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Abstract. We study the Lagrangian flow associated to velocity fields arising from various models
of stochastic fluid mechanics. We prove that in many circumstances, these flows are chaotic, that
is, the top Lyapunov exponent is strictly positive (almost surely, all particle trajectories are simul-
taneously exponentially sensitive with respect to initial conditions). Our main results are for the
Navier-Stokes equations on T2 and the hyper-viscous regularized Navier-Stokes equations on T3
(at arbitrary fixed Reynolds number and hyper-viscosity parameters), subject to white-in-time,
H*-in-space stochastic forcing which is nondegenerate at high frequencies. Using these results,
we further make a mathematically rigorous study of “passive scalar turbulence”. To this end, we
study statistically stationary solutions to the passive scalar advection-diffusion advected by one of
these velocity fields and subjected to a white-in-time random source. We show that the chaotic
behavior of Lagrangian dynamics implies a type of anomalous dissipation in the limit of vanishing
diffusivity, which in turn, implies Yaglom’s law of scalar turbulence — the universal scaling law anal-
ogous to the Kolmogorov 4/5 law. Key features of our study are the use of tools from ergodic theory
and random dynamical systems in infinite dimensions, namely the Multiplicative Ergodic Theorem
and a version of Furstenberg’s Criterion, combined with hypoellipticity via Malliavin calculus and
approximate control arguments.
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1. Introduction and outline

In this paper, we study the stochastic flow of diffeomorphisms ¢? : Td — Td, t>0,
defined by the random ODE

d
EW(X) =u (@' (x), ¢°(x) = x. (1.1)

Here, the random velocity field u; : T¢ — R¥ at time ¢ > 0 evolves according to one of
several stochastically-forced fluid mechanics models, for example, the 2D Navier—Stokes
at fixed (but arbitrary) inverse Reynolds number v > 0 on T?2:

8tut+ut'vutZ_th+UAut+QWt, V-ut=0,

where p; denotes the pressure at time ¢ and Q W, is a white-in-time, colored-in-space
Gaussian process described more precisely below (Section 1.1.1).

It is expected (see for instance [35,48]) that when u; evolves according to either the
Stokes equations (i.e., zero Reynolds number) or Navier—Stokes at arbitrary Reynolds
number, the corresponding Lagrangian flows will generically be chaotic in terms of sen-
sitivity with respect to initial conditions. This phenomenon is sometimes referred to as
Lagrangian chaos. The primary objective of the present paper is to verify this by proving
that the dynamical system defined via (1.1) possesses a strictly positive Lyapunov expo-
nent: that is, there exists a constant AT > 0, depending on the parameters of the relevant
Stokes or Navier—Stokes equation, such that for every x € T¢ and any initial vector field
in the support of the stationary measure p for the process (u,), we have that

1
lim —1log|Dy¢'| = AT >0 holds with probability 1.
t—oo

Here, D, ¢' refers to the Jacobian matrix of ¢* : T4 — T< taken at x. This implies that
almost everywhere in T¢ and with probability 1, nearby particles are separated at an
exponentially fast rate by the Lagrangian flow ¢’.

The study of the statistical behavior of a Lagrangian particle in a random flow has
extensively been studied in the mathematics and physics literature, see for instance [35,
48,49,79,81] and references therein. However, for velocities that are continuous in time
and solve physical fluid models (like Stokes or Navier—Stokes), there does not appear to
be any rigorous results proving Lagrangian chaos.

We further apply our Lagrangian chaos results to the “scalar turbulence” problem in
the Batchelor regime of a passive scalar advected by fluid at fixed Reynolds’ number
in the limit of vanishing molecular diffusivity (see, e.g., [11,48, 107] and the references
therein for physics literature). This problem is both of intrinsic physical interest due to its
relevance in numerous applications [107] as well as of mathematical interest, as it seems
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to represent the simplest physical system in fluid mechanics that displays “turbulent”
behavior (see Section 1.2.2 for more precise discussion). In this manuscript, we prove
that statistically stationary solutions of the passive scalar advection-diffusion equation
(with random velocity fields given by the stochastic fluid models) obey the fundamental
universal scaling law predicted by Yaglom in 1949 [110] in the vanishing diffusivity limit.
Yaglom’s law is the passive scalar analogue of the Kolmogorov 4/5 law — or perhaps more
accurately, the closely related 4/3 law; see [55] and the references therein. See Section 1.2
below for rigorous statements.

We also mention the authors’ follow-up works [14—16] building off the results of this
manuscript. In summary, these establish a proof of Batchelor’s law for the power spec-
trum of a statistically stationary passive scalar in the Batchelor regime (for more details,
see Remark 1.21). In comparison with hydrodynamic turbulence, this is the Batchelor
regime analogue of the Kolmogorov —5/3 power law for the power spectral density of
a turbulent fluid. To our knowledge, the proof of Yaglom’s law in this manuscript and that
of Batchelor’s law in [16] are the first rigorous proof of any universal scaling or power
spectrum laws in fluid mechanics for velocities arising from the Stokes or Navier—Stokes
equations.

1.1. Setup and assumptions

1.1.1. Probabilistic framework. Let T¢ = [0,27]¢ denote the period box. Following the
convention used in [44], we define the following real Fourier basis for functions on T4
by
in(k - kezd
er(x) = sin(k - x), ;lr,
cos(k-x), keZ?,
where
24 = {(ki,k2,....kq) € Z% i kg > 0} U{(ky, k2, ... . kq) € Z? i ky > 0,kq = 0}

and Z¢ = —Zi. We set Zf)l =749\ {0,...,0} and define {Vk }gega @ collection of full
rank d x (d — 1) matrices satisfying ykT k =0, ykT yr = 1d, and y_kO: —¥k- Note that in
dimension d = 2, yy is just a vector in R? and is therefore given by yx = £k=*/|k|. In
dimension 3, the matrix y; defines a pair of orthogonal vectors )/,i, y,? that span the space
perpendicular to k.

Define
L? = {u e L*(T%,RY) :/ udx =0, divu = o}
Td

to be the Hilbert space of square integrable, mean-zero, divergence-free vector fields
on T and let W; be a cylindrical Wiener process on L2 defined by

W, = Z ek)’kav
kezg

where {W,k }kezd are a family of independent (d — 1)-dimensional Wiener processes on
a common canonical filtered probability space (2, ¥, (¥;), P). Note that W; is divergence
free by the fact that 7/,;'— k=0.
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Let Q be a compact linear operator on L? which is diagonalizable with respect to the
L2 basis {ex v} kezd with singular values {qx } czd satisfying the coloring assumption

qr < k|7 (1.2)

for an arbitrary, fixed o > %. Additionally, fix an arbitrary o > 0 (depending on o)
satisfying
d d
E+2<a—2(d—1)<o<a—5 (1.3)
and define the Hilbert space

H= {u € H°(T? RY) ;/ udx =0, divu =0},
Td

where H°(T4,R%) denotes the space of Sobolev regular vector-fields on T? (see Sec-
tion 1.3 for a precise meaning when ¢ is not an integer). For the entirety of this paper,
we will consider a white-in-time stochastic forcing Q W;, which takes the form for each
t>0and x € TY, ) )
QWi(x) = Y qrex(x) vk WS
kezg

Remark 1.1. The coloring assumption (1.2) and the upper bound on o in (1.3) ensure that
{|k|° qx } is square summable over Zg and therefore Q W; belongs to H almost surely. See
Remark 2.13 for a discussion of the lower bound on o specified in (1.3).

