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Measuring the performance of infrastructure networks is critical to the allocation of resources before,
during, and after a system’s disruption. However, the lack of data often hinders the ability to accurately
estimate infrastructure performance, resulting in uncertainty in its evaluation which can lead to biased
estimates. To address this challenge, this study develops a Bayesian approach to measure the performance
of the infrastructure network at the component level and incorporate it in the evaluation of the system-
level serviceability. Component fragility metrics are estimated using a hierarchical Bayesian model and
then integrated into the system serviceability assessment using Monte Carlo simulation and a shortest-path
algorithm. These performance measures can be dynamically updated as more data becomes available. A case
study of the water distribution system of Shelby County in Tennessee subject to earthquake and flood hazards
is presented to illustrate the proposed approach. Results show that system topology is more important in
determining component functionality under seismic hazard while vulnerability is the dominant factor in the

case of flood hazard.

1. Introduction

Critical infrastructure systems (CISs) such as power grids, water
distribution systems, telecommunication networks, and transportation
systems provide essential services to modern society [1]. These systems
have grown in scale and complexity due to urbanization and technology
advancement. Additionally, they are increasingly threatened by a wide
range of natural (e.g., extreme weather events) and anthropogenic
(e.g., man-made attacks) hazards. The U.S. government has empha-
sized the protection of CISs by improving their ability to withstand
and recover from all hazards as they are considered paramount to
national security [2]. The protection of CISs relies on risk-informed
decision making to identify strategies for hardening, emergency re-
sponse, and restoration. To inform such decisions, it is essential to
provide a reliable assessment of the system-level performance of CISs
under different types of hazards. This study presents an approach
to assess the serviceability of CISs during disasters with a focus on
water distribution systems (WDSs) impacted by earthquakes and floods.
Water distribution systems are credited to be one of the most essential
types of infrastructure, especially during a disaster when reduced water
supply disrupts the emergency response (e.g., first-aid) and residential
and industrial activities, among others [3]. However, among the CISs
that are vulnerable to earthquake and flood [4], WDSs have been
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overlooked and undervalued in the U.S. in the past decade [5]. In
addition, research advances on WDS performance assessment have
been limited by the lack of data due to restricted access to buried
infrastructure components. While the proposed approach focuses on
WDSs, it can be adapted and applied to other types of infrastructure
networks, such as gas, oil, and power networks, given appropriate
assumptions on component operations and network flow. Significant
research advances have been made on analyzing the performance of
WDSs. However, existing modeling approaches present three main gaps
in (i) the performance evaluation, (ii) the hazard consideration, and
(iii) the uncertainty quantification, that this research is addressing.
First, existing studies have evaluated the performance of WDSs
at either the component-level or system-level separately [6]. At the
system level, Wang and O’Rourke [7] simulate the response of the WDS
under seismic hazard where system serviceability is defined as the ratio
of satisfied demand after the earthquake to total demand before the
earthquake. Another study uses a connectivity-based model to evaluate
the seismic vulnerability of WDS based on Monte Carlo simulation
(MCS) and a shortest-path algorithm [8]. Wang et al. [9] propose the
system serviceability index to evaluate the probabilistic performance of
WDSs using MCS. At the component level, Shuang et al. [10] propose a

Received 28 July 2020; Received in revised form 31 March 2021; Accepted 29 April 2021

Available online 9 June 2021
0951-8320/© 2021 Elsevier Ltd. All rights reserved.


http://www.elsevier.com/locate/ress
http://www.elsevier.com/locate/ress
mailto:hiba.baroud@vanderbilt.edu
https://doi.org/10.1016/j.ress.2021.107735
https://doi.org/10.1016/j.ress.2021.107735
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2021.107735&domain=pdf

J.-Z. Yu et al.

model to evaluate the nodal vulnerability of WDS based on topological
connectivity loss under cascading failures due to intentional attacks.

Second, most of the studies consider earthquake and intentional
attacks with fewer research studies focusing on flood hazard in the
mathematical modeling of the performance of WDSs, even though
floods have caused more damage and fatalities than any other natural
hazard in recent years [11]. Current performance analyses of WDSs un-
der floods are based on HAZUS-MH!'[13]. However, damage to buried
pipes is typically not considered in HAZUS-MH since it is assumed that
submergence of these pipes cannot occur [12]. This assumption can be
invalid as reports on the long-term recovery efforts in the wake of Hur-
ricane Katrina have shown damaged pipe infrastructure in New Orleans
for drinking water and wastewater. This finding contradicts the typical
risk analysis assumption that floods do not damage buried CISs [14]
and highlights the importance of accurately evaluating infrastructure
performance after the disruption.

