
Property-driven Automatic Generation of Reduced-ISA
Hardware

Nathan Bleier John Sartori Rakesh Kumar

Abstract—
As the diversity of computing workloads and customers continues to

increase, so does the need to customize hardware at low cost for different
computing needs. This work focuses on automatic customization of a given
hardware, available as a soft or firm IP, through eliminating unneeded
or undesired instruction set architecture (ISA) instructions. We present
a property-based framework for automatically generating reduced-ISA
hardware. Our framework directly operates on a given arbitrary RTL
or gate-level netlist, uses property checking to identify gates that are
guaranteed to not toggle if only a reduced ISA needs to be supported,
and automatically eliminates these untogglable gates to generate a new
design. We show a 14% gate count reduction when the Ibex [19] core
is optimized using our framework for the instructions required by a set
of embedded (MiBench) workloads. Reduced-ISA versions generated by
our framework that support a limited set of ISA extensions and which
cannot be generated using Ibex’s parameterization options provide 10%-
47% gate count reduction. For an obfuscated Cortex M0 netlist optimized
to support the instructions in the MiBench benchmarks, we observe a
20% area reduction and 18% gate count reduction compared to the
baseline core, demonstrating applicability of our framework to obfuscated
designs. We demonstrate the scalability of our approach by applying our
framework to a 100,000-gate RIDECORE [21] design, showing a 14%-
17% gate count reduction.

I. INTRODUCTION

The ever-increasing diversity in the needs of different customers
and applications that use the same microprocessor or accelerator
design (as a soft or firm IP, for example) has researchers and vendors
looking for low-cost approaches to customize hardware designs for
different needs [10], [17]. Ability to customize computing hardware
at low cost improves computing efficiency for end customers by
reducing unnecessary delay, area, and power costs. Low-cost cus-
tomizability also makes it easier to react to any performance or
correctness bugs or security vulnerabilities discovered after a design
is finalized.

This work focuses on automatic customization of a given hardware
design (RTL or gate-level netlist, obfuscated or open) available as a
soft or firm IP, through instruction set architecture (ISA) trimming.
We observe (Section VII) that eliminating support for unneeded or
undesired instructions from a microprocessor design can generate
significant efficiency benefits. An instruction may be unneeded due
to the characteristics of target workloads (especially in an embedded
setting) or ISA aging [18]. Similarly, an instruction may be undesired
due to high implementation cost, a security vulnerability it may cause,
or a bug/error in its implementation. The ability to automatically
customize a processor core for a specified ISA subset can also
aid generation of multi-ISA heterogeneous multi-core designs [15],
where ISAs of the different cores correspond to different subsets of
the same composite or base ISA.

Some existing designs support ISA customization in a limited
fashion. If RTL is available, support for some instruction set exten-
sions can be removed easily in some modularly-implemented designs,
especially for modular ISAs such as RISC-V. For example, the Ibex
core RTL [19] uses elaboration time parameters to disable some
of the RISC-V ISA extensions it implements. However, a modular
ISA does not imply a modular implementation of that ISA. Unless
the implementation is truly modular at the extension-level, support

for arbitrary individual extensions cannot be easily removed. For
example, Ibex does not support core configurations without the c,
Zicsr, or Zifencei ISA extensions. Ibex implementation of these
extensions contains logic that is tightly coupled with that of other
instructions.

Removing support for only a subset of an ISA extension or the
base ISA is even harder (even for a modular ISA such as RISC-V)
and requires instruction-level modularity in implementation. Consider
the case where we want to remove the division instructions, but not
the multiply instructions of the RV32m extension [24]. Since RISC-
V does not provide this level of modularization, we have no option
but to directly modify the RTL to remove those instructions. This
also requires global awareness of the design to ensure that requisite
changes are made to all impacted components, including the decoder,
the execution unit, and the distributed logic of the stall controller.
This process is error prone and potentially time-consuming. We are
unaware of any RISC-V core design that implements instruction-level
modularity.

Furthermore, many popular ISAs are not modular! For example,
the openMSP430 open-source implementation of the MSP430 micro-
controller provides no option for removing support for instructions,
grouped in extension or otherwise, largely because the MSP430 ISA
itself is not modular. Similarly, the ARMv6-M architecture of the
Cortex M0 and M1 series microprocessors is not modular. It is unclear
how to remove support for unneeded or undesired instructions from
these IPs without a manual, intrusive, globally-aware and error-prone
change to the RTL. Finally, above methods largely do not work if
RTL is not available.

