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ABSTRACT
The Internet’s Domain Name System (DNS) is a part of every web re-

quest and e-mail exchange, so DNS failures can be catastrophic, tak-

ing outmajor websites and services. This paper identifies TsuNAME,

a vulnerability where some recursive resolvers can greatly amplify

queries, potentially resulting in a denial-of-service to DNS services.

TsuNAME is caused by cyclical dependencies in DNS records. A

recursive resolver repeatedly follows these cycles, coupled with

insufficient caching and application-level retries greatly amplify

an initial query, stressing authoritative servers. Although issues

with cyclic dependencies are not new, the scale of amplification has

not previously been understood. We document real-world events

in .nz (a country-level domain), where two misconfigured domains

resulted in a 50% increase on overall traffic. We reproduce and

document root causes of this event through experiments, and de-

mostrate a 500× amplification factor. In response to our disclosure,

several DNS software vendors have documented their mitigations,

including Google public DNS and Cisco OpenDNS. For operators

of authoritative DNS services we have developed and released

CycleHunter, an open-source tool that detects cyclic dependencies

and prevents attacks. We use CycleHunter to evaluate roughly 184

million domain names in 7 large, top-level domains (TLDs), finding

44 cyclic dependent NS records used by 1.4k domain names. The

TsuNAME vulnerability is weaponizable, since an adversary can

easily create cycles to attack the infrastructure of a parent domains.

Documenting this threat and its solutions is an important step to

ensuring it is fully addressed.
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1 INTRODUCTION
The Internet’s Domain Name System (DNS) [27] provides one of the

core services of the Internet, by mapping hosts names, applications,

and services to IP addresses and other information. Every web

page visit requires a series of DNS queries, and large failures of the

DNS have severe consequences that make even large websites and
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other Internet infrastructure fail. For example, the Oct. 2016 denial-

of-service (DoS) attack against Dyn [5] made many prominent

websites such as Twitter, Spotify, and Netflix unreachable to many

of their customers [40]. Another DoS against Amazon’s DNS service

affected large number of services [61] in Oct. 2019.

The DNS can be seen as a hierarchical and distributed database,

where DNS records [28] are stored in and distributed from authorita-

tive servers [18] (for instance, the Root DNS servers [51] distribute

records from the Root DNS zone [52]). As such, all information

about an end domain name in the DNS are served by authoritative

servers for that domain. This information is typically retrieved by

recursive resolvers [18], which answer questions originally posed

by users and their applications. Resolvers are typically operated

by a user’s ISP, or alternatively public DNS resolvers operated by

Google [15], Cloudflare [1], Quad9 [43], Cisco OpenDNS [38], and

others.

The configuration of authoritative servers and their records is

prone to several types of errors [2, 25, 27, 39, 55]. Here we are

concerned about loops where records required for resolution point

at each other. Cyclic dependencies occur when resolving a name

requires resolution of another name, that in turn refers back to

the first [39]. Loops can involve CNAMEs (ğ 3.6.2, [27]) or NS

records (ğ 2, [25]). For example, if the NS record for example.org

points to example.com and vice versa, then an attempt to resolve

any name within either domain will fail because the IP address for

both servers cannot be confirmed.

The first contribution of this paper is to report that, in the wild,

cyclic dependencies can result in a query cascade that greatly in-

creases traffic to authoritative servers. We call this amplification

TsuNAME (inspired by the destructive potential of a tsunami) and

describe the several factors that contribute to it in ğ2. TsuNAME am-

plifcation has happened multiple times in the real world. ğ3 shows

an event on 2020-02-01 at .nz, where a configuration error (not an

intentional attack) in two domains each having cyclic nameservers

(NS records). While normally these domains result in only a few

queries to .nz’s authoritative DNS servers, the misconfiguration

resulted in 50% increase in aggregate traffic volume (from 800M to

1.2B daily queries, the shaded area in Figure 1). While these servers

handled this increase in load, this large amplification shows the risk

a malicious attack could pose. Others have seen greater increases:

ğ6 shows a European ccTLD that experienced a 10× increase in

traffic due to TsuNAME.

