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1. Introduction

Vision is the essential sense to obtain information from
surroundings in navigation, object recognition, and complex
environment exploration.[1] In mammalian visual systems,
the stimulus and responses in vision are driven by the

spike-timing-dependent plasticity (STDP)
process through 1011 neurons linked with
1014�1015 synapses with extremely low
energy consumption (1�10 fJ per each syn-
apse).[2] The STDP rule is an asymmetrical
and temporal form of Hebbian learning[3]

among neurons and allows sparse asyn-
chronous spiking dynamics of synapses
with low-power neurotransmission.

Recently, memristors, bioinspired
resistive-switching memories, are the
promising intelligent matters for interac-
tion with environment and in-memory
computing and have been used to mimic
the synaptic responses of neurons.[4–7] By
using the transitions of atomic placement
in the active medium through the
application of the external electric fields,
memristors enable programing of their
conductance. Therefore, an array of mem-

ristors enables multiply-accumulate (MAC) operation through
current input to the system via Ohm’s law that is widely applica-
ble to numerous artificial neural networks (ANNs) applications,
such as classification,[8] forecasting,[9] and reinforcement.[10]

Among various neuromorphic architectures based on memris-
tors, the synaptic spiking models (such as Hodgkin–
Huxley,[11] Hebbian, and non-Hebbian learning algorithms[12,13])
provide high biofidelity, low-power, and sparse learning that can
be leveraged in processing various visual information, including
texts, diagrams, and images.

Although 2D images have been the most prevailing visual
data, dimensional limitations arise when attempting to inter-
pret the 3D object as a 2D dataset. The missing depth infor-
mation can be obtained via time-of-flight (ToF) sensors;[14–18]

however, conventional time-to-digital converters (TDCs) in the
ToF sensors require numerous digital logics that function as
synchronizers, interpolators, registers, and counters, resulting
in large footprint and power consumption.[19–22] Another
ToF architecture, an indirect ToF (iToF) method, can also mea-
sure the distance via intensity-based phase difference.[23]

Nevertheless, the performance of the iToF system is limited
by ambiguity and optical power constraints, which results
in ranging limitation compared with the TDC architecture.[24]

Moreover, the memristor-based 3D neural networks have
demonstrated the potential to process 3D ToF images;[25–27]

however, their applications have been limited to virtual neural
architectures rather than ToF acquisition methods applied in
physical sensors.
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3D sensing is a primitive function that allows imaging with depth information
generally achieved via the time-of-flight (ToF) principle. However, time-to-digital
converters (TDCs) in conventional ToF sensors are usually bulky, complex, and
exhibit large delay and power loss. To overcome these issues, a resistive time-
of-flight (R-ToF) sensor that can measure the depth information in an analog
domain by mimicking the biological process of spike-timing-dependent plasticity
(STDP) is proposed herein. The R-ToF sensors based on integrated avalanche
photodiodes (APDs) with memristive intelligent matters achieve a scan depth of
up to 55 cm (�89% accuracy and 2.93 cm standard deviation) and low power
consumption (0.5 nJ/step) without TDCs. The in-depth computing is realized via
R-ToF 3D imaging and memristive classification. This R-ToF system opens a new
pathway for miniaturized and energy-efficient neuromorphic vision engineering
that can be harnessed in light-detection and ranging (LiDAR), automotive
vehicles, biomedical in vivo imaging, and augmented/virtual reality.
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Here, to alleviate the challenges, we report a simplified, low-
power, and neuron-like 3D-sensing platform by integrating ava-
lanche photodiodes (APDs) with artificial synapses. We have
demonstrated neuron-like integrated 3D-sensor by employing
HfO2 memristors and APDs. The HfO2 memristors exhibit non-
volatile memory characteristics via their programmable conduc-
tance, which is dependent on the distribution of conductive
oxygen vacancies. The conductance information can be har-
nessed as both analog memory and computing functionality
via Ohm’s law. By utilizing the neuron-like behavior of the mem-
ristor combined with the APD, the resistive time-of-flight (R-ToF)
sensing approach provides the means for unprecedented minia-
turization of ToF systems with a simplified structure and �50
times lower power consumption compared with conventional
TDCs systems. Furthermore, to confirm the feasibility of our
R-ToF system, we have performed 3D LiDAR imaging based
on the proposed R-ToF principle. We have also explored the fea-
sibility of using an R-ToF system for ANN-based classification by
applying the STDP principle to depth-imaging and the neuro-
morphic MAC operation to HfO2 crossbars. These multifaceted