Fig. 1. The proposed framework automatically trims a given soft or firm IP
by eliminating hardware overhead for unneeded or undesired instructions.

In this work, we develop a property-driven framework (Figure 1)
for automatically generating hardware for a specified reduced ISA
from the base RTL or gate-level netlist (which is how soft and firm
IPs are usually available). At high level, the framework allows for
specification of a rich set of constraints to the base design, expressed
as temporal logic formulas [14]. We attach to every gate (or an
RTL module) a property that is checked under the constraint(s). An
action – e.g., removal of gates from the base design – is taken if
a property is proved to hold. In the specific context explored here,
the ISA subset that does not need to be supported (identified through

profiling, testing, or in field) is expressed as a constraint to the base
design’s execution environment. For every gate, property checking [1]
is used to check for gate invariants, such as whether or not a gate’s
output is constant when the specified ISA subset is not supported.
If it is proved that a gate’s output is constant, the net attached
to the gate’s output is detached from the gate and assigned to its
constant value. The design is then re-synthesized, eliminating the
unneeded gate (and potentially eliminating or optimizing many more).
Our approach is largely black box (i.e., requires limited knowledge
or understanding of the microarchitecture implemented by the RTL
or the gate-level netlist), is compatible with any synthesis flow, is
applicable to arbitrary processor and accelerator designs (indeed to an
arbitrary synchronous circuit), and can eliminate arbitrary instructions
in the ISA, including base-ISA instructions. Indeed, we show that our
approach applies even to obfuscated cores (Section VII-B), although
obfuscation may impact the area and gate-count reduction achieved.
To the best of our knowledge, this is first such framework for
automated generation of reduced-ISA hardware.

II. RELATED WORK

A large body of work exists on application-specific instruction
processors (ASIPs) and extensible processors. Tensilica’s Xtensa
processors [5], for example, allowed user-specified extensions (using
TiE) to the Xtensa base instruction set using automated customization
tools. ARC [4] allowed designers to add custom instructions using
ARChitect Processor Configurator. Several MIPS processors allow
application-specific extensions [25]. ARM recently announced Arm
Custom Instructions and associated software development tools [17].
Codasip [10] allows optional or custom hardware extensions to a
RISC-V core supporting the standard ISA.

Our work differs in three important aspects. First, previous works
are focused on allowing new instructions to be added to a design that
implements at least a base or standard ISA. We are focused instead on
automatically removing hardware support for instructions, including
instructions in the base ISA. Second, prior automatic customization
frameworks are tied to a given design. For example, Codasip supplies
its own RISC-V cores as modifiable CodAL models (Codasip’s
processor-modeling language), which can then be customized using
Codasip’s tools (e.g., Codasip Studio). Tools from Tensilica, MIPS,
and ARC were similarly specific to their own processors. Our
framework takes as an input an arbitrary design, including even
gate-level netlists and obfuscated designs, and generates its reduced-
ISA version automatically. Third, prior frameworks are primarily
based on parameterization and metaprogramming. Our approach is
fundamentally different; we identify gates in the original design
that are not needed for the specified reduced-ISA subset and then
eliminate them automatically.

There is some work demonstrating that reducing supported ISA
can lead to efficiency benefits [15]. However, these works do not
show how to generate reduced-ISA hardware. We present an approach
that can automatically generate reduced-ISA hardware starting with
a given arbitrary base design.

Recent work automatically generates a bespoke design customized
for a given application program binary [2]. The resulting design is
not guaranteed to execute correctly any other program binary. Our
focus is automatically generating a reduced ISA design. The resulting
design can support arbitrary applications that use the reduced ISA.

Finally, property checking has had a rich history in hardware
verification [3]. There has also been some work on synthesizing
property checks directly into hardware [8]. We use property checking
directly in the hardware synthesis flow to perform automated hard-
ware transformations, specifically focused on automatic generation

of reduced-ISA hardware. To the best of our knowledge, this is the
first use of property checking in automating hardware optimization.