We will also consider the following nondegeneracy condition on the low modes of the
forcing. Define K to be the set of k € Zg such that g # 0.

Assumption 1 (Low mode nondegeneracy). Assume k € K if |k|oo = 1.

Above, for k = (k,-)fl=1 € Z? we write |k|s = max; |k;|. For several of the finite-
dimensional models discussed in this paper, Assumption | is actually stronger than
needed, i.e., the results we obtain hold with forcing on fewer modes. Sharper sufficient
conditions will be specified as we go along.

For the infinite-dimensional models, we will in addition invoke the following nonde-
generacy condition on all sufficiently high modes past some arbitrary finite cutoff.

Assumption 2 (High mode nondegeneracy). There exists an L > 0 such that
qre 2 k™% forlkloo = L,
where o € (%, 00) is as in the coloring assumption (1.2).
See Remark 1.4 for more discussion on Assumption 2.
1.1.2. Fluid mechanics models. We consider a variety of continuous-time finite-dimen-
sional and infinite-dimensional stochastic fluid mechanical models that govern the behav-
ior of the velocity u;. These models are listed below as Systems 1-4.

In what follows, we write Hx C H for the subspace spanned by the Fourier modes
ke XK.
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System 1. We refer to the Stokes system in T? (d = 2,3) as the following stochastic
PDE for initial ug € Hy:

{ 0ru; :—th—l—Aut—i-QW,, (1.4)

divu, =0,
where Q satisfies Assumption 1 and X is finite.
The assumption that K be finite is both natural (since only a few modes are required
by Assumption 1), and expedient, since System 1 is effectively a finite-dimensional
Ornstein—Uhlenbeck process. However, the methods of this paper applied to Systems 3

and 4 easily extend to cover System | when K is infinite and Q satisfies Assumption 2.
For more details, see Remark 7.5.

System 2. We refer to the Galerkin-Navier—Stokes system in T? (d = 2,3) as the fol-
lowing stochastic ODE for ug € Hy:
dsuy + Ty (uy - Vg + Vpy) = vAu, + Ty O W,
divu, =0,
where Q satisfies Assumption 1; N > 3 is an arbitrary fixed integer; Ily denotes the

projection to Fourier modes with |- |oo norm < N; Hy denotes the projection of H
under Iy, and v > 0 is fixed and arbitrary.

Remark 1.2. We emphasize that both Systems 1 and 2 are viewed as evolution equa-
tions on the finite-dimensional state spaces Hx or Hy and not on the larger infinite-
dimensional space H.

System 3. We refer to the 2D Navier—Stokes system as the following stochastic PDE for
ug € Hon T2: .
{atut +ur-Vuy = =Vpr +vAu, + OW;,

divu, =0,
where Q satisfies Assumptions | and 2. Here v > 0 is arbitrary and fixed.

System 4. We refer to the 3D hyper-viscous Navier—Stokes system as the following stoch-
astic PDE for ug € Hon T3:

dsus +up - Vuy = =Vp; —nAu, + QW
divu, =0,
where Q satisfies Assumptions | and 2. Here 1 > 0 is arbitrary and fixed.

To unify notation across these systems, from now on we write H for the relevant state
space of the (us) process: specifically, for System 1 we set H = Hx; for System 2 we set
H = Hy; while for Systems 3 and 4 we set H = H.

1.1.3. Well-posedness and stationary measures for Systems 1-4. The following summa-
rizes the well-posedness and ergodicity properties we use for the velocity field process
(u;) in all the cases considered above.
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Proposition 1.3. For each of Systems 1-4, the following holds for any T > 0:

(a) For all functions u eAI:I and with probability 1, there exists a unique mild solu-
tion (uy) € C([0, T]; H) with ug = u. As a function of the noise sample w € 2, the
solution u; is measurable, ¥;-adapted, and belongs to L?(2; C([0, T]; ﬁ)) for all
p > 1. Lastly, (u;) itselfis a Feller Markov process on H

(b) The Markov process (u;) admits a unique Borel stationary measure L in H

See Section A.l for more details regarding well-posedness as in (a). Existence and
uniqueness of the stationary measures as in part (b) can be derived from existing' results
for each of Systems 1—4. For System [, uniqueness is classical (it being effectively a finite-
dimensional Ornstein—Uhlenbeck process), while uniqueness of the stationary measure
for System 2 follows from [44, 99] (in 2D and 3D, respectively), Hormander’s theo-
rem [67], and the Doob—Khasminskii theorem [38]. In the fully nondegenerate case
|gx| = |k|~¢ for all k, uniqueness for System 3 follows from the classical work of Flandoli
and Maslowski [52]; the extension to the hyper-viscous 3D case as in System 4 is straight-
forward. Arguments in [100] can be adapted to cover both Systems 3 and 4 under Assump-
tion 2. We note also that it is not difficult to extend the work of [64] to cover both Sys-
tems 3 and 4 in the general case |qx| < |k|™ and satisfying the hypoellipticity conditions
of [44] in 2D and [99] in 3D.

With the (u;) process on H, we write ¢’ for the stochastic flow of diffeomorphisms
on T solving (1.1). Note that the flow ¢’ is a well-defined diffeomorphism since the
velocity field u; belongs to H?, where 0 > 2 + % (so it is at least C? by Sobolev
embedding). This gives rise to an %;-adapted, Feller Markov process (1, x;) on H x T4
defined by x; = ¢’ (xo), where xo = x for fixed initial x € T¢. We refer to (u;, x;) as the
Lagrangian flow process or Lagrangian process. A simple check (see Lemma A.5) ver-
ifies that p x Leb is a stationary measure for the Lagrangian process, where Leb stands
for Lebesgue measure on T¢. Note that ergodicity of u does not imply ergodicity of
1 % Leb. Indeed, consider the example X = {(1,0)} with the 2D Stokes equations (1.4):
in that case, u x Leb is not ergodic since the resulting flow is an x-dependent shear and
leaves all vertical (y-dependent) lines invariant. One of the purposes of Assumption 1 is
to rule out such degeneracies.

