caching and retries provide significant resilience client user experience

during denial-of-service (DDoS) attacks (ğ5). For example, about half

of the clients continue to receive service during a full outage if

caches are filled and do not expire during the attack. Often DDoS

attacks cause very high loss, but not a complete outage. When a few

queries succeed, caches amplify their benefits, even for attacks that

are longer than cache lifetime. With very heavy query loss (90%) on

all authoritatives, full caches protect half of the clients, and retries

protect 30%. With a DDoS that causes 50% packet loss, nearly all

clients succeed, although with greater latency than typical.

Third, we show that there is a large increase in legitimate traffic

during DDoS attacksÐup to 8× the number of queries (ğ6). While

DNS servers are typically heavily overprovisioned, this result sug-

gests the need to review by howmuch. It also shows the importance

that stub and recursive resolvers follow best practices and expo-

nentially back-off queries after failure so as to not add fuel to the

DDoS fire.

Our final contribution is to suggest why users have seen rela-

tively little impact from root servers DDoSes, while customers from

some DNS providers quickly felt attacks (ğ8). When cache lifetimes

are longer than the duration of a DDoS attack, many clients will

see service for names popular enough to be cached. While many

websites use short cache timeouts to support control with DNS-

based load balancing, they may wish to consider longer timeouts

as part of strategies for DDoS defense. Retries provide additional

coverage, preventing failures during large attacks.

All public datasets from this paper is available [22], with our

RIPE Atlas data also available from RIPE [35]. Privacy concerns

prevent release of .nl and Root data (ğ4).

2 BACKGROUND
As background, we briefly review the components of the DNS

ecosystem and how they interact with IP anycast.

2.1 DNS Resolvers: Stubs, Recursives, and
Authoritatives

Figure 1 shows the relationship between three components of DNS

resolvers: stubs and recursive resolvers and authoritative servers.

Authoritative servers (authoritatives hereafter) are servers that

know the contents of a given DNS zone and can answer queries

without asking other servers [9].

Resolvers on the other hand, are servers that can ask, on behalf of

others, queries to other servers [18]. Stub resolvers run directly on

clients and query one or a few recursive resolvers (shortened to stubs

and recursives here). Recursives perform the full resolution of a

domain name, querying one or more authoritatives, while caching

responses to avoid repeatedly requesting popular domains (e.g.,

.com or .google.com). Sometimes recursives operate in multiple

Stub Resolver

e.g.: OS/applications

Recursives

(1st level

e.g.: modem)

Recursives

(nth level)

e.g: ISP resolv.

Authoritative

Servers

e.g.: ns1.example.nl

Stub

R1a
CR1a

R1b
CR1b

Rna
CRna

... Rnn
CRnb

AT1 ... ATn

Figure 1: Relationship between stub resolver (yellow), recur-

sive resolvers (red) with their caches (blue), and authorita-

tive servers (green).

tiers, with clients talking directly to R1 resolvers, that forward

queries to other Rn resolvers, that ultimately contact authoritatives.

In practice, stubs are part of the client OS or browser, recursives

are provided by ISPs, and authoritatives are run by DNS providers

or large organizations. Multi-level recursives might have R1 at a

home router and Rn in the ISP, or might occur in large, public DNS

providers.

2.2 Authoritative Replication and IP Anycast
Replication of a DNS service is important to support high reliability

and capacity and to reduce latency. DNS has two complementary

mechanisms to replicate service. First, the protocol itself supports

nameserver replication of DNS service for a zone (.nl or example.nl),

where multiple servers operate on different IP addresses, listed

by that zone’s NS records. Second, each of these servers can run

from multiple physical locations with IP anycast by announcing

the same IP address from each and allowing Internet routing (BGP)

to associate clients with each anycast site. Nameserver replication

is recommended for all zones, and IP anycast is used by most large

zones such as the DNS Root and most top-level domains [21, 40]. IP

anycast is also widely used by public resolvers, recursive resolvers

that are open for use by anyone on the Internet, such as Google

Public DNS [10], OpenDNS [26], Quad9 [34], and 1.1.1.1 [1].

2.3 DNS Caching with Time-to-Live (TTLs)
DNS depends on caching to reduce latency to users and load on

servers. Authoritatives provide responses that are then cached in ap-

plications, stub resolvers, and recursive resolvers. We next describe

its loose consistency model.

An authoritative resolver defines the lifetime of each result by

its Time-to-Live (TTL); although TTLs is not usually exposed to

users, this information is propagated through recursive resolvers.

Once cached by recursive resolvers, cached results cannot re-

moved; they can only be refreshed response by a new query and

response after the TTL expires.

Some recursive resolvers discard long-lived cache entries after

a configurable timeout. BIND defaults to dropping entries after 1

week [15], and Unbound after 1 day [25].

Operators select TTLs carefully. Content delivery networks (CDNs)

often use DNS to steer users to different content servers. They select

When the Dike Breaks: Dissecting DNS Defenses During DDoS IMC ’18, October 31-November 2, 2018, Boston, MA, USA

very short TTLs (60 seconds or less) to force clients to re-query

frequently, providing opportunities to redirect clients with DNS in

response to changes in load or server availability [27]. Alternatively,

DNS data for top-level domains often has TTLs of hours or days.

Such long TTLs reduce latency for clients (the reply can be reused

immediately if it is in the cache of a recursive resolver) and reduce

load on servers for commonly used top-level domains and slowly

changing DNSSEC information.

3 DNS CACHING IN CONTROLLED
EXPERIMENTS

To understand the role of caching at recursive resolvers in protec-

tion during failure of authoritative servers, we first must understand

how often are cache lifetimes (TTLs) honored.

In the best-case scenario, authoritative DNS operators may ex-

pect clients to be able to reach domains under their zones even if

their authoritative servers are unreachable, for as long as cached

values in the recursives remain łvalidž (i.e., TTL not expired). Given

the large variety of recursive implementations, we pose the follow-

ing question: from a user point-of-view, can we rely on recursives

caching when authoritatives fail?

To understand cache lifetimes in practice, we carry out controlled

measurements from thousands of clients. These measurements de-

termine how well caches work in the field, complementing our un-

derstanding of how open source implementations work from their

source code. This study is important because operational software

can vary and large deployments often use heavily customization or

closed source implementations [45].

3.1 Potential Impediments to Caching
Although DNS records should logically be cached for the full TTL,

a number of factors can shorten cache lifetimes in practice: caches

are of limited size, caches may be flushed prematurely, and large

resolvers may have fragmented caches. We briefly describe these

factors here; understanding how often they occur motivates the

measurements we carry out.

Caches are of limited size. Unbound, for example, defaults to a

4MB limit, but the values are configurable. In practice, DNS results

are small enough and caches large enough that cache sizes are

usually not a limiting factor. Recursive resolvers may also override

record TTLs, imposing either a minimum or maximum value [49].

Caches can be flushed explicitly (at the request of the cache

operator), or accidentally on restart of the software or reboot of the

machine running the cache.

Finally, some recursive resolvers handle very high request ratesÐ

consider a major ISP or public resolver [10, 26, 34]. Large recursive

resolvers are often implemented asmany separate recursives behind

a load balancer or on IP anycast. In such cases the caches may be

fragmented with each machine operating an independent cache, or

they may share a cache of common names. In practice these may

reduce the cache hit rate.

3.2 Measurement Design
To evaluate caching we use controlled experiments where we query

from specific names to authoritative servers we run from thousands

of RIPE Atlas sites. Our goal is to measure whether the TTL we

define for the RRs of our controlled domain is honored across

recursives.

TTL 60 1800 3600 86400 3600-10min

Probes 9173 9216 8971 9150 9189
Probes (val.) 8725 8788 8549 8750 8772
Probes (disc.) 448 428 422 400 417

VPs 15330 15447 15052 15345 15397
Queries 94856 96095 93723 95780 191931
Answers 90525 91795 89470 91495 183388
Answer (val.) 90079 91461 89150 91172 182731
Answers (disc.) 446 334 323 323 657

Table 1: Caching baseline experiments [35].

Authoritative servers: we deploy two authoritatives that an-

swer for our new domain name (cachetest.nl). We place the author-

itatives on virtual machines in the same datacenter (Amazon EC2

in Frankfurt, Germany), each at a distinct unicast, IPv4 addresses.

Each authoritative runs BIND 9.10.3. Since both authoritatives are

in the same datacenter, they will have similar latencies to recursives,

so we expect recursives to evenly distribute queries between both

authoritative servers [24].

Vantage Points: We issue queries to our controlled domain

from around 9k RIPE Atlas probes [36]. Atlas Probes are distributed

across 3.3k ASes, with about one third hosting multiple vantage

points (VPs). Atlas software causes each probe to issue queries to

each of its local recursive resolvers, so our VPs are the tuple of

probe and recursive. The result is that we have more than 15k VPs

(Table 1).