capabilities of our R-ToF system could be exploited further for
use in full-3D visual sensing for advanced optoelectronic and
machine vision applications.

2. Results and Discussion

2.1. R-ToF Principle and Device Characterization

In the biological visual system, the rod cell receives optical sig-
nals and converts them to electrical spikes toward the synapse
that lies between the rod cell (presynaptic neuron) and the bipolar
neuron (postsynaptic neuron).[28] If the timing is small enough,
the synapse releases an acetylcholine neurotransmitter that
transmits signals to the post neuron. Here, we have mimicked
the biological synaptic responses in visual systems by imple-
menting STDP in the memristors. The basic principle of
STDP in the biological system is the transition of synaptic
weights hinging on the time difference between presynaptic
and postsynaptic spikes. Figure 1a shows the structural and

Figure 1. Demonstration of R-ToF depth ranging. a) Schematic illustration of biological STDP behavior and R-ToF. The rod cell and the photodiode
receive the optical signals and transmit to the synapse and the memristor, respectively. Inset: SEM image of memristor. Scalebar: 20 μm. b) Schematic
illustration of R-ToF system including classification (implemented via Bechtold and Höfle[43]). c) Principle of R-ToF system. The ToF is calculated by
subtracting the receiving time (tr) from the transmitting time (tt). The ToF ðΔt1 < Δt2 < Δt3Þ corresponds to the target distances ðd1 < d2 < d3Þ. The
shorter distance enables larger transitions of the conductance of the memristor, and the conductance is measured to range the distance.
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functional analogy between the biological and artificial synaptic
systems. The STDP learning rule applies to memristors because
a conductive bridge by oxygen vacancies in the active medium is
formed depending on the overlapped period between the presyn-
aptic (to the top electrode of the memristor) and postsynaptic
spikes (to the bottom electrode of the memristor). Therefore,
the temporal difference between spikes can be obtained by read-
ing the programmed conductance of the memristors.[29] The
inset shows the scanning electron microscope (SEM) image of
the fabricated memristors.

We propose a new principle of R-ToF that converts memristor
conductance to depth information. Figure 1b shows a schematic
illustration of the R-ToF principle and classification. The ToF
principle determines the distance by calculating the time differ-
ence between the transmitted and reflected flux as d ¼ 1

2 c · τToF,
where d is the distance between a ToF sensor and target objects, c
is the speed of light, and τToF is the time difference between
transmitted (Tx) and received (Rx) signals. As shown in
Figure 1c, the signals from the transmitter and receiver exhibit
time-difference-based responses similar to the biological time-
variant sandwiching spikes. Therefore, the polarities of the pre-
synaptic and postsynaptic spikes are opposite. Following the ToF
principle, the presynaptic spike in the R-ToF sensor is generated
by an electrically transmitted signal, which also operates a pico-
second laser. The postsynaptic spike in the system is transmitted
by the current pulse of a received signal via APDs. The APDs
adopted in the ToF sensing systems[30,31] as an optical receiver
provide high internal multiplication gain, low dark current,
and low excess noise.[32] The larger spike time differences
between the transmitted and received signals ðΔt1 < Δt2 <
Δt3Þ lead to longer programming times and higher peak ampli-
tudes in the memristor by the superposition of the semisynchro-
nous positive presynaptic peak and the negative postsynaptic
peak. The longer and higher peak signals impart larger transi-
tions of conductance (ΔG1 > ΔG2 > ΔG3Þ to the memristor.
As a result, the conductance transitions of the memristor are con-
verted to time-difference information following the precalibrated
exponential-fitted relationship between the conductance and the
programming time, which leads to the final depth information
ðd1 < d2 < d3Þ.