The third and most significant challenge in evaluating the perfor-
mance of WDSs is the lack of data to estimate parameters such as the
component damage state and recovery rate. As a result, there exists
uncertainty about the component vulnerability, network topology, and
system serviceability of WDSs after a disruption. Uncertainty, a concept
that reflects the lack of confidence, can be categorized as either aleatory
or epistemic. Aleatory uncertainty, which stems from natural variability,
cannot be reduced. In contrast, epistemic uncertainty, which is derived
from the lack of knowledge, can be reduced to improve the model
accuracy [15]. Failing to account for the epistemic uncertainty could
lead to biased estimates of the system state, prolonging the recovery
process. It is, therefore, critical to characterize the uncertainty in the
assessment of the serviceability of disrupted infrastructure systems.
Epistemic uncertainty can be quantified using different approaches such
as interval analysis, Bayesian probability, and evidence theory [15].
Prior studies employing Bayesian approaches have primarily focused
on predicting component failure [16,17]. Bayesian networks (BNs) have
been used to predict pipe breaks [18] and have been converted from
a fault tree model to estimate the probability of a water pipe be-
ing targeted by third-party activities [17]. Other approaches integrate
Bayesian model averaging and Bayesian proportional hazard model to
predict the failure of water mains [16]. However, little work has been
conducted to assess the system-level serviceability of WDS under un-
certainty using Bayesian approaches. Although BNs have been applied
to the vulnerability assessment of other engineering systems [19,20],
leveraging BNs to assess the serviceability of WDSs with limited data is
challenging, particularly for large-scale WDSs. This is due to the lack
of information on (i) the direction of edges in the directed acyclic graph
(DAG) that represents the WDS and (ii) the conditional probability table
(CPT) associated with each parent node in the DAG.

In summary, most of the existing approaches evaluate component-
and system-level performance separately. Bayesian approaches have
been successful at capturing uncertainty of component fragility. How-
ever, system-level approaches rarely consider the uncertainty in
component-level estimations. Therefore, we propose an approach that
explicitly takes into consideration uncertainty in the combined assess-
ment of component vulnerability and system serviceability by integrat-
ing a hierarchical Bayesian model of network component fragility into
the evaluation of system-level performance of WDSs using MCS and
the shortest-path algorithm. Hierarchical Bayesian Models (HBMs) offer
advantages in data-scarce situations. The models are able to integrate
information from various sources and adapt to the structure of data,
thereby reducing the variance of estimates [21] and addressing the
challenge of specifying a prior distribution with limited data [22].

1 HAZUS-MH is a nationally applicable, standardized methodology provided
by the U.S. Federal Emergency Management Agency (FEMA) estimate the
potential loss from multiple types of hazards (earthquakes, floods, hurricanes,
and tsunamis), and visualize the impact of such hazards [12].
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HBMs have been widely applied to risk and reliability analysis of
different engineering systems [22-24]. In particular, Yan and Haimes
[22] demonstrated the ability of HBMs to improve estimate accuracy
through "strength borrowing" by pooling data from similar and related
systems and applying HBMs to handle the lack of data in risk-based
system analysis.

This research improves the state-of-the-art in the performance as-
sessment of CISs by making the following contributions:

1. An approach where both epistemic uncertainty and aleatory
uncertainty about the component failure probability are mod-
eled. Epistemic uncertainty is rarely taken into account in prior
studies that use MCS [25] or entropy-based methods [26,27]
to analyze the vulnerability and reliability of WDSs under un-
certainty. This study models the epistemic uncertainty using
Bayesian updating of parameters and their distributions.

2. A method founded in the hierarchical Bayesian model (HBM) to
address challenges of data scarcity, leverage additional data,
and update the probabilistic evaluation of infrastructure perfor-
mance. While HBM has been widely used in risk and reliabil-
ity analysis, few studies handle the combination of epistemic
and aleatory uncertainty which is frequently encountered in
infrastructure performance modeling.

3. A method to incorporate Bayesian updating of fragility formula-
tions of damage to infrastructure components under earthquake
and flood hazards. Updated component fragility is integrated
into the serviceability assessment of infrastructure systems.

The rest of this paper is organized as follows. Section 2 introduces
the methodology, including the hierarchical Bayesian models, compo-
nent failure estimation methods, and the proposed integrated approach
for evaluating network serviceability based on MCS, and Section 3
describes the case study of the WDS in Shelby County, Tennessee,
with the results presented in Section 4. Finally, Section 5 provides
concluding remarks and discussions of future work.

2. Methodology

This section presents the methods that comprise the proposed ap-
proach with a focus on WDSs. The section starts with an overview of
Bayesian methods (Section 2.1), followed by a description of compo-
nent damage assessment (Section 2.2) that has been adapted in this
study using HBM to account for uncertainty (Section 2.2.1), and ends
with a description of the proposed framework integrating all these
methods (Section 2.3).

The following notations are used in this research.

a Regression coefficient in the formula for calculating
repair rate.

b Correlation distance.

A generic network component.