Queries and Caching: We take several steps to ensure that

caching does not interfere with queries. First, each query is for a

name unique to the probe: each probe requests an AAAA record

for {probeid}.cachetest.nl, where {probeid} is the probe’s the unique

identifier. Each reply is also customized. In the AAAA reply we

encode three fields that are used to determine the effectiveness of

caching (ğ3.4). Each IPv6 address in the answer is the concatenation

of four values (in hex):

prefix is a fixed, 64-bit value (fd0f:3897:faf7:a375)

serial is a 8-bit value, incremented every 10 minutes (zone file

rotation), allowing us to associate replies with specific query

rounds

probeid is the unique Atlas probeID [37] encoded in 8 bits, to

associate the query with the reply

ttl is a 16-bit value of the TTL value we configure per experi-

ment

We increment the serial number in each AAAA record and reload

the zone (with a new zone serial number), every 10 minutes. The

serial number in each reply allows us to distinguish cached results

from prior rounds from fresh data in this round.

Atlas DNS queries timeout after 5 seconds, reporting łno answerž.

We will see this occur in our emulated DDoS events.

We focus onDNS over UDP on IPv4, not TCP or IPv6.We use only

IPv4 queries from Atlas Probes, and serve only IPv4 authoritatives,

but the IPv6 may be used inside multi-level recursives. Our work

could extend to cover other protocols, but we did not want to

complicate analysis the orthogonal issue of protocol selection. We

focus on DNS over UDP because it is by far the dominant transport

protocol today (more than 97% of connections for .nl [47] and most

Root DNS servers [14]).

IMC ’18, October 31-November 2, 2018, Boston, MA, USA G. C. M. Moura et al.

Query Load: The query rate of our experiments is designed to

explicitly test how queries intersect with TTL experimentation, and

not to reproduce real-world traffic rates. Popular domains such as

.com will be queried much more frequently than our query rates, so

our results represent lower-bounds on caching. In ğ4 we examine

caching rates with real-world names under .nl, testing a range of

name popularities.

: TTL: TTL values vary significantly in DNS, with top-level

domains typically using 1 day TTLs, while CDNs often use short

TTLs of 1 or 5 minutes. Given this diversity of configurations, we

explicitly design experiments that cover the range from 1 minute to

1 day (60 s and 86400 s TTLs). Thus, rather than trying to capture

a single TTL that represents all possible configurations, we study

a range of TTLs to explore the full range of caching behavior. ğ4

examines real-world traffic to provide a view of how well caching

works with the distribution of TTLs seen in actual queries.

Representativeness of Atlas Locations and Software: It is

well known that the global distribution of RIPE Atlas probes is

uneven; Europe has far more than elsewhere [5, 6, 43]. Although

quantitative data analysis might be generally affected by this distri-

bution bias, our qualitative analysis, contributions and conclusions

do not depend on the geographical location of probes.

Atlas probes use identical stub resolver software, but they are

deployed in diverse locations (homes, businesses, universities) and

so see a diverse set of recursives vendors and versions . Our study

therefore represents Atlas łin the wildž, and does not try to study

specific software versions or vendors. Although we claim our study

captures diverse recursive resolvers, we do not claim they are repre-

sentative of a łtypicalž Internet client. It complements prior studies

on caching by establishing what Atlas sees, an baseline needed

when we study DDoS in ğ5.

3.3 Datasets
We carried out five experiments, varying the cache lifetime (TTL)

and probing frequency from the VPs. Table 1 lists the parameters of

experiments. In the first four measurements, the probing interval

was fixed to 20 minutes, and TTL for each AAAA was set to 60,

1800, 3600 and 86400 seconds, all frequently used TTL values. For

the fifth measurement we fixed the TTL value to 3600 seconds, and

reduced the probing interval to 10 minutes to get better resolution

of dynamics.

In each experiment, queries were sent from about 9k Atlas probes.

We discard 400ś448 of these (łprobes (disc.)ž, about 4.4 to 4.9% of

probes) that do not return an answer. Successful Atlas probes query

multiple recursive resolvers, each a Vantage Point, so each experi-

ment results in about 15k VPs. We also discard 323ś657 answers

(łanswers (disc.)ž, about 3.5 to 4.9% of answers) because they re-

port error codes (for example, SERVFAIL and REFUSED [19]), or

they are referrals instead of the desired AAAA records [13]. (We

provide more detail about referrals in an appendix of our technical

report [23].)

Overall, about 93ś96k queries to cachetest.nl from the 9k probes

at 20 minute pacing, and about double that with 10 minute pacing.

Experiments last two to three hours, with no interference between

experiments due to use of unique names, We ensure that exper-

iments are isolated from each other. First, we space experiments

about one day apart (details in RIPE [35]). Second, the IP addresses

TTL 60 1800 3600 86400 3600-10m

Answers (valid) 90079 91461 89150 91172 182731
1-answer VPs 38 51 49 35 17
Warm-up (AAi) 15292 15396 15003 15310 15380
Duplicates 25 23 25 22 23
Unique 15267 15373 14978 15288 15357
TTL as zone 14991 15046 14703 10618 15092
TTL altered 276 327 275 4670 265

AA 74435 21574 10230 681 11797
CC 235 29616 39472 51667 107760
CCdec. 4 5 1973 4045 9589

AC 37 24645 24091 23202 47262
TTL as zone 2 24584 23649 13487 43814
TTL altered 35 61 442 9715 3448

CA 42 179 305 277 515
CAdec. 7 3 21 29 65

Table 2: Valid DNS answers (expected/observed)

(and their records in cachetest.nl) of both authoritative name servers

change in each experiment when we restart their VMs. Finally, we

change the replies in the AAAA records, so we can detect any stale

results (see ğ3.2).

3.4 TTL distribution: expected vs. observed
We next investigate how often recursive resolvers honor the full

TTL provided by authoritative servers. Our goal is to classify the

valid DNS answers from Table 1 into four categories, based on

where the answer comes from, and where we expect it to come

from:

AA answers expected and correctly from the authoritative

CC expected and correct from a recursive cache (cache hits)

AC answers from the authoritative, but expected to be from

the recursive’s cache (a cache miss)

CA answers from a recursive’s cache, but expected from the

authoritative (an extended cache)

To determine if a query should be answered by the cache of the

recursive, we track the state of prior queries and responses, and the

estimated TTL. Tracking state is not hard since we know the initial

TTL and all queries to the zone, and we encode the serial number

and the TTL in the AAAA reply (ğ3.2).

Cold Caches and Rewriting TTLs:We first consider queries

made against a cold cache (the first query of a unique name) to

test how many recursives override the TTL. We know that this

happens at some sites, such as at Amazon EC2, where their virtual

machines (VMs) default recursive resolver caps all TTLs to 60 s [33].

Table 2 shows the results of our five experiments, in which we

classify the valid answers from Table 1. Before classifying them,

we first disregard VPs that had only one answer (1-answer VPs)

since we cannot evaluate their caches status with one answer only

(maximum 51 VPs out of 15,000 for the experiments). Then, we

classify the remaining queries asWarm-up queries AAi, all of which

are type AA (expected and answered by the authoritative server).

We see some duplicate responses; for these we use the times-

tamp of the very first AAi received. We then classify each unique

AAi by comparing the TTL value returned by the recursive with

the expected TTL that is encoded in the AAAA answer (fixed per

experiment). The TTL as zone line counts the answers we expect to

get, while TTL altered shows that a few hundred recursive resolvers

When the Dike Breaks: Dissecting DNS Defenses During DDoS IMC ’18, October 31-November 2, 2018, Boston, MA, USA

 0

 20000

 40000

 60000

 80000

 100000

 120000

60s 1800s 3600s 86400s 3600s-10m

Miss: 0.0%

Miss: 32.6%

Miss: 32.9%

Miss: 30.9%

Miss: 28.5%

re
m

a
in

in
g
 q

u
e
ri
e
s

Experiment

AA
CC

AC
CA

Figure 2: Classification of subsequent answers with warm

cache

alter the TTL. If these two values differ by more than 10%, we report

TTL altered.

We see that the vast majority of recursives honor small TTLs,

with only about 2% truncating the TTL (275 to 327 of about 15000,

depending on the experiment’s TTL). We and others (ğ7) see TTL

truncation from multiple ASes. The exception is for queries with

day-long TTLs (86400 s), where 4,670 queries (30%) have shortened

TTLs. (Prior work also reported that many public resolvers refreshes

at 1 day [48].) We conclude that wholesale TTL shortening does

not occur for TTLs of an hour or less.

TTLs with Warm Cache: We next consider a warm cacheÐ

subsequent queries where we believe the recursive should have the

prior answer cached and classify them according to the proposed

categories (AA, CC, AC, and CC).

Figure 2 shows a histogram of this classifications (numbers

shown on Table 2). We see that most answers we receive show

expected caching behavior. For 60 s TTLs (the left bar), we expect

no queries to be cached when we re-query 20minutes (1200 s) later,

and we see few cache hits (235 queries ś CC row on Table 2 ś which

are due to TTL rewriting to values larger than 20min.). We see only

a handful of CA-type replies, where we expect the authoritative

to reply and the recursive does instead. We conclude that under

normal operations (with authoritatives responding), recursive re-

solvers do not serve stale results (as has been proposed when the

authoritative cannot be reached [17]).

