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A B S T R A C T

Measuring the performance of infrastructure networks is critical to the allocation of resources before,
during, and after a system’s disruption. However, the lack of data often hinders the ability to accurately
estimate infrastructure performance, resulting in uncertainty in its evaluation which can lead to biased
estimates. To address this challenge, this study develops a Bayesian approach to measure the performance
of the infrastructure network at the component level and incorporate it in the evaluation of the system-
level serviceability. Component fragility metrics are estimated using a hierarchical Bayesian model and
then integrated into the system serviceability assessment using Monte Carlo simulation and a shortest-path
algorithm. These performance measures can be dynamically updated as more data becomes available. A case
study of the water distribution system of Shelby County in Tennessee subject to earthquake and flood hazards
is presented to illustrate the proposed approach. Results show that system topology is more important in
determining component functionality under seismic hazard while vulnerability is the dominant factor in the
case of flood hazard.
1. Introduction

Critical infrastructure systems (CISs) such as power grids, water
distribution systems, telecommunication networks, and transportation
systems provide essential services to modern society [1]. These systems
have grown in scale and complexity due to urbanization and technology
advancement. Additionally, they are increasingly threatened by a wide
range of natural (e.g., extreme weather events) and anthropogenic
(e.g., man-made attacks) hazards. The U.S. government has empha-
sized the protection of CISs by improving their ability to withstand
and recover from all hazards as they are considered paramount to
national security [2]. The protection of CISs relies on risk-informed
decision making to identify strategies for hardening, emergency re-
sponse, and restoration. To inform such decisions, it is essential to
provide a reliable assessment of the system-level performance of CISs
under different types of hazards. This study presents an approach
to assess the serviceability of CISs during disasters with a focus on
water distribution systems (WDSs) impacted by earthquakes and floods.
Water distribution systems are credited to be one of the most essential
types of infrastructure, especially during a disaster when reduced water
supply disrupts the emergency response (e.g., first-aid) and residential
and industrial activities, among others [3]. However, among the CISs
that are vulnerable to earthquake and flood [4], WDSs have been
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overlooked and undervalued in the U.S. in the past decade [5]. In
addition, research advances on WDS performance assessment have
been limited by the lack of data due to restricted access to buried
infrastructure components. While the proposed approach focuses on
WDSs, it can be adapted and applied to other types of infrastructure
networks, such as gas, oil, and power networks, given appropriate
assumptions on component operations and network flow. Significant
research advances have been made on analyzing the performance of
WDSs. However, existing modeling approaches present three main gaps
in (i) the performance evaluation, (ii) the hazard consideration, and
(iii) the uncertainty quantification, that this research is addressing.

First, existing studies have evaluated the performance of WDSs
at either the component-level or system-level separately [6]. At the
system level, Wang and O’Rourke [7] simulate the response of the WDS
under seismic hazard where system serviceability is defined as the ratio
of satisfied demand after the earthquake to total demand before the
earthquake. Another study uses a connectivity-based model to evaluate
the seismic vulnerability of WDS based on Monte Carlo simulation
(MCS) and a shortest-path algorithm [8]. Wang et al. [9] propose the
system serviceability index to evaluate the probabilistic performance of
WDSs using MCS. At the component level, Shuang et al. [10] propose a
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model to evaluate the nodal vulnerability of WDS based on topological
connectivity loss under cascading failures due to intentional attacks.

Second, most of the studies consider earthquake and intentional
attacks with fewer research studies focusing on flood hazard in the
mathematical modeling of the performance of WDSs, even though
floods have caused more damage and fatalities than any other natural
hazard in recent years [11]. Current performance analyses of WDSs un-
er floods are based on HAZUS-MH1[13]. However, damage to buried
pipes is typically not considered in HAZUS-MH since it is assumed that
submergence of these pipes cannot occur [12]. This assumption can be
invalid as reports on the long-term recovery efforts in the wake of Hur-
ricane Katrina have shown damaged pipe infrastructure in New Orleans
for drinking water and wastewater. This finding contradicts the typical
risk analysis assumption that floods do not damage buried CISs [14]
and highlights the importance of accurately evaluating infrastructure
performance after the disruption.

The third and most significant challenge in evaluating the perfor-
mance of WDSs is the lack of data to estimate parameters such as the
component damage state and recovery rate. As a result, there exists
uncertainty about the component vulnerability, network topology, and
system serviceability of WDSs after a disruption. Uncertainty, a concept
that reflects the lack of confidence, can be categorized as either aleatory
r epistemic. Aleatory uncertainty, which stems from natural variability,
annot be reduced. In contrast, epistemic uncertainty, which is derived
rom the lack of knowledge, can be reduced to improve the model
ccuracy [15]. Failing to account for the epistemic uncertainty could
ead to biased estimates of the system state, prolonging the recovery
rocess. It is, therefore, critical to characterize the uncertainty in the
ssessment of the serviceability of disrupted infrastructure systems.
pistemic uncertainty can be quantified using different approaches such
s interval analysis, Bayesian probability, and evidence theory [15].
rior studies employing Bayesian approaches have primarily focused
n predicting component failure [16,17]. Bayesian networks (BNs) have
een used to predict pipe breaks [18] and have been converted from
fault tree model to estimate the probability of a water pipe be-