Damage state i, i =1,...,5.

Gravitational acceleration.

Standing water depth.

Number of segments in a pipe segment.

Number of pipe breaks within a segment.

Network serviceability.

Importance of a component to the network service-

ability.

z, Binary variable indicating the functionality of a
demand node.

Qo
o
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Probability distribution of the network serviceability
when all components are functional.

F, Probability distribution of the network serviceability
when component c¢ is removed.

Intensity of a hazardous event at the site of
component c.

K Scaling parameter for calculating repair rate.

M, Magnitude of an earthquake.

Ny Number of demand nodes.
P, Failure probability of a pipe (link).
P, Failure probability of a node.

PGV  Peak ground velocity.
PGA  Peak ground acceleration.
RR Repair rate of a pipe per 1000 ft.

R Distance to the epicenter.

U, ¢ Mean and standard deviation of a normal distribution.
AL Mean and standard deviation of the underlying
normal distribution of a log-normal variable.

¢ Hyperparameters.
0 Parameters of interest.
D Data.

AL;

1

Length of pipe segment L,.
2.1. Bayeslan updating and hierarchical Bayesian model

A Bayesian approach follows Bayes’ theorem to update the estimate
of the parameters of interest. Given a prior distribution of parameters
(variables), p(6), and a data likelihood function, p(D|0), the posterior
density, p(0|D), is given by Eq. (1).

p(O)p(D|6)
(D)

A Bayesian model is dynamically updated where the prior distribu-

tion is iteratively updated with the informative posterior distribution

obtained using existing data as new data become available.

Bayesian approaches have been criticized for the potential subjectiv-
ity in specifying the priors when the physical basis or scientific model to
justify the prior distribution is lacking [28]. When data is limited, HBM
alleviates the subjectivity in assigning the prior distributions. Specifi-
cally, HBMs take into account the uncertainty around the parameters
of the prior distribution by adding another layer of Bayesian inference.
Instead of assigning a point value to the distribution parameters of
0, a hyperprior, represented by ¢, is used to quantify the uncertainty
around 6. According to the marginal posterior of ¢ shown in Eq. (3), ¢
is now partially dependent on the data rather than being an assumed
value [22].

p(0, ¢|D) « p(D|6) p(6l¢) P(¢) @
N~~~
likelihood  prior hyperprior

/11(9,¢|D)d9°</p(DIG)p(GItI’)P(tIJ)d@ 3)

pOID) = x p(0)p(D|6) @

p(P|D) =

Since Eq. (2) rarely has a closed-form solution, simulation tech-
niques are typically leveraged to generate samples of the posterior
distributions of interest. Markov Chain Monte Carlo (MCMC) methods
such as the Metropolis—Hastings algorithm, Gibbs sampling, and Hamil-
ton Monte Carlo (HMC) have been developed to perform sampling
efficiently [29,30].

2.2. Component damage assessment

This section describes the data, parameters, and models used to
evaluate the damage at each WDS component under earthquake and
flood hazards. To measure the impact of a hazard (1,), the repair ratio
(RR) is used for pipelines (links), and fragility curves are used for
facilities (nodes). The probability of node failure is directly evaluated
using fragility curves and the simulated hazard intensity (I,). However,
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the probability of link failure requires the estimation of RR as an
input (Section 2.2.3). To evaluate RR, prior studies have adopted a
linear regression model as a function of hazard intensity (I,) with
deterministic coefficients estimated using a small sample of data from
historical events. We propose to adapt this approach and use HBM
to calculate RR such that the epistemic uncertainty in the estimated
coefficients and the aleatory uncertainty in the hazard intensity are
addressed. The details of Bayesian updating for RR are provided in
Section 2.2.1 and the process of hazard simulation is provided in
Section 2.2.2.

2.2.1. Repair ratio estimation using HBM

The repair ratio, which is calculated as the ratio between the
number of repairs to a unit length of pipe, is commonly used as the
indicator for the impact of seismic hazard on pipelines [3]. In this
study, the seismic fragility model from the American Lifelines Alliance
(ALA) [31] is adapted to a more general form shown in Eq. (4) in
order to model multiple types of hazards. For earthquake hazard,
historical data collected from records of repairs to service lines and
water mains after recorded seismic intensities are generally used to fit
a regression model to estimate RR (per 1000 ft of pipe length) as a
function of hazard intensity I, at the site of a component. For seismic
intensity, PGV (in/s) is typically used. Due to the inherent variability
of seismic intensity, there exists aleatory uncertainty about PGV which
is represented by a random residual term, Eq. (8). Therefore, PGV is
assumed to be a random variable. Of the collected data, pipe material,
pipe joint type, pipe diameter, and soil condition also impact the
measured RR values, so a fragility curve modification factor K is
defined to scale the RR obtained from the regression model (Eq. (4)).
HAZUS adopts the linear model from ALA to estimate the damage to
water distribution systems given a seismic intensity from a specific
earthquake scenario [32].