These accidental events raise the question of what a motivated

attacker could do to exploit this problem. An intentional attack

could leverage multiple cycles to amplify moderate client traffic to

overwhelm authoritative servers. In addition, since DNS providers

often host multiple domains on shared infrastructure, other services

could suffer collateral DoS damage (we discuss this threat model

in Appendix F). This threat poses a great concern for any domains
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Resolver Queries Median Δ𝑡 Duration

r1 34351 901 ms 3.17h

r2 2783 6095 ms 5.13h

r3 833 60821 ms 5.10h

r4 775 61680 ms 5.10h

Table 8: Confirmed looping resolvers

RIPE Atlas Side

# Time Query/Type Resolver

1 14:14:57 19817.sub.verfwinkel.net/A IP1

2 14:15:03 19817.sub.verfwinkel.net/A IP2

3 14:15:09 19817.sub.verfwinkel.net/A IP3

Authoritative Server Side from IP2

4 14:15:07 19817.sub.verfwinkel.net/A IP2

5 14:15:10 ns.sub.cachetest.net/A IP2

6 14:15:10 ns.sub.verfwinkel.net/A IP2

Remaining queries

Median Δ𝑡 Query/Type Total

901ms ns.sub.verfwinkel.net/A 17905

901ms ns.sub.cachetest.net/A 18169

Table 9: Query sequence for Probe 19817

We can now find one-hop clients (client to recursive to authori-

tative, without forwarders or multi-level recursives). We identify

one-hop clients as Atlas VPs where their local resolver’s IP address

matches an IP address seen in traffic to our authoritative serversÐ

the cells highlighted in Table 7. This process may miss recursive

resolvers that serve DNS traffic on multiple network interfaces. We

intersect these lists to identify 1,256 matching IP addresses.

We compare these recursives against our list of 574 problematic

resolvers (from controlled experiments ğ4.1). We find that 4 one-hop

clients use problematic resolvers. Table 8 lists these anonymized

recursive resolvers and shows how many queries and their query

interarrival rate from our prior experiment. We see that the most

prolific, 𝑟1, queried every second for more than 3 hours, while the

others queried every 6 or 60 s.

Resolver query history:We next examine query sequence of these

problematic recursives to understand when they start looping. We

begin with 𝑟1 from AS553 (BelWue, Germany), which sent 36k

queries. Table 9 shows its query history. First, at the Atlas side, we

see that this Atlas probe is configured with 3 different resolvers

(IP1śIP3, omitted for privacy), and it sends one query per resolver.

No other queries are issued from Atlas after that.

We see that these resolvers produce different results at the au-

thoritative side. IP1 sends only 9 queries to our servers, and IP3 sent

1 query only. But IP2, on the other hand, sends 36,075 queries! After

queries #5 and #6, this resolver repeats these queries every 900ms

for more than 3 h (Table 8). Even without new client queries, this

recursive resolver seems stuck in an infinite cycle. We contacted

this operator and they reported that this recursive ran Windows

2008R2 and was marked to be phased out.

We have shown that we can identify specific problematic re-

solvers, and proven that at least one specific resolver will cycle

indefinitely. While the operator is resolving this case, it shows

TsuNAME is a problem today. We examine 𝑟2 (Table 8) is in Appen-

dix H (omitted here due to space).

4.5 Revisiting Google Public DNS
We have seen that Google Public DNS was responsible for most

queries during both the .nz event (ğ3) and our experiments (ğ4).

Given how much traffic they handle, their role is not surprising.

Oddly, however, they show diverse behavior: some GDNS resolvers

seem to loop while others do not (Figure 3). We reached out to

them and other operators (ğ6), following responsible disclosure

guidelines. Our interaction with Google helped us understand how

the different components of the DNS system come together to make

TsuNAME amplification problematic.

Based on our input, Google engineers reproduced the problem.

They could not reproduce continuous looping, but did show an am-

plification factor of 10 from retries. While a powerful amplification,

this behavior conforms to limitations required by [25, 27].

But if GDNS does not loop by itself, why does it contribute large

traffic volumes during the .nz event and in our experiments? Google

engineers found it was a combination of two factors: first, retries oc-

cur outside Google’s recursive resolvers: GDNS clients themselves

can retry (for example, 𝑅1𝑏 in Figure 4). Secondly, Google’s recur-

sive resolver system did not cache the cyclic failure. Thus every

new external query would force Google’s resolvers to re-prove the

cycle, amplifying each external query by ten. This interaction of

DNS system components results in large traffic volumes.

This interaction also explains why we see only some Google

IP addresses during the .nz event (Figure 3): the clients retrying

queries produced much more traffic than those where clients do

minimal retries.

Google then fixed GDNS by implemeting negative caching of

cyclic dependent records. After Google reported their fix to us, we

confirmed they have mitigated the they TsuNAME vulnerability

in their service. When we repeated our experiments (ğ4.1 and Ap-

pendix B), wee see a much lower query volume (Appendix E). We

also thank Google for a bug bounty for reporting this problem; we

donated it to Wikipedia.