Remark 1.4. Our methods currently require some regularity properties that we do not
know how to verify without the strong Feller property of the Markov semigroup associated
to the (u,, x;) process (see Definition 4.1). In particular, the asymptotically strong Feller
property [64, 65] is not enough for our purposes. It is for this reason that when treating
Systems 3 and 4, we must assume nondegeneracy of the forcing in the high modes as in
Assumption 2. As in [45,52], a straightforward modification of the methods in this paper
can be made to prove the strong Feller property when, in Assumption 2, the power laws
in the lower and upper bound on |g | differ by a small constant < 1.

'We note that uniqueness of the stationary measure as in (b) is also a consequence of the
arguments in this paper; see Corollary 2.16.
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Remark 1.5. Note that the forcing on the (u;, x;) process is necessarily degenerate,
even if we had completely nondegenerate noise acting on the velocity. This is the main
technical challenge in proving the strong Feller property.

1.2. Statement and discussion of results

With the preliminaries now taken care of, we are situated to state our main results on
Lagrangian chaos. See Section 2 for a detailed outline of the proof.

Below, d = 2 or 3, and the vector field u; : T4 - R4 ,t > 0 evolves according to one
of Systems 1—4, while the Lagrangian flow ¢* : T4 — T ¢ > Ois as in (1.1). Through-
out, H denotes the relevant vector field space for the system in question, e.g., H=Hyg
when working with System 1. As in Proposition 1.3, i denotes the stationary measure for
the (u,) process on H for each of Systems 1, 2, 3 or 4.

Theorem 1.6 (Positive Lyapunov exponent). Let (u;) be governed by any of Systems 1-4.
Then, there exists a deterministic constant A™ > 0 such that for every initial vector field
ug € supp  and x € T, the following limit exists with probability one:

1
At = lim —log|D,¢'| > 0.
t—oo t

Indeed, as the following corollary states, with probability 1 the Lagrangian flow map
¢' expands all vectors at the constant exponential rate A > 0 with probability 1.

Corollary 1.7 (Norm growth of the flow map). Let AT > 0 be as in Theorem 1.6. For
anyn € (0,A%), (g, x) € supp i x T4, and any unit vector v € R?, there is a (random)
constant § = §(Ug, x, v, ) such that § > 0 almost-surely and for all t > 0,

|Dx¢'v| > 8e"PTM \with probability 1.

Remark 1.8. Theorem 1.6 and Corollary 1.7 (and the results on scalar advection below)
make fundamental use of the probabilistic framework. Such results seem hopelessly out
of reach for deterministic models of fluid flows commonly observed in nature and many
other systems of interest. For a general discussion of the difficulties involved, see, e.g.,
[97,111].

A reasonable model for understanding the difficulties involved is the Chirikov Stan-
dard map [32], a one-parameter family of deterministic, discrete-time, volume-preserving
mappings T2 — T?2 exhibiting the same stretching and folding expected to underly the
mixing mechanism of the Lagrangian flow [35]. Although anticipated to be true, it is
a decades-old open problem to rigorously verify, for any parameter value, that the stan-
dard map is chaotic in the sense of a positive Lyapunov exponent on a positive-volume
subset of phase space. Partly explaining the difficulties involved is the fact that very dif-
ferent asymptotic dynamical regimes coexist in phase space: for a topologically “large”
subset of parameters, the Standard map has

(1) an abundance of elliptic islands throughout phase space (inhibiting chaos) [43], and

(2) apositive Lyapunov exponent on a set of Hausdorff dimension 2 [61].



J. Bedrossian, A. Blumenthal, S. Punshon-Smith 8

The situation is vastly different in the presence of even a small amount of noise: see [21]
for positive results confirming chaos for the Standard map subjected to small-amplitude
noise.

In this paper, we will apply a principle known as Furstenberg’s criterion from random
dynamical systems theory: this says, roughly speaking, that A™ > 0 as in Theorem 1.6
if the probabilistic law of the gradient D¢’ is sufficiently nondegenerate. See Section 2
and Section 3 for more discussion.

Remark 1.9. For Systems 1-3, Theorem 1.6 and Corollary 1.7 hold for all initial ¢ € H.
For the finite-dimensional System 1 (resp. System 2), the fact that supp u = Hyx (resp.
supp u = Hy) follows from hypoellipticity (see, e.g., [44, 99]) and geometric control
theory [2,66]. For 2D Navier—Stokes as in System 3, that supp 4 = H follows from [1,2].
It is likely that the same is true for 3D hyper-viscous Navier—Stokes as in System 4, but
as far as the authors are aware the appropriate controllability theorems do not appear in
the literature.

Remark 1.10. The techniques we use currently require well-posed SPDEs, hence the
hyper-viscous regularization in System 4. We have included this case to emphasize that
our infinite-dimensional methods are not restricted to two-dimensional flow — the treat-
ment of the 3D case (System 4) is only slightly harder than 2D (System 3). In fact, the
methods could extend to many settings in which one has an infinite-dimensional model
coupled to finitely-many degrees of freedom on a Riemannian manifold.

Remark 1.11. Theorem 1.6 makes two claims:

(1) the Lyapunov exponent A exists and is constant over a large set of initial conditions
with probability 1, and

(2) that AT > 0 (a priori we only have AT > 0 by incompressibility).

The strong Feller property (and hence our need for nondegenerate noise in the high
modes) stems from the proof of (ii), while (i) only really requires the comparatively
weaker fact that the (u;, x;) process has a unique stationary measure. Indeed, if this is
known, then existence and constancy of AT follows by the Furstenberg-Kesten Theorem
(Proposition 2.1).

Although the strong Feller property played an important role in early investigations
on uniqueness of stationary measures for infinite-dimensional Markov processes [52], it
is now well understood that uniqueness holds in settings where the strong Feller prop-
erty is unknown (and perhaps likely to be false — see, e.g., the discussion in [64]). A
relevant example is the very recent work [71], published after this work was completed,
which showed that (u;, x;) has a unique stationary measure when (u;) is governed by
Navier-Stokes with a spatially smooth, almost-surely bounded noise, and so for this
model assertion (i) is known to hold. However, the degeneracy of the noise model con-
sidered is too restricting to establish the strong Feller property, and so it remains open
whether At > 0 for the model in [71].

Remark 1.12. Although Lagrangian chaos as in Theorem 1.6 is only stated above for
Systems 14, the methods in this paper extend to the Lagrangian flow for a broad class of
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velocity field processes (u#;). To summarize the general conditions one actually needs, let
H be a space of divergence-free velocity fields which are spatially Sobolev” with degree
o > 5d /2. For the proof to work, we need: (see (1.9) for definitions of auxiliary processes
vt, At)

e The one-point process (u;, X;), projective process (U, X;, V), and matrix process
(uy, x¢, Ay) are all almost-surely globally well posed, Markovian®, and arise from
continuous random dynamical systems on (respectively) H x T4, Hx PT4, and
H x T? x SL;(R) (see Section 3 for more details).

e The one-point process is strong Feller and weakly irreducible.
e There exists a unique stationary measure for the projective process on H x PT?,

e The projective and matrix processes satisfy an approximate control condition; (prop-
erty (C’) in Definition 4.16).