For longer TTLs we see cache misses (AC responses) fractions of

28 to 33% (AC/(Answer_(valid) − (1−Answers+Warm-up)). Most

of the AC answers did not alter the TTL (AC-over), i.e., the cache

miss was not due to TTL manipulations (Table 2). We do see 9,715

TTL modifications (about 42% of ACs) when the TTL is 1 day

TTLs (86400 s). These TTL truncations are consistent with recur-

sive resolvers that limit cache durations, such as caps of 7 days in

BIND [15] and 1 in unbound [25], by default. (We provide more

detail about TTL manipulations in an appendix of our technical

report [23].)

We conclude that DNS caches are fairly effective, with cache

hits about 70% of the time. This estimate is likely a lower bound:

we are the only users of our domain, and popular domains would

see cache hits due to requests from other users. We only see TTL

truncation for day-long TTLs. This result will help us understand

the role of caching when authoritatives are under stress.

TTL 60 1800 3600 86400 3600-10m

AC Answers 37 24645 24091 23202 47262
Public R1 0 12000 11359 10869 21955

Google Public R1 0 9693 9026 8585 17325
other Public R1 0 2307 2333 2284 4630

Non-Public R1 37 12645 12732 12333 25307
Google Public Rn 0 1196 1091 248 1708
other Rn 37 11449 11641 12085 23599

Table 3: AC answers public resolver classification.

3.5 Public Recursives and Cache
Fragmentation

Although we showed that most requests are cached as expected

about 30% are not. We know that many DNS requests are served by

public recursive resolvers today, several of which exist [1, 10, 26, 34].

We also know that public recursives often use anycast and load

balancing [45] and that that can result in caches that are fragmented

(not shared) across many servers.We next examine howmany cache

misses (type AC replies) are due to public recursives.

Although we control queriers and authoritative servers, there

may be multiple levels of recursive resolvers in between. From

Figure 1, we see the querier’s first-hop recursive (R1) and the re-

cursive that queries the authoritative (Rn). Fortunately, queries and

replies are unique, so we can relate queries to the final recursive

knowing the time (the query round) and the query source. For each

query q, we extract the IP address of Rn and compare against a list

of IP addresses for 96 public recursives (given in an appendix of

our technical report [23]) we obtain from DuckDuckGo search for

łpublic dnsž done on 2018-01-15.

Table 3 reexamines the AC replies from Table 2. With the ex-

ception of the measurements with TTL of 60 s, nearly half of AC

answers (cache misses) are from queries to public R1 recursives,

and about three-quarters of these are from Google’s Public DNS.

The other half of cache misses start at non-public recursives, but

10% of these eventually emerge from Google’s DNS.

Besides identifying public recursives, we also see evidence of

cache fragmentation in answers from caches (CC and CA). Some-

times we see serial numbers in consecutive answers decrease. For

example, one VP reports serial numbers 1, 3, 3, 7, 3, 3, suggesting

that it is querying different recursives, one with serial 3 and another

with serial 7 in its cache. We show these occurrences in Table 2 as

CCdec. and CAdec. With longer TTLs we see more cache fragmen-

tation, with 4.5% of answers showing fragmentation with day-long

TTLs.

From these observations we conclude that cache misses result

from several causes: (1) use of load balancers or anycast where

servers lack shared caches, (2) first-level recursives that do not

cache and have multiple second-level recursives, and (3) caches

may reset between the somewhat long probing interval (10 or 20

minutes). Causes (1) and (2) occur in public resolvers (confirmed

by Google [10]) and account for about half of the cache misses in

our measurements.

4 CACHING PRODUCTION ZONES
In ğ3 we show that about one-third of queries do not conform with

caching expectations, based on controlled experiments to our test

domain. (Results may be better for caches that prioritize popular

IMC ’18, October 31-November 2, 2018, Boston, MA, USA G. C. M. Moura et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

C
D

F

Δ t

Figure 3: ECDF of the median ∆t for recursives with at least

5 queries to ns1-ns5.dns.nl (TTL of 3600 s.)

names.) We next examine this question for specific records in .nl,

the country code domain (ccTLD) for the Netherlands and the Root

(.) DNS zone. With traffic from łthe wildž and a measurement target

used by millions, this section uses a domain popular enough to stay

in-cache at recursives.

4.1 Requests at .nl’s Authoritatives
We apply this methodology to data for .nl country-code top-level

domain (ccTLD). We look specifically at the A-records for the name-

servers of .nl, ns[1-5].dns.nl.

Methodology:We use passive observations of traffic to the .nl

authoritative servers.

For each target name in the zone and source (some recursive

server, identified by IP address), we build a timeseries of all requests

and compute their interarrival time, ∆. Following the classification

from ğ3.4, we label queries as: AC if ∆ < TTL, showing an unnec-

essary query to the authoritative; AA if ∆ ≥ TTL, an expected or

delayed cache refresh. (We do not see cache hits and so there are

no CC events.)

Dataset: At the time of our analysis (February 2018) there were

8 authoritative servers for the .nl zone. We collect traffic for the 4

unicast and one anycast authoritative servers, and store the data in

ENTRADA [51] for analysis.

Since our data for .nl is incomplete, and we know recursives will

query all authoritatives over time [24], our analysis represents a

conservative estimate of TTL violationsÐwe expect to miss some

CA-type queries from resolvers to non-monitored authoritatives.

We collect data for a period of six hours on 2018-02-22 starting at

12:00 UTC.We only evaluate recursives that sent at least five queries

for our domains of interest, omitting infrequent recursives (they

do not change results noticeably). We discard duplicate queries, for

example, a few retransmissions (less than 0.01% of the total queries).

In total, we consider more than 485k queries from 7,779 different

recursives.

Results: Figure 3 shows the distribution of ∆t that we observe

in our measurements, reporting the median ∆t for any resolver that

sends at least 5 queries.

About 28% of queries are frequent, with an inter-arrival less than

10 s, and 32% of these are sent to multiple authoritatives. We believe

these are due to recursives submitting queries in parallel to speed

up replies (perhaps the łHappy Eyeballsž algorithm [42])

Since these closely-timed queries are not related to recursive

caching, we exclude them from analysis. The remaining data is 348k

queries from 7,703 different recursives.

The largest peak is at 3600 s, what was expected: the name was

queried and cached for the full hour TTL, then the next request

causes the name to be re-fetched. These queries are all of type AA.

The smaller peak around 1800 s, as well as queries with other

times less than 3600 s, correspond to type AC-queriesÐqueries that

could have been supplied from the cache but were not. 22% of

resolvers sent most of their queries within an time interval that

is less than 3600 s or even more frequent. These AC queries occur

because of TTL limiting, cache fragmentation, or other reasons that

clear the cache.

4.2 Requests at the DNS Root
In this section we perform a similar analysis as for ğ4.1, in which

we look into DNS queries received at all Root DNS servers (except

G-Root), and create a distribution of the number of queries received

per source IP address (i.e., per recursive).

In this analysis we use data from the DITL (Day In The Life)

dataset of 2017, available at DNS-OARC [8]. We look at all DNS

queries received for the DS record of the domain nl, received at the

Root DNS servers along the entire day on April 12, 2017 (UTC). This

dataset consists of queries from more than 70.3k unique recursives

seen across all Root servers. Note that the DS record for nl has

a TTL of 86400 seconds (24 hours). That is, in theory, one could

expect to see just one query per recursive arriving at a given root

letter, for the DS record of nl within the 24-hour interval.

Each line in Figure 4 shows the distribution of the total number

of queries received at the Root servers from individual recursives

asking for the DS record of nl. Besides F- and H-Root, the distribu-

tion is similar across all Root servers; these are plotted in light-gray

lines. F-Root shows the łmost friendlyž behavior from recursives,

where around 5% of them sent 5 or more queries for nl. As opposed

to F, H-Root (dotted red line) shows the łworstž behavior from

recursives, where more than 10% of them sent 5 or more queries

for nl within the 24-hour period.

The solid black line in Figure 4 shows the distribution for all

the queries across all Root servers. The majority (around 87%) of

recursives does send only one query within the 24-hour interval.

However, considering all Root servers, we see around 13% of recur-

sives that have sent multiple queries. Note that the distributions

shown in Figure 4 have (very) long tails, and we see up to more than

21.8k queries from a single recursive within the 24-hour period for

the nl DS record; i.e., roughly one query every 4 seconds from the

same IP address for the same DS record.

Discussion: we conclude that measurements of popular domains

within .nl (ğ4.1) and the Roots (ğ4.2) show that about 63% and 87%

of recursives honor the full TTL, respectively. These results are

roughly in-line with our observations with RIPE Atlas (ğ3).