5 DETECTING CYCLIC DEPENDENCIES
TsuNAME attacks are intrinsically asymmetrical: the victims (au-

thoritative server operators) are different companies than the ampli-

fiers (vulnerable resolver operators). We discuss this threat model

in greater detail in Appendix F.

Next consider the side of the authoritative server operator, and

work on preventing TsuNAME attacks by detecting and removing

cyclic dependencies from their zones. We present CycleHunter, a

tool that we developed that proactively detects cyclic dependencies

in zone files, allowing operators to identify them before any vul-

nerable resolvers do. We make CycleHunter publicly available at

http://tsuname.io and [10].

CycleHunter uses active DNS measurements to detect cyclic

dependencies, given many NS records in a DNS zone are typically

out-of-zone (out-of-bailiwick) [55]. As such, it requires external

zone knowledge which can only be done if an operator has every

necessary zone file in possession (a condition we do not assume).

5.1 CycleHunter

CycleHunter begins with a bulk copy of the zone, processing it

(Figure 11):
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the odds of collateral damage: once a zone is attacked, other zones

hosted in the same infrastructure may suffer together ś for example,

this happened to .nlwhen parts of the Root DNS was attacked [32].

Similar behavior was observed when the Dyn DNS provider was

attacked and multiple zones hosted by it had connectivity prob-

lems [40]. Using the DNS to protect origin servers behind CDNs has

been thwarted by simultaneous connecting through IP addresses

only and by using carefully crafted URLs [58].

Recursive and Public Resolvers: Studies have examined the re-

cursive DNS resolution infrastructure, and inferred the internals

of Google’s public DNS service, both as a subject of study [53],

to understand end-user behavior [13], and to better understand

caches [44]. Google DNS has been found to be one of the most

popular public DNS resolvers [30]. In the same study, the authors

showed one of the benefits of centralization: when Google adopted

the privacy protecting query-name minimization technique, it ben-

efited many users at the same time. Our study shows another nega-

tive side of this coin, showing that when something breaks in large

DNS providers, it can be exploited to cause significant harm.

9 CONCLUSIONS
The risk of DNS cycles has been documented for more than 30 years,

but this threat has been underestimated. Large traffic increases at

.nz (ğ3) prompted us to carefully investigate this problem through

controlled experiments (ğ4). Although the exact amplification factor

varies, we showed factors ranging from 120× and 526×, explaining

two weeks of 50% growth at .nz and a 10× increase in a European

ccTLD.

Our contribution is to document the cause and threat of the

problem (ğ2), and to disclose this information to the vendor and

operation community (ğ6). We also provide a tool to detect existing

cyclic dependencies (ğ5). We hope that these steps will defuse this

problem, and we are happy that multiple vendors have confirmed

current software mitigates the problem (and identified old versions

at risk), and important operators such as Google Public DNS have

taken steps to manage the challenge.
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RIPE Atlas Side

# Time Query/Type Resolver

1 14:14:57 52196.sub.verfwinkel.net/A 192.168.88.1

2 14:15:01 52196.sub.verfwinkel.net/A 208.67.222.123

3 14:15:02 52196.sub.verfwinkel.net/A 208.67.220.123

Authoritative Server Side

4 14:15:11 52196.sub.verfwinkel.net/A IP4

5 14:15:11 ns.sub.cachetest.net/A IP4

6 14:15:13 ns.sub.verfwinkel.net/A IP4

7 14:15:14 ns.sub.verfwinkel.net/A IP4

8 14:15:14 ns.sub.verfwinkel.net/A IP4

9 14:15:14 52196.sub.verfwinkel.net/A IP4

Remaining queries

Median Δ𝑡 Query/Type Total

37ms ns.sub.verfwinkel.net/A 169462

36ms ns.sub.cachetest.net/A 169871

Table 18: Query sequence for Probe 52196 during Low bound

measurement

Consider probe 52916, from the new domain measurement. Ta-

ble 18 shows the query history for this probe. At the Atlas side,

we see that this probe has sent 3 queries ś one per resolver it was

configured with. The first query goes to a private IP address, likely

a local resolver. Queries 2 and 3 go to OpenDNS, Cisco’s public

resolver service.