Our proof uses some of the simple structure of Navier—Stokes on T to verify these prop-
erties, but with some additional effort, we believe our methods should extend to a fairly
general class of strong Feller, incompressible fluid equations (with enough viscosity to
be energy subcritical or critical), such as stochastically forced Boussinesq, magneto-
hydrodynamics, Leray-o models, the surface quasi-geostrophic equations, etc. (all con-
sidered with enough stochastic forcing to be strong Feller).

As can be seen, approximate controllability plays a crucial role in this argument, and
hence future results will benefit greatly from low-mode controllability results, e.g., [1, 2,
92,105]; see [59] for a detailed review). We note however that due to the relatively simple
structure of Navier—Stokes on T¢ , the controllability statements needed in the proof of
Theorem 1.6 can be obtained “by hand” (Section 7).

Remark 1.13. For 2D Stokes as in System 1, we can prove all our results (above and
below) using only the weaker noise condition (see Remark 7.5)

{(1,0),(0,1),(—1,0),(0,-1)} C X.

If these are the only modes, the velocity field is given by the very simple formula

u(t,x) = Zi(t) (sit(;y) + Z5(1) (COS y) +Z5() (sigx) +Z4(1) (co(:x) ’

where Z;,1 < j < 4 are independent Ornstein—Uhlenbeck processes (they do not need
to be i.i.d., though in that case the flow is statistically homogeneous in space).

We note that Theorem 1.6 and Corollary 1.7 for the finite-dimensional models in Sys-
tems 1 and 2 follow from adaptations of previously known criteria [12, 28] (see also [56]
and other citations given in Section 2.2) for positive exponents for random dynamical

2 Although it would require more work, it is probably possible to lower the needed regularity to,
e.g.,a>d/2+2.

3In fact, these processes themselves do not quite have to be Markov. For example, it suffices to
have another variable Z; such that the system (uy, Z;, x¢), (s, Zs, Xz, ), Uz, Z¢, Xt , Ay) satisfy
the above conditions in a suitable manner. This is used in our more recent paper [15] to show that,
for each k, there are C Ii C2° random velocities which display Lagrangian chaos.
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systems generated by SDE combined with by-now standard hypoellipticity arguments for
Galerkin truncations of Navier—Stokes [44, 99]. Nevertheless, we include them for the
following reasons: these results are physically interesting and absent from the literature
(to the best of our knowledge); they emphasize that Assumption 2 is not fundamental
for Lagrangian chaos; all the ingredients needed for their proof are already required for
our results on the infinite-dimensional model in System 3; and, although simpler to work
with, they are instructive for the proof in the infinite-dimensional case.

On the contrary, our results for the infinite-dimensional model in Systems 3—4 do not
follow from previously existing results, and require a considerable amount of additional
work. See Section 2 for an outline.

1.2.1. Scalar advection. Before considering scalar turbulence, consider first the simpler
problem of scalar advection without diffusivity

atft—i—ut-Vf, =0, (15)

with (1;) given by one of System 1—4. Here the initial datum fy : T¢ — R isin H! with
| fodx = 0. By the same methods as in Proposition 1.3, the coupled system of (u;, f;)
has a P-a.s. unique, ¥;-adapted mild solution that defines a Feller Markov process on
H x H'. At times we will call (u;, f;) the scalar process. Using Theorem 1.6 and some
additional work, for the (u;, f;) process we prove the following exponential growth of
gradients with probability 1 below in Theorem 1.14. Theorem 1.14 is of intrinsic interest
and is also the most crucial part of the proof of Theorem 1.16 below.

Theorem 1.14 (Exponential gradient growth without diffusivity). Consider (1.5) with
(uy) given by any of Systems 1-4. Then there exists a constant A > 0, depending on the
system, with the following property. For any n € (0, 1), any fixed initial fo € H' \ {0}
with [ fodx = 0; and for every fixed initial uo € supp i, there exists an almost-surely
strictly positive random constant § = §(ug, fo,n) > 0 such that for all t > 0 and for
p €l oc],
IV fille = 8¢*~Pt  with probability 1.

Whend = 2, A := At as in Theorem 1.6.

Remark 1.15. Recently the question of mixing of scalars, i.e., decay rates in H ™! or
mixing defined by Bressan in [26], has generated a lot of interest: see, e.g., [3,4,46,70,
89, 104] and the references therein. This refinement will be addressed in future work.

1.2.2. Scalar turbulence in the Batchelor regime. Next, we are interested in studying van-
ishing diffusivity limits of the stationary measures associated to the following problem:

0r8r +u - Vg = kAg + QWt

with u, given by one of System 1—4. Here, the initial datum is go € H' and has zero
mean. The (mean-zero in space) random source Q W; is of the form

oW, = > drex Wi (1),

kezd
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where {Wk} are an additional family of independent one-dimensional canonical Wiener
processes also taken on the same filtered probability space (2, ¥, (¥;), P) and assumed
independent of {IW} }. Define

_ 1 -
gi=5 D lqcl? € (0.00).
kezd

For simplicity we additionally require at least

> kPGl < oo

kezd

(though it is likely this condition could be dropped). Note that the random source can be
very smooth and degenerate, e.g., compactly supported in frequency. Under these condi-
tions there is a P-a.s. unique, global-in-time, ¥;-adapted solution (u,, g;) which defines
a Feller Markov process on H x H!'. Moreover, the Krylov—Bogoliubov procedure proves
the existence of stationary measures {ji“}~o supported on H x H! (note that all such
measures satisfy 1*(4 x H') = 1(A); see Section 8 for more detail). By Ito6’s lemma,
one verifies that statistically stationary solutions g* to (1.2.2) satisfy the balance relation

KE|Vg“|7, =& (1.6)

As above, we are only considering g which satisfy [ g dx = 0 (which is conserved due
to the mean-zero assumption on 0).

