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Global urban growth between 1870 and 2100 from
integrated high resolution mapped data and urban
dynamic modeling
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Long term, global records of urban extent can help evaluate environmental impacts of
anthropogenic activities. Remotely sensed observations can provide insights into historical
urban dynamics, but only during the satellite era. Here, we develop a 1km resolution global
dataset of annual urban dynamics between 1870 and 2100 using an urban cellular automata
model trained on satellite observations of urban extent between 1992 and 2013. Hindcast
(1870-1990) and projected (2020-2100) urban dynamics under the five Shared Socio-
economic Pathways (SSPs) were modeled. We find that global urban growth under SSP5, the
fossil-fuelled development scenario, was largest with a greater than 40-fold increase in urban
extent since 1870. The high resolution dataset captures grid level urban sprawl over 200
years, which can provide insights into the urbanization life cycle of cities and help assess
long-term environmental impacts of urbanization and human-environment interactions at a
global scale.
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by man-made materials such as roads and houses, with

long temporal spans (e.g., hundred years) is crucial to
understanding the impacts of anthropogenic activities on natural
and human environments!. Due to different levels of socio-
economic development, the process of urbanization was uneven
across the world, both temporally and geographically. For exam-
ple, during the century 1850-1950, rapidly and extensively urba-
nization occurred in currently developed regions, such as Europe,
Americas, and Australia. In the late 20t century, the process of
urbanization in developing countries began to accelerate, espe-
cially India and China. By 2050, the trends of urbanization in
developing regions will be stronger than that in developed regions.
The rapid global urbanization has become a rising public concern
due to its wide impacts on sustainability issues including agri-
culture and deforestation?™, urban ecological and environmental
change®?, energy consumption and emissions!-13, air pollution
and public health!41>. A spatially explicit dataset of global urban
extent with long temporal spans is needed to provide the whole
life cycle of urbanization (e.g., urbanized, steadily urbanizing, and
rapid urbanization!®) in both developed and developing regions.
With the help of this dataset, researchers can better comprehend
the environmental impacts of global urbanization, and urban
planning authorities can better address sustainability issues with
evidence-based planning.

Remote sensing technology has shown considerable potential
for mapping worldwide expansion of urban extent (hereafter,
urban sprawl) over past decades!’-19, but the temporal span of
satellite observations (e.g., decades) are much shorter than that of
the whole life cycle of urbanization (e.g., hundred years). Con-
sequently, model-based approaches are helpful to project future
urban sprawl or reconstruct urban sprawl before remote sensing
observations and became available. To capture the urbanization
process from past to future, urban sprawl models have gained
popularity over the past few decades, including the commonly
known cellular automata (CA) model?202l, the GEOMOD
model??, the SLEUTH model?3, and the conversion of land use
and its effects (CLUE) model?42%. In general, there are two
components in urban sprawl models. The first component is the
estimation of pathway of urban extent (i.e., urban demand),
which determines the increment of urban extent in different
regions and years. Socioeconomic factors (e.g., such as population
and gross domestic product (GDP)) and different approaches
(e.g., panel-data analysis?®?’, system dynamics (SD)?%, and
integrated modeling?®>>%) have been commonly used to estimate
the urban demand?>?73l. The second component of urban
sprawl models is the allocation of urban demand to spatially
explicit grids. The CA model is one type of frequently used tool,
in which different factors (e.g., terrain, land cover, roads, and
urban infrastructure) are considered to simulate the process of
urban sprawl. A variety of urban CA models have been
developed32, such as the constraint CA19, the patch CA33, and the
Markov CA34,

However, there are several limitations in current urban sprawl
models to capture the whole life cycle of urbanization in different
regions across the world. First, most of urban sprawl modeling
studies focused on national’>3°, metropolitan37-38, and city
scales3®40, and only a few studies have attempted to simulate
urban dynamics at the global scale at coarse spatial resolutions
(e.g., 1 km or 8 km)29-304142 Second, less attention has been paid
to reconstruct historical urban sprawl, although the historical
urban extent is of great help to understand the whole life cycle of
urbanization in developed regions. Third, the differences of urban
demand across regions under different urbanization stages were
not well considered in previous studies. For example, panel data
analysis is a commonly used approach for estimating urban