RR =aK]I, 4)

In Eq. (4), a is the regression parameter and I, is the intensity of the
event. The factor K was originally developed for seismic events and is
assumed here to be applicable to flood hazard as well.

To reflect flood intensity, a random variable h,, measured in units
of feet, represents the standing water depth in a certain location and
will reflect I, in Eq. (4). Historically, HAZUS provides floodplain extent
and utilizes flood depth to calculate the damage to above-ground com-
ponents such as pumping stations; however, recent studies document
HAZUS missing as much as 75% of flooded areas when validating
the predicted given actual flood extent of historical events [33]. The
accuracy of this methodology depends on the accuracy of the flood
depth estimates, which is largely determined by the quality of data
that can be collected in the future. Ideally, repair records after major
flood events should be collected and analyzed similarly to the existing
methodology for earthquakes to obtain more accurate values of a and K
through regression analysis and calculate the expected RR from flood
events. With no database of records in existence yet, the initial values
for a and K are adjusted from earthquake scenarios for floods, and the
Bayesian updating accounts for uncertainty due to the lack of data.

The RR calculated from Eq. (4) is one of the main parameters
used to estimate the probability of pipe failure. However, Eq. (4) is
fit from a relatively small sample of data points on earthquake events.
Additionally, there is no available data about pipe failures after flood
events. The cost of collecting and analyzing such data is high due
to sensitivity and security as well as the rare occurrence of disasters.
Therefore, point values are often used for a and K even though the
model itself has a poor fit, especially for large observed RR values [34].

To address this limitation, epistemic uncertainty is introduced to
the coefficients « and K, and HBM is used to handle the epistemic
uncertainty in estimating RR. In the HBM, « and K are assumed to
be lognormal random variables with the respective uncertain means,
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Fig. 1. HBM for estimating RR. Circles denote random variables. Squares denote
constants. Shaded nodes denote observations while unshaded ones denote hidden
variables/constants.

A, and Ag, that follow a normal distribution. The standard devia-
tions are assumed to be fixed at a relatively small value such that
the normal distribution is weakly-informative [35]. When no prior
information is available, the hyperpriors are typically assumed to be
weakly-informative distributions to build a more robust model [36].
Note that the form of HBM is the same for the two hazards and the
difference between the two hazards lies in the calculation of hazard
intensity 7.. Modeling details of the hazard intensity I, will be covered
in Section 2.2.2. The HBM for estimating RR, visualized in Fig. 1
with the corresponding mathematical model given by Eq. (5), can
be continuously updated with new pipe repair records to ensure the
most accurate parameters are utilized to dynamically inform resource
allocation during a disaster and for long-term resilience planning.

RR~ N (4gr-0rg) (5a)
orr ~ N (#5:0,) (5b)
Hpr = aKI, (50)
Ina~N(4,.¢,), nK ~ N (Ag, k) (5d)
Inl, =Inl, +1Ineg,, lne,~_/\/'(/1£,§£) (5e)
Ao~ N (Hgr04) s A ~ N (g, 0k) (50
Lo~ N (ugsog) s Cx ~ N (mg.o) (58)

2.2.2. Hazard intensity

The variable I, from Eq. (4) must be determined for each compo-
nent of the network to calculate individual failure probabilities. Due
to the natural variability, there exists aleatory uncertainty around the
hazard intensity.

For earthquake scenarios, the hazard intensity I. can be measured in
terms of peak ground velocity PGV (cm/s) or peak ground acceleration
PGA (cm/s®). PGA and PGV are estimated from their respective
attenuation equation that models seismic intensity at a site from an
earthquake of magnitude M,, and distance from the epicenter R (km).
The attenuation equations for the median PGV and PGA adopted in
previous research are shown in Egs. (6) and (7) [8,34].

log,o(PGA) = 3.79 + 0.298 x (M,, — 6) — 0.0536x

(M, — 6)> —log,o(R) —0.00135 x R
log,o(PGV) = 2.01 + 0.422 X (M, — 6) — 0.0373x

(M, — 6)> —log,o(R)

(6)

@)

The median seismic intensity PGV from Eq. (7) is used to describe
the damage to pipes (link components) while the median PGA from
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Eq. (6) is used to describe damage to facilities (node components). The
standard deviations of the residuals associated with Egs. (6) and (7) to
capture the aleatory uncertainty around seismic intensities are typically
assumed to be a lognormal distribution with a median value equal to
1.0 and a standard deviation of 60% [8]. The intensity of a seismic
event varies across the system and is usually modeled as a homoge-
neous two-dimensional stochastic field with a residual term [37]. The
estimation equation for the logarithmic residual of the seismic intensity
(PGA or PGV) at the site of a component ¢, denoted by In I, is given
by Eq. (8) where T, represents the mean value of 1,. In order to account
for the correlation between neighboring nodes and its influence on the
failure probability, an autocorrelation function of logarithmic residuals
is used for the seismic intensities at the site of components ¢; and c;.
In Eq. (9), R, refers to the distance from the site of component ¢ to
the epicenter, the correlation distance b is the strength of the spatial
correlation and is typically assumed to be 30 km [37].