The problem (1.2.2) is an idealized model for “scalar turbulence” in the Batchelor
regime (see, e.g., [10, 11,35,48,107]), which corresponds to the case when the velocity u
is much smoother (in space) than the scalar. Passive scalar turbulence has been the subject
of much research in the physics community both because of its intrinsic importance to
physical applications and its potential to provide a place to develop analytic methods
for understanding other turbulent systems [107]. In Batchelor’s original paper [11], he
considered a random straining flow as an idealized model for the small scale behavior of
a passive scalar. Batchelor used this model to predict the power spectrum of the scalar,
now known as Batchelor’s law (see Remark 1.21 for more details). Later, the Kraichnan
model was introduced in [80], wherein the velocity field is taken to be a white-in-time
Gaussian field with a prescribed correlation function in space. Hence, the random ODE
(1.1) is replaced by an SDE with multiplicative noise and the scalar equation (1.5) is
replaced with a stochastic transport equation in Stratonovich form. There is an extensive
literature on this model in physics; see, e.g., [35, 36, 107] and the references therein. For
the Kraichnan model, Theorem 1.6 is proved in [13] using random dynamical systems
theory developed in [12].

The questions one is interested in answering about systems such as (1.2.2) are (A) can
we develop analytical theories for predicting statistical properties of small scales in the
limit k — 0? and (B) to what extent are these statistics universal, that is, which properties
are independent of detailed information of the system? The predictions for (A) often come
in the form of quantities such as structure functions, for example

E(8:8)” ~ Coltl”, p S |0] S 41,
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where
8eg(x) == g(x + 0) — g(x),

(where the meaning of ~ is left informal for now) for a range of scales ({p, £;) known
as the inertial range (here £ p is for dissipative and £ is for integral) assumed to satisfy
limg—o £p (k) = 0and £; much smaller than the length-scales of the large scale forcing in
the system (but independent of «). For (B), the corresponding question is then to answer:
For which p are the quantities {,, C, and/or £p universal? The first predictions of this
general type were due to Kolmogorov [76-78] in 1941, who studied the 3D Navier—Stokes
equations as v — 0. One of the cornerstones of the theory is that in 3D Navier—Stokes,
the kinetic energy, a conserved quantity for v = 0, is transferred to higher and higher fre-
quencies as v — 0 (called a direct cascade [55]), where it is then dissipated by viscosity
so that the dissipation rate is non-vanishing as v — 0. This property is called anomalous
dissipation. In statistically stationary solutions, the flux of kinetic energy through the iner-
tial range is predicted to be constant (as a function of £ and asymptotically, as a function
of v), resulting in the celebrated prediction now known as the Kolmogorov 4/5 law:

A 4
E8 . — ~ —= E, Z Z 7£ ’
(zu |5|) 58| | € (Up,4r)

where ¢ is the net input of energy per unit time and volume (see [17,55] and the references
therein for more discussions). Indeed, the quantity appearing on the left-hand side can be
related to the energy flux through scale £. The 4/5 law is equivalent to the similar 4/3 law:

E(|85u|28¢u . £) ~ —A—Lewl, tep,Ly).
€] 3

As they are equivalent we will not distinguish these laws and simply refer to the pair

together as the “4/5 law”. The 4/5 law is very well matched by experiments, is considered

the only exact law of 3D turbulence, and is almost completely universal*. See [55] for

a detailed introduction to turbulence in the 3D Navier—Stokes equations.

Since Kolmogorov’s work, analogous (to varying degrees) “turbulent” dynamics have
been studied in a variety of physical systems, such as 2D Navier—Stokes turbulence [22],
the many varied regimes of magneto-hydrodynamic turbulence [20], wave turbulence in
dispersive equations [91, 113], and passive scalar turbulence [48, 107]. The anomalous
dissipation of a quantity that is conserved in the limit of zero dissipative effects is one of
the defining characteristics of such turbulent systems. Accordingly, in all such examples,
the flux of these conserved quantities through the inertial range converges to a constant,
and so for each anomalously dissipated conservation law one expects a universal scaling
law analogous to the 4/5 law. In 1949, Yaglom [110] found this law for the “enstrophy”
flux’ of the passive scalar

l 4
E “Pou-— | ~ ——¢ .
(|3£g [“8u |€|) d8|5|, te(p.lp)

“4Both the constant and the exponent are universal; it is not clear whether £ is universal.
SFor simplicity, we will refer to the L2 density | g||? as the “enstrophy” in analogy with the
vorticity form of the 2D Navier—Stokes equations.
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This is the law we confirm for (1.2.2) (in a spherically averaged sense); see Theorem 1.16
below for the rigorous meaning of ~ in this statement.

In [17], it is proved that the Kolmogorov 4/5 law follows for statistically stationary
solutions of the 3D Navier—Stokes using that limy,_.¢ 1)E||u"||i2 = 0. This property is
referred to therein as “weak anomalous dissipation”®, and is a natural form of anoma-
lous dissipation for statistically stationary solutions (see [17] for more discussion). In this
work, we use Theorem 1.14 to prove the analogous statement here ((1.7) below) by adapt-
ing arguments from [17]; see Section 8 for details. Then Yaglom’s law, as stated in (1.8),
follows from a straightforward variation of the argument in [17]. The limit (1.7) cannot
hold if solutions to (1.2.2) remain concentrated in low frequencies in the limit « — 0;
indeed, in this case it is easy to check that «E| g¥|| iz 2 1 (see also Remark 1.18 below).
For (1.7) to hold, the fluid needs to induce a direct cascade of enstrophy to successively
smaller scales where it is more efficiently dissipated by the k Ag® term, resulting in a
much-enhanced dissipation rate. It is Theorem 1.14 that ultimately implies the Lagrangian
flow-map creates the requisite small scales everywhere in the domain with probability 1.
See also the earlier work using norm growth in the inviscid passive scalar problem to
obtain “enhanced dissipation” effects for k > 0 models [33, 114] and the recent related
work [34].

We remark that the idea that Lagrangian chaos and scalar turbulence scaling laws
should be intimately related has long been expected by the physics community; see, e.g.,
[6,7,107,112] and the references therein for more information.

Theorem 1.16 (Scalar turbulence in the Batchelor regime). Let {u, g*}¢~0 be a sequence
of statistically stationary solutions to (1.2.2) with (u,) given by any of Systems 1-4. Then:

(1) the Weak Anomalous Dissipation property holds:
lim «E[g*|l7> = 0. (1.7)

(ii) Yaglom’s law holds over a suitable inertial range: that is, for all k > O small, there
exists an Lp (k) > 0 with limy_.¢ £p (k) = 0 such that

lim limsup sup
£i=0 k=0 teltp.]

=0. (1.8)

1 4
—E][ ][ 18008 |*8¢nut - ndS(n)dx + —&
L Td Jsd—1 d

Here n denotes a unit vector in ST=1 and f denotes the average, i.e.,

1 1
][ -dxz—][ -dx and ][ -dS(n) = ][ -dx,
Td @n)d Jra sd—1 wg-1 Jrd

where wq_1 denotes the surface area of the sd-1 (27 in 2D and 4 in 3D).