G lobal urban extent, i.e., the land surface that is dominated

demand, which essentially characterizes a linear relationship
between per capital urban area and socioeconomic variables (e.g.,
per capital GDP and the urbanization rate) of all spatial units.
Such a relationship could be too simple to capture discrepancies
of urban demand in different urbanization stages and differences
of urban sprawl pathways in different regions*2~44. Fourth, recent
studies found that the newly developed lands play a more
important role in urban sprawl compared to the early urbanized
areas’’. Thus, an urban sprawl model with a spatially explicit
consideration of the temporal effect of urbanized pixels can better
capture the complex urban sprawl at the global scale. Finally,
production of global urban extent dynamics spanning hundred
years is still lacking, although such a dataset is of great impor-
tance to global environmental change studies.

In this paper, we developed a modeling framework to hindcast
and project global urban sprawl at a 1 km resolution from 1870 to
2100. First, we calibrated a global urban CA (i.e., the Logistic-
Trend-CA) model with the consideration of the temporal effect of
urbanized pixels using a longer than two decades of urban extent
dataset from nighttime light (NTL) satellite observations. Next,
we hindcasted urban shrink from 1992 back to 1870 using the
calibrated Logistic-Trend-CA model. Similarly, we projected
future global urban sprawl until 2100 under the five shared
socioeconomic pathways (SSPs) scenarios*>. The SSPs describe
five alternative ways in which societal factors such as demo-
graphics, human development (for example, health and educa-
tion), economic growth, inequality, governance, technological
change, and policy orientations might evolve in the future®’.
Finally, we combined urban extent from observations, hindcast,
and projection and generated the long-term dataset of urban
extent from 1870 to 2100.

Results

Long-term dynamics of global urban extent. To the best of our
knowledge, our product of urban extent for the first time presents
a view of urban sprawl across the world for more than 200 years
(Fig. 1). Temporally, the growth rate of global urban extent
during the hindcast period is 3,230 km? per year, which is about
one sixth (20,000km?) of the growth rate in the historical
period (1992-2013) observed by satellites. Under five SSPs,
the growth rates of global urban extent fall into the range of
10,000-240,000 km? per year. Urban sprawl under SSP3 (regional
rivalry) and SSP4 (inequality) is notably slower than that in the
past two decades, while urban sprawl under SSP5 (fossil-fueled
development) is higher*»*>, Under SSP2 (middle of the road),
there is a distinctive shift of urban sprawl hotspots from North
America and Europe in earlier periods (i.e., before 1990s) to Asia
and Africa in the future (ie., after 2050s), particularly in China
and India as well as other countries in west Africa. The presented
spatiotemporal dynamics of global urban extent are consistent
with the findings reported in the “World Urbanization
Prospects™0. Both developing countries in Asia and Africa and
developed countries in the North America and Europe will
experience notable urban growth under SSP5 due to the projected
rapid economic development in this scenario. It is worth to note
that the harmonization between HYDE and NTL derived urban
extents was conducted based on observations in 1992, which led
to a slightly abrupt change around 1990 in the overall trend.

Urban area changes at the continental scale. Our results of
urban extents, from hindcast, projection, and remote sensing
observations, provide a continuous and harmonized record of
global urban dynamics spanning from the 1870s to 2100 (Fig. 2).
A notable difference in urban growth patterns across continents
was observed. Urban area is largest in Asia among all continents
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Fig. 1 An overview of the long-term dynamics of global urban extent. Change of global urban extent from 1870 to 2100 under five SSPs (a). Urban extent
in representative years of historical and SSP2 scenario (i.e.,, Middle of the Road) (b). The urban extent was aggregated from 1km to 1 degree as a
percentage as represented in the maps. Maps in b were generated by ArcGIS Pro software (https://www.esri.com/en-us/arcgis/products/arcgis-pro/

overview).
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Fig. 2 Dynamic of urban extent from 1870 to 2100 at the continental level. The entire time series of urban extent includes hindcast (1870-1992), satellite
observations (1992-2013), and future projection (2013-2100) under different scenarios.

in 2010, and this trend will continue although urban area will
grow in all continents through 2100. Africa will be a new engine
of urban growth in the second half of the century (i.e., after 2050)
in SSP1, SSP2, and SSP5, though the urban proportion of Africa is
relatively low!”. In other continents (e.g., North America, South
America, Europe, and Australia), there is moderate urban growth
with a plateau stage albeit there are variations across SSPs. In
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general, our projection of urban extents under SSP2 (i.e., Middle
of the Road) is in agreement with the United Nations’
projections®®, which projected that almost 90% of urban popu-
lation growth would likely occur in Asia and Africa by 2050.