III. MOTIVATION

Consider an embedded setting in which a core targets a fixed
set of workloads. Table I shows the number of instructions that
are supported by the Ibex RISC-V core, as well as the number
of RISC-V instructions used across several embedded (MiBench)
benchmark groups [6] compiled to RISC-V using gcc 9.2.0. Each
group (i.e., networking, security, automotive) uses only a fraction
of the instructions supported by the Ibex core. In fact, only 68%
of the base ISA is used to support all the groups. This suggests
that there may be significant opportunity to customize the Ibex core
for a reduced ISA if the goal is to target only a small number
of applications in an embedded setting. Table I shows that the
opportunity may be even greater for the Cortex-M0 core, since only
60% of the ARMv6-M base ISA is used to support all the groups;
higher opportunity stems from a richer base ISA (ARMv6-M), with
83 instructions (vs 78 instructions supported by Ibex).

Similar opportunity exists when an IP is used in a (likely embed-
ded) setting where a subset of supported extensions is not needed.
Table I shows that the number of instructions supported by Ibex
implementing different RISC-V ISA extensions can vary by almost
2×. The variation can reach 4× for IPs that implement more
extensions than Ibex (e.g., Ibex does not implement floating point
or atomics extensions). The ability to easily transform an IP for a
reduced-ISA variant could lead to significant benefits.

Ability to automatically generate reduced-ISA hardware may be
useful also to eliminate support for deprecated or rarely-used in-
structions. A study of x86 applications showed that more than 500
instructions were never used [18], and thus contribute unnecessary
overhead. A reduced-ISA hardware can eliminate this overhead by
removing support for rarely-used instructions.

Motivation also exists in terms of trustworthy execution. Instruc-
tions are often diagnosed (post-design or in-field) as having buggy
implementation – one need only look at errata sheets for processors
– or as causing security vulnerabilities. Notorious examples include
correctness or security vulnerabilities due to FDIV [22], TSX in-
structions [12], RDRAND and RDSEED [11], SWAPGS [20], etc.
Eliminating support for these instructions from an existing IP may
fix the bug or vulnerability and increase efficiency at the same time,
without requiring intrusive hardware changes. In some instances, this
may be a feasible, interim solution before a significant microarchi-
tecture re-design can be done. The approach is particularly attractive
when a microcode ROM – which can be used to eliminate support for
instructions by changing the microcode – is not available (embedded
microcontrollers are often not microcoded) or when a change in the
microcode cannot fix the problem [9]. In some embedded settings,
a reduced-ISA IP may also be desirable to preventively eliminate
instructions that may cause security vulnerabilities (e.g., indirect
jumps – exploits due to indirect jumps are well known [23]) or whose
implementation may not have been fully verified [22].

Finally, some instructions may be diagnosed in the field as being
expensive (e.g., several AVX instructions were discovered to routinely
cause voltage emergencies leading to large performance degrada-
tion [7]). Such instructions can be automatically eliminated from the
IP through automatic generation of reduced-ISA hardware.

IV. PROPOSED FRAMEWORK

Inputs to the proposed Property-Driven Automatic Transformation
(PDAT) framework, described in Figure 2, are (a) a gate-level
netlist for the sequential digital circuit design, synthesized to either

2

TABLE I
NUMBER OF INSTRUCTIONS USED BY DIFFERENT MIBENCH BENCHMARK

GROUPS FOR IBEX AND CORTEX M0 CORES.

Ibex MiBench Benchmarks
ISA Extension Supported Networking Security Automotive Total

RV32i base 40 18 24 28 29
M-Extension 8 2 0 3 4
C-Extension 23 13 18 19 20

Zicsr-Extension 7 0 0 0 0
Total 78 33 42 50 53

Cortex M0 MiBench Benchmarks
ISA Supported Networking Security Automotive Total

ARMv6-M 83 33 40 48 50

a physical standard cell library or a logical standard cell library
(e.g., GTech), which is annotated with elements of (b) a Property
Library which contains properties that capture invariants about gates,
and (c) a collection of restrictions to the execution environment which
ensure that only desired instructions are by the property checker.

1) Property Library: The Property Library we use in our analysis
is written in SystemVerilog, and its properties are expressed as
SystemVerilog Assertions (SVA). An example property module from
this library is depicted in Listing 1. Property modules are bound to
each instance of the associated cell-type in the netlist (e.g., the module
and2_properties is bound to each two-input AND gate in the
netlist). The properties check for semantically-meaningful invariants
on the gate inputs and outputs in what we term gate-level property
checking. For example, the property and_in_A2_A1 checks that
if the cell’s A1 input is >, then so is the cell’s A2 input (at all
times and in every possible execution). If this property is satisfied,
then it means that the associated cell can be rewired by assigning
its output to the net driving A1, without impacting the functional
behavior of the design. An advantage of property checking at the
gate level, as opposed to a higher level of abstraction, is that the
Property Libraries can be used to enable optimizations for any design
synthesized to a standard cell library, including designs for which the
microarchitecture is not known/understood (e.g., obfuscated designs).