IC
In(e;) =In <:> (8)
IC

”Rci - ch ”
p(lan,lnIc/):exp —— 9

The flood intensity is measured by flood depth (feet) estimated
based on the digital elevation model (DEM). The elevation of a given
location is subtracted from the maximum water surface elevation along
the cross-section of a flood basin. However, due to the slope of the
floodplain and the complexity in flow paths, estimating flood depth
using cross-section maximum flood water elevation is challenging [38].
A more accurate method to generate spatially-explicit floodwater depth
is through numerical simulation given data on the hydrological charac-
teristics and river morphology [38]. A commonly used hydrology-based
flood map application is FEMA HAZUS Flood Maps [12]. The HAZUS
Flood Model uses characteristics such as frequency, discharge, and
ground elevation to model the spatial variation in flood depth and ve-
locity. In this study, we adopt the simulation-based methodology using
HAZUS. It is important to note that HAZUS can underestimate the flood
depths by considering the precipitation in the study region without
accounting for cascading effects from upstream rivers. To offset the
underestimation, a longer return period can be considered in HAZUS
so that the simulated flood depths are approximate to observations at
the gauges within the study area. The HAZUS Flood Model is subject
to several sources of uncertainty, such as the variation in channel
and floodplain elevation in the Digital Elevation Model (DEMs) and
the variation in floodplain extent and depth in the River Hydraulic
Model [39]. To characterize the resulting uncertainty around the flood
depths, a 50% standard deviation is assumed for estimates of flood
depths. To improve the accuracy of these estimates, the average of the
estimates from two simulations can be used. If the flood depth estimates
at some components of the WDS are missing in one simulation due
to the removal of problematic reaches, the estimates from the second
simulation can be used. If the missing values from the two simulations
overlap (i.e., the data for these reaches are not available in HAZUS),
the mean of the estimates derived from elevation-based interpolation
can be used.

2.2.3. Failure probability

A WDS is represented by a network consisting of nodes and links.
Given the hazard intensity and RR estimates, a failure probability is
derived for each node and link in the WDS.

Node Failure. The physical damage to facilities in a WDS such as
elevated storage tanks or pumping stations is described using fragility
curves used in HAZUS [32]. A total of five damage states are defined,
including none (ds;), minor (ds,), moderate (ds;), extensive (ds,), and
complete (dss). As an example, the fragility curve for above-ground
steel tank entering different damage states is shown in Fig. 2. In this
study, damage state ds5 is adopted.
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Fig. 2. Fragility curve for above-ground steel tank under earthquake hazard [32]. Failure rate represents the probability of a component reaching a specific damage state given
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Fig. 3. Fragility curve for water facilities under flood hazard.

The seismic fragility curve is described with a log-normal distri-
bution as a function of PGA given in Eq. (10) where P, describes
the failure probability of each node, ip;, represents the logarithmic
mean of PG A that is measured in the gravitational acceleration g, {pg4
describes the standard deviation of In(PGA), and ¢ (-) is the standard
normal cumulative distribution function.

In(PGA) — Apga >
$pGa

The intensity of a flood event is described by the flood depth.
Flood fragility curves given the flood depth are typically derived from
historical data, damage survey data, or expert opinions [40]. Since
fragility curves of water facilities are not available in the literature,
historical data of the pumping stations (medium/large, above ground)
and storage tanks (all, above ground) from the HAZUS Flood Model
technical manual [12] are leveraged to fit the fragility curves presented
in Fig. 3. The two curves are used to evaluate the failure probability
of water facilities in the case study of Shelby County, TN. Note that
the failure probability of the elevated storage tanks is always 0 when
the flood depth is under 10 ft. For other types of pumping stations or
storage tanks, the fragility curves can be derived in the same manner.

Link Failure. Since the hazard intensity, PGV or flood depth, varies
along a pipe, the pipe is assumed to be equally divided into m segments

P,(PGA)=¢ < (10)

and the repair ratio RR; is used to represent the rate at which a pipe
breaks. A Poisson distribution is used to model the number of breaks
for each segment where » is a random variable denoting the number
of times a pipe segment breaks, RR; is the rate at which this event
occurs, and AL; is the pipe segment length, Eq. (11). Setting k = 0
results in the probability that the segment is functioning. Since the
failure of one segment results in the failure of the entire pipeline, then
the probability that a pipe (link) fails, P, is the complementary of the
probability that none of the segments in that pipeline fail evaluated by
multiplying Py [n = 0] for all m segments, Eq. (12) [34].