ng targeted by third-party activities [17]. Other approaches integrate
ayesian model averaging and Bayesian proportional hazard model to
redict the failure of water mains [16]. However, little work has been
onducted to assess the system-level serviceability of WDS under un-
ertainty using Bayesian approaches. Although BNs have been applied
o the vulnerability assessment of other engineering systems [19,20],
everaging BNs to assess the serviceability of WDSs with limited data is
hallenging, particularly for large-scale WDSs. This is due to the lack
f information on (i) the direction of edges in the directed acyclic graph
DAG) that represents the WDS and (ii) the conditional probability table
CPT) associated with each parent node in the DAG.
In summary, most of the existing approaches evaluate component-

nd system-level performance separately. Bayesian approaches have
een successful at capturing uncertainty of component fragility. How-
ver, system-level approaches rarely consider the uncertainty in
omponent-level estimations. Therefore, we propose an approach that
xplicitly takes into consideration uncertainty in the combined assess-
ent of component vulnerability and system serviceability by integrat-
ng a hierarchical Bayesian model of network component fragility into
he evaluation of system-level performance of WDSs using MCS and
he shortest-path algorithm. Hierarchical Bayesian Models (HBMs) offer
dvantages in data-scarce situations. The models are able to integrate
nformation from various sources and adapt to the structure of data,
hereby reducing the variance of estimates [21] and addressing the
hallenge of specifying a prior distribution with limited data [22].

1 HAZUS-MH is a nationally applicable, standardized methodology provided
y the U.S. Federal Emergency Management Agency (FEMA) estimate the
otential loss from multiple types of hazards (earthquakes, floods, hurricanes,
nd tsunamis), and visualize the impact of such hazards [12].
2

HBMs have been widely applied to risk and reliability analysis of
different engineering systems [22–24]. In particular, Yan and Haimes
[22] demonstrated the ability of HBMs to improve estimate accuracy
through "strength borrowing " by pooling data from similar and related
systems and applying HBMs to handle the lack of data in risk-based
system analysis.

This research improves the state-of-the-art in the performance as-
sessment of CISs by making the following contributions:

1. An approach where both epistemic uncertainty and aleatory
uncertainty about the component failure probability are mod-
eled. Epistemic uncertainty is rarely taken into account in prior
studies that use MCS [25] or entropy-based methods [26,27]
to analyze the vulnerability and reliability of WDSs under un-
certainty. This study models the epistemic uncertainty using
Bayesian updating of parameters and their distributions.

2. A method founded in the hierarchical Bayesian model (HBM) to
address challenges of data scarcity, leverage additional data,
and update the probabilistic evaluation of infrastructure perfor-
mance. While HBM has been widely used in risk and reliabil-
ity analysis, few studies handle the combination of epistemic
and aleatory uncertainty which is frequently encountered in
infrastructure performance modeling.

3. A method to incorporate Bayesian updating of fragility formula-
tions of damage to infrastructure components under earthquake
and flood hazards. Updated component fragility is integrated
into the serviceability assessment of infrastructure systems.

The rest of this paper is organized as follows. Section 2 introduces
the methodology, including the hierarchical Bayesian models, compo-
nent failure estimation methods, and the proposed integrated approach
for evaluating network serviceability based on MCS, and Section 3
describes the case study of the WDS in Shelby County, Tennessee,
with the results presented in Section 4. Finally, Section 5 provides
oncluding remarks and discussions of future work.

. Methodology

This section presents the methods that comprise the proposed ap-
roach with a focus on WDSs. The section starts with an overview of
ayesian methods (Section 2.1), followed by a description of compo-
ent damage assessment (Section 2.2) that has been adapted in this
tudy using HBM to account for uncertainty (Section 2.2.1), and ends
ith a description of the proposed framework integrating all these
ethods (Section 2.3).
The following notations are used in this research.

𝑎 Regression coefficient in the formula for calculating
repair rate.

𝑏 Correlation distance.
𝑐 A generic network component.
𝑑𝑠𝑖 Damage state 𝑖, 𝑖 = 1,… , 5.
𝑔 Gravitational acceleration.
ℎ𝑓 Standing water depth.
𝑚 Number of segments in a pipe segment.
𝑛 Number of pipe breaks within a segment.
𝑠 Network serviceability.
𝑤𝑐 Importance of a component to the network service-

ability.
𝑧𝑛 Binary variable indicating the functionality of a

demand node.
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𝐹𝑆0
Probability distribution of the network serviceability
when all components are functional.

𝐹𝑆𝑐
Probability distribution of the network serviceability
when component 𝑐 is removed.

𝐼𝑐 Intensity of a hazardous event at the site of
component 𝑐.

𝐾 Scaling parameter for calculating repair rate.
𝑀𝑤 Magnitude of an earthquake.
𝑁𝑑 Number of demand nodes.
𝑃𝑙 Failure probability of a pipe (link).
𝑃𝑛 Failure probability of a node.
𝑃𝐺𝑉 Peak ground velocity.
𝑃𝐺𝐴 Peak ground acceleration.
𝑅𝑅 Repair rate of a pipe per 1000 ft.
𝑅 Distance to the epicenter.
𝜇, 𝜎 Mean and standard deviation of a normal distribution.
𝜆, 𝜁 Mean and standard deviation of the underlying

normal distribution of a log-normal variable.
𝜙 Hyperparameters.
𝜽 Parameters of interest.
 Data.
𝛥𝐿𝑖 Length of pipe segment 𝐿𝑖.

2.1. BayesIan updating and hierarchical Bayesian model

A Bayesian approach follows Bayes’ theorem to update the estimate
of the parameters of interest. Given a prior distribution of parameters
(variables), 𝑝(𝜽), and a data likelihood function, 𝑝(|𝜽), the posterior
density, 𝑝(𝜽|), is given by Eq. (1).