2) Annotated Netlist: We annotate the IP’s netlist with properties
from the Property Library. Each gate in the netlist has bound to
it an instance of the appropriate property module (e.g., a copy of
and2_properties is bound to each AND2 gate in the netlist).
Thus for each gate in the annotated netlist, there are one or more
asserted properties.

3) Environment Restrictions: We use ‘environment restrictions’ to
constrain the property checking effort to consider all programs from
the targeted ISA subset and only programs from the targeted ISA
subset. Environment restrictions are expressed as SVA properties.
Environment restrictions also manage memory reads and writes and
constrain the netlist’s primary inputs.

Listing 1
AN EXAMPLE PROPERTY MODULE FOR A TWO-INPUT AND GATE.

1 module a n d 2 p r o p e r t i e s (i n p u t A1 , A2 , ZN) ;
2 d e f a u l t c l o c k i n g @($ g l o b a l c l o c k) ; e n d c l o c k i n g
3 d e f a u l t d i s a b l e i f f (1 ’ b0) ;
4 and out ZN 0 : a s s e r t p r o p e r t y (ZN == 1 ’ b0) ;
5 and out ZN 1 : a s s e r t p r o p e r t y (ZN == 1 ’ b1) ;
6 and in A2 A1 : a s s e r t p r o p e r t y (A1−> A2) ;
7 and in A1 A2 : a s s e r t p r o p e r t y (A2−> A1) ;
8 endmodule

Figure 3 depicts the versatility of this approach. We can encode
ISA restrictions (e.g., removal of instructions, removal of ISA exten-
sions), restrictions on I/O protocols (e.g., bounded or deterministic
memory latencies), explicit mapping of specific code sequences to
address regions (e.g., reset handlers, trap vectors, entire programs, or
operating system code), etc.

A. Property Checking Stage
This is the first and generally most time-consuming stage of the

PDAT pipeline. The property checker takes the annotated netlist,
property library, and environment restrictions as inputs, and checks
to see if the properties hold or are violated by allowed executions.
Property checking produces a list of properties that are proved to
hold on all allowed executions. In our work, we use Mentor’s Questa
Formal software as the property checker.

B. Netlist Rewiring Stage
In this stage of the PDAT pipeline, the original netlist is rewired

based on the list of proved properties created in the Property Checking
Stage. Note that by limiting this stage to rewiring, we do not remove,
transform, or add any cells in the netlist. This stage simply modifies
cell port listings and adds assignment statements to the netlist. The
rewired netlist is passed to the next stage of the PDAT pipeline for
further optimization. If no invariants about a cell were proved during
the property checker pipeline stage, then that cell is not changed
during this stage.

C. Logic Resynthesis Stage
The rewired netlist is resynthesized using a standard synthesis flow.

We rely on logic synthesis to remove and simplify constrained cells,
since logic synthesis tools are ostensibly very good at this. This stage
produces a transformed netlist, which is optimized with respect to the
execution environment.

V. GENERATING A REDUCED-ISA DESIGN USING PDAT
We present an illustrative example of PDAT’s capabilities by using

it to generate a reduced-ISA design from a core (such as RIDECORE)
implementing the RISC-V RV32i ISA [24], which consists of four-
byte instructions. First, we encode ISA instructions as properties,
as shown in Listing 2 – lines 2 to 11. For example, beginning on
line 2, we define a property which ensures that a 32-bit instruction
is formatted as a load-upper immediate (LUI) instruction. The LUI
instruction has three fields: a 7-bit opcode in the least significant
bits, a 5-bit destination register, and a 20-bit immediate value. Since
these last two fields may take any arbitrary value, we leave them
unspecified. We then use these properties to restrict the execution
environment of the core. We place these restrictions directly onto the
instruction port.

Listing 2
PACKAGE OF SVA PROPERTIES FOR ANALYSIS OF A MICROPROCESSOR

CORE IMPLEMENTING THE RV32I ISA.