(RR; X AL;)¥

0 an

Py [n = k] =exp (—~RR; X AL;) X

m
f’,:l—exp(—ZRR,-xAL,-)

i=1

12)

2.3. Integrated approach for assessing network serviceability

In order to evaluate the serviceability of a water distribution net-
work under hazard uncertainty, we build a double-loop MCS to con-
sider multiple disruption scenarios and integrate the uncertainty from
component damage assessment in the network model and simulation
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Fig. 4. Flowchart of the proposed approach.

for assessing network serviceability. The hierarchical Bayesian model is
at the core of modeling component failure and the simulation captures
epistemic uncertainty in the evaluation of network serviceability. The
approach is illustrated in Fig. 4 and follows 9 steps. In step 6, the
relationships between nodes is considered directional (dependency)
instead of bidirectional (interdependency). Therefore, the serviceability
assessment considers the dependence of child nodes on the respective
parent node, e.g., distribution nodes/relay nodes (demand nodes) on
the storage tanks (supply nodes). When the epistemic uncertainty is
introduced in step 7, a distribution of the serviceability of the net-
work is generated rather than a single point estimate of the average
serviceability described in Eq. (13). This distribution allows for an
understanding of the impact of uncertain model parameters on the
outcome of disruption scenarios.

1. The natural hazard scenario is generated. For the earthquake
hazard, the epicenter and magnitude of the earthquake are

defined. For the flood hazard, the severity of the event based on
the return period, such as a 100-year or 200-year flood event, is
determined.

. The intensity of the natural hazard, i.e. PGA or PGV for earth-

quake or the standing water depth for flood at the location of
vulnerable network components, is estimated respectively.

. A random vector of correlated hazard intensities for each com-

ponent is generated.

. The probability of failure for each component of the network

is calculated. HBM is used to obtain the component failure
probability. For simplicity, the components are assumed to be
either fully functional or inoperable.

. The status of a component under the hazard scenario is deter-

mined by comparing its failure probability to a random number
r ~ U(0,1). If the failure probability is greater than r, then
the component is considered damaged and is removed from the
network and a subgraph of the original network is generated.
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6. The functionality of components and network serviceability are 7. Steps 3-6 are performed N, times to develop a probability
evaluated using the Floyd-Warshall algorithm [41], which finds distribution of component functionality and the network service-
the shortest path between all pairs of nodes simultaneously. In ability.
this algorithm, the distance between disconnected nodes is equal 8. Steps 3-7 are repeated for N, times to capture the uncertainty in
to infinity. If at least one path exists from a demand node to a system serviceability due to the epistemic uncertainty associated
source node, the demand node is considered to be functional. with a and K.
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9. Once the functionality ratio of the demand nodes is obtained,
network serviceability, s, is evaluated using Eq. (13) where z, €
{0,1} with z,, =1 indicating that demand node i is functional;
N, is the total number of demand nodes.

Tz,
s=2=L0 s e0,1) 13)
Ny

3. Case study
3.1. Network description

To illustrate the proposed approach, a case study of a real-world
WDS in Shelby County [42], Tennessee is presented in this section. The
WDS (Fig. 5) serves approximately one million people. The network
consists of 6 elevated storage tanks, 9 pumping stations, 34 relay nodes,
and 71 buried water pipes. The relay nodes are the demand nodes while
the storage tanks are the supply nodes. Since the relay nodes constitute
the branch points where the water pipes intersect, the damage to these

nodes is not considered in this study. The pipes installed before 1975
were made from cast iron with molten lead joints (before 1959) or
mechanical joints (1959-1975) while the pipes installed after 1975
were made from ductile iron pipes with slip joints. The pipe diameter
ranges from 6 inches to 48 inches [8].

3.2. Natural hazard scenario

3.2.1. Earthquake

The study area is earthquake-prone because the New Madrid Seis-
mic Zone is centered northwest to Shelby County. The maximum
probable earthquake with an exceedance probability of 2% in 50 years
centers at 35.3 N and 90.3 W [43]. The distance of the WDS com-
ponents to the epicenter of the maximum probable earthquake ranges
from 20 km to 65 km, with a mean value of approximately 40 km. Once
the earthquake scenario is defined, the median PG A at a point is solely
dependent on the distance to the epicenter. Therefore, the median PGA
contours in Shelby County with the default data in HAZUS given the
earthquake scenario above show a rippling shape (Fig. 8), decreasing
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Fig. 9. Failure probability of water distribution facility and functionality ratio of relay nodes under flood (The blue area is the flood zone).

gradually from the highest value of approximately 0.6 in the northwest
corner to the lowest value of around 0.3 in the southeast corner.