5 THE CLIENT’S VIEW OF AUTHORITATIVES
UNDER DDOS

We next use controlled experiments to evaluate how DDoS attacks

at authoritative DNS servers impacts client experience. Our studies

of caching in controlled experiments (ğ3) and passive observations

(ğ4) have shown that caching often works, but not alwaysÐabout

When the Dike Breaks: Dissecting DNS Defenses During DDoS IMC ’18, October 31-November 2, 2018, Boston, MA, USA

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30

C
D

F

number of queries

F-Root

H-Root

All roots

Figure 4: Distribution of the number of queries for the DS

record of nl received for each recursive. Dataset: DNS-OARC

DITL on 2017-04-12t00:00Z for 24 hours. All Root servers

with similar distributions are shown in light-gray lines.

70% of controlled experiments and 30% of passive observations see

full cache lifetimes. Since results of specific experiments vary, we

sweep the space of attack intensities to understand the range of

response from complete failure of authoritative servers, to partial

failures.

5.1 Emulating DDoS
To emulate DDoS attacks we begin with the same test domain

(cachetest.nl) we used for controlled experiments in ğ3. We run a

normal DNS service for some time, querying from RIPE Atlas. After

caches are warm, we then simulate a DDoS attack by dropping

some fraction or all incoming DNS queries to each authoritative.

(We drop incoming traffic randomly with Linux iptables. As such,

packet drop is not biased towards any recursive.) After we begin

dropping traffic, answers come either from caches at recursives or,

for partial attacks, from a lucky query that passes through.

This emulation of DDoS captures traffic loss that occurs in DDoS

attack as router queues overflow. This emulation is not perfect,

since we simulate loss at the last hop-router, but in real DDoS

attacks packets are often lost on access links near the target. Our

emulation approximates this effect with one aggregate loss rate.

DDoS attacks are also accompanied by queueing delay, since

buffers at and near the target are full. We do not model queueing

delay, although we do observe latency increasing due to retries. In

modern routers, queueing delay due to full router buffers should be

less than the retry interval. In addition, observations during real-

world DDoS events show that the few queries that are successful

see response times that are not much higher than typical [21],

suggesting that loss (and not delay) is the dominant effect of DDoS

in practice. However, a study that adds queueing latency to the

attack model is interesting future work.

5.2 Clients During Complete Authoritatives
Failure

We first evaluate the worst-case scenario for a DNS operator: com-

plete unreachability of all authoritative name servers. Our goal is

to understand when and for how long caches cover such an outage.

Table 4 shows Experiments A, B, and C which simulate complete

failure. In Experiment A, each VP makes only one query before

the DDoS begins. In Experiment B we allow several queries to take

place, and Experiment C allows several queries with a shorter TTL.

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100 110

cache-only cache-expired

a
n

s
w

e
rs

minutes after start

OK SERVFAIL No answer

(a) Experiment A: 3600-10min-1down; arrows indicate DDoS start and
cache expiration

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

cache-onlynormal normal

a
n

s
w

e
rs

minutes after start

OK SERVFAIL No answer

(b) Experiment B: 3600-10min-1down-1up; arrows indicate DDoS start
and recovery

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

normal normal

a
n

s
w

e
rs

minutes after start

OK SERVFAIL No answer

cache-
only

cache-
expired

(c) Experiment C: 1800-10min-1down-1up; arrows indicate DDoS start,
cache expiration and recovery

Figure 5: Answers received during DDoS attacks.

Caches Protect Some: We first consider Experiment A, with

one query that warms the cache immediately followed by the attack.

Figure 5a shows these responses over time, with the onset of the

attack the first downward arrow between 0 and 10 minutes, and

with the cache expired after the second downward arrow between

60 and 70 minutes. We see that after the DDoS starts but before the

cache has fully expired (between the downward arrows) initially

30% and eventually 65% of queries fail with either no answer or a

SERVFAIL error. While not good, this does mean that 35% to 70%

of queries during the DDoS are successfully served from the cache.

By contrast, shortly after the cache expires, almost all queries fail

(only 25 VPs or 0.2% of the total seem to provide stale answers).

Caches Fill at Different Times: In a more realistic scenario,

VPs have filled their caches at different times. In Experiment A,

IMC ’18, October 31-November 2, 2018, Boston, MA, USA G. C. M. Moura et al.

Experiment Parameters

TTL DDoS DDoS queries total probe
failure

in sec. start dur. before dur. interval

A 3600 10 60 1 120 10 100% (both NSes)

B 3600 60 60 6 240 10 100% (both NSes)

C 1800 60 60 6 180 10 100% (both NSes)

D 1800 60 60 6 180 10 50% (one NS)

E 1800 60 60 6 180 10 50% (both NSes)

F 1800 60 60 6 180 10 75% (both NSes)

G 300 60 60 6 180 10 75% (both NSes)

H 1800 60 60 6 180 10 90% (both NSes)

I 60 60 60 6 180 10 90% (both NSes)

Results

Total Valid
VPs Queries

Total Valid

probes probes answers answers

A 9224 8727 15339 136423 76619 76181

B 9237 8827 15528 357102 293881 292564

C 9261 8847 15578 258695 199185 198197

D 9139 8708 15332 286231 273716 272231

E 9153 8708 15320 285325 270179 268786

F 9141 8727 15325 278741 259009 257740

G 9206 8771 15481 274755 249958 249042

H 9226 8778 15486 269030 242725 241569

I 9224 8735 15388 253228 218831 217979

Table 4: DDoS emulation experiments [35]; DDoS start, durations and probe interval are given in minutes.

 0

 4000

 8000

 12000

 16000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

a
n
s
w

e
rs

minutes after start

AA

CC

CA

Figure 6: Timeseries of answers for Experiment B

caches are freshly filled and should last for a full hour after the

start of attack. Experiment B is designed for the opposite and worst

case: we begin warming the cache one hour before the attack and

query 6 times from each VP. Other parameters are the same, with

the attack lasting for 60 minutes (also the cache duration), but then

we restore the authoritatives to service.

Figure 5b shows the results of Experiment B. While about 50% of

VPs are served from the cache in the first 10 minute round after the

DDoS starts, the fraction served drops quickly and is at only about

3% one hour later. Three factors are in play here: most caches were

filled 60 minutes before the attack and are timing out in the first

round. While the timeout and query rounds are both 60 minutes

apart, Atlas intentionally spreads queries out over 5 minutes, so

we expect that some queries happen after 59 minutes and others 61

minutes.

Second, we know some large recursives have fragmented caches

(ğ3.5), so we expect that some of the successes between times 70

and 110 minutes are due to caches that were filled between times

10 and 50 minutes. This can actually be seen in Figure 6, where we

show a timeseries of the answers for Experiment B, where we see

CC (correct cache responses) between times 60 and 90.

Third, we see an increase in the number of CA queries that are

answered by the cache with expired TTLs (Figure 6). This increase

is due to servers serving stale content [17].

Caches Eventually All Expire: Finally, we carry out a third

emulation but with half the cache lifetime (1800 s or 30minutes

rather than the full hour). Figure 5c shows response over time.

These results are similar to Experiment B, with rapid fall-off when

the attack starts as caches age. After the attack has been underway

for 30minutes all caches must have expired and we see only a few

(about 2.6%) residual successes.

5.3 Discussion of Complete Failures
Overall we see that caching is partially successful in protecting dur-

ing a DDoS. With full, valid caches, half or more VPs get service.

However, caches are filled at different times and expire, so an op-

erator cannot count on a full cache duration for any customers,

even for popular (łalways in the cachež) domains. The protection

provided by caches depends on their state in the recursive resolver,

something outside the operator’s control. In addition, our evalua-

tion of caching in ğ3 showed that caches will end early for some

VPs.

Second, we were surprised that a tiny fraction of VPs are suc-

cessful after all caches should have timed out (after the 80 minutes

period in Experiment A, and between 90 and 110 minutes in Exper-

iment C). These successes suggest an early deployment of łserve

stalež, something currently under review in the IETF [17] is to serve

a previously known record beyond its TTL if authoritatives are

unreachable, with the goal of improving resilience under DDoS. We

investigated the Experiment A, where see that 1048 answers of the

1140 successes in the second half of the outage. These successes

are from 471 VPs (and 215 recursives), most of them answered by

OpenDNS and Google public DNS servers, suggesting experimen-

tation not yet widespread. Out of these 1048 queries, 1031 return a

TTL value equals to 0, as specified in the IETF stale draft [17].

5.4 Client Reliability During Partial
Authoritative Failure

The previous section examined DDoS attacks that result in com-

plete failure of all authoritatives, but often DDoS attacks result in

partial failure, with 50% or 90% packet loss at the authoritatives.

(For example, consider the November 2015 DDoS attack on the

DNS Root [21].) We next study experiments with partial failures,

showing that caching and retries together nearly fully protect 50%

DDoS events, and protect half of VPs even during 90% events.

We carry out several Experiments D to I in Table 4. We follow the

procedure outlined in ğ5.1, looking at the DDoS-driven loss rates

of 50%, 75%, and 90% with TTLs of 1800 s, 300 s and 60 s. Graphs

omitted due to space can be found in an appendix of our technical

report [23].