Changes in urban extent at the country scale. Our results of
urban extent with a temporal span of more than 200 years reveal
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Fig. 3 Dynamics of urban extent at the country level in representative years relative to the base year of 2010. Hindcast: 1870, 1990, 1950, and 1990;
Observation: 2000; Projection (SSP2: Middle of the Road): 2020, 2050, and 2100. Maps were generated by ArcGIS Pro software (https://www.esri.com/

en-us/arcgis/products/arcgis-pro/overview).

pathways of urbanization across countries (Fig. 3). As such, the
life cycle of urbanization (or city development) can be approxi-
mately characterized. It is crucial to consider the stage (i.e., initial,
middle, and mature) of urbanization when analyzing the trend of
urban growth. For example, as observed by satellites, the US is a
developed country with a relatively low pace of urban
growth?226:4142,46 " From its pathway of urbanization during
1900-1990, we found a significant growth of urban areas (i.e.,
middle stage of the urbanization process) (Supplementary Fig. 1).
Such urban growth is similar to that in China over the past two
decades (Supplementary Fig. 1). Country-specific trends of urban
growth can be derived from our product and can be used to
understand their different stages of urbanization.

In general, among the five SSPs, the growth of urban extent
under SSP5 (fossil-fueled development) and SSP4 (inequality) is
the highest and lowest, respectively, at the global scale
(Supplementary Fig. 2). The primary difference among these
SSPs is their trends of future population and the per capita urban
area*4, For example, the two most populated countries in Asia,
China and India, exhibit notably different trends of urban growth
due to the different population and per capita urban area
pathways in the future. That is, the urban growth in China is
anticipated to reach a plateau after 2050, while in India, urban
growth under all scenarios show consistent trends of increase
(Supplementary Fig. 1), which is driven by the continuous
increases of both population and per capita urban area in India%4.
In some countries in the middle of Africa, future urban extent is
still low because these countries are at the initial stage of
urbanization before 2050 (Supplementary Fig. 2).

Dynamics of urban extent under different SSPs. Our urban
sprawl dataset with a moderate spatial resolution clearly shows
the evolution of urban extent over a long period in a spatially
explicit way, as shown in a selected example of the Yangtze River
Delta in China (Fig. 4), where a significant expansion of urban
extent has been observed by satellite observations!”. Obviously,

there was only one isolated urban cluster (i.e., the main city of
Shanghai) in the Yangtze River Delta of China in 1870. In the
1900s, there are only small settlements and the urban sprawl was
slow. Over past two decades (1990-2010), this region experienced
rapid urban sprawl due to the rapid migration of population from
rural to urban areas. During this process, cities with different sizes
grew and some of them were merged due to the development of
traffic networks and the expansion of built-up areas?’. Under
SSPs, the continuous increase of population and economy drives
the expansion of cities around Shanghai. The differences of spatial
pattern in urban sprawl under the five SSPs are mainly driven by
urban demand in these scenarios. Consistent with the growth of
urban extent in China across the five SSPs, urban growth is largest
under the SSP5, while it is smallest under the SSP4.

The long-term dynamics of urban extent vary across
metropolitan areas under the SSPs (Supplementary Fig. 3). We
compared urban sprawl under SSP4 (i.e., inequality), SSP2 (ie.,
middle of the road), and SSP5 (i.e., fossil-fueled development),
which correspond to low, middle, and high growth rates,
respectively*4, across five metropolitan areas (Supplementary
Fig. 3). In general, we observed a dramatic growth of urban area
from 1870 to 2100 in these five regions. The initially sparely
distributed and small urban patches grew and merged, resulting
in notably enlarged urban clusters. The growth pattern of urban
extent varies significantly across these metropolitan areas
(Supplementary Fig. 3). For metropolitan areas in the US and
UK, there is no significant urban growth between 2050 and 2100
under SSPs. However, for other three metropolitan areas in
China, Egypt, and Brazil, we observed noticeable urban sprawls
during the period of 2050-2100.