𝑝(𝜽|) =
𝑝(𝜽)𝑝(|𝜽)

𝑝()
∝ 𝑝(𝜽)𝑝(|𝜽) (1)

A Bayesian model is dynamically updated where the prior distribu-
tion is iteratively updated with the informative posterior distribution
obtained using existing data as new data become available.

Bayesian approaches have been criticized for the potential subjectiv-
ity in specifying the priors when the physical basis or scientific model to
justify the prior distribution is lacking [28]. When data is limited, HBM
alleviates the subjectivity in assigning the prior distributions. Specifi-
cally, HBMs take into account the uncertainty around the parameters
of the prior distribution by adding another layer of Bayesian inference.
Instead of assigning a point value to the distribution parameters of
𝜽, a hyperprior, represented by 𝝓, is used to quantify the uncertainty
around 𝜽. According to the marginal posterior of 𝝓 shown in Eq. (3), 𝝓
s now partially dependent on the data rather than being an assumed
alue [22].

(𝜽,𝝓|) ∝ 𝑝(|𝜽)
⏟⏟⏟
likelihood

𝑝(𝜽|𝝓)
⏟⏟⏟
prior

𝑃 (𝝓)
⏟⏟⏟
hyperprior

(2)

(𝝓|) = ∫ 𝑝(𝜽,𝝓|)𝑑𝜽 ∝ ∫ 𝑝(|𝜽)𝑝(𝜽|𝝓)𝑃 (𝝓)𝑑𝜽 (3)

Since Eq. (2) rarely has a closed-form solution, simulation tech-
iques are typically leveraged to generate samples of the posterior
istributions of interest. Markov Chain Monte Carlo (MCMC) methods
uch as the Metropolis–Hastings algorithm, Gibbs sampling, and Hamil-
on Monte Carlo (HMC) have been developed to perform sampling
fficiently [29,30].

.2. Component damage assessment

This section describes the data, parameters, and models used to
valuate the damage at each WDS component under earthquake and
lood hazards. To measure the impact of a hazard (𝐼𝑐), the repair ratio
𝑅𝑅) is used for pipelines (links), and fragility curves are used for
acilities (nodes). The probability of node failure is directly evaluated
sing fragility curves and the simulated hazard intensity (𝐼 ). However,
3

𝑐

he probability of link failure requires the estimation of 𝑅𝑅 as an
nput (Section 2.2.3). To evaluate 𝑅𝑅, prior studies have adopted a
inear regression model as a function of hazard intensity (𝐼𝑐) with
eterministic coefficients estimated using a small sample of data from
istorical events. We propose to adapt this approach and use HBM
o calculate 𝑅𝑅 such that the epistemic uncertainty in the estimated
oefficients and the aleatory uncertainty in the hazard intensity are
ddressed. The details of Bayesian updating for 𝑅𝑅 are provided in
ection 2.2.1 and the process of hazard simulation is provided in
Section 2.2.2.

2.2.1. Repair ratio estimation using HBM
The repair ratio, which is calculated as the ratio between the

number of repairs to a unit length of pipe, is commonly used as the
indicator for the impact of seismic hazard on pipelines [3]. In this
study, the seismic fragility model from the American Lifelines Alliance
(ALA) [31] is adapted to a more general form shown in Eq. (4) in
rder to model multiple types of hazards. For earthquake hazard,
istorical data collected from records of repairs to service lines and
ater mains after recorded seismic intensities are generally used to fit
regression model to estimate 𝑅𝑅 (per 1000 ft of pipe length) as a
unction of hazard intensity 𝐼𝑐 at the site of a component. For seismic
ntensity, 𝑃𝐺𝑉 (in/s) is typically used. Due to the inherent variability
f seismic intensity, there exists aleatory uncertainty about 𝑃𝐺𝑉 which
s represented by a random residual term, Eq. (8). Therefore, 𝑃𝐺𝑉 is
assumed to be a random variable. Of the collected data, pipe material,
pipe joint type, pipe diameter, and soil condition also impact the
measured 𝑅𝑅 values, so a fragility curve modification factor 𝐾 is
defined to scale the 𝑅𝑅 obtained from the regression model (Eq. (4)).
HAZUS adopts the linear model from ALA to estimate the damage to
water distribution systems given a seismic intensity from a specific
earthquake scenario [32].

𝑅𝑅 = 𝑎𝐾𝐼𝑐 (4)

In Eq. (4), 𝑎 is the regression parameter and 𝐼𝑐 is the intensity of the
event. The factor 𝐾 was originally developed for seismic events and is
assumed here to be applicable to flood hazard as well.

To reflect flood intensity, a random variable ℎ𝑓 , measured in units
of feet, represents the standing water depth in a certain location and
will reflect 𝐼𝑐 in Eq. (4). Historically, HAZUS provides floodplain extent
and utilizes flood depth to calculate the damage to above-ground com-
ponents such as pumping stations; however, recent studies document
HAZUS missing as much as 75% of flooded areas when validating
the predicted given actual flood extent of historical events [33]. The
accuracy of this methodology depends on the accuracy of the flood
depth estimates, which is largely determined by the quality of data
that can be collected in the future. Ideally, repair records after major
flood events should be collected and analyzed similarly to the existing
methodology for earthquakes to obtain more accurate values of 𝑎 and 𝐾
through regression analysis and calculate the expected 𝑅𝑅 from flood
events. With no database of records in existence yet, the initial values
for 𝑎 and 𝐾 are adjusted from earthquake scenarios for floods, and the
Bayesian updating accounts for uncertainty due to the lack of data.