Near-Full Protection from Caches During Moderate At-

tacks: We first consider Experiment E, a łmildž DDoS with 50%

loss, with VP success over time in Figure 7a. In spite of a loss rate

When the Dike Breaks: Dissecting DNS Defenses During DDoS IMC ’18, October 31-November 2, 2018, Boston, MA, USA

that would be crippling to TCP, nearly all VPs are successful in DNS.

This success is due to two factors: first, we know that many clients

are served from caches, as was shown in Experiment A with full

loss (Figure 5a). Second, most recursives retry queries, so they re-

cover from loss of a single packet and are able to provide an answer.

Together, these mean that failures during the first 30 minutes of the

event is 8.5%, slightly higher than the 4.8% fraction of failures before

the DDoS. For this experiment, the TTL is 1800 s (30minutes), so

we might expect failures to increase halfway through the DDoS.

We do not see any increase in failures because caching and retries

are synergistic, a successful retried query will place the answer in a

cache for a later query. The importance of this result is that DNS

can survive moderate-size attacks when caching is possible. While a

positive, retries do increase latency, something we study in ğ5.5.

Attack IntensityMatters:While clients do quite well with 50%

loss at all authoritatives, failures increase with the intensity of the

attack.

Experiments F and H, shown in Figure 7b and Figure 7c increase

the loss rate to 75% and 90%.We see the number of failures increases

to about 19.0% with 75% loss and 40.3% with 90% loss. It is important

to note that roughly 60% the clients are still served even with 90%

loss.

We also see that this level of success is consistent over the entire

hour-long DDoS event, even though the cache duration is only

30minutes. This consistency confirms the importance of caching

and retries in combination.

To verify the effects of this interaction, Experiment I changes

the caching duration to 60 s, less than one round or probing. Com-

paring Experiment I in Figure 7d to H in Figure 7c, we see that the

failure rate increases from 30% to about 63%. However, even with

no caching, about 37% of queries still are answered, due to resolvers

that serve stale content and recursives retries. We investigate retries

in ğ6.

5.5 Client Latency During Partial Authoritative
Failure

We showed that client reliability is higher than expected during

failures (ğ5.4) due to a combination of caching and retries. We

next consider client latency. Latency will increase during the DDoS

because of retries and queueing delay, but we will show that latency

increases less than one might expect due to caching.

To examine latency we return to Experiments D through I (Ta-

ble 4), but look at latency (time to complete a query) rather than

success. For these experiments clients timeout after 5 s.

Figures 8a to 8d show latency during each emulated DDoS sce-

nario (experiments with figures omitted here are in our technical

report [23]). Latencies are not evenly distributed, since some re-

quests get through immediately while others must be retried one

or more times, so in addition to mean, we show 50, 75 and 90%

quantiles to characterize the tail of the distribution.

We emulate DDoS by dropping requests (ğ5.1) and, hence, laten-

cies reflect retries and loss, but not queueing delay, underrepresent-

ing latency in real-world attacks. However, their shape (some low

latency and a few long) is consistent with and helps explain what

has been seen in the past [21].

Beginning with Experiment E, the moderate attack in Figure 8a,

we see no change to median latency. This result is consistent with

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

50% packet loss
(both NSes)

normal normal

a
n

s
w

e
rs

minutes after start

OK SERVFAIL No answer

(a) Experiment E (1800-50p-10min): 50% packet loss

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

75% packet loss
(both NSes)

normal normal

A
n
s
w

e
rs

minutes after start

OK SERVFAIL No answer

(b) Experiment F (1800-75p-10min): 75% packet loss

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

a
n

s
w

e
rs

minutes after start

OK SERVFAIL No answer

(c) Experiment H (1800-90p-10min): 90% packet loss

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

a
n

s
w

e
rs

minutes after start

OK SERVFAIL No answer

(d) Experiment I (60-90p-10min): 90% packet loss

Figure 7: Answers received during DDoS attacks; first and

second vertical lines show start and end of DDoS.

IMC ’18, October 31-November 2, 2018, Boston, MA, USA G. C. M. Moura et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(a) Experiment E: 50% packet loss (1800 s TTL)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(b) Experiment F: 75% packet loss (1800 s TTL)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(c) Experiment H: 90% packet loss(1800 s TTL)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

(d) Experiment I: 90% packet loss (60 s TTL)

Figure 8: Latency results; Shaded area indicates the interval

of an ongoing DDoS attack.

many queries being handled by the cache, and half of those not

handled by the cache getting through anyway. We do see higher

latency in the 90%ile tail, reflecting successful retries. This tail also

increases the mean some.

This trend increases in Experiment F in Figure 8b, where 75% of

queries are lost. Now we see the 75%ile tail has increased, as has

the number of unanswered queries, and the 90%ile is twice as long

as in Experiment E.

We see the same latency in Experiment H with DDoS causing

90% loss. We set the timeouts to 5 s, so the larger attack results in

more unsuccessful queries, but latency for successful queries is not

much worse than with 75% loss. Median latency is still low due to

cached replies.

Finally, Experiment I greatly reduces opportunities for caching

by reducing cache lifetime to one minute. Figure 8d shows that loss

of caching increases median RTT and significantly increases the

tail latency. Compared with Figure 8c (same packet loss ratio but

1800 s TTL), we can clearly see the benefits of caching in terms of

latency (in addition to reliability): a half-hour TTL value reduced

the latency from 1300ms to 390ms. Longer TTLs also help reduce

tail latency relative to shorter TTLs (compare, for example, the

90%ile RTT in Experiments I vs. H in Figure 8).

Summary: DDoS effects often increase client latency. For mod-

erate attacks, increased latency is seen only by a few łunluckyž

clients whose do not see a full cache and whose queries are lost.

Caching has an important role in reducing latency during DDoS,

but while it can often mitigate most reliability problems, it cannot

avoid latency penalties for all VPs. Even when caching is not avail-

able, roughly 40% of clients get an answer, either by serving stale

or retries as we investigate next.

6 THE AUTHORITATIVE’S PERSPECTIVE
Results of partial DDoS events (ğ5.4) show that DNS is surprisingly

reliableÐeven with a DDoS resulting in 90% packet loss and lasting

longer than the cache timeout, more than half of VPs get answers

with 30 minute caches (Figure 7c), and about 40% of VPs get answers

(Figure 7d) even with minimal duration caches. These results are

due to a combination of caching and retries. We next examine this

from the perspective of the authoritative server.

6.1 Recursive-Authoritative Traffic during a
DDoS

We first ask: are retries by recursive resolvers responsible for the

success rates observed in ğ5.4? To investigate this question, we

return the partial DDoS experiments and look at how many queries

are sent to the authoritative servers. We measure queries before

they are dropped by our simulated DDoS. Recursives must make

multiple queries to resolve a name. We break out each type of query:

for the nameserver (NS), the nameserver’s IPv4 and v6 addresses

(A-for-NS and AAAA-for-NS), and finally the desired query (AAAA-

for-PID). Note that the authoritative is IPv4 only, so AAAA-for-NS

is non-existent and subject to negative caching, while the other

records exist and use regular caching.

We begin with the DDoS causing 75% loss in Figure 9a. For this

experiment, we observe 18,407 unique IP addresses of recursives

(Rn) querying for AAAA records directly to our authoritatives.

During the DDoS, queries increase by about 3.5×. We expect 4

When the Dike Breaks: Dissecting DNS Defenses During DDoS IMC ’18, October 31-November 2, 2018, Boston, MA, USA

 0

 50000

 100000

 150000

 200000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

75% packet loss
(both NSes)

normal normal

q
u
e
ri
e
s

minutes after start

NS
A-for-NS

AAAA-for-NS
AAAA-for-PID

(a) Experiment F: 1800-75p-10min, 75% packet loss

 0

 50000

 100000

 150000

 200000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

q
u
e
ri
e
s

minutes after start

NS
A-for-NS

AAAA-for-NS
AAAA-for-PID

(b) Experiment H: 1800-90p-10min, 90% packet loss

 0

 50000

 100000

 150000

 200000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

q
u
e
ri
e
s

minutes after start

NS
A-for-NS

AAAA-for-NS
AAAA-for-PID

(c) Experiment I: 60-90p-10min, 90% packet loss

Figure 9: Number of received queries by the authoritative

servers. Shaded area indicates the interval of an ongoing

DDoS attack.

trials, since the expected number of tries until success with loss

rate p is (1 − p)−1. For this scenario, results are cached for up to

30 minutes, so successful queries are reused in recursive caches.

This increase occurs both for the target AAAA record, and also

for the non-existent AAAA-for-NS records. Negative caching for

our zone is configured to 60 s, making caching of NXDOMAINs for

AAAA-for-NS less effective than positive caches.

The offered load on the server increases further with more loss

(90%), as shown in Experiment H (Figure 9b). The higher loss rate

results in a much higher offered load on the server, average 8.2×

normal.