Discussion

Information of urban dynamics, especially at the global scale and
over a long time period, is of great importance to deepen our
understanding of the urbanization process. The life cycle of cities
generally spans over multiple decades or even longer, while
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Fig. 4 Dynamics of urban extent from 1870 to 2100 in the Yangtze River Delta, China. Maps were generated by ArcGIS Pro software (https://
www.esri.com/en-us/arcgis/products/arcgis-pro/overview) (Basemap data © 2021 Esri).

available observations and records of urban land for cities are
limited*3#8. Hence, existing theories about urban land growth
could be limited due to the lack of data. Although satellite
observations have been extensively used to monitor the urban
environmental change over past decades, global records of urban
dynamics are still limited due to challenges such as data avail-
ability and computational capacity?®. Moreover, satellite obser-
vations may only cover a short period of the life cycle of cities.
These factors hindered the use of temporal contexts in urban
growth studies. Urbanization in cities under different stages (i.e.,
initial, middle, and mature)** can be well captured from our long-
term dataset of urban extent from 1870 to 2100.

Although there are some consistencies between our results and
the other two relevant studies (Chen et al.2® and Gao and
O’Neill#2), trends of future global urban sprawl vary under dif-
ferent SSPs and across regions. Both, Chen et al.2% and Gao and
O’Neill*? modeled global urban land change under the five SSPs
scenarios through 2100 (Fig. 5). It is worth noting that urban
extent in our study was derived from NTL data, which are not the
same as the global human settlement layer used in Chen et al.?¢
and Gao and O’Neill#2, in terms of the spatial distribution and

total urban areas. Hence, we compared the ratio between urban
extent in the future and base year. We found that there are some
consistencies between our results and the other two studies. For
example, the global urban area growth under the SSP5 (fossil-
fueled development) is largest, while the growth under the SSP3
(regional rivalry) is relatively small. However, there are some
differences as well. First, global urban areas under different SSPs
in Gao and O’Neill*? are not fully consistent with the urbaniza-
tion processes observed from existing highly urbanized cities (e.g.,
the US cities in Supplementary Fig. 4), as reflected in our results.
Urban areas in Gao and O’Neill#2 show consistent increases
through 2100, especially for SSP5, SSP2, and SSP4. In fact,
satellite observations revealed the growth of urban areas in North
America and Europe already slowed down over past decades!’,
and this historical trend was well captured in our projection
model#4. Second, our model for urban area estimation is more
theoretically based compared to data-driven approaches (e.g.,
Monte Carlo) in Gao and O’Neill*2. In our model, the growth of
urban areas is driven by economic development, population
growth, and the historical pathway of urban area growth captured
by the sigmoid-growth model, which was calibrated for each
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country using the observed time series of urban extent and his-
torical socioeconomic data (i.e., population and GDP)*. For
example, the urban area in China shows a continuous increase
through 2100 in most SSP scenarios in Gao and O’Neill*2, which
is notably different from the trends revealed in our result and
Chen et al.26 (Supplementary Fig. 5), given that the population in
China was anticipated to decline in 2030. Third, the growth of
urban area in Chen et al.® is relatively low compared to our
results and Gao and O’Neill*? (Supplementary Figs. 4 and 5),
especially in rapidly developing countries (e.g., China). This is
mainly because the spatial differences and temporal dynamics of
per capita urban area in different regions were used in the panel
data analysis in Chen et al.2%. As a result, the derived per capita
urban area showed small changes over years, which is not fully
consistent with satellite derived results (i.e., per capita urban area
in China shows a noticeable increment over past decades).
Nevertheless, the historical trends with distinct increment of per
capital urban area and the growth rate of urban areas in China
were considered in our data and Gao and O’Neill#2. Fourth, it is
worth to note that the growth of urban extents under SSPs in
current studies may not reflect the narrative as it is in literal
meaning. For example, there is a large amount of urban area
growth under SSP1 (sustainability) in some rapidly developing
countries (e.g., China) because the predictions of future urban
area growth only consider horizontal expansion. Due to the
availability of urban heights data, especially at the global scale,
urban vertical growth, which would result in a compact and
sustainable urban development under SSP144, was not con-
sidered. Although Gao and O’Neill#2 manually assigned a tra-
jectory with a relatively low urban expansion rate under SSP1 to
realize sustainable land use, the vertical growth of urban extent
was not considered either, like most studies?>26:41:4250 The
absences of global urban height datasets and vertical urban
growth models are primary barriers for modeling compact and

sustainable urban growth. The advent of regional built-up height
dataset®! provides the possibility to simulate the vertical growth
of urban areas in future studies.