To confirm the functionality of R-ToF sensors, we fabricated
and integrated the HfO2 memristors with APDs. Figure 2a,b
shows schematic illustrations of the R-ToF device and cross sec-
tions of the fabricated HfO2 memristors and AlInAsSb APDs,
respectively. The postsynaptic spike is originated from the photo-
generated current of the APD usually in the range of 1 μA to
0.1mA and is converted to the amplified voltage signal via a tran-
simpedance amplifier (TIA)�1�2 V to program the memristors.
A full description of the fabrication process is detailed in
Experimental Section. Current–voltage (I–V ) characteristics of
the fabricated HfO2 memristor are shown in Figure 2c. The
set and reset voltage are �2 and �1.5 V, respectively. The maxi-
mum and minimum resistance at the �0.1 V read voltage is
�90MΩ and 1 kΩ, respectively. Under the positive bias less than
2 V, the resistance of the HfO2 memristor exhibits gradual tran-
sitions used for the R-ToF ranging in the following section. The
gradual transitions are interpreted as the biological long-term plas-
ticity (LTP), and the incremental voltage pulse below 2 Vwith a read

pulse train (Figure S1, Supporting Information) enables quantized
analog conductance behaviors, as shown in Figure 2d. The cycling
endurance performance of the memristor is shown in Figure 2e.
The consistent switching response between the high resistance
state (HRS) and the low resistance state (LRS) ensures high endur-
ance in measuring depth information via the R-ToF system.

To convert the conductance switching of the memristors into
time domain information, the time difference between spikes is
calibrated by measuring the biomimetic resistive STDP of the
memristor in nanosecond scale, as shown in Figure 2f. The
LTP behavior of the artificial STDP rule decays when the time
difference increases, which has also been observed in the electro-
sensory lobe of electric fish.[33] Similarly, the bioinspired mem-
ristive STDP learning rule shows an exponential relationship
between the conductance transition and timing of spikes; there-
fore, the exponential fitting parameters are harnessed for the R-
ToF conversion. This exponential relationship can be modulated
by varying the spike decay, rise, and duration times. In the R-ToF
sensor, the memristor enables optical programming through
photogenerated current from APDs, as shown in Figure 2g,h.
The reflected light intensity of the laser only slightly varies from
800 to 830 lux at the different object positions (10�55 cm) used
in the following R-ToF ranging experiment, which is insufficient
to influence the conductance switching of the memristors.
Therefore, the conductance switching of the memristors is
highly dependent on the resistive STDP behaviors produced
via temporal variation of ToF ranging.

2.2. Neuromorphic R-ToF Ranging

The R-ToF system acquires depth information via a combination
of optical programming and the STDP principle. The schematic
R-ToF experimental setup is shown in Figure 3a. The presynaptic
spike is generated and applied to both the memristor and the
picosecond pulse laser as a trigger. Due to the parasitic induc-
tance and capacitance from the external interconnection to the
fabricated APDs, here we have used a commercial APD
(Hamamatsu S9073) to confirm the feasibility. By applying a
reverse bias up to �155 V to the APD, we were able to control
the gain from 1 to 162 (Figure S2, Supporting Information).
As shown in Figure 3b, we performed a cyclic depth acquisition
based on the R-ToF principle. The single cycle includes two read
pulses, STDP spikes, and a reset pulse. The period of the single
cycle is 3.3 μs corresponding to 330 kHz pulse repetition
frequency (PRF) of the used picosecond pulse laser
(see Experimental Section). The waveform is recorded for
100 μs including the absence or existence of a target object.
To prevent the collision between the rippled reset pulse and
the signals of the next cycle, we used an additional 1 μs delay time
to mimic the biological refractory period in the transmission of
nerve impulses. The postsynaptic spikes are only generated when
there is a target object located in line-of-sight and the conduc-
tance of the memristor is stationary without the postsynaptic
spikes. The R-ToF waveforms depending on the object locations
are shown in Figure 3c. The peak of the superposed program-
ming signal is low (high) when the time difference between
the presynaptic spike and the postsynaptic spike is large (small),
which leads to weak (strong) coupling. The analog transitions of
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the memristor conductance follow the analog programming via
the aforementioned pulse train response generated by over-
lapped pre- and postsynaptic spikes, which verifies the depth
memory functionality of the R-ToF system.