Finally, in Figure 9c we reduce the effects of caching at a 90%

DDoS and with a TTL of 60 s. Here we see also about 8.1× more

queries at the server before the attack. Comparing this case to

Experiment H, caching reduces the offered load on the server by

about 40%.

Implications: The implication of this analysis is that legitimate

clients łhammerž with retries the already-stressed server during a

DDoS. For clients, retries are important to get reliability; and each

client independently chooses to retry.

The server is already under stress due to the DDoS, so these re-

tries add to that stress. However, the DDoS traffic is almost certainly

much larger than the retried of legitimate traffic. (A server experi-

encing a volumetric attack causing 90% loss must be receiving 10×

its capacity. Regular traffic is a small fraction of normal capacity, so

even 4× regular is still much less than the attack traffic.) The multi-

plier for retried legitimate traffic depends on the implementations

stub and recursive resolver, as well as application-level retries and

defection (users hitting reload in their browser, and later giving up).

Our experiment omits application-level retries and likely gives a

lower bound. We next examine specific recursive implementations

to see their behavior.

6.2 Sources of Retries: Software and Multi-level
Recursives

Experiments in the prior section showed that recursive resolvers

łhammerž authoritatives when queries are dropped. We reexamine

DNS software (since 2012 [52]), and additionally show deployments

amplify retries.

Recursive Software: Prior work showed that recursive servers

retry many times when an authoritative is unresponsive [52], with

evaluation of BIND 9.7 and 9.8, DNSCache, Unbound,WindowsDNS

and PowerDNS. We studied retries in BIND 9.10.3 and Unbound

1.5.8 to quantify the number of retries. Examining only requests

for AAAA records, we see that normal requests with a responsive

authoritative ask for the AAAA records for all authoritatives and the

target name (3 total requests when there are 2 authoritatives). When

all authoritatives are unavailable, we see about 7× more requests

before the recursives time out. (Exact numbers vary in different

runs, but typically each request is made 6 or 7 times.) Such retries are

appropriate, provided they are paced (both use exponential backoff),

they explain part of the increase in legitimate traffic during DDoS

events. Full data is in an appendix of our technical report [23].

Recursive Deployment:Another source of extra retries is com-

plex recursive deployments. We showed that operators of large

recursives often use complex, multi-level resolution infrastructure

(ğ3.5). This infrastructure can amplify the number of retries during

reachability problems at authoritatives.

To quantify amplification, we count both the number of Rn re-

cursives and AAAA queries for each probe ID reaching our author-

itatives. Figure 10 show the results for Experiment I. These values

represent the amplification in two ways: during stress, more Rn

recursives will be used for each probe ID and these Rn will generate

more queries to the already stressed authoritatives. As the figures

show, the median number of Rn recursives employed doubles (from

1 to 2) during the DDoS event, as does the 90%ile (from 2 to 4). The

maximum rises to 39. The number of queries for each probe ID

grows more than 3×, from 2 to 7. Worse, the 90%ile grows more

than 6× (3 queries to 18). The maximum grows 53.5×, reaching

up to 286 queries for one single probe ID. This value, however, is

a lower bound, given there are a large number of A and AAAA

IMC ’18, October 31-November 2, 2018, Boston, MA, USA G. C. M. Moura et al.

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180
 1

 10

 100

 1000

R
n
-p

e
rP

ID

A
A

A
A

-f
o
r-

P
ID

minutes after start

Rn-per-PID-median
Rn-per-PID-90%-tile
Rn-per-PID-max

AAAA-for-PID-median
AAAA-for-PID-90%-tile
AAAA-for-PID-max

Figure 10: Rn recursives and AAAA queries used in Experi-

ment I, normalized by the number of probe IDs.

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120 140 160 180

#
 R

n
 r

e
a
c
h
in

g
 A

T

minutes after start

Experiment F
Experiment H
Experiment I

Figure 11: Unique Rn recursives addresses observed at au-

thoritatives

queries that ask for NS records and not the probe ID (AAAA and

A-for NS in Figure 9).

We can also look at the aggregate effects of retries created by the

complex recursive infrastructure. Figure 11 shows the timeseries of

unique IP addresses of Rn observed at the authoritatives. Before the

DDoS period, for Experiment I with TTL of 60 s, we see a constant

number of recursives reaching our authoritatives; i.e., all queries

should be answered by authoritatives (no caching at this TTL value).

For experiments F and H, both with TTL of 1800 s, the number of

recursives reaching our authoritative oscillates before the DDoS;

peaks are observed when caches expire as expected.

During the DDoS we observe a similar behavior for all three

experiments in Figure 11: as packets are dropped at the authori-

tative (at rates of 75, 90 and 90% for F, H, and I respectively) we

see an increase on the number of Rn recursives querying our au-

thoritatives; for experiments F and H we see drops when caching

is expected, but not for experiment I. The reason for this behavior

is that the underlying layer of recursives starts forwarding queries

to other recursives, which is amplified in the end. (We show this

behavior for an individual probe in our technical report [23], where

we observe the growth in the number of queries received at the

authoritatives and the number of recursives used.)

Most complex resolution infrastructures are proprietary (as far

as we know only one study has examined them [45]), so we cannot

make recommendations about how large recursive resolvers ought

to behave. We suggest that the aggregate traffic of large recursive

resolvers should strive to be within a constant factor of single

recursives, perhaps a factor of 4. We also encourage additional

study of large recursive resolvers, and their operators to share

information about their behavior.

7 RELATED WORK
Caching by Recursives: Several groups have shown that DNS

caching can be imperfect. Hao and Wang analyzed the impact of

nonce domains on DNS recursive’s caches [11]. Using two weeks

of data from two universities they showed that filtering one-time

domains improves cache hit rates. In two studies, Pang et al. [28, 29]

reported that web clients and local recursives do not always honor

TTL values provided by authoritatives. Almeida et al. [2] analyzed

DNS traces of a mobile operator, and used a mobile application

to see TTLS in practice. They find that most domains have short

TTLs (less than 60 s), and report and evidence of TTL manipulation

by recursives. Schomp et al. [45] demonstrate widespread use of

multi-level recursives by large operators, as well as TTL manip-

ulation. Our work builds on this prior work, examining caching

and TTL manipulation systematically and considering its effects

on resilience.

DNS client behavior: Yu et al. investigated how stubs and re-

cursives select authoritative servers, and were the first to demon-

strate the large number of retries when all authoritatives are un-

available [52]. We also investigated how recursives select authori-

tative servers in the wild and found that recursives tend to prefer

authoritatives with shorter latency, but query all authoritatives for

diversity [24]. We confirm Yu’s work and focus on authoritative

selection during DDoS from several perspectives.

Authoritatives during DDoS: We investigated how the Root

DNS service behaved during the Nov. 2015 DDoS attacks [21]. This

report focuses on the interactions of IP anycast and both latency

and reachability, as seen from RIPE Atlas. Rather than look at ag-

gregate behavior and anycast, our methodology here examines how

clients interact with their recursive resolvers, while this prior work

focused on authoritatives only, bypassing recursives. In addition,

here we have full access to clients and authoritatives traffic dur-

ing our experiments, and we evaluate DDoS with controlled loss

rates. The prior study has incomplete data and focuses on specific

results of two events. These differences stem from their study of

natural experiments from real-world events and our controlled

experiments.

8 IMPLICATIONS
We evaluated DNS resilience, showing that caches and retries can

mitigate much of the harm from a DDoS attack, provided the cache

is full and some requests can get to authoritative servers. The key

implication of our study is to explain differences in the outcome of

recent DDoS attacks.

Recent DDoS attacks on DNS services have seen very differ-

ent outcomes for users. The Root Server System was a target in

Nov. 2015 [38] and June 2016 [39]. The DNS Root has 13 letters,

each an authoritative łserverž implemented with some or many IP

anycast instances. Analysis of these DDoS events showed that their

effects were uneven across letters: for some, most or all anycast

instances showed high loss, while other letters showed little or no

loss [21]. However, the Root Operators state łThere are no known

reports of end-user visible error conditions during, and as a result

When the Dike Breaks: Dissecting DNS Defenses During DDoS IMC ’18, October 31-November 2, 2018, Boston, MA, USA

of, this incident. Because the DNS protocol is designed to cope with

partial reachability. . . ž [38].

In Oct. 2016, a much larger attack was directed at Dyn, a provider

of DNS service for many second-level domains [12]. Although Dyn

has a capable infrastructure and immediately took steps to address

service problems, there were reports of user-visible service disrup-

tion in the technical and even popular press [31]. Reports describe

intermittent failure of prominent websites including łTwitter, Net-

flix, Spotify, Airbnb, Reddit, Etsy, SoundCloud and The New York

Timesž, each a direct or indirect customer of Dyn at the time.

Our work helps explain these very different outcomes. The Root

DNS saw few or no user-visible problems because data in the root

zone is cachable for a day or more, and because multiple letters and

many anycast instances were continuously available. (All measure-

ments in this paragraph are as of 2018-05-22.) Records in the root

zone have TTLs of 1 to 6 days, and www.root-servers.org reports

922 anycast instances operating across the 13 authoritative servers.