The 𝑅𝑅 calculated from Eq. (4) is one of the main parameters
used to estimate the probability of pipe failure. However, Eq. (4) is
it from a relatively small sample of data points on earthquake events.
dditionally, there is no available data about pipe failures after flood
vents. The cost of collecting and analyzing such data is high due
o sensitivity and security as well as the rare occurrence of disasters.
herefore, point values are often used for 𝑎 and 𝐾 even though the
odel itself has a poor fit, especially for large observed 𝑅𝑅 values [34].
To address this limitation, epistemic uncertainty is introduced to

he coefficients 𝑎 and 𝐾, and HBM is used to handle the epistemic
ncertainty in estimating 𝑅𝑅. In the HBM, 𝑎 and 𝐾 are assumed to
e lognormal random variables with the respective uncertain means,
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Fig. 1. HBM for estimating 𝑅𝑅. Circles denote random variables. Squares denote
onstants. Shaded nodes denote observations while unshaded ones denote hidden
ariables/constants.

𝑎 and 𝜆𝐾 , that follow a normal distribution. The standard devia-
ions are assumed to be fixed at a relatively small value such that
he normal distribution is weakly-informative [35]. When no prior
nformation is available, the hyperpriors are typically assumed to be
eakly-informative distributions to build a more robust model [36].
ote that the form of HBM is the same for the two hazards and the
ifference between the two hazards lies in the calculation of hazard
ntensity 𝐼𝑐 . Modeling details of the hazard intensity 𝐼𝑐 will be covered
n Section 2.2.2. The HBM for estimating 𝑅𝑅, visualized in Fig. 1
ith the corresponding mathematical model given by Eq. (5), can
e continuously updated with new pipe repair records to ensure the
ost accurate parameters are utilized to dynamically inform resource
llocation during a disaster and for long-term resilience planning.

𝑅 ∼ 
(

𝜇𝑅𝑅, 𝜎𝑅𝑅
)

(5a)

𝑅𝑅 ∼ 
(

𝜇𝜎 , 𝜎𝜎
)

(5b)

𝑅𝑅 = 𝑎𝐾𝐼𝑐 (5c)

n 𝑎 ∼ 
(

𝜆𝑎, 𝜁𝑎
)

, ln𝐾 ∼ 
(

𝜆𝐾 , 𝜁𝐾
)

(5d)

n 𝐼𝑐 = ln 𝐼𝑐 + ln 𝜀𝐼 , ln 𝜀𝐼 ∼ 
(

𝜆𝜀, 𝜁𝜀
)

(5e)

𝑎 ∼ 
(

𝜇𝑎, 𝜎𝑎
)

, 𝜆𝐾 ∼ 
(

𝜇𝐾 , 𝜎𝐾
)

(5f)

𝜁𝑎 ∼ 
(

𝜇𝜁 , 𝜎𝜁
)

, 𝜁𝐾 ∼ 
(

𝜇𝜁 , 𝜎𝜁
)

(5g)

.2.2. Hazard intensity
The variable 𝐼𝑐 from Eq. (4) must be determined for each compo-

ent of the network to calculate individual failure probabilities. Due
o the natural variability, there exists aleatory uncertainty around the
azard intensity.
For earthquake scenarios, the hazard intensity 𝐼𝑐 can be measured in

erms of peak ground velocity 𝑃𝐺𝑉 (cm/s) or peak ground acceleration
𝐺𝐴 (cm/s2). 𝑃𝐺𝐴 and 𝑃𝐺𝑉 are estimated from their respective
ttenuation equation that models seismic intensity at a site from an
arthquake of magnitude 𝑀𝑤 and distance from the epicenter 𝑅 (km).
he attenuation equations for the median 𝑃𝐺𝑉 and 𝑃𝐺𝐴 adopted in
revious research are shown in Eqs. (6) and (7) [8,34].

log10(𝑃𝐺𝐴) = 3.79 + 0.298 × (𝑀𝑤 − 6) − 0.0536×

(𝑀𝑤 − 6)2 − log10(𝑅) − 0.00135 × 𝑅
(6)

log10(𝑃𝐺𝑉 ) = 2.01 + 0.422 × (𝑀𝑤 − 6) − 0.0373×

(𝑀𝑤 − 6)2 − log10(𝑅)
(7)

he median seismic intensity 𝑃𝐺𝑉 from Eq. (7) is used to describe
4

he damage to pipes (link components) while the median 𝑃𝐺𝐴 from
Eq. (6) is used to describe damage to facilities (node components). The
standard deviations of the residuals associated with Eqs. (6) and (7) to
apture the aleatory uncertainty around seismic intensities are typically
ssumed to be a lognormal distribution with a median value equal to
.0 and a standard deviation of 60% [8]. The intensity of a seismic
vent varies across the system and is usually modeled as a homoge-
eous two-dimensional stochastic field with a residual term [37]. The
stimation equation for the logarithmic residual of the seismic intensity
𝑃𝐺𝐴 or 𝑃𝐺𝑉 ) at the site of a component 𝑐, denoted by ln 𝐼𝑐 , is given
by Eq. (8) where 𝐼𝑐 represents the mean value of 𝐼𝑐 . In order to account
for the correlation between neighboring nodes and its influence on the
failure probability, an autocorrelation function of logarithmic residuals
is used for the seismic intensities at the site of components 𝑐𝑖 and 𝑐𝑗 .
In Eq. (9), 𝑅𝑐 refers to the distance from the site of component 𝑐 to
the epicenter, the correlation distance 𝑏 is the strength of the spatial
correlation and is typically assumed to be 30 km [37].