Here, we have demonstrated R-ToF ranging from 15 up to
55 cm (Figure 3d). Prior to this depth measurement of the mov-
ing object, the nanosecond-scale transitions of the R-ToF sensor
are verified by an experiment with a fixed position and a varied
temporal difference of the presynaptic and postsynaptic spikes
(Figure S3a, Supporting Information). The detailed R-ToF

ranging is demonstrated provided in the Experimental
Section. Based on the R-ToF principle, the measured distances
are obtained and compared with the actual distance, as shown in
Figure 3e. Further ranging over 55 cm (so-called a long-range
mode, Figure S3b, Supporting Information) is viable by applying
a longer pulse delay with increased amplitude to the electrical
presynaptic pulse and/or by incorporating multiple pulse-width
laser optics. There is a tolerable difference between the measured
and actual distance with �89% accuracy (concordance between
the actual and measured distances) and 2.39 cm standard

Figure 2. Electrical and optical characteristics of R-ToF devices. a) Schematic illustration of R-ToF system. The optical signal received by the APD is
converted to the electrical Rx signal that couples with the Tx signal to program the memristor. b) Cross sections of fabricated memristor and APD. c) I–V
characteristics of memristors. The round-trip voltage swing switches the memristor conductance. d) Analog behaviors of memristors via voltage pulse
train (inset). The set pulses increase the memristor conductance, whereas the reset pulses initialize the memristor conductance, shown as red and blue
dots, respectively. e) Cycling endurance performance of the memristors (100 000 cycles). The applied set and reset voltage are 20 μs 1.5 V, and �2 V,
respectively. f ) Presynaptic and postsynaptic spike forms (top) with STDP behaviors of memristor (bottom). Inset: superposed spiking waveform applied
to memristor. g) Optical programming of integrated HfO2-AlInAsSb device. The error bars indicate the standard deviation. The read area indicates the
range of illumination fluctuations in an R-ToF ranging experiment. h) I–V characteristics of fabricated APD.
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deviation (including both short- and long-range mode) that can
be potentially harnessed as a macroscopic LiDAR system
(Figure S4 and Text 1, Supporting Information).

2.3. R-ToF-Based 3D Imaging

Using the R-ToF system, we demonstrated an R-ToF 3D LiDAR
scan. As shown in Figure 4a, we emulated a street scene that
includes a car, building, and wall miniature. The distances to

each object are 15, 25, and 45 cm, respectively. By using series
of single-point ranging, we observed the R-ToF-based imaging
capability, as shown in Figure 4b, with an error map
(Figure S5, Supporting Information). For more details,
see Experimental Section. Based on this feasibility, we also sug-
gest the expanded R-ToF system to an array scale to realize 3D
imaging and classification. Figure 4c shows the schematic of the
expanded system that utilizes the synaptic STDP, LTP, and long-
term depression (LTD) of HfO2 memristors. A target object
reflects the optical flux emitted by the laser source, and the