1 package r v 3 2 i p k g ;
2 p r o p e r t y \ l u i (l o g i c [31 : 0] i n s t r) ;
3 i n s t r [6 : 0] == o p l u i ;
4 e n d p r o p e r t y
5 p r o p e r t y \a u i p c (l o g i c [31 : 0] i n s t r) ;
6 i n s t r [6 : 0] == o p a u i p c ;
7 e n d p r o p e r t y
8 / / . . .
9 p r o p e r t y \e b r e a k (l o g i c [31 : 0] i n s t r) ;

10 i n s t r == 32 ’ h0010 0073 ;
11 e n d p r o p e r t y

13 p r o p e r t y r v 3 2 i a l l (l o g i c [31 : 0] i n s t r) ;
14 \ l u i (i n s t r) o r
15 \a u i p c (i s n t r) o r
16 / / . . .
17 \e b r e a k (i n s t r) ;
18 e n d p r o p e r t y
19 p r o p e r t y unwanted (l o g i c [31 : 0] i n s t r) ;
20 \ j a l r (i n s t r) o r
21 \f e n c e (i n s t r) o r
22 \e c a l l (i n s t r) o r
23 \e b r e a k (i n s t r) ;
24 e n d p r o p e r t y
25 endpackage

Listing 3 shows the PDAT input for the RV32i core instantiated as
a top-level SystemVerilog module. The module’s ports, omitted for
brevity, mimic those of the RISC-V core. In addition to instantiating

3

Fig. 2. The PDAT framework.

Fig. 3. A component-diagram of the PDAT input.

the core, in lines 14 and 15, we bind gate-level properties to every
gate in the netlist, and in lines 7 to 12 we assume a property that
forces instr to always be an instruction in the desired ISA subset.
Once the top-level module is built, it is fed to the PDAT pipeline (as
shown in Figure 2).

Listing 3
TOP-LEVEL MODULE FOR RV32I.

1 module r v 3 2 i t b # (p a r a m e t e r pmem size)
2 (
3 i n p u t CLK,
4 i n p u t v a r l o g i c [31 : 0] i n s t r , / * r e s t o f n e t l i s t p o r t s * /
5) ;
6 r v 3 2 i c o r e n e t l i s t cua (. *) ;
7 a s i n s t w a n t e d : assume p r o p e r t y (
8 @(posedge CLK)
9 d i s a b l e i f f (1 ’ b0)

10 r v 3 2 i p k g : : r v 3 2 i a l l (i n s t r) and
11 n o t r v 3 2 i p k g : : unwanted (i n s t r)
12) ;
13 / * Example Checker module b i n d i n g s * /
14 b in d AND2 a n d 2 p r o p e r t i e s and2p (. *) ;
15 b ind NOT n o t p r o p e r t i e s no tp (. *) ;
16 endmodule

The approach described above – using port-based constraints –
is relatively straightforward for ISAs with fixed-width instructions,
such as RV32i. However, many systems do not have fixed-width
instructions. As such, in addition to port-based constraints, where
constraints are placed on a core’s instruction memory port, we support
cutpoint-based constraints, where constraints are placed on a core’s
internal nets.

We define a cutpoint as a net whose value is determined by the
property checking tool rather than its netlist drivers (so called because
we are, in effect, cutting the net from its true driver). Cutpoints allow
us to resolve a class of issues which arise as a result of variable-length
instruction encoding and instruction caches. For example, a branch
instruction may jump to an address which results in an instruction
cache hit, however, with variable length instructions, there is no
guarantee that the branch target address is an instruction boundary
and not the middle of an instruction, which in turn, means the core
may fetch an ‘instruction’ which is not part of the targeted ISA subset.
If the netlist is not obfuscated (i.e., we have visibility into the netlist),
we can insert a cutpoint somewhere in the design and then constrain
its value in order to ensure that only instructions from the targeted
ISA subset are decoded. Figure 4 shows how a cutpoint is used
to place a valid, aligned instruction into the fetch-decode pipeline
register, rather than the potentially unaligned instruction coming out
of the instruction cache.

Fig. 4. For ISA subsets that include indirect jumps, we can use a cutpoint,
allowing the property checker to directly drive internal circuit nets. This
ensures that the core only decodes instructions from the targeted ISA subset,
even if it potentially fetches instructions from outside the targeted ISA subset.

TABLE II
ARCHITECTURE AND MICROARCHITECTURE FEATURES OF IBEX,

RIDECORE, AND CORTEX M0.