ln(𝜀𝐼 ) = ln

(

𝐼𝑐
𝐼𝑐

)

(8)

𝜌(ln 𝐼𝑐𝑖 , ln 𝐼𝑐𝑗 ) = exp

(

−
‖𝑅𝑐𝑖 − 𝑅𝑐𝑗 ‖

𝑏

)

(9)

The flood intensity is measured by flood depth (feet) estimated
based on the digital elevation model (DEM). The elevation of a given
location is subtracted from the maximum water surface elevation along
the cross-section of a flood basin. However, due to the slope of the
floodplain and the complexity in flow paths, estimating flood depth
using cross-section maximum flood water elevation is challenging [38].
A more accurate method to generate spatially-explicit floodwater depth
is through numerical simulation given data on the hydrological charac-
teristics and river morphology [38]. A commonly used hydrology-based
flood map application is FEMA HAZUS Flood Maps [12]. The HAZUS
Flood Model uses characteristics such as frequency, discharge, and
ground elevation to model the spatial variation in flood depth and ve-
locity. In this study, we adopt the simulation-based methodology using
HAZUS. It is important to note that HAZUS can underestimate the flood
depths by considering the precipitation in the study region without
accounting for cascading effects from upstream rivers. To offset the
underestimation, a longer return period can be considered in HAZUS
so that the simulated flood depths are approximate to observations at
the gauges within the study area. The HAZUS Flood Model is subject
to several sources of uncertainty, such as the variation in channel
and floodplain elevation in the Digital Elevation Model (DEMs) and
the variation in floodplain extent and depth in the River Hydraulic
Model [39]. To characterize the resulting uncertainty around the flood
depths, a 50% standard deviation is assumed for estimates of flood
depths. To improve the accuracy of these estimates, the average of the
estimates from two simulations can be used. If the flood depth estimates
at some components of the WDS are missing in one simulation due
to the removal of problematic reaches, the estimates from the second
simulation can be used. If the missing values from the two simulations
overlap (i.e., the data for these reaches are not available in HAZUS),
the mean of the estimates derived from elevation-based interpolation
can be used.

2.2.3. Failure probability
A WDS is represented by a network consisting of nodes and links.

Given the hazard intensity and 𝑅𝑅 estimates, a failure probability is
derived for each node and link in the WDS.

Node Failure. The physical damage to facilities in a WDS such as
elevated storage tanks or pumping stations is described using fragility
curves used in HAZUS [32]. A total of five damage states are defined,
including none (𝑑𝑠1), minor (𝑑𝑠2), moderate (𝑑𝑠3), extensive (𝑑𝑠4), and
complete (𝑑𝑠5). As an example, the fragility curve for above-ground
steel tank entering different damage states is shown in Fig. 2. In this
study, damage state 𝑑𝑠 is adopted.
5
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𝑃
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Fig. 2. Fragility curve for above-ground steel tank under earthquake hazard [32]. Failure rate represents the probability of a component reaching a specific damage state given
𝐺𝐴.
Fig. 3. Fragility curve for water facilities under flood hazard.
The seismic fragility curve is described with a log-normal distri-
ution as a function of 𝑃𝐺𝐴 given in Eq. (10) where 𝑃𝑛 describes
the failure probability of each node, 𝜆𝑃𝐺𝐴 represents the logarithmic
mean of 𝑃𝐺𝐴 that is measured in the gravitational acceleration 𝑔, 𝜁𝑃𝐺𝐴
describes the standard deviation of ln(𝑃𝐺𝐴), and 𝜙 (⋅) is the standard
normal cumulative distribution function.

𝑃𝑛 (𝑃𝐺𝐴) = 𝜙
(

ln (𝑃𝐺𝐴) − 𝜆𝑃𝐺𝐴
𝜁𝑃𝐺𝐴

)

(10)

The intensity of a flood event is described by the flood depth.
Flood fragility curves given the flood depth are typically derived from
historical data, damage survey data, or expert opinions [40]. Since
fragility curves of water facilities are not available in the literature,
historical data of the pumping stations (medium/large, above ground)
and storage tanks (all, above ground) from the HAZUS Flood Model
technical manual [12] are leveraged to fit the fragility curves presented
n Fig. 3. The two curves are used to evaluate the failure probability
of water facilities in the case study of Shelby County, TN. Note that
the failure probability of the elevated storage tanks is always 0 when
the flood depth is under 10 ft. For other types of pumping stations or
storage tanks, the fragility curves can be derived in the same manner.

Link Failure. Since the hazard intensity, 𝑃𝐺𝑉 or flood depth, varies
along a pipe, the pipe is assumed to be equally divided into 𝑚 segments
5

and the repair ratio 𝑅𝑅𝑖 is used to represent the rate at which a pipe
breaks. A Poisson distribution is used to model the number of breaks
for each segment where 𝑛 is a random variable denoting the number
of times a pipe segment breaks, 𝑅𝑅𝑖 is the rate at which this event
occurs, and 𝛥𝐿𝑖 is the pipe segment length, Eq. (11). Setting 𝑘 = 0
results in the probability that the segment is functioning. Since the
failure of one segment results in the failure of the entire pipeline, then
the probability that a pipe (link) fails, 𝑃𝑙, is the complementary of the
probability that none of the segments in that pipeline fail evaluated by
multiplying 𝑃𝐿𝑖

[𝑛 = 0] for all 𝑚 segments, Eq. (12) [34].