Figure 3. Results of R-ToF ranging. a) Schematic illustration of the experimental setup. b) Waveforms of the R-ToF system. Top: single cycle. Middle:
multiple cycles with the existence of objects (dashed black box). Bottom: zoom-in of the object detection over nine cycles. c) STDP waveforms from the
R-ToF ranging (40, 25, and 10 cm object distances from left to right). Light-color lines: before the smoothing process. d) R-ToF ranging for four mea-
surement locations (10, 25, 40, and 55 cm). The pulse width and amplitude of the presynaptic spike is 20 ns and 0.5 V. The error bars indicate the standard
deviation. e) Correlation between the actual distance and the calibrated R-ToF ranging (measured distance). The base position (indicated as 0.0) of the
short and long distance is zero and seven meters, respectively.
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Figure 4. 3D R-ToF imaging and classification. a) Target scene for 3D R-ToF imaging. Scalebar: 2 cm. b) Experimental R-ToF-based 3D depth image
(16� 8 pixels). c) Schematic illustration of array-scale 3D imaging reconstruction and classification process. The preprocessed reconstructed images
pass through the feed-forward neural network that contains 784-256-128-100-10 layers. d) Normalized weight map (arbitrary unit) reconstruction of
initialized, ideal, and processing weight matrix of 1T1R array. e) PSNR result of simulation with respect to acquisition time. f ) Example images of
feed-forward neural network. Top row: raw images for software classification. Bottom row: R-ToF-reconstructed images for hardware classification.
g) Validation accuracy for software and hardware (R-ToF) platforms. The R-ToF system and HfO2 crossbars reduce network accuracy by 4%. The highest
accuracy of the software-based floating point 64 (FP64) computation is 84%. h) Validation accuracy matrix with respect to acquisition time and epochs.
The longer acquisition time and larger epochs ensure higher accuracy.
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reflected optical signal is received by the APD array. The con-
verted voltage signal via the TIA components generates STDP
as a postsynaptic spike (the presynaptic spike is from reference
electrical signal) to the one-transistor one-resistor (1T1R) array
restoring rasterized depth information. The reconstructed image
is then utilized as an input to pass through the feed-forward ANN
(see Experimental Section). The transistor array enables access to
the individual memristor cell for the programming, reading, and
verification process.

The Monte Carlo simulation shows the enhanced 3D recon-
struction enabled by the averaged weight array over epochs that
leads to the increased peak signal-to-noise ratio (PSNR), as
shown in Figure 4d,e. The PSNR increases up to 35 dB, indicat-
ing promising reconstruction results concerning the ideal depth
image. The spike bundles exhibit temporal responses depending
on the pixel-wise depth information corresponding to the pixel
locations of the APD. The normalized weight matrix is then con-
verted to the depth information via parameterized function
between the weight and depth. The entire 100 test and recon-
structed images are shown in Figure S6, Supporting
Information. We also present the simulated HfO2 crossbars
to enable the classification of the depth images
(see Experimental Section). Figure 4f shows some examples of
raw and R-ToF-reconstructed images. Although the recon-
structed images contain some deformation and noise, the
HfO2-based feed-forward ANN shows only a 4% accuracy
decrease compared with the full-software classification (raw
images with a software ANN), as shown in Figure 4g. The accu-
racy results of other combinations of the image types and the
computer systems are in the range of these results (Figure S7,
Supporting Information). The robustness of the expanded
R-ToF system can be further improved when both epoch and
acquisition time increase, as shown in Figure 4h. As the scan-
ning speed of the R-ToF system is inversely proportional to
the acquisition time, the classification accuracy decreases if
the scanning speed increases. At all acquisition times, the accu-
racy tends to increase at high training epochs. The expanded R-
ToF system enables edge-computing and fully-hardware 3D clas-
sifier stemming from the depth acquisition with the ANN
activation.