Dyn also operates a large infrastructure (https://dyn.com/dns/netw

ork-map/ reports 20 łfacilitiesž), and faced a larger attack (reports

of 1.2 Tb/s [44], compared to estimates of 35 Gb/s for the Nov. 2015

root attack [21]). But a key difference is all of the Dyn’s customers

listed above use DNS-based CDNs (for a description, see [7]) with

multiple, Dyn-hosted DNS components with TTLs that range from

120 to 300 s.

In addition to explaining the effects, our experiments help get to

the root causes behind these outcomes. Users of the Root benefited

from caching and saw performance like Experiment E (Figure 7a),

because root contents (TLDs like .com and country codes) are popu-

lar and certainly cached in recursives, and because some root letters

were always available to refresh caches (either through a successful

normal query, or a retry). By contrast, users requiring domains

with very short TTLs (like the websites that had problems) receive

performance more like Experiment I (Figure 7d) or Experiment C

(Figure 5c). Even when some requests succeed an cache a popular

name, short TTLs cause caches to clear quickly.

This example shows the importance of DNS’s multiple methods

of resilience (caching, retries, and at least some availability at one

authoritative). It suggests that CDN operators may wish to consider

longer timeouts to allow caching to help and give DNS operators

deploy defenses. Experiment H suggests 30 minutes, Figure 7c.

Configuring short TTLs serves a role in CDNs that use DNS

to direct clients to different application-level servers. Short TTLs

allow for re-provisioning during DDoS attacks on web servers, but

that leaves DNS servers vulnerable. This tension suggests traffic

scrubbing by routing changeswith longDNS TTLsmay be preferred

to short DNS TTLs, so that both layers can be robust. However,

the complexity of interactions between DNS at multiple levels and

CDNs suggests that more study is needed before recommending

specific settings.

Finally, this evaluation helps complete our picture of DNS la-

tency and reliability for DNS services that may consist of multiple

authoritatives, some or all using IP anycast with multiple sites. To

minimize latency, prior work has shown a single authoritative using

IP anycast should maximize geographic dispersion of sites [43]. The

latency of an overall DNS service with multiple authoritatives can

be limited by the one with largest latency [24]. Prior work about

resilience to DDoS attack has shown that individual IP anycast

sites will suffer under DDoS as a function of the attack traffic that

site receives relative to its capacity [21]. We show that the overall

reliance of a DNS service composed of multiple authoritatives using

IP anycast tends to be as resilient as the strongest individual author-

itative. The reason for these opposite results is that, in both cases,

recursive resolvers will try all authoritatives of a given service. For

latency, they will sometimes choose a distant authoritative, but

for resilience, they will continue until they find the most available

authoritative.

9 CONCLUSIONS
This paper represents the first study of how the DNS resolution

system behaves when authoritative servers are under DDoS attack.

Caching and retries at recursive resolvers are key factors in this

behavior. We show that together, caching and retries by recursive

resolvers greatly improve the resilience of the DNS as a whole. In

fact, they can largely cover over partial DDoS attacks for many

usersÐeven with a DDoS resulting in 90% packet loss and lasting

longer than the cache timeout, more than half of VPs get answers

with 30 minute caches (Figure 7c), and about 40% of VPs get answers

(Figure 7d) even with minimal duration caches.

The primary cost of DDoS for users can be greater latency, but

even this penalty is uneven across users, with a few getting much

greater latency while some see no or little change. Finally, we show

that one result retries is that traffic from legitimate users to author-

itatives greatly increases (up to 8×) during service interruption,

and that this effect is magnified by complex, multi-layer recursive

resolver systems. The key outcome of work is to quantify the impor-

tance of caching and retries in recursives to resilience, encouraging

use of at least moderate TTLs wherever possible.

Acknowledgments
The authors would like to thank Jelte Jansen, Benno Overeinder, Marc

Groeneweg, Wes Hardaker, Duanne Wessels, Warren Kumari, Stéphane

Bortzmeyer, Maarten Aertsen, Paul Hoffman, our shepherd Mark Allman,

and the anonymous IMC reviewers for their valuable comments on paper

drafts.

This research has been partially supported by measurements obtained

from RIPE Atlas, an open measurements platform operated by RIPE NCC,

as well as by the DITL measurement data made available by DNS-OARC.

Giovane C. M. Moura, Moritz Müller, and Marco Davids developed this

work as part of the SAND project (http://www.sand-project.nl).

John Heidemann’s research is partially sponsored by the Air Force Re-

search Laboratory and the Department of Homeland Security under agree-

ments number FA8750-17-2-0280 and FA8750-17-2-0096. The U.S. Govern-

ment is authorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright notation thereon.

REFERENCES
[1] 1.1.1.1. 2018. The Internet’s Fastest, Privacy-First DNS Resolver. https://1.1.1.1/.

https://1.1.1.1/
[2] Mario Almeida, Alessandro Finamore, Diego Perino, Narseo Vallina-Rodriguez,

and Matteo Varvello. 2017. Dissecting DNS Stakeholders in Mobile Networks.
In Proceedings of the 13th International Conference on Emerging Networking EX-
periments and Technologies (CoNEXT ’17). ACM, New York, NY, USA, 28ś34.
https://doi.org/10.1145/3143361.3143375

[3] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium. USENIX,
Vancouver, BC, Canada, 1093ś1110. https://www.usenix.org/system/files/confe
rence/usenixsecurity17/sec17-antonakakis.pdf

IMC ’18, October 31-November 2, 2018, Boston, MA, USA G. C. M. Moura et al.

[4] Arbor Networks. 2012. Worldwide Infrastructure Security Report. Technical Report
2012 Volume VIII. Arbor Networks. http://www.arbornetworks.com/resources/
infrastructure-security-report

[5] Vaibhav Bajpai, , Steffie Eravuchira, Jürgen Schönwälder, Robert Kisteleki, and
Emile Aben. 2017. Vantage Point Selection for IPv6 Measurements: Benefits
and Limitations of RIPE Atlas Tags. In IFIP/IEEE International Symposium on
Integrated Network Management (IM 2017). Lisbon, Portugal.

[6] Vaibhav Bajpai, Steffie Jacob Eravuchira, and Jürgen Schönwälder. 2015. Lessons
Learned from using the RIPE Atlas Platform for Measurement Research. SIG-
COMM Comput. Commun. Rev. 45, 3 (July 2015), 35ś42. http://www.sigcomm.or
g/sites/default/files/ccr/papers/2015/July/0000000-0000005.pdf

[7] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Proceedings of
the ACM Internet Measurement Conference. ACM, Tokyo, Japan. https://doi.org/
10.1145/2815675.2815717

[8] DNS OARC. 2018. DITL Traces and Analysis. https://www.dns-oarc.net/index.
php/oarc/data/ditl/2018.

[9] R. Elz, R. Bush, S. Bradner, and M. Patton. 1997. Selection and Operation of
Secondary DNS Servers. RFC 2182 (Best Current Practice). , 11 pages. https:
//doi.org/10.17487/RFC2182

[10] Google. 2018. Public DNS. https://developers.google.com/speed/public-dns/.
https://developers.google.com/speed/public-dns/

[11] Shuai Hao and Haining Wang. 2017. Exploring Domain Name Based Features on
the Effectiveness of DNS Caching. SIGCOMM Comput. Commun. Rev. 47, 1 (Jan.
2017), 36ś42. https://doi.org/10.1145/3041027.3041032

[12] Scott Hilton. 2016. Dyn Analysis Summary Of Friday October 21 Attack. Dyn blog
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/.

[13] Paul Hoffman, Andrew Sullivan, and K. Fujiwara. 2018. DNS Terminology.
Internet Draft. https://datatracker.ietf .org/doc/draft-ietf-dnsop-terminology-b
is/?include_text=1

[14] ICANN. 2014. RSSAC002: RSSAC Advisory on Measurements of the Root Server
System. https://www.icann.org/en/system/files/files/rssac-002-measurements-r
oot-20nov14-en.pdf.

[15] ISC BIND. 2018. Chapter 6. BIND 9 Configuration Reference. https://ftp.isc.org/
isc/bind9/cur/9.10/doc/arm/Bv9ARM.ch06.html.

[16] Sam Kottler. 2018. February 28th DDoS Incident Report | Github Engineering. .
https://githubengineering.com/ddos-incident-report/.

[17] D. Lawrence andW. Kumari. 2017. Serving Stale Data to Improve DNS Resiliency-
02. Internet Draft. https://www.ietf .org/archive/id/draft-tale-dnsop-serve-stale
-02.txt

[18] P.V. Mockapetris. 1987. Domain names - concepts and facilities. RFC 1034
(Internet Standard). , 55 pages. https://doi.org/10.17487/RFC1034 Updated by
RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343,
4035, 4592, 5936, 8020.

[19] P.V. Mockapetris. 1987. Domain names - implementation and specification. RFC
1035 (Internet Standard). , 55 pages. https://doi.org/10.17487/RFC1035 Updated
by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308,
2535, 2673, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604, 7766.