The comparison with other publicly available datasets indi-
cates our historical modeling performs well in capturing tem-
poral trends and spatial variations of urban extents
(Supplementary Fig. 6). We selected the US in this experiment
using the most available recorded (i.e., historical settlement data
compilation; HISDAC-US)*%>2 and modeled (i.e., forecasting
scenarios of land use change; FORE-SCE)3 historical urban
extent data. Although the definition and spatial extent of base
maps used to generate historical modeling vary among these
datasets, the temporal trends of urban area growth relative to
1940 are similar (Supplementary Fig. 6). The relatively large
magnitude of urban area and growth rate in HISDAC-US data is
mainly attributed to the definition of urban area in each 250 m
grid, in which urban area was defined if one record of built-up
properties was found. It is worth to note that we regarded the
built-up area in HISDAC-US as urban areas for comparison, and
many isolated built-up pixels away from cities were not included
in FORE-SCE and our data. The temporal trends of urban
growth between the FORE-SCE and our results are similar,
although the used approaches are notably different. That is,
historical trends of urban area in our data mainly came from the
HYDE dataset?®, which is notably different from the estimated
growth rates in multiple historical years (i.e., 1973, 1980, 1986,
and 1992) using change detection in the FORE-SCE model. In
addition, the dynamics of urban extent in our data are relatively
consistent with those from the FORE-SCE model and HISDAC-
US data, despite their differences in definition and base map. It
worthy to note that this comparison was conducted in the US,
and more diverse comparisons are required in future to
accounting for the uncertainty of historical urban sprawl in other
regions®+>>,
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The integration of hindcast and projection of global urban
dynamics, with a long temporal coverage (i.e., 230 years) and a
moderate spatial resolution (1 km), can contribute to a variety of
studies that are relevant to urbanization. For the climate change
and sustainability communities, such long-term global urban
extent dataset can be used as inputs to climate models to
investigate the impacts of global urbanization (e.g., urban heat
island) on global climate changes#1-%. The expansion of urban
extent also resulted in population redistribution, accompanied
by different spatial patterns of emitted anthropogenic heat flux
from different sectors (e.g., industry, traffic, building, and
human metabolism), further influencing the global carbon cycle
and climate change!?>7°8. Our dataset can also be used to
explore the impact of urban expansion on habitat and biodi-
versity loss’, particularly in those rapidly developing regions,
where the urban CA model can also be implemented using fine
spatial resolution (e.g., 30 m) urban extent data>%0, Moreover,
this product can serve as important inputs for improving
representation of urban dynamics in multisector human-Earth
systems models.

Methods

Overall framework. We developed a framework by combining hindcasting and
projecting urban sprawl as well as satellite observations to generate a product of
global urban dynamics from 1870 (i.e., the second industrial revolution) to 2100
under different SSPs (Supplementary Fig. 7). There are four components in this
framework. The first is data preparation, including the collection of country-
specific socioeconomic data (e.g., population and GDP), spatially explicit proxies
(e.g., terrain and traffic), and remotely sensed global urban extent time series!”
(Supplementary Fig. 7a). Then, we estimated urban demands in two periods (i.e.,
1870-1992 and 2013-2100), using socioeconomic data and an urban area growth
model (Supplementary Fig. 7b). After that, we calibrated the Logistic-Trend-CA
model’” and evaluated its performance using satellite derived urban extent from
1992 to 2013 (Supplementary Fig. 7c). Finally, we hindcasted historical
(1870-1992) and future scenarios (2013-2100) of global urban extent in a spatially
explicit manner and developed the dataset of global urban extent from 1870 to
2100 by integrating hindcasted, satellite-derived, and project urban extent (Sup-
plementary Fig. 7d). Details of each component are presented in the following
sections.

Data preparation. We collected country-specific socioeconomic (i.e., population
and GDP) data to estimate urban demand changes in different countries. Historical
population and GDP data were obtained from the World Bank database (http://
databank.worldbank.org/). The country-specific urban area growth model can be
developed from the population and GDP data combined with the urban extent
time series. To project future urban demand change, we collected these two
socioeconomic variables with changes under five SSPs until 2100%°.