3.2.2. Flood hazard scenario

The Mississippi River and several smaller rivers run through Shelby
County, making the area particularly vulnerable to flooding. The blue
area in Fig. 9 shows the 100-year HAZUS-derived flood zone. In order to
simulate the 2011 flood event, a 1000-year flood is simulated in HAZUS
based on historical records of river crests in Memphis [44],

3.3. Experiment setup

For damage caused by earthquakes and a damage state
dss, Apga =In(1.5) is used for both water storage tanks and pumping
stations, and ¢pg 4 = 0.6 is used for water storage tanks while {p;4 = 0.8
is used for pumping stations [32]. The correlation distance b is set to 30
km for earthquakes whereas correlation is not considered in calculating
the flood depth at different sites of network components.

In calculating the repair rate of water pipes under seismic activities,
Hiy = In(0.5) and Hy, = In(0.00187) are assumed based on the point
estimate K = 0.5 and a = 0.00187 from ALA. For the damage caused by
flood, u i = 1n(0.5) is also assumed and the coefficient u, is assumed
to be In (0.001) so that the magnitude of the failure probability of water
pipes under flood is close to that under earthquake. Given no prior
information, a generic weakly informative distribution [35], N (0, 1),
or a standard deviation of 1.0 is assigned to the prior or hyperprior
distributions (Eq. (14) to Eq. (17)). These assumptions are crude due
to the lack of data on RR under flood hazard. Once new data about
RR become available, the assumptions can be modified to make the
distributions more informative.

ORR ~ N(0,1) 14)
Ing; ~ N (0,1) (15)
/1a~f\f<m,,’1), AKNN(M,@I) (16)
i~ N O, &g ~N (O, 1) a7

The proposed HBM is implemented with Stan, a probabilistic pro-
gramming language that implements full Bayesian statistical infer-
ence [35]. The No-U-Turn sampler (NUTS) [45], a variant of HMC em-
bedded in Stan, is leveraged to perform the sampling. This algorithm is

much more efficient than classical MCMC algorithms, e.g. Metropolis—
Hastings or Gibbs sampler. In performing the serviceability assessment,
N, and N, are set to 1.0 x 10, therefore a total of 1.0 x 10° simulation
runs are conducted to obtain the mean functionality ratio of each relay
node under earthquake and flood hazard.

4. Results and discussion
4.1. Model fitness and parameter updating

To evaluate the fitness of the proposed HBM, we conduct the
posterior predictive check, i.e., simulating data given the fitted model
and comparing the replicated data to the observations [35]. The com-
parison between 20 observations of RR and the respective posterior
predictive distribution is presented in Fig. 6. The mean of the posterior
predictive distributions matches the respective observed values of RR,
demonstrating the goodness of fit of the proposed model.

Further validation is presented in Fig. 7 by comparing the prior and
posterior distributions of the regression coefficients, a and K, in the
equation used for estimating the repair rate. The posterior distribution
of a and K has lower variability and thinner tails, indicating reduced
uncertainty about the coefficients after Bayesian updating. Note that
the difference between the mode of the posterior (maximum a pos-
teriori) and that of the prior for a or K is not significant because an
informative prior, rather than a non-informative prior (e.g., the uniform
distribution), has been used for each parameter.

4.2. Serviceability assessment

As the component fragility is distinct under earthquake and flood
events, the distribution of functionality ratio under different hazards
are disparate. Fig. 10 indicates that the functionality ratios of relay
nodes are much higher under flood than under earthquake. Under
seismic hazard, the functionality ratios range between 0.4 and 0.9 while
under flood, most of the functionality ratios are close to 1.0. The reason
is that the components are more vulnerable to seismic hazard than
to flooding because during a flood event, components located at high
altitude are not inundated (Fig. 9) while under an earthquake event,
all the components are subject to the impact of seismic waves (Fig. 8).
In particular, node 28 has a low functionality ratio under both hazards
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Fig. 12. Node importance under earthquake

because it is only accessible from one water pipe and it is far from the
water storage tanks. In comparison, node 46 and node 47 have higher
functionality ratios because they are close to storage tanks. However,
node 47 has the lowest functionality ratio under flood hazard because
it is closely located to the river and it is accessible through only one
water pipe. As such, node functionality is dependent on the fragility
of nodes and the topology of the system. These observations indicate
that system topology is more important in determining the functionality
ratio under seismic hazard while component fragility is the dominant
factor under flood hazard.

In order to evaluate the impact of considering epistemic uncer-
tainty on the performance assessment, the serviceability PDFs with
and without epistemic uncertainty are compared under earthquake and
flood hazards, Fig. 11. Note that the aleatory uncertainty is always
present and thus should not be removed because it is inherent to the
hazard intensity. The comparison between the PDFs with epistemic
uncertainty under earthquake and flood matches the results of the
functionality ratio because the mean serviceability ratio is much higher
under flood than under earthquake. The spread of the PDF under flood,
irrespective of the uncertainty, is narrower when compared to that
under earthquake. This small variability is due to the fact that only a
small portion of components fail under flood, leading to a small number
of different subgraphs constructed by removing inoperable nodes and
links in the MCS.