𝑃𝐿𝑖
[𝑛 = 𝑘] = exp

(

−𝑅𝑅𝑖 × 𝛥𝐿𝑖
)

×
(𝑅𝑅𝑖 × 𝛥𝐿𝑖)𝑘

𝑘!
(11)

𝑃𝑙 = 1 − exp

(

−
𝑚
∑

𝑖=1
𝑅𝑅𝑖 × 𝛥𝐿𝑖

)

(12)

2.3. Integrated approach for assessing network serviceability

In order to evaluate the serviceability of a water distribution net-
work under hazard uncertainty, we build a double-loop MCS to con-
sider multiple disruption scenarios and integrate the uncertainty from

component damage assessment in the network model and simulation
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Fig. 4. Flowchart of the proposed approach.
for assessing network serviceability. The hierarchical Bayesian model is
at the core of modeling component failure and the simulation captures
epistemic uncertainty in the evaluation of network serviceability. The
approach is illustrated in Fig. 4 and follows 9 steps. In step 6, the
elationships between nodes is considered directional (dependency)
nstead of bidirectional (interdependency). Therefore, the serviceability
ssessment considers the dependence of child nodes on the respective
arent node, e.g., distribution nodes/relay nodes (demand nodes) on
he storage tanks (supply nodes). When the epistemic uncertainty is
ntroduced in step 7, a distribution of the serviceability of the net-
ork is generated rather than a single point estimate of the average
erviceability described in Eq. (13). This distribution allows for an
nderstanding of the impact of uncertain model parameters on the
utcome of disruption scenarios.

1. The natural hazard scenario is generated. For the earthquake
hazard, the epicenter and magnitude of the earthquake are
6

defined. For the flood hazard, the severity of the event based on
the return period, such as a 100-year or 200-year flood event, is
determined.

2. The intensity of the natural hazard, i.e. 𝑃𝐺𝐴 or 𝑃𝐺𝑉 for earth-
quake or the standing water depth for flood at the location of
vulnerable network components, is estimated respectively.

3. A random vector of correlated hazard intensities for each com-
ponent is generated.

4. The probability of failure for each component of the network
is calculated. HBM is used to obtain the component failure
probability. For simplicity, the components are assumed to be
either fully functional or inoperable.

5. The status of a component under the hazard scenario is deter-
mined by comparing its failure probability to a random number
𝑟 ∼ 𝑈 (0, 1). If the failure probability is greater than 𝑟, then
the component is considered damaged and is removed from the

network and a subgraph of the original network is generated.
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Fig. 5. WDS of Shelby County [12].
Fig. 6. Comparison between the predictive posterior of 𝑅𝑅 (red curve) and 20 observations of 𝑅𝑅 (blue vertical line).
6. The functionality of components and network serviceability are
evaluated using the Floyd–Warshall algorithm [41], which finds
the shortest path between all pairs of nodes simultaneously. In
this algorithm, the distance between disconnected nodes is equal
to infinity. If at least one path exists from a demand node to a
source node, the demand node is considered to be functional.
7

7. Steps 3–6 are performed 𝑁2 times to develop a probability

distribution of component functionality and the network service-

ability.
8. Steps 3–7 are repeated for 𝑁1 times to capture the uncertainty in

system serviceability due to the epistemic uncertainty associated

with 𝑎 and 𝐾.
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Fig. 7. Uncertainty quantification of (a) 𝑎 and (b) 𝐾 using HBM.
Fig. 8. Functionality of relay node and failure probability of storage tanks and pumping station along with the median 𝑃𝐺𝐴.
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9. Once the functionality ratio of the demand nodes is obtained,
network serviceability, 𝑠, is evaluated using Eq. (13) where 𝑧𝑛𝑖 ∈
{0, 1} with 𝑧𝑛𝑖 = 1 indicating that demand node 𝑖 is functional;
𝑁𝑑 is the total number of demand nodes.

𝑠 =
∑𝑁𝑑

𝑖=1 𝑧𝑛𝑖
𝑁𝑑

, 𝑠 ∈ [0, 1] (13)

. Case study

.1. Network description

To illustrate the proposed approach, a case study of a real-world
DS in Shelby County [42], Tennessee is presented in this section. The
DS (Fig. 5) serves approximately one million people. The network
onsists of 6 elevated storage tanks, 9 pumping stations, 34 relay nodes,
nd 71 buried water pipes. The relay nodes are the demand nodes while
he storage tanks are the supply nodes. Since the relay nodes constitute
8

he branch points where the water pipes intersect, the damage to these e
odes is not considered in this study. The pipes installed before 1975
ere made from cast iron with molten lead joints (before 1959) or
echanical joints (1959–1975) while the pipes installed after 1975
ere made from ductile iron pipes with slip joints. The pipe diameter
anges from 6 inches to 48 inches [8].

.2. Natural hazard scenario

.2.1. Earthquake
The study area is earthquake-prone because the New Madrid Seis-
ic Zone is centered northwest to Shelby County. The maximum
robable earthquake with an exceedance probability of 2% in 50 years
enters at 35.3 N and 90.3 W [43]. The distance of the WDS com-
onents to the epicenter of the maximum probable earthquake ranges
rom 20 km to 65 km, with a mean value of approximately 40 km. Once
he earthquake scenario is defined, the median 𝑃𝐺𝐴 at a point is solely
ependent on the distance to the epicenter. Therefore, the median 𝑃𝐺𝐴
ontours in Shelby County with the default data in HAZUS given the

arthquake scenario above show a rippling shape (Fig. 8), decreasing
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Fig. 9. Failure probability of water distribution facility and functionality ratio of relay nodes under flood (The blue area is the flood zone).
a

radually from the highest value of approximately 0.6 in the northwest
orner to the lowest value of around 0.3 in the southeast corner.