2.4. Discussion

The analog-domain depth ranging and storing capabilities of the
R-ToF exhibit comparable power consumption and small foot-
print compared with the conventional TDC architectures
(Figure S8 and Text 2, Supporting Information), and enable
two high degrees of freedom for further designing a 3D sensing
system. First, the system can be electrically and optically modu-
lated by tuning the spike schemes and gains from the APD and
the TIA. Both memristive STDP and R-ToF behaviors are depen-
dent on amplitude, decay, and rise times of presynaptic and post-
synaptic spikes (Figure S9, Supporting Information). By
controlling the gain from an APD, up to 55.1m ranging can
be obtained (see Supplementary Text 3). In addition, the gain
modulation relaxes a target object’s reflectivity-dependent ampli-
tude transition. In a practical LiDAR application, the intensity of
the received optical signals depends on the distance from the

objects as well as the reflectivity of the objects. The detection
of low reflectivity objects can be improved through an optimized
voltage window via the gain and spike modulation (see
Supplementary Text 4). Furthermore, multiple echoes frommul-
tiple objects within a single ranging shot are separable when the
distance between the individual objects are far enough. In this
case, only one postsynaptic spike (from the closer object) is coupled
to the presynaptic spike. Second, a high geometrical degree of free-
dom can be achieved including small footprint and complementary
metal-oxide-semiconductor (CMOS) compatibility. Previous mem-
ristor studies have demonstrated CMOS-compatible architectures,
small-footprint fabrication, and low power consumption because
the memristor medium is also widely used for high-k dielectric
layers in standard silicon CMOS process.[34,35] Heterogeneous inte-
gration methods are also applicable for our fabricated AlInAsSb
APDs and memristors, and further system-level R-ToF implemen-
tation would enhance the vertical depth resolution as well
(Figure S10 and Note 4, Supporting Information). Furthermore,
subnanoseconds switching speed of memristors has been
reported,[36,37] indicating further improvement in the resolution
of the R-ToF sensor (15 cm in this work) toward a millimeter rang-
ing system. Ferroelectric materials such as Ag/BaTiO3/Nb:
SrTiO3

[38] and LiTaO,[39] and scalable magnetoelectric spin–orbit
devices[40] are promising candidates due to their faster switching
speed (more than one order) comparedwith the resistiveHfO2 layer.

3. Conclusion

In conclusion, we have demonstrated a neuron-like R-ToF
method for 3D sensing. A memristor has been used to store
the ranging information programmed by superposed pre- and
postsynaptic spikes. The R-ToF system attained up to 55 cm rang-
ing in a single mode, and further ranging was achieved by con-
trolling the spiking scheme combined with the gain modulation
of an APD and a TIA. To prove the feasibility of R-ToF sensing,
we have demonstrated the expanded R-ToF system that includes
two promising applications of 3D sensing technologies: 3D imag-
ing and classification. 3D image reconstruction and classification
using in-memory computing architecture were demonstrated by
using multiple acquisitions and training epochs via an R-ToF
array. The R-ToF system exhibits high biofidelity, a small foot-
print, simplified architecture, and low power consumption that
provide a basis for realizing a fully-hardware neuromorphic 3D
sensing technology.

4. Experimental Section

Device Fabrication: The HfO2 memristors were fabricated on a 25 μm
polyimide substrate. To prevent the expansion of the polyimide during the
post process, a preannealing of the polyimide substrate was performed at
200 �C for 30min on a hot plate, followed by deposition of a 100 nm Al2O3

buffer layer via atomic layer deposition (ALD) at 200 �C. A 3/25 nm-thick
Ti/Pt bottom contact was deposited and patterned by using e-beam evap-
oration and a photolithography process, respectively. A 5 nm HfO2 switch-
ing layer was deposited using ALD at 200 �C. A 50 nm Ta top metal contact
was deposited via DCmagnetron sputtering, followed by photolithography
patterning. The surface area of the fabricated HfO2 memristor was
5� 5 μm2. The Al0.7InAsSb APDs were grown on a n-type GaSb substrate
(1�9� 1017 cm�3) with the following epitaxial structure: a 300 nm n-type
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(2� 1018 cm�3) GaSb buffer layer, a 300 nm n-type (2� 1018 cm�3)
Al0.7InAsSb contact layer, a 1500 nm Al0.7InAsSb unintentionally doped
(UID) layer, and a 100 nm p-type (2� 1018 cm�3) Al0.7InAsSb contact
layer. The epitaxial growth was capped with a 50 nm p-type (1� 1019