Historical urban extent (1992-2013) was derived from the Defense
Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) stable
nighttime light (NTL) data with a spatial resolution of 1 km!7¢1. The urban extent
was defined as the region that has the largest change of NTL luminance along the
urban-rural gradient, and this is consistent with high-resolution built-up area. It is
worth to note this definition of urban extent is not same as that in census mainly
based on urban population, in which the criteria to define urban areas could vary
significantly across regions. Here, we used the NTL-derived urban extent time
series data with an annual interval because other global urban extent data with finer
spatial resolutions, such as the built-up maps of Global Human Settlement Layer
(GHSL)®, are generally only available at coarse temporal resolutions. The NTL-
derived global urban extent data are spatially and temporally consistent by using
the same approach globally!7-02, and are reliable according to the evaluation using
finer spatial resolution land cover data. The urban boundaries derived from NTL
also agree well with the finer resolution built-up map of GHSL (Supplementary
Fig. 8). It worthy to note that some small settlements with size less than 5 km? were
not included in the NTL-derived urban extents (Supplementary Fig. 8). Indeed,
the impact of removal smaller urban clusters is tiny (Supplementary Table 1),
because these omitted small towns and settlements in NTL-derived urban extent
data have relatively low growth rates. More details of the global urban extent data
can be found in Zhou et al.1”.

We built a global dataset of spatially explicit proxies to evaluate the suitability of
urban sprawl at the pixel level. These spatial proxies include terrain, land, and
urban infrastructures globally consistent and widely used in other studies®
(Table 1). For those proxies such as major cities and traffic, we calculated each
pixel’s Euclidean distance to the nearest cities and roads. Given that these spatial
proxies have different units and a wide range of magnitudes, we normalized them
from 0-1.

Urban demands. We estimated country-specific urban demands before 1992 and
after 2013 under five SSPs using different methods. For urban demand before 1992,
given that there are limited socioeconomic data at the country level (e.g., popu-
lation and GDP) before the 1990s, we used the temporal trend of urban area
growth (1870-1992) from the History Database of the Global Environment
(HYDE) database®. The HYDE data span from 10,000 BC to AD 2000, of which
the built-up areas were estimated from demographic drivers (e.g., total and urban
population) based on survey data of cities from literatures!. Because of the dif-
ference between urban areas from satellite observations and HYDE, a harmonized
strategy using a ratio calculated in 1992 was implemented (Eq. (1)). Historical
urban areas during the period 1870-1992 were estimated by multiplying urban area
in the HYDE by a ratio.

Ratio; = NTL!**? /HYDE*** 1)

where i indicates country, NTL!*** and HYDE}** are derived urban areas in
country i from NTL observations and HYDE, respectively.

For urban demand after 2013, we estimated country-specific urban demand
using the urban area growth model**. Urban area growth in the future was
determined by its historical pathways and the growth of future population and
GDP. Using more than 20-year time series data of urban extent!” and the records
of population and GDP change from the World Bank database, we developed the
urban area growth model for each country*4. Thus, we projected urban area growth
of global countries under different SSP narratives. Details of these SSPs and the
resulting country-specific urban areas can be found in Li et al.44.

Logistic-Trend-CA model. We calibrated the Logistic-Trend-CA model using the
global urban extent time series data from 1992 to 2000. The Logistic-Trend-CA
model is an improved CA model that considers the temporal effect of urbanized
pixels on the spatial expansion of urban land”. That is, there is a relatively higher
probability of urban development for pixels that were surrounded by more recently
developed urban pixels. This improved model can notably reduce errors generated
and propagated during the modeling process®*. Hence, we used the Logistic-Trend-
CA model to simulate the urban sprawl in this study.

The Logistic-Trend-CA model was built upon the widely used framework of the
urban CA model, which has been extensively used in urban growth simulations®.
In general, there are three components in the urban CA model, including transition
rules, neighborhood, and land constraint?!. These components represent different
influential factors during urban sprawl, resulting in the development probability
P, of conversion from non-urban to urban (Eq. (2)). We iteratively allocated
derived urban areas to spatially explicit grids based on the development probability
P4, within a given region and period.

Pioy =P,

suit

x Q x Land (2)

where Py, is the development probability; Py, 2, and Land are three components
representing suitability surface, neighborhood, and land constraint, respectively.