Remark 1.17. Note that by time stationarity, (1.8) is the same as asserting the expected
value of arbitrary length time averages follow Yaglom’s law. Further, as in [17], if one

5We remark that this property is equivalent to the assertion that the Taylor microscale goes to
zero as Reynolds number goes to infinity; see [17] for details.
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assumes Q and Q are spatially homogeneous, then there exists spatially homogeneous
statistically stationary solutions to the system (u,, g;) and one can remove the x average
from (1.8), that is, (1.8) holds a.e. in x (existence of spatially homogeneous statistical sta-
tionary solutions is classical in this case; see, e.g., [86, Corollary 3.3.4], but the statements
in Theorem 1.16 were not previously known).

Remark 1.18. Note that by the balance (1.6), the weak anomalous dissipation property
(1.7), and Sobolev interpolation, there holds lim,—o kE| g |2, = 0 for all y € (0, 1)
and lim,—o kE| g¥[|%, = +ooforally > 1.

Remark 1.19. There exist a number of works providing sufficient conditions to deduce
turbulence scaling laws and related results, see for example [17, 18,51] in the stochastic
case and [31,42,47,93] in deterministic cases. See the references therein for earlier work
in the physics literature. However, no works prior to Theorem 1.16 have provided a proof
of such laws without sufficient conditions that remain unverified as of writing. This is nat-
ural, as Yaglom’s law in this relatively simple, fixed Reynolds number, Batchelor regime
is likely to be by far the simplest assertion (to prove) of all statements in statistical theories
of turbulence in fluid mechanics.

Remark 1.20. The proof of Theorem 1.16 is based on first replacing
e x) = Vieg(t, x)

so that f* now solves a passive scalar equation with fluctuation-dissipation-type scaling:
e f+u -V =kAff + VK Qd W, and studying the ¥ — 0 limit. This fluctuation-
dissipation-type scaling is long-understood to be important in many contexts in PDEs and
has been studied numerous times; see, e.g., [17,53,69, 83-86, 106].

Remark 1.21. Building off the results in this manuscript in a series of follow-up works
[14, 15] culminating in [16], we have proved Batchelor’s prediction on the cumulative
power spectrum of the passive scalar in the same setting as [11]. This assertion amounts
to: there exist Ny, Co both independent of « such that for all Ng < N < k12 there
holds 1
—logN < Y E|g(k)]> < Colog N.
Co

lk|<N
Note that Yaglom’s law only requires Theorem 1.6, and roughly speaking, the correspond-
ing fact that chaotic Lagrangian flow pushes at least some of the L2 mass of a passive
scalar from large to small scales (Theorem 1.14). In comparison, Batchelor’s prediction
for the power spectrum is more refined, and requires that all large-scale L* mass be
“evacuated” to higher frequencies. This additional statement does not follow just from
Theorem 1.6, instead requiring the arguments in the authors’ follow-up works [14-16]
(all completed after this work).

1.3. A guide to notation

We include here for the convenience of the reader a guide to commonly used notation in
the paper.
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e We use the notation f < g if there exists a constant C > 0 such that f < Cg, where
C is independent of the parameters of interest. Sometimes we use the notation

f Sa,b,c,... g

to emphasize the dependence of the implicit constant on the parameters, for example,
C =C(a,b,c,...).Wedenote f ~ gif f Sgandg < f.

e Throughout, R? is endowed with the standard Euclidean inner product (-,-) and
corresponding norm | - |. We continue to write | - | for the corresponding matrix norm.
We use |k|, to denote the £” norms.

e When the domain of the L? space is omitted, it is always understood to be T¥:

IfllLe =1 llLecray-
We use the notations EX = [o X(w)P(dw) and || X||1r@) = (E|X|1’)%. We use the

notation R
17 = D kP (k)P
kezd

(denoting f (k) = W Jra e~k f(x)dx the usual complex Fourier transform).

e If M is a Riemannian manifold, we write Lebys for the Lebesgue volume on M. For
short, we write Leb for the normalized Lebesgue measure on T4,

e Ford > 1, we write M ;4 (R) for the space of real d x d matrices, and SLy; (R) for
the subgroup of matrices of determinant 1.

e We write P9~ = P(R?) for the real projective space of R?, i.e., the manifold of
equivalence classes of vectors in R? \ {0} up to scaling. When it is clear from context,
we will abuse notation and intentionally confuse an element v € P4~ with a unit
vector representative v € Rd, and vice versa. Likewise S?~! denotes the unit sphere
in RY.

e Givenamatrix B € My4(R), we use the same symbol B : P4~1 — P4~ to denote
the corresponding map on projective space. If v is a probability measure on P41, we
write B,V := v o B! for the pushforward of v by B.

e We denote L? the Hilbert space of square integrable, divergence-free, mean zero
functions.

e Foro e (w —2(d —1),a — d) fixed, we write H for the subspace of H divergence-
free, mean-zero vector fields on T¢,d =2 or 3. Given N > 1 as in System 2, we
write Hy C H for the span of all Fourier modes k with |k|, < N. Given X C Z¢
as in Assumption 1, we write Hx C H for the span of all Fourier modes in K.

e Given the vector field process (u;) on H governed by Systems 1, 2, 3 or 4, we
write (u, x;) for the Lagrangian process on H x T? as defined by x; = ¢’ (x0),
¢! as in (1.1), where H is the appropriate space of vector fields as above. We write
e : HxT? > HxT9, ¢ > 0, for the corresponding RDS as defined in Section 2.1.
We write (u;, x;, v;) for the projective process on H x Td P41 a5 defined in Sec-
tion 2.5, and (u;, x;, A;) for the matrix process on Hx T x SL;(R) as defined
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in Section 2.3. These processes are governed by (u;) as in Systems 14 and the
random ODE

0rxy = ug(xy), (1.92)
0;v; = Iy, Dus(xr)vy, (1.9b)
0,0, = —H;,,Dut(x,)—rﬁ,, (1.9¢)
0:A; = Duy(xs) A, (1.9d)

where IT, = Id —v ® v is the orthogonal projection from R¢ onto the tangent space
of S~ (viewing v as a unit vector in R%).

e We denote by B(u,u) = (I + V(—=A)"'V-)(u - Vu) the Euler nonlinearity in both
2D and 3D. We similarly denote A = —vA + nA?in 3D and A = —vA in 2D.

e In Section 6, we will frequently denote w; = (uy, x¢, v¢, z¢) € H X M the augmented
projective process with z; being a standard Wiener process on R24. Here, M is the
finite-dimensional manifold M = T? x P4~ x R2¢. We will also denote w’ the p
cut-off version (sometimes dropping the p when we do not care to distinguish between
the cut-off and non-cut-off versions.)

e We denote T, M the tangent space of M at (x, v, z) (suppressing the dependence on
(x, z) since they are flat. For a given direction in & € H x T, we write Dw,h for the
derivative of the process with respect to the initial data in the direction 4.

e In Section 6, for a fixed T > 0, write Q7 = C([0, T]; H™® x R2%) for the path space
for the noise driving the process w;, where ¢ > 0 is such that QH™® C H. Corre-
spondingly, we denote £, the direction Malliavin derivative in a “Cameron—Martin”
direction g € L2([0, T]; L? x R24). More generally, we denote by O the Malliavin
derivative operator, and for a separable Hilbert space J, we write W -2(Qr; #) for
the associated domain of J¢-valued Malliavin differentiable random variables with
norm

”XH%VI.Z(QT;J() = E”X”,z}( + E”‘SOX||22([0’T];L2XR2d)®J(~
The adjoint operator D* (the Skorokhod integral) is denoted by

T
/ (8.0Wi)2 = D*g
0

for each g € WH2(Qr; L2([0, T]; L? x R2%)).