Core ISA Stages IW ROB
Size BP BTB

Entries
Physical
Registers

Gate
Count

Ibex RV32imcz 2 (3) 1 N/A SNT N/A 32 10k
RIDECORE RV32im† 6 2 64 G-Share 8 96 100k

Cortex M0 ARMv6-m 3 1 N/A SNT N/A 16 10k

VI. EXPERIMENTAL METHODOLOGY

While the PDAT framework is general and can be applied even
to CISC ISAs in non-embedded settings, the primary use case
we explore in this work is embedded computing. We used three
embedded-class cores for our evaluations (Table II). The first core,
Ibex [19] (formerly zero-riscy), is a scalar, in-order, 32-bit RISC-V
core that implements the c, m, Zicsr, and Zifencei extensions; we refer
to the last two extensions collectively as the ‘z-extension’. We used
the two-stage pipeline version of Ibex. IRQ and NMI interrupt lines
were disabled for our analysis so that our results are conservative
(since we do not count gates removed in the debug, watchdog,
and interrupt logic from the baseline design). To avoid issues with
misalignment and indirect branches, cutpoint-based constraints were
used to generate reduced-ISA Ibex variants (see Section V). The
second core, RIDECORE [21], is a two-way, out-of-order 32-bit
RISC-V core that implements (most of) the RV32i base ISA, as
well as the multiply instructions from the m-extension (though it
does not implement hardware division or remainder instructions).
Since RIDECORE has word-aligned instructions and does not allow
branching to non-word-aligned addresses, we use port-based con-
straints to generate reduced-ISA designs. The third core, ARM’s
Cortex M0 [16], is a three-stage core implementing the ARMv6-
M ISA. The core has full support for ISR and exception handling.
We analyze an obfuscated version of this core and place constraints
directly on the ports to generate reduced-ISA designs (since, due to
obfuscation, we cannot place constraints on pipeline registers as was
done for Ibex).

We synthesized RTL and netlists into gate-level netlists us-
ing Synopsys Design Compiler. Compilation was done with the
-ungroup_all option to minimize area at a fixed frequency for
each core type using the 45 nm NANGATE standard cell library.
Property checking was performed using Mentor’s Questa Formal
software, version 2019 4 1.

4

Fig. 5. Area and gate count for various Ibex variants. The ‘Full’ variant is the full core without PDAT analysis. The rest of the variants, none of which
can be generated using Ibex’s elaboration time parameters, are generated using PDAT. The first figure compares various RISC-V ISAs generated from the
base ISA. ‘Ibex ISA’ is generated by PDAT when restricting the design to the full instruction set supported by Ibex (i.e., RV32imcz). The second figure
shows core variants that support the instructions used by several MiBench benchmark groups. The variants in the third figure are useful variants of the RV32i
base RISC-V ISA. ‘Reduced Addressing’ removes register-register instructions (R-type format). ‘Safety critical’ removes JALR, AUIPC, FENCE, ECALL,
and EBREAK instructions. ‘No Parallelism’ removes bit-parallel instructions. ‘Aligned’ removes non word aligned memory accesses. The ‘RiSC 16’ variant
supports the c-extension’s ADD, ADDimm, AND, XOR, LUI, LW, SW, BEQZ, and JALR instructions, making it roughly equivalent to the RiSC-16 ISA [13].

VII. RESULTS

A. Automatic Generation of Reduced-ISA Microprocessors

Figure 5 presents results for some reduced-ISA variants of Ibex not
supported by elaboration time parameters. An immediately interesting
result is the area difference between the ‘Ibex Full’ (design before
application of PDAT) and ‘Ibex ISA’ (PDAT run without ISA subset-
ting) core variants. By restricting the execution environment to the
full set of instructions officially supported by the core, we see nearly
10% area savings. This seemingly counterintuitive result (since we
have not even reduced the ISA yet!) is due to the inability of standard
logic synthesis tools to understand which states are unreachable when
only valid ISA instructions are provided as input. PDAT identifies
such states, since it explores the state space of the design for a given
environmental constraint. The logic corresponding to such states is
marked as unneeded by PDAT and subsequently eliminated when the
environment is constrained to only valid ISA instructions.

We also see that PDAT-based removal of ISA extensions (again,
we consider interesting variants that cannot be generated using
Ibex’s elaboration time parameters) results in substantial area and
gate count reductions, with the exception of c-extension removal.
The RISC-V c-extension includes 16-bit versions of RV32i’s 32-bit
instructions. As these instructions are largely different encodings of
existing instructions, the marginal resources needed to implement the
c-extension are low.