[20] Carlos Morales. 2018. February 28th DDoS Incident Report | Github Engineer-
ingNETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack; The Terabit Attack Era
Is Upon Us. https://www.arbornetworks.com/blog/asert/netscout-arbor-confir
ms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/.

[21] Giovane C. M. Moura, Ricardo de O. Schmidt, John Heidemann, Wouter B. de
Vries, Moritz Müller, Lan Wei, and Christian Hesselman. 2016. Anycast vs. DDoS:
Evaluating the November 2015 Root DNS Event. In Proceedings of the ACM Internet
Measurement Conference. https://doi.org/10.1145/2987443.2987446

[22] Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt,
and Marco Davids. 2018. Datasets from łWhen the Dike Breaks: Dissecting DNS
Defenses During DDoSž. (May 2018). Web page https://ant.isi.edu/datasets/dns
/Moura18a_data.

[23] Giovane C.M.Moura, JohnHeidemann,MoritzMüller, Ricardo de O. Schmidt, and
Marco Davids. 2018. When the Dike Breaks: Dissecting DNS Defenses During DDoS
(extended). Technical Report ISI-TR-725b. USC/Information Sciences Institute.
https://www.isi.edu/%7ejohnh/PAPERS/Moura18a.html (updated Sept. 2018).

[24] Moritz Müller, Giovane C. M. Moura, Ricardo de O. Schmidt, and John Heide-
mann. 2017. Recursives in the Wild: Engineering Authoritative DNS Servers. In
Proceedings of the ACM Internet Measurement Conference. London, UK, 489ś495.
https://doi.org/10.1145/3131365.3131366

[25] NL Netlabs. 2018. NL Netlabs Documentation - Unbound - undbound.conf.5.
https://nlnetlabs.nl/documentation/unbound/unbound.conf/.

[26] OpenDNS. 2018. Setup Guide: OpenDNS. https://www.opendns.com/setupguide/.
https://www.opendns.com/setupguide

[27] Jianping Pan, Y Thomas Hou, and Bo Li. 2003. An overview of DNS-based server
selections in content distribution networks. Computer Networks 43, 6 (2003),

695ś711.
[28] Jeffrey Pang, Aditya Akella, Anees Shaikh, Balachander Krishnamurthy, and

Srinivasan Seshan. 2004. On the Responsiveness of DNS-based Network Control.
In Proceedings of the 4th ACM SIGCOMMConference on Internet Measurement (IMC
’04). ACM, New York, NY, USA, 21ś26. https://doi.org/10.1145/1028788.1028792

[29] Jeffrey Pang, James Hendricks, Aditya Akella, Roberto De Prisco, Bruce Maggs,
and Srinivasan Seshan. 2004. Availability, Usage, and Deployment Characteristics
of the Domain Name System. In Proceedings of the 4th ACM SIGCOMM Conference
on Internet Measurement (IMC ’04). ACM, New York, NY, USA, 1ś14. https:
//doi.org/10.1145/1028788.1028790

[30] Paul Vixie and Gerry Sneeringer and Mark Schleifer. 2002. Events of 21-Oct-2002.
http://c.root-servers.org/october21.txt.

[31] Nicole Perlroth. 2016. Hackers Used New Weapons to Disrupt Major Websites
Across U.S. New York Times (Oct. 22 2016), A1. http://www.nytimes.com/2016/
10/22/business/internet-problems-attack.html

[32] Nicole Perlroth. 2016. Tally of Cyber Extortion Attacks on Tech Companies
Grows. New York Times Bits Blog, http://bits.blogs.nytimes.com/2014/06/19/tall
y-of-cyber-extortion-attacks-on-tech-companies-grows/.

[33] Alec Peterson. 2017. EC2 resolver changing TTL on DNS answers? Post on the
DNS-OARC dns-operations mailing list, https://lists.dns-oarc.net/pipermail/dn
s-operations/2017-November/017043.html.

[34] Quad9. 2018. Quad9 | Internet Security & Privacy In a Few Easy Steps. https:
//quad9.net.

[35] RIPE NCC. 2017. RIPE Atlas Measurement IDS. https://atlas.ripe.net/measu
rements/ID. ID is the experiment ID: TTL60: 10443671, TTL1800: 10507676,
TTL3600: 10536725, TTL86400: 10579327, TTL3600-10min: 10581463, A:10859822,
B: 11102436, C :11221270, D:11804500, E: 11831403, F: 11831403, G: 12131707,
H:12177478 , I: 12209843.

[36] RIPE NCC Staff. 2015. RIPE Atlas: A Global Internet Measurement Network.
Internet Protocol Journal (IPJ) 18, 3 (Sep 2015), 2ś26.

[37] RIPE Network Coordination Centre. 2018. RIPE Atlas - Raw data structure
documentations,https://atlas.ripe.net/docs/data_struct/.

[38] Root Server Operators. 2015. Events of 2015-11-30. http://root-servers.org/new
s/events-of-20151130.txt.

[39] Root Server Operators. 2016. Events of 2016-06-25. Technical Report. Root Server
Operators. http://www.root-servers.org/news/events-of-20160625.txt

[40] Root Server Operators. 2017. Root DNS. http://root-servers.org/.
[41] José Jair Santanna, Roland van Rijswijk-Deij, Rick Hofstede, Anna Sperotto, Mark

Wierbosch, Lisandro Zambenedetti Granville, and Aiko Pras. 2015. BootersÐ
An Analysis of DDoS-as-a-Service Attacks. In Proceedings of the 14th IFIP/IEEE
Interatinoal Symposium on Integrated NetworkManagement. IFIP, Ottowa, Canada.

[42] D. Schinazi and T. Pauly. 2017. Happy Eyeballs Version 2:Better Connectivity Using
Concurrency. RFC 8305. Internet Request For Comments. https://doi.org/10.
17487/RFC8305

[43] Ricardo de O. Schmidt, John Heidemann, and Jan Harm Kuipers. 2017. Anycast
Latency: How Many Sites Are Enough?. In Proceedings of the Passive and Active
Measurement Workshop. Springer, Sydney, Australia, 188ś200. http://www.isi.ed
u/%7ejohnh/PAPERS/Schmidt17a.html

[44] Bruce Schneier. 2016. Lessons From the Dyn DDoS Attack. blog https://www.sc
hneier.com/essays/archives/2016/11/lessons_from_the_dyn.html.

[45] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On
measuring the client-side DNS infrastructure. In Proceedings of the 2015 ACM
Conference on Internet Measurement Conference. ACM, 77ś90.

[46] Somini Sengupta. 2012. After Threats, No Signs of Attack by Hackers. New York
Times (Apr. 1 2012), A1. http://www.nytimes.com/2012/04/01/technology/no-s
igns-of-attack-on-internet.html

[47] SIDN Labs. 2017. .nl stats and data. http://stats.sidnlabs.nl.
[48] Matthew Thomas and Duane Wessels. 2015. A study of caching behavior with

respect to root server TTLs. DNS-OARC. https://indico.dns-oarc.net/event/24/
contributions/374/

[49] Unbound. 2018. Unbound Documentation. https://www.unbound.net/document
ation/unbound.conf.html.

[50] Weinberg, M., Wessels, D. 2016. Review and analysis of attack traffic against A-
root and J-root onNovember 30 andDecember 1, 2015. In: DNSOARC 24 ś Buenos
Aires, Argentina. https://indico.dns-oarc.net/event/22/session/4/contribution/7.

[51] Maarten Wullink, Giovane CM Moura, Moritz Müller, and Cristian Hesselman.
2016. ENTRADA: A high-performance network traffic data streaming warehouse.
In Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE,
913ś918.

[52] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. 2012. Authority Server
Selection in DNS Caching Resolvers. SIGCOMM Comput. Commun. Rev. 42, 2
(March 2012), 80ś86. https://doi.org/10.1145/2185376.2185387

	Abstract
	1 Introduction
	2 Background
	2.1 DNS Resolvers: Stubs, Recursives, and Authoritatives
	2.2 Authoritative Replication and IP Anycast
	2.3 DNS Caching with Time-to-Live (TTLs)

	3 DNS Caching In Controlled Experiments
	3.1 Potential Impediments to Caching
	3.2 Measurement Design
	3.3 Datasets
	3.4 TTL distribution: expected vs. observed
	3.5 Public Recursives and Cache Fragmentation

	4 Caching Production Zones
	4.1 Requests at .nl's Authoritatives
	4.2 Requests at the DNS Root

	5 The Client's View of Authoritatives Under DDoS
	5.1 Emulating DDoS
	5.2 Clients During Complete Authoritatives Failure
	5.3 Discussion of Complete Failures
	5.4 Client Reliability During Partial Authoritative Failure
	5.5 Client Latency During Partial Authoritative Failure

	6 The Authoritative's Perspective
	6.1 Recursive-Authoritative Traffic during a DDoS
	6.2 Sources of Retries: Software and Multi-level Recursives

	7 Related Work
	8 Implications
	9 Conclusions
	References