.2.2. Flood hazard scenario
The Mississippi River and several smaller rivers run through Shelby

ounty, making the area particularly vulnerable to flooding. The blue
rea in Fig. 9 shows the 100-year HAZUS-derived flood zone. In order to
simulate the 2011 flood event, a 1000-year flood is simulated in HAZUS
based on historical records of river crests in Memphis [44],

3.3. Experiment setup

For damage caused by earthquakes and a damage state
𝑑𝑠5, 𝜆𝑃𝐺𝐴 =ln(1.5) is used for both water storage tanks and pumping
stations, and 𝜁𝑃𝐺𝐴 = 0.6 is used for water storage tanks while 𝜁𝑃𝐺𝐴 = 0.8
is used for pumping stations [32]. The correlation distance 𝑏 is set to 30
km for earthquakes whereas correlation is not considered in calculating
the flood depth at different sites of network components.

In calculating the repair rate of water pipes under seismic activities,
𝜇𝜆𝐾 = ln (0.5) and 𝜇𝜆𝑎 = ln (0.00187) are assumed based on the point
estimate 𝐾 = 0.5 and 𝑎 = 0.00187 from ALA. For the damage caused by
flood, 𝜇𝜆𝐾 = ln (0.5) is also assumed and the coefficient 𝜇𝑎 is assumed
to be ln (0.001) so that the magnitude of the failure probability of water
pipes under flood is close to that under earthquake. Given no prior
information, a generic weakly informative distribution [35],  (0, 1),
r a standard deviation of 1.0 is assigned to the prior or hyperprior
istributions (Eq. (14) to Eq. (17)). These assumptions are crude due
to the lack of data on 𝑅𝑅 under flood hazard. Once new data about
𝑅𝑅 become available, the assumptions can be modified to make the
distributions more informative.

𝜎𝑅𝑅 ∼  (0, 1) (14)

ln 𝜀𝐼 ∼  (0, 1) (15)

𝜆𝑎 ∼ 
(

𝜇𝜆𝑎 , 1
)

, 𝜆𝐾 ∼ 
(

𝜇𝜆𝐾 , 1
)

(16)

𝜁𝑎 ∼  (0, 1) , 𝜁𝐾 ∼  (0, 1) (17)

The proposed HBM is implemented with Stan, a probabilistic pro-
gramming language that implements full Bayesian statistical infer-
ence [35]. The No-U-Turn sampler (NUTS) [45], a variant of HMC em-
bedded in Stan, is leveraged to perform the sampling. This algorithm is
9

I

much more efficient than classical MCMC algorithms, e.g. Metropolis–
Hastings or Gibbs sampler. In performing the serviceability assessment,
𝑁1 and 𝑁2 are set to 1.0 × 103, therefore a total of 1.0 × 106 simulation
runs are conducted to obtain the mean functionality ratio of each relay
node under earthquake and flood hazard.

4. Results and discussion

4.1. Model fitness and parameter updating

To evaluate the fitness of the proposed HBM, we conduct the
posterior predictive check, i.e., simulating data given the fitted model
and comparing the replicated data to the observations [35]. The com-
parison between 20 observations of 𝑅𝑅 and the respective posterior
predictive distribution is presented in Fig. 6. The mean of the posterior
predictive distributions matches the respective observed values of 𝑅𝑅,
demonstrating the goodness of fit of the proposed model.

Further validation is presented in Fig. 7 by comparing the prior and
posterior distributions of the regression coefficients, 𝑎 and 𝐾, in the
equation used for estimating the repair rate. The posterior distribution
of 𝑎 and 𝐾 has lower variability and thinner tails, indicating reduced
uncertainty about the coefficients after Bayesian updating. Note that
the difference between the mode of the posterior (maximum a pos-
teriori) and that of the prior for 𝑎 or 𝐾 is not significant because an
informative prior, rather than a non-informative prior (e.g., the uniform
distribution), has been used for each parameter.

4.2. Serviceability assessment

As the component fragility is distinct under earthquake and flood
events, the distribution of functionality ratio under different hazards
are disparate. Fig. 10 indicates that the functionality ratios of relay
nodes are much higher under flood than under earthquake. Under
seismic hazard, the functionality ratios range between 0.4 and 0.9 while
under flood, most of the functionality ratios are close to 1.0. The reason
is that the components are more vulnerable to seismic hazard than
to flooding because during a flood event, components located at high
altitude are not inundated (Fig. 9) while under an earthquake event,
ll the components are subject to the impact of seismic waves (Fig. 8).
n particular, node 28 has a low functionality ratio under both hazards
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Fig. 10. Component functionality ratio under (a) earthquake and (b) flood.

Fig. 11. PDF of the serviceability ratio under earthquake (a) and flood (b).
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because it is only accessible from one water pipe and it is far from the
water storage tanks. In comparison, node 46 and node 47 have higher
functionality ratios because they are close to storage tanks. However,
node 47 has the lowest functionality ratio under flood hazard because
it is closely located to the river and it is accessible through only one
water pipe. As such, node functionality is dependent on the fragility
of nodes and the topology of the system. These observations indicate
that system topology is more important in determining the functionality
ratio under seismic hazard while component fragility is the dominant
factor under flood hazard.