When considering ISA subsets customized for the MiBench bench-
mark groups discussed in Table I (assuming an embedded setting),
we see that the MiBench Networking and MiBench Security subset
cores are over 3% and 11% smaller, with 5% and 12% fewer gates,
respectively, than the PDAT baseline RV32imc ISA. These results
are even more significant when compared against the PDAT Ibex
ISA (RV32imcz) variant. In this case, the MiBench All ISA variant
generated by PDAT is 15% smaller and has 18% fewer gates than
the PDAT-generated Ibex ISA core variant (and 23% smaller with
14% fewer gates than Ibex without PDAT).

For core variants that support ISAs with special properties (right-
most graph in Figure 5), we do not see a significant area or gate
count advantage over the RV32i PDAT variant baseline. We see, for
example, that restricting Ibex to only word-aligned memory accesses
allows over 6% area and 7% gate count savings over the baseline
RV32i PDAT variant. Nevertheless, such ISA variants may still be
interesting due to safety, reliability, or security reasons.

B. Reducing Obfuscated Designs

Fig. 6. PDAT results for the obfuscated Cortex M0 netlist.

As discussed in Section IV, PDAT can be used to analyze obfus-
cated cores. Figure 6 shows PDAT results for an obfuscated version
of ARM’s Cortex M0 microcontroller. Recall that ARMv6-M, as well
as its Cortex M0 implementation, are not modular. So, the studied
microcontroller variants cannot be generated automatically without
PDAT.

We once again see substantial area and gate count reduction (20%,
and 18%, respectively) simply by performing PDAT analysis with the
core’s full ISA. Some of the unneeded core area may be attributable to
ARM’s obfuscation techniques. Somewhat surprisingly, the ‘MiBench
All’ ISA, consisting of all instructions needed to implement the
MiBench benchmarks (Table I), has the same area and gate count
as the ‘ARMv6-M’ variant. We hypothesize (but are unable to verify
due to obfuscation) that this is due to the fact that the MiBench subset
includes two and four-byte instructions, as well as indirect branches.
As a result, the best way to constrain Cortex M0 for such a subset
is with cutpoints (Section IV). However, as the Cortex M0 netlist is
obfuscated, we are forced to use port-based constraints, which limits
the opportunities from ISA subsetting.

The ‘interesting subset’ is the base ARMv6-M ISA with select
instructions removed, based on their relative lack of importance for
a scalar, in-order uniprocessor (e.g., memory ordering instructions,
inter-core signaling instructions), as well as the multiply instruction,
and all seven of the four-byte instructions. As all instructions in this
ISA subset are two-byte aligned (the minimum instruction length in
the ARMv6-M ISA), this ensures that all branches (direct or indirect)

5

point to valid instructions from the subset. This ‘interesting subset’
is a practical instruction subset for many embedded applications. The
Cortex M0 variant that supports this ISA subset has 23% and 20%
lower area and gate count, respectively.

C. Scalability
Unlike in hardware verification, state space explosion is not a

crippling issue for PDAT since any inconclusive analysis in PDAT’s
Property Checking Stage stage simply means that the resulting
transformed netlist may be less optimized than if the property’s
invariant was proved to hold.

Fig. 7. Area and gate count for various RIDECORE variants.

Figure 7 shows the results of employing PDAT for RIDECORE,
which is an order of magnitude larger than Ibex and Cortex M0.
None of the studied variants can be generated using elaboration
time parameters. Results for RIDECORE are muted compared to
Ibex. This is not surprising since, unlike an inorder core such as
Ibex, RIDECORE has several large OO-supporting structures such a
physical register file that are largely unaffected when support for
an ISA subset is removed. We still see an area improvement of
6% by simply running PDAT with the environment restricted to
the full RIDECORE ISA. Other RIDECORE variants show small
improvements over the RIDECORE ISA variant in terms of percent
area or gate reduction. However, in absolute terms, some of these
improvements are in the same range as the improvements for Ibex.
For example, Ibex RV32i and RV32e variants have a difference of
934 gates, while the RIDECORE RV32i and RV32e variants have a
difference of 1920 gates, over 2× the difference in Ibex.