2. Outline of the proofs

Let us now give a somewhat detailed outline for the proofs of the main results of this
paper, starting with Theorem 1.6.
The basic structure of the proof can be summarized in two main points:

(1) The Multiplicative Ergodic Theorem and a variant of Furstenberg’s criterion show
that, given suitable ergodic properties of the dynamics, the Lyapunov exponent is
strictly positive unless there is a certain almost surely invariant structure in the motion
of x; = ¢'(xo) and the gradient Dy, ¢".
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(2) Hypoellipticity and approximate controllability arguments show that (A) the dynam-
ics satisfy suitable ergodic properties and that (B) a rich range of motions of x; and
Dy, ¢" are realized. This will rule out the invariant structure and allow us to deduce
a positive Lyapunov exponent as in Theorem 1.6.

As we will see below, both are significantly harder in the infinite-dimensional case
(Systems 3—4).

2.1. The RDS framework and the Multiplicative Ergodic Theorem

Theorem 1.6 makes two assertions:

(i) that the limit defining the Lyapunov exponent A™ exists and is constant almost
surely, and

(i)  that this exponent satisfies AT > 0.

Let us first outline how to prove assertion (i) using tools from random dynamical systems
theory.

To start, we must formulate the Lagrangian process (u, X;) as a stochastic flow or
random dynamical system (RDS) on Hx T4 (here, H is as in the beglnmng of Sec-
tion 1.2). That is, given a random noise path v € Q2 and a fixed initial (u¢, xo) € H x Td,
the assignment (g, xo) - (4;, X;) is realized as

Uy, x¢) = @;(uo, Xo),

where @' : HxT9 — H x T? is a continuous mapping depending measurably on the
noise parameter  (see Section 3.1.1 for details). In our setting, ®, is of the form

0%, (. x) = (Ug, (). ¢gy ,, (X)),

where U, : : H — H is the time-¢ mapping associated to the equation governing (uy) (any
of Systems 1-4), i.e., the map sending u¢ — u,, and <],’>w u =0 T4 — T4 is the time- -t
Lagrangian flow map associated to the noise parameter @ and the initial vector field u € H
as in (1.1), i.e., the diffeomorphism on T4 sending xo — x;. In the context of RDS,
the matrix-valued mapping € x HxT? - M ;x4 (R) sending (w, u, x) — qu&fum for
fixed ¢ > 0 is an object known as a linear cocycle over the RDS ©,.

For more background on random dynamics and a precise enumeration of the assump-
tions involved, see Sections 3.1 and 3.2, where the relevant theory and assumptions are
spelled out for an abstract RDS 7 acting on a metric space Z and a linear cocycle 4
over 7. Throughout Section 3 we intend to apply this with 7 replaced by the Lagrangian
flow © acting on Z = H x T? with A replaced by the gradient cocycle D¢’. It is
straightforward to verify the assumptions made in Sections 3.1-3.2 for ® and D,¢’;
this is carried out in the Appendix (Section A.1).

A fundamental result pertaining to linear cocycles is the Multiplicative Ergodic The-
orem, stated in full in Section 3.2.2 as Theorem 3.13. For the purposes of this discussion,
we state below the following consequence, often referred to as the Furstenberg—Kesten
Theorem [57].
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Proposition 2.1. The limit
AT (w,u,x) = lim l10g|D oL |
T ’ t—o0 t Yrou

exists for P-a.e. w and u x Leb-a.e. (u,x) € H x T4, where W is the stationary measure
for the (u;) process as in Proposition 1.3. Moreover, if i x Leb is an ergodic stationary
measure (Definition 3.9) for the Lagrangian process (u;, x;), then the limiting value A™
does not depend on (w, u, x).

Ergodicity of i x Leb as a stationary measure for the Lagrangian process (u;, x;) is
a necessary ingredient for Theorem 1.6. See Section 2.7 below for a discussion of the
ergodic properties of the (u;, x;) process.

Remark 2.2. Note that in Theorem 1.6, the Lyapunov exponent A7 is asserted to exist
with probability 1 at every initial (u, x) € supp t x T4, as opposed to 1 x Leb-almost
every (u,x) as in Proposition 2.1. The strong Feller property (Definition 4.1) for the
(uy, x;) process allows us to pass between these formulations: see Lemma 4.2 (b) in
Section 4.

2.2. Determining positive Lyapunov exponents: Furstenberg’s criterion

An entirely separate matter is to verify that A™ as in Proposition 2.1 is strictly positive.
This problem is notoriously difficult (see Remark 1.8 above). Aiding us, however, is the
fact that the cocycle (o, u, x) — D x¢cto,u is subjected to some noise. For such cocycles,
a powerful tool known as Furstenberg’s criterion implies AT > 0 under suitable non-
degeneracy conditions described in detail below. The criterion was originally obtained
in [57] for IID products of matrices, and extended in scope by various authors in the ensu-
ing years: see, e.g., [9,12,60,62,88], and also the citations of Chapter 1 of [25] for a more
complete bibliography.

Ignoring for now the requisite quantifiers and other details, the relevant version of
Furstenberg’s criterion can be stated as follows. Proposition 2.3 below is a version of the
criterion given in [88], and will be stated in full as Theorem 3.18 in Section 3.3. Below,
P2~ = P(R?) denotes the manifold of one-dimensional subspaces of R¥.

Proposition 2.3 (Informal Furstenberg criterion). Assume ju x Leb is an ergodic station-
ary measure for the Lagrangian process (uy, x;). If At = 0, then to each (1 x Leb)-gen-
eric (u, x), there is associated a deterministic (i.e., w-independent) probability measure
Vy,x ON P4=1 with the property that

(Dxly ) Vux = Vel (u.x) 2.1)
forallt > 0and P x j1 x Leb-almost all (w,u,x) € @ x Hx T¢.

To prove At > 0, then, it suffices to obtain a contradiction from the conclusions of
Proposition 2.3.