cm�3) GaSb layer. Be and Te were used as the p- and n-type dopants,
respectively. The top-illuminated PIN APDs were defined using standard
photolithography techniques. The mesas were etched into the n-contact
layer with a citric/phosphoric acid solution prior to a 12 nm Ti and
85 nm Au contact deposition via electron beam evaporation.

Electrical and Optical Characterization: Electrical performance of the
memristors was characterized using a KEYSIGHT B1500A
Semiconductor Device Analyzer equipped with a waveform generator/fast
measurement unit and a pulse generator (KEYSIGHT 33600A Series). To
measure resistive STDP and APD current, an oscilloscope (KEYSIGHT
DSO-X 3024T), and two current amplifiers (Edmund 59-179 and EOC
DLPCA-200) were used. For the optical programming via the current
amplifiers, low-noise and 10 Hz mode with 106 gain settings were used.
A continuous measurement mode was adopted for the characterization of
I–V performance with 1 mA compliance current. The voltage range and
width used for the analog conductance switching of the memristors exper-
iment was from 0.5 to 1 V and 10 μs, respectively. The conductance was
calculated using Ohm’s law as Iread ¼ G� V read, and the transitions of the
conductance were calculated as ΔG ¼ ðGfinal�GinitÞ

Ginit
� 100ð%Þ at 0.1 V read

voltage. The initial resistance of memristors in the R-ToF system was
�100 kΩ. A FOSTEC A20500 lamp was adopted as a light source. A
Hamamatsu S9073 APD and a picosecond laser (Alphalas PLDD-50M)
were employed for R-ToF ranging measurement with 100 V reverse bias
applied to the APD and low-noise 103 gain of the TIA. The physical channel
lengths of the presynaptic and postsynaptic spikes were matched to mini-
mize the parasitic time delay. The peak programming voltage was limited
to 2 V to protect the device from exceeding the transition ranging of the
resistance. The remainder time delay generated by parasitic capacitance
and inductance of the external cables and wire connections was compen-
sated empirically by modulating the pulse timing via MATLAB. For the 1D
R-ToF measurement, a commercially retro-reflective (metal coated, 0.9
reflectivity) object was adopted. A photograph of the experiment setup
is shown in Figure 15, Supporting Information. In the dark room condi-
tion, 150 V reverse bias was applied to the APD to maximize the multipli-
catively reflected optical signals. For the 1D R-ToF measurement, the
picosecond laser was set to 203 and 750mW peak power for short and
long range, respectively. Amplitude (0.5 V) and pulse width (20 ns) are
used for the presynaptic spikes. Each position was measured 5 times.

R-ToF 3D Imaging: We measured distances of a miniaturized truck at
15 cm, a scaled building (EatingBiting DIY 1:160 Outland Models) at
25 cm, and a wall at 45 cm. The target scene is shifted for the imaging
to enable a point-by-point LiDAR scanning method (16� 8 pixels), and
a scattering film is attached to the ranging spot. Due to the scattering
effect that represents the realistic 3D ranging environment, different bias
voltages are applied to the APD (15 cm for�140 V, 25 cm for �150 V, and
45 cm for �155 V).