At the authoritative server side, however, we see queries from

only one IP address (anonymized as IPv4), which belongs to the the

same AS number as the probe (AS15267). Query #4 it is the first

query we see on the authoritative server related to this probe, so

we map this IP to the probe (as in ğ4.4). After that, it asks for the A

records of the authoritative servers, and it asks again at 14:15:14

for the 52196.sub.verfwinkel.net/A domain.

Then, the resolver begins to loop: it sends 169k queries for each

dependent NS record (as queries #5 and #6), every 37ms, even in the

absence of new Ripe Atlas queries. Given this probe use two Open

DNS resolvers and a private a private IP address space, we do know

if the looping occurs at this private resolver, if it is a forwarder,

or at the last level resolver (Figure 4). We tried to identify this

local resolver by issuing chaos TXT queries to determine their

software version [63], but this feature was not implemented (see

measurement probe52196 in [46]). Still, the effect is send a large

volume of queries to our authoritative servers.

I RESOLVERS DEV/OPS RECOMMENDATIONS
To mitigate the traffic surge from resolvers to authoritative servers

caused by the TsuNAME vulnerability, resolver developers MUST

instrument their code to both detect cyclically dependent NS records

(so loops can be avoided), and cache them likewise (so no further

user queries generate new queries to the targeted authoritative

servers).

For example, in the Listing 1 and Listing 2 examples, that would

involve in detecting that #3 delegation NSes are unresolvable, and

caching it as that (possibly as SERVFAIL [27]). Then, any subsequent

queries to these delegations will notice that there is no resolvable

NS record for this zone, and will be answered as SERVFAIL from

the cache, reducing the volume of queries to authoritative servers.

1 essedarius.net. 1 IN NS ns1.example.nl.

essedarius.net. 1 IN NS ns2.example.nl.

Listing 1: DNS Zone file: essedarius.net

example.nl. 1 IN NS ns3.essedarius.net.

2 example.nl. 1 IN NS ns4.essedarius.net.

Listing 2: DNS Zone file: example.nl

Caching, but for how long? The caching duration is inversely

proportional to the volume of queries that are forwarded to author-

itative servers. Resolver developers must choose this caching value

carefully.

RFC2308 [4] states that a SERVFAIL response may be cached for

no longer than 5 minutes. That may be reasonable for this case,

given that mean-time-to-repair such cyclically dependent records

is at least minutes.

Alternatively, a resolver developer may employ a more adaptive

TTL method. For example, it may start with 5 minutes, and perform

some linear back-off to a larger value, possibly controlled by e.g.

negative TTL on the parent zone and/or RFC-specified hard limit,

such as 1 hour or 4 hours.

I.1 Testing your resolver software
To test your resolver software, set up cyclically dependent dele-

gations, as shown in Listing 1 and Listing 2. We strongly recom-

mend creating third-level domain names (as in our examples)

instead of second-level (e.g., example.nl) given that cyclically de-

pendent second-level domains will stress authoritative servers of

their respective TLDs.

After creating these cyclically dependent delegations, we suggest

the following tests:

I.1.1 Test 1: Loop Detection.

(1) Clean the cache of your resolver

(2) Monitor the traffic between the resolver and the Internet

(3) Send ONE query to your for a domain under the misconfig-

ured delegation. For example, dig A random.platypus.esse

darius.net.

• Compute how many queries are then send to the parent

authoritative servers of both misconfigured zones (lines

#1 and #2 of Listing 1 and Listing 2)

• Determine if your resolver loops indefinitely, or if eventu-

ally stop sending queries to the authoritative servers. You

may need to monitor for various minutes or hours.

Please notice that the resolver may send a SERVFAIL response to

your client, but it may remain looping, sending non-stop queries to

the authoritative servers.

For a reference, you may want to check Unbound’s source code,

which includes various cycle detections, as described in their changelog1.

I.1.2 Test 2: Caching Cyclic Records and Amplification.

(1) Clean the cache of your resolver

(2) Monitor the traffic between the resolver and the Internet

(3) Send ONE query to your for a domain under the misconfig-

ured delegation. For example, dig A random.platypus.esse

darius.net.

1https://github.com/NLnetLabs/unbound/blob/master/doc/Changelog
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(4) Then, send this query multiple times every 5 s (or other short

interval)

• Compute how many queries are then send to the parent

authoritative servers of both misconfigured zones (lines

#1 and #2 of Listing 1 and Listing 2)

• Determine if the new, recurrent queries from your client

(dig in this case) cause your resolver to send many more

queries to reach the authoritative servers, or if they are

answered from cache.

If new user queries (dig) lead to more queries to the authoritative

servers, you resolver is then vulnerable to TsuNAME.
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