The PDF of serviceability becomes wider after incorporating epis-
temic uncertainty. Using HBM to address epistemic uncertainty allows
for an improved estimation of the serviceability of WDSs. This can help
decision-makers design robust vulnerability reduction plans across a
wide range of hazard scenarios [46].

4.3. Node importance analysis

Node importance analysis is a crucial step in infrastructure man-
agement as critical nodes functionality can significantly impact the ser-
viceability of the entire network, thereby guiding decision-making on
resource allocation and prioritization of repair activities when multiple
nodes are disrupted [47]. To obtain the component importance ranking,
a method based on Kullback-Leibler (KL) divergence is adopted, which
is often used as a measure of dissimilarity between two probabil-
ity distributions in information theory. The KL divergence from one
discrete probability distribution, Q(x), to another discrete probability
distribution P(x) defined on the same discrete probability space X, is
given by Eq. (18) [48].

O(x)
P(x)

Dy (Pl Q)= P(x)log

xeX

(18)

The importance of a component ¢; is defined to be the KL divergence
from the probability distribution of the network serviceability, F, s,

11
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after removing ¢; (i.e., when ¢; is not functional or not hardened,
hence vulnerable to failure) to the distribution of serviceability, Fg,s
when none of the components is removed (i.e., all components are
functional). The importance of component i, denoted by w,, can be
computed according to Eq. (19).

w,, = Dy (F, || ) (19)

Algorithm 1: Rank components based on KL divergence

1: Run the double-loop MCS to generate the initial distribution of
system serviceability Fg, given all components with the respective
failure probability

2: fori=1to N do

3 Remove node i
4: Run the double-loop MCS to obtain the serviceability distribu-
tion S,

5: Calculate component importance with Eq. Eq. (19)
6: end for
7: Sort w,, to w,, in descending order

When the importance of nodes that represent storage tanks and
pumping stations is evaluated using MCS, each node is removed indi-
vidually to reveal its contribution to the decrease in the network ser-
viceability. The steps for ranking components based on KL divergence
are summarized in Algorithm 1.

The results in Fig. 12 show that the ranking of node importance
under earthquake is different from that under flood. Under earthquake,
nodes 13 and 1 have the highest influence on the overall system
serviceability while nodes 2, 12, and 3 have the least influence on the
serviceability. Under flood hazard, node 14 is by far the most important
to the system serviceability. Node 4 -10, 12 and 13 have a trivial impact
on the serviceability.

5. Conclusion

This study presents a Bayesian updating framework integrated with
Monte Carlo simulation and network algorithms to evaluate the perfor-
mance of critical infrastructure under uncertainty of natural hazards.
The uncertainty about component fragility due to data scarcity and
hazard intensities is measured using a hierarchical Bayesian model.
Then, the uncertainty is propagated to the system level using MCS to
assess the network serviceability under the impact of different types
of natural hazards. The proposed framework is illustrated with a case
study of a real-world WDS in Shelby County, Tennessee. The results
indicate that the WDS performs differently under different hazard
scenarios. The network is more vulnerable to earthquake hazard than
flood hazard. Further, component functionality is driven by network
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topology under earthquake hazard whereas under flood hazard compo-
nent vulnerability is more important. The difference is also reflected in
the ranking of node importance under the two hazard scenarios. The
ranking of components can be used by utility managers and emergency
responders to inform the allocation of resources in disaster prepared-
ness and response. The proposed approach leveraging HBM enables
various considerations of infrastructure protection, such as modeling
the correlation between multiple hazards (e.g., the impact of earth-
quake risk on flood hazard) [49] and the integration of vulnerability
quantification into resilience planning frameworks [50].

Future work of this research include refining the model for esti-
mating the failure probability of components under the flood hazard
using available data, which can be collected from repair records or
through the use of sensing technologies that provide real-time detection
of pipe failures or leakages [51]. While the purpose of this study
is to demonstrate how HBM can be leveraged to evaluate the ser-
viceability under both aleatory and epistemic uncertainty, the current
model does not take into account the hydraulic characteristics of the
components of WDS. Future work would incorporate the pressure-
driven or demand-driven hydraulic analysis to account for the various
factors influencing WDS performance and improve the applicability of
the proposed approach. Another direction for further research is to
incorporate interdependencies among infrastructure systems into the
Bayesian updating framework for assessing the serviceability given that
WDSs are often coupled with power grids. For example, flooding caused
by water pipe breaks can damage closely located power distribution
facilities, which may cause the pumping stations to fail due to loss
of power supply. As such, the interdependency-related failures must
be included to provide a serviceability assessment of interdependent
infrastructure systems.
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