3D Image Reconstruction Simulation: We used the Monte Carlo simula-
tion using Brian2 spiking neural network (SNN) simulator in the Python
language to demonstrate the STDP-based array-scale depth reconstruc-
tion.[41] Based on the R-ToF principle, normalized transition of weights
(converted from resistance of memristors) corresponds to intensity of
each pixel. The pixel dimension of the input image was 48� 48, and
the intensity of each pixel can be converted to the depth information (from
15 to 80 cm). An optical acquisition variation (σacq ¼ 0.03414) was
extracted from the result of Figure 3e and was applied to the converted
depth matrix; 2304 synapses with 4608 neurons were imposed to repre-
sent STDP of the pixelwise depth information. The resistance window
(4�30 kΩ) of the fabricated memristors was normalized to represent
weight values used in this simulation. The optical acquisition deviation
including horizontal and vertical dimensions was approximated in the
experimental data with three-sigma deviation. Additional device-to-device
variation (uniformly distributed random numbers in the normalized initial
resistance window) and update-to-update variation (σU ¼ 0.04123Þ with

respect to the memristors were included in the simulation. The
update-to-update variation parameter was extracted from the result of
Figure 2f with the normalized resistance window. STDP in the simulator
was parameterized by fitting the exponential curve of the experimental
data (Figure 2f ) with three-sigma deviation by the equation

WðΔtÞ ¼ Apree
� Δt

τpre (1)

whereW is a weight matrix, and Apre and τpre are exponential fitting param-
eters. The obtained parameters were used in differential equations to rep-
resent neural spiking responses by equations

τpre
d
dt
apre ¼ �apre (2)

τpost
d
dt
apost ¼ �apost (3)

where apre and apost are tracing variables for presynaptic and postsynaptic
activity parameters, respectively. As the depth information of the time dif-
ference between the presynaptic spike and the postsynaptic spike is always
positive, the presynaptic trace is updated as follows

apre ! apre þ Apre (4)

w ! wþ apost þ Gaussianð0, σUÞ (5)

The Gaussianð0, σUÞ denotes the 1D Gaussian distribution with zero
mean and update-to-update deviation σU ¼ 0.1. MSE is calculated by
the equation

MSE ¼ 1
mn

Xm�1

i¼0

Xn�1

j¼0

1
k

X
k

W�Wideal

 !
(6)

where m and n are pixel dimension (m ¼ n ¼ 48), k is the current epoch,
andWideal is the ideal weight matrix. The final PSNR is calculated as follows

PSNR ðdBÞ ¼ 20log10
1ffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

(7)

Each epoch was interpreted as 4 μs acquisition time (corresponding to
250 kHz) referred by the 0.7 μs excitatory and inhibitory times of the R-ToF
system including an assumed 0.7 μs delay time from peripheral circuits.

Reconstructed Image Classifier Simulation: We trained a fully-connected-
layer classifier with four hidden layers (784-256-128-100-10) on the
Fashion-MNIST dataset (F-MNIST, Modified National Institute of
Standards and Technology database).[42] The depth acquisition was
assumed to be rasterized and interpreted as intensities of pixels (between
0 and 1 intensity). Each F-MNIST image contained 28� 28 pixels, the ini-
tial time-decaying learning rate was 0.03, the decay was 0.0015, and recti-
fier (a softmax for the last output) nonlinearity activations were used. We
trained and tested 10 000 (with 100 batch size) and 100 images,
respectively. The intensity of the reconstructed test images was inverted,
normalized, and rescaled. To compare the classification between the hard-
ware- and software-based models, we exploited the physical parameters of
our fabricated HfO2 memristors on the ANN, as well as used the 100
reconstructed test images from the R-ToF image reconstruction simula-
tion. Specifically, the conversion from conductance to weight values in
the ANN was based on the interpolation of the results of Figure 2d,
and the cycle-to-cycle weight variation (σC ¼ 0.00048Þ was achieved from
Figure 2e. We assumed that the HfO2-based ANN incorporates a crossbar
structure with perfect access to each memristor cell and adopted 8-bit
analog-to-digital converters (ADCs) to compute the quantized activation
value of each column of the crossbar array.
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