VIII. SUMMARY AND CONCLUSION

As diversity of customers and workloads increases, the need to
customize hardware at low cost for different computing needs con-
tinues to increase. This work focuses on automatic customization of a
given hardware, available as a soft or firm IP, through eliminating un-
needed or undesired ISA instructions and instruction sequences. We
presented a property-based framework for automatically generating
reduced-ISA hardware. Our framework directly operates on a given
arbitrary RTL or gate-level netlist, uses property checking to identify
gates that are guaranteed to not toggle if only a reduced ISA needs
to be supported, and automatically eliminates these unexercisable
gates to generate a new design. We showed a 14% gate count
reduction when the Ibex core is optimized using our framework for
the instructions required by a set of embedded (MiBench) workloads.
Reduced-ISA versions generated by our framework that support
a limited set of ISA extensions and which cannot be generated
using Ibex’s parameterization options provided 10%-47% gate count
reduction. We also demonstrate that our framework is applicable to

obfuscated designs. For an obfuscated Cortex M0 netlist, we observe
a 20% area reduction and 18% gate count reduction for the MiBench
benchmarks over the baseline core. When applying our framework
to a 100,000-gate RIDECORE design, we saw 14%-17% gate count
reduction, demonstrating scalability.

REFERENCES

[1] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[2] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John
Sartori. Bespoke processors for applications with ultra-low area and
power constraints. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, pages 41–54, 2017.

[3] Edmund Clarke and Daniel Kroening. Hardware verification using ansi-
c programs as a reference. In Proceedings of the ASP-DAC Asia and
South Pacific Design Automation Conference, 2003., pages 308–311.
IEEE, 2003.

[4] ARChitect Processor Configurator. Arc. com. Technical report, Retrieved
2014-03-02.

[5] Ricardo E Gonzalez. Xtensa: A configurable and extensible processor.
IEEE micro, 20(2):60–70, 2000.

[6] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. Mibench: A free, commercially
representative embedded benchmark suite. In Proceedings of the fourth
annual IEEE international workshop on workload characterization.
WWC-4 (Cat. No. 01EX538), pages 3–14. IEEE, 2001.

[7] S. Hammond, C. Vaughan, and C. Hughes. Evaluating the intel skylake
xeon processor for hpc workloads. In 2018 International Conference
on High Performance Computing Simulation (HPCS), pages 342–349,
2018.

[8] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety
properties. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 342–356. Springer, 2002.

[9] Mark D Hill, Jon Masters, Parthasarathy Ranganathan, Paul Turner, and
John L Hennessy. On the spectre and meltdown processor security
vulnerabilities. IEEE Micro, 39(2):9–19, 2019.

[10] Adam Husár, Karel Masa, et al. Method and an apparatus for automatic
processor design and verification, January 12 2016. US Patent 9,235,669.

[11] Intel. Desktop 3rd Generation Intel Core Processor Family, 2016.
[12] Intel. 4th Generation Intel Core Procesor Family, 2020.
[13] Bruce Jacob. The risc-16 instruction-set architecture. ENEE 446: Digital

Computer Design, 2000.
[14] Leslie Lamport. What good is temporal logic? In IFIP congress,

volume 83, pages 657–668, 1983.
[15] Wooseok Lee, Dam Sunwoo, Christopher D Emmons, Andreas Gerst-

lauer, and Lizy K John. Exploring heterogeneous-isa core architectures
for high-performance and energy-efficient mobile socs. In Proceedings
of the on Great Lakes Symposium on VLSI 2017, pages 419–422, 2017.

[16] ARM Limited. Cortex-m0 technical reference manual, 2009.
[17] ARM Limited. Arm custom instructions, 2020.
[18] Bruno Cardoso Lopes, Rafael Auler, Luiz Ramos, Edson Borin, and

Rodolfo Azevedo. Shrink: Reducing the isa complexity via instruction
recycling. ACM SIGARCH Computer Architecture News, 43(3S):311–
322, 2015.

[19] lowRISC. Ibex user manual, 2020.
[20] Andrei LUT, AS, and Dan LUT, AS, . Bypassing kpti using the speculative

behavior of the swapgs instruction.
[21] Susumu Mashimo. Ridecore, 2017.
[22] Dick Price. Pentium fdiv flaw-lessons learned. IEEE Micro, 15(2):86–

88, 1995.
[23] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.

Return-oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TISSEC),
15(1):1–34, 2012.

[24] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic.
The risc-v instruction set manual, volume i: Base user-level isa. EECS
Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-62, 116, 2011.

[25] Christophe Wolinski and Krzysztof Kuchcinski. Automatic selection of
application-specific reconfigurable processor extensions. In Proceedings
of the conference on Design, automation and test in Europe, pages 1214–
1219, 2008.

6