We derived the suitability surface (i.e., transition rules) via calibrating the
Logistic-Trend-CA model for each country using the global urban extent time
series. The suitability surface represents the probability of urban development in an
area with consideration of the socioeconomic and biophysical status (e.g.,
infrastructures, land surface, and terrain). First, we determined urbanized and
persistent regions between 1992 and 2000. Then, we randomly generated training
samples in urbanized and persistent areas with a sample rate of 20%. Next, we
extracted spatial proxies of these samples and generated the suitability surface
using the Logistic Regression (LR) model (Egs. (3) and (4)),

z=by+bx + .. +byx, 3)

Psm't = 1/(1 + expiz) (4)

where Py, is the derived suitability of urban development, by is the intercept, b;
and x; are the i th coefficient and spatial proxy (Table 1), respectively. The value of
b; can be referred to as the contribution of each spatial proxy to the urban sprawl.

We improved the neighborhood component in the CA model by adding a
weight factor to represent the trend of urban sprawl. The neighborhood represents
the impact of surrounding neighbors on the central pixel, which is likely to be
urbanized with urbanized pixels surrounding it. Here, we used the neighborhood
that considers the urbanized year of neighbors, based on the widely used Moore
conﬁguration66 (Egs. (5) and (6)).

u

N*
wi :1—# (5)

o0- L m Con(Sy; = urban)x Wi ©)

mxm— 1

where Q denotes the influence of neighborhood with the consideration of the trend

of urban sprawl using a weight factor of Wf]‘ Nj is the accumulated year of cell

(i, j) with the status as urban from the annual urban time series data with a
temporal period of N. Thus, pixels that were urbanized more recently have
relatively larger weights in calculating the neighborhood density Q. m is the
window size (set as 3), and Con() is a conditional function and returns 1 when the
status of cell (i, j) is urban. In addition, water and protected areas were regarded as
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Table 1 Spatial proxies in the CA modeling.
Category Data source Source
Terrain DEM Shuttle Radar Topography Mission - Digital Elevation Model (DEM)7!
Slope Calculated from DEM
Land Land cover  Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2) (https://doi.org/
10.5067/MODIS/MCD12Q2.006)
Protect area The World Database on Protected Areas (WDPA)72
Infrastructure  Major cities  World cities - city center’3
Traffic World roads - major road’4

land constraints and are not allowed for conversion to urban in the Logistic-Trend-
CA model?l.

Hindcast and projection. We reconstructed global urban extent back to the 1870s
using the calibrated Logistic-Trend-CA model. Different from projection in which
the newly developed urban areas expand from the urban core to fringe areas, the
hindcast excludes pixels with lower development probabilities from the initial
urban areas in 1992 (Supplementary Fig. 9). First, original urban pixels in the
period TO were ranked based on their developed probabilities. Then, urban pixels
with relatively lower development probabilities during the period (T0 to T-1) were
eroded from urban extent in the period T0. This process was iteratively imple-
mented from 1992 to 1870.

We projected future global urban sprawl from 2013 to 2100 under five SSP
scenarios by using the calibrated Logistic-Trend-CA model. The differences of SSPs
are mainly reflected in the projected urban demands, which would be spatially
allocated in a spatially explicit manner. Within each country, we used the Logistic-
Trend-CA model to allocate increased urban demand to each 1-km grid. Finally,
we combined hindcasting and projecting urban sprawl results and generated the
long-term global urban extent product from 1870 to 2100.

Performance of the Logistic-Trend-CA model. The performance of the calibrated
model was evaluated from two aspects. First, we assessed the suitability surface
calibrated from the time series of urban extent data during 1992-2000 using the
Receiver Operating Characteristic (ROC) approach®®. The ROC approach evaluates
the performance of the LR model by setting different thresholds over the whole
domain of predicted probabilities, forming a continuous curve. The area under the
curve (AUC) is commonly used as a quantitative indicator for assessment, and a
higher value of AUC indicates better performance of the derived suitability surface.
Second, we evaluated the simulated urban extent during 2000-2013 using two
metrics: overall accuracy (OA) and figure of merit (FOM). The OA depicts the
overall agreement of the modeled and observed urban maps, and the FOM char-
acterizes the agreement between modeled and observed maps on changed pixels
relative to the initial year of 2000 (Supplementary Fig. 10) (Eq. (7))%’. The FOM
(also called the Jaccard index or the Intersection-over-Union indicator in computer
sciences) can provide a relatively comprehensive evaluation of model performance,
and it has been widely used for model assessment in urban sprawl modeling.