In order to evaluate the impact of considering epistemic uncer-
tainty on the performance assessment, the serviceability PDFs with
and without epistemic uncertainty are compared under earthquake and
flood hazards, Fig. 11. Note that the aleatory uncertainty is always
present and thus should not be removed because it is inherent to the
hazard intensity. The comparison between the PDFs with epistemic
uncertainty under earthquake and flood matches the results of the
functionality ratio because the mean serviceability ratio is much higher
under flood than under earthquake. The spread of the PDF under flood,
irrespective of the uncertainty, is narrower when compared to that
under earthquake. This small variability is due to the fact that only a
small portion of components fail under flood, leading to a small number
of different subgraphs constructed by removing inoperable nodes and
links in the MCS.

The PDF of serviceability becomes wider after incorporating epis-
temic uncertainty. Using HBM to address epistemic uncertainty allows
for an improved estimation of the serviceability of WDSs. This can help
decision-makers design robust vulnerability reduction plans across a
wide range of hazard scenarios [46].

4.3. Node importance analysis

Node importance analysis is a crucial step in infrastructure man-
agement as critical nodes functionality can significantly impact the ser-
viceability of the entire network, thereby guiding decision-making on
resource allocation and prioritization of repair activities when multiple
nodes are disrupted [47]. To obtain the component importance ranking,
a method based on Kullback–Leibler (KL) divergence is adopted, which
is often used as a measure of dissimilarity between two probabil-
ity distributions in information theory. The KL divergence from one
discrete probability distribution, 𝑄(𝑥), to another discrete probability
distribution 𝑃 (𝑥) defined on the same discrete probability space  , is
iven by Eq. (18) [48].

KL(𝑃 ∥ 𝑄) = −
∑

𝑥∈
𝑃 (𝑥) log

𝑄(𝑥)
𝑃 (𝑥)

(18)

The importance of a component 𝑐𝑖 is defined to be the KL divergence
from the probability distribution of the network serviceability, 𝐹 ,
11

𝑆𝑐𝑖
f

fter removing 𝑐𝑖 (i.e., when 𝑐𝑖 is not functional or not hardened,
ence vulnerable to failure) to the distribution of serviceability, 𝐹𝑆0

,
when none of the components is removed (i.e., all components are
functional). The importance of component 𝑖, denoted by 𝑤𝑐𝑖 , can be
computed according to Eq. (19).

𝑤𝑐𝑖 = 𝐷KL(𝐹𝑠0 ∥ 𝐹𝑠𝑐𝑖
) (19)

Algorithm 1: Rank components based on KL divergence
1: Run the double-loop MCS to generate the initial distribution of
system serviceability 𝐹𝑆0

given all components with the respective
failure probability

2: for 𝑖 = 1 to 𝑁 do
3: Remove node 𝑖
4: Run the double-loop MCS to obtain the serviceability distribu-
tion 𝑆𝑐𝑖

5: Calculate component importance with Eq. Eq. (19)
6: end for
7: Sort 𝑤𝑐1 to 𝑤𝑐𝑁 in descending order

When the importance of nodes that represent storage tanks and
pumping stations is evaluated using MCS, each node is removed indi-
vidually to reveal its contribution to the decrease in the network ser-
viceability. The steps for ranking components based on KL divergence
are summarized in Algorithm 1.

The results in Fig. 12 show that the ranking of node importance
nder earthquake is different from that under flood. Under earthquake,
odes 13 and 1 have the highest influence on the overall system
erviceability while nodes 2, 12, and 3 have the least influence on the
erviceability. Under flood hazard, node 14 is by far the most important
o the system serviceability. Node 4 -10, 12 and 13 have a trivial impact
n the serviceability.

. Conclusion

This study presents a Bayesian updating framework integrated with
onte Carlo simulation and network algorithms to evaluate the perfor-
ance of critical infrastructure under uncertainty of natural hazards.
he uncertainty about component fragility due to data scarcity and
azard intensities is measured using a hierarchical Bayesian model.
hen, the uncertainty is propagated to the system level using MCS to
ssess the network serviceability under the impact of different types
f natural hazards. The proposed framework is illustrated with a case
tudy of a real-world WDS in Shelby County, Tennessee. The results
ndicate that the WDS performs differently under different hazard
cenarios. The network is more vulnerable to earthquake hazard than

lood hazard. Further, component functionality is driven by network
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topology under earthquake hazard whereas under flood hazard compo-
nent vulnerability is more important. The difference is also reflected in
the ranking of node importance under the two hazard scenarios. The
ranking of components can be used by utility managers and emergency
responders to inform the allocation of resources in disaster prepared-
ness and response. The proposed approach leveraging HBM enables
various considerations of infrastructure protection, such as modeling
the correlation between multiple hazards (e.g., the impact of earth-
quake risk on flood hazard) [49] and the integration of vulnerability
quantification into resilience planning frameworks [50].

Future work of this research include refining the model for esti-
mating the failure probability of components under the flood hazard
using available data, which can be collected from repair records or
through the use of sensing technologies that provide real-time detection
of pipe failures or leakages [51]. While the purpose of this study
is to demonstrate how HBM can be leveraged to evaluate the ser-
viceability under both aleatory and epistemic uncertainty, the current
model does not take into account the hydraulic characteristics of the
components of WDS. Future work would incorporate the pressure-
driven or demand-driven hydraulic analysis to account for the various
factors influencing WDS performance and improve the applicability of
the proposed approach. Another direction for further research is to
incorporate interdependencies among infrastructure systems into the
Bayesian updating framework for assessing the serviceability given that
WDSs are often coupled with power grids. For example, flooding caused
by water pipe breaks can damage closely located power distribution
facilities, which may cause the pumping stations to fail due to loss
of power supply. As such, the interdependency-related failures must
be included to provide a serviceability assessment of interdependent
infrastructure systems.
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