FOM = B/(A + B+ C)x 100% (7)

where FOM is the figure of merit, B is the number of pixels that were observed and
simulated as urban; A is the number of pixels that were observed as urban but
simulated as non-urban; C is the number of pixels that were observed as non-urban
but simulated as urban.

The Logistic-Trend-CA model performs well in simulating urban sprawl in
most countries (Supplementary Fig. 11). Overall, the mean of AUC for all global
countries is 0.89, suggesting a good performance of the calibrated logistic
regression model (Supplementary Fig. 11a)%8. That is, the generated suitability
surface can adequately characterize the difference of urbanized and persistent
regions from these spatial proxies. AUCs for countries in Asia and Africa are
higher than in other regions, indicating the calibrated model can capture the rapid
growth of urban sprawl in developing countries. Besides, the dominant factor of
urban sprawl (i.e., the spatial proxy with the largest weight derived from the LR
model) varies among countries. Infrastructures (e.g., the distance to city centers,
highways, and major roads) are the dominant factors for most countries in the
world (Supplementary Fig. 11b). Variations of the dominant spatial proxies across
countries reflect different sprawl patterns of urban areas. Such patterns are
essentially related to factors such as development levels and urban planning?’.

The Logistic-Trend-CA model distinctively outperforms the traditional Logistic-
CA model (Supplementary Fig. 12) according to the indicator of FOM. The mean
FOM in the Logistic-Trend-CA model is 43%, which is about 10% increase
compared to the Logistic-CA model. All settings in the Logistic-Trend-CA and
Logistic-CA models are the same, except for the neighborhood, where the Logistic-
Trend-CA model considers the temporal effect of urbanized neighbors. Comparison
of these two urban CA models suggests the impact of urbanized neighbors at
different years on urban sprawl is noticeable, especially for urban sprawl spanning a
long period®’. For example, we examined the trend of accuracy measures (ie., OA
and FOM) from 2000-2013 in three representative countries (i.e., the US, China,

and India) (Supplementary Fig. 13). In each year within the validation period
(2001-2013), we compared the FOM with urban extent in 2000. Overall, we
observed an opposite trend of OA and FOM with the increase of modeling years.
That is, the OA shows a consistent decreasing trend while the FOM is increasing
during the modeling period. This phenomenon was caused by error generation and
propagation of the urban CA model®. The decrease of OA was caused by the error
accumulation during the modeling, while the increase of FOM suggests the
neighborhood plays a crucial role in selecting those urbanized pixels around the
initial urban extent. In addition, we observed that the FOM derived from the
Logistic-Trend-CA model is higher than that from the Logistic-CA model,
particularly for years after 2010. This is mainly driven by the significantly increased
urban areas in recent years, i.e., the mean growth rate during 2010-2013 in China
(13,002 km?/y) is about 2.3 times faster than that during 2000-2010 (5643 km?/y).
In addition, it is worth to note that it is difficult to quantify the model accuracy for
the far-range prediction and hindcasting results due to the availability of
observations. Instead, it is more useful to explore the diverse urban sprawl scenarios
in the future, mainly driven by the unique trend of urban area growth in different
regions and socioeconomic and climate pathways2642,

Data availability

Historical country-specific urban area data before 1992 were obtained from the History
Database of the Global Environment (HYDE) database® (https://www.pbl.nl/en/image/
hyde). The projected country-specific urban area data after 2013 under five Shared
Socioeconomic Pathways were available at the Figshare repository (https://doi.org/
10.6084/m9.figshare.7817624.v1)*. The generated long-term global urban extent dataset
includes the hindcasted urban extent (1870-1990); satellite-derived urban extent
(1992-2013); and the projected urban extent (2020-2100) under the five SSPs. The
spatial resolution of this dataset is 30 arc-second (~1000 m at the equator). The uploaded
data are in GEOTIFF file format at the Figshare repository (https://doi.org/10.6084/
m9.figshare.9696218)70.

Code availability

Code used in the analysis is available on request from the corresponding author.
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