Conceptually, the measures v, x should be thought of as deterministic “configura-
tions” of vectors on R?, and relation (2.1) says that this (1, x)-dependent family (Vu,x)
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of deterministic “configurations” is left invariant by the Jacobian matrices D xqbé),u with
probability 1. As such, relation (2.1) has the connotation of a degeneracy in the proba-
bilistic law of the matrices D¢, , with @ distributed as P.

2.3. Ruling out Furstenberg’s criterion: Finite-dimensional models

Let us show how one can rule out (2.1) in Furstenberg’s criterion. To start, we recall the
fact that given a fixed pair of probability measures v, v’ on P91, the set of matrices
M € SL;(R) for which M,v = v’ has empty interior (Lemma 3.19). Thus, (2.1) can be
ruled out if we check that for a positive measure set of (u,x), (u’,x’) € Hx T, the
support of the probabilistic law of the process A; := Dy, ¢fo,u , conditioned on the event
(1o, x0) = (u, x), (uy, x;) = (1, x’) has a nonempty interior in SL;(R) (e.g., when the
conditional law is absolutely continuous).

For the finite-dimensional models in Systems | and 2, we can compute this conditional
law explicitly. The matrix-valued process A; := Dx¢>fu,u is a component of the Markov
process (u;, x;, A;) generated by the (u,) together with (1.1) and

0:A; = Duy(x;) Ay (2.2)

on the finite-dimensional manifold M := H x T4 x SLy (R).

Under suitable nondegeneracy conditions on the SDE governing (u;, x;, A;), for
instance, Hormander’s condition as described in Section 2.7, the law Q,((u, x,1d),-)
of (us,x;, Ay) conditioned on (ug, xg, Ag) = (4, x,Id) admits an everywhere-positive
smooth density

P = Pux) : HxT? x SL;(R) — (0, 00)

for all initial (u, x) € H x T<. It follows that for any pair (u, x), (', x’) € H x T? and
any ¢ > 0, the probabilistic law of A, conditioned on (ug, xo) = (u, x), (U, x¢) = (', x’)
admits a smooth, everywhere-positive density p = P, x),w’,x’), given for M € SL; (R)
by

pu', X', M)
JsLy@ P, X', M) dLebs, @) (M)

We conclude that (2.1) is impossible, hence A+ > 0, when Hoérmander’s condition for
the matrix process (u;, X, A;) is satisfied. See Proposition 2.10 in Section 2.7 below for
a precise statement of Hormander’s condition, and see condition (C) in Section 3.3.2 for
a more detailed version of this argument.

We note that the technique of using Hormander’s condition for the matrix process
(uy, x4, Ay) to rule out Furstenberg’s criterion is well known; see, e.g., [12,28].

(M) =

2.4. Furstenberg’s criterion: Infinite-dimensional models

For the infinite-dimensional models, Systems 3—4, we are not aware of any means by
which one can prove a positive density for the conditional law of A; = Dx¢fu,u as was
possible for the finite-dimensional models.
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Instead, we are able to prove a certain “approximate controllability” statement, which
we describe below. To articulate this, we define the projective process (u;, x;,v;) on
H x T? x P2~ where (v;) is defined for initial vy by setting v; to be the projective
representative of ongbfo’u o Vo- Equivalently, (v,) is generated by (u;), (1.1) and

3tvt = HU,DU(XI)UZ. (23)

Here, IT,, denotes the projection onto the orthogonal complement of (a unit vector repre-
sentative of) v,.

Proposition 2.4. Consider the Markov processes (uz, x¢,v¢) and (uys, x;, A;) generated
by either of System 3 or 4, together with (1.1), (2.2), and (2.3). Then, for any x,x’ € T¢
andt > 0, we have the following:

(a) Forany e, M > 0, we have that
P((u;, x;) € B:(0) X Bo(x'), |As| > M | ug =0, xo = x, 49 = 1d) > 0.
(b) Foranye > 0, v € Pa-1 and openV C Pd_l, we have
P((us,x1) € Be(0) X Be(x'), v: € V |ug =0, xg = x, vg = v) > 0.

Condition (a) says, roughly, that gradient norms can be made arbitrarily large while
“approximately conditioning” on the time 0 and time ¢ values of the Lagrangian process,
while condition (b) says that we can rotate vectors arbitrarily in projective space. We see
that this is weaker than obtaining information on the conditional law, but is clearly closely
related. Our proof of Proposition 2.4 for Systems 3 and 4 is very physically intuitive; see
Section 2.7 for more discussion.

Furstenberg’s criterion as in Proposition 2.3 cannot be applied directly to the “softer”
nondegeneracy condition in Proposition 2.4. Possible issues include (1) that the family of
measures {Vy x }, x)emxTd i Proposition 2.3 might, a priori, be discontinuous in space,
and (2) that the individual measures v, could be quite pathological, e.g., singular con-
tinuous w.r.t. Lebesgue on P41 To address this, we obtain the following classification
of all possible demeanors of the measure family vy, ».

Proposition 2.5. Assume o x Leb is an ergodic stationary measure for the Lagrangian

process (uy;, x;), and moreover, assume that the Lagrangian process (u;, X;) satisfies the

strong Feller property (Definition 4.1). If AT = 0, then one of the following alternatives

holds:

(@) There is a continuously-varying family {{ -, )u,x} . x)enxra of inner products on R4
such that

(Dl 0. Dxdply y W)@t (uxy = (V. W)ux  with probability 1

forallv,w € RY ¢t > 0and (u,x) € H x T4,
(b) There are p > 1 families {Eéu x)}(u,x)eﬂxqrd, 1 <1 < p, of proper linear subspaces
of R? such that
i Ww,x)—~E éu ) is locally continuous up to relabeling (see Theorem 4.7 (b) for
details),



Lagrangian chaos and scalar advection in stochastic fluid mechanics 21

(i) forall (u,x) e HxT%and1 <i < p,

Dx¢2;,u(E;il,x) = Egg)(u’x) with probability 1.

Here, T = 74y x is a permutation of {1, ..., p}.

Note that the Strong Feller property of the Lagrangian process is explicitly required;
see Remark 2.6 below for more discussion. We discuss proving the strong Feller property
in Section 2.7 below. Roughly speaking, Proposition 2.5 follows from the strong Feller
property as well as certain rigid geometric properties of SL;(R) (Lemma 4.6) imposed
by the condition of leaving a projective measure invariant (in the sense of Furstenberg’s
criterion as in Proposition 2.3).

Proposition 2.5 is the analogue of Theorem 6.8 in Baxendale’s paper [12], a similar
classification-type theorem for the derivative cocycle of an SDE on a finite-dimensional
manifold. The analogue we obtain (stated as Theorem 4.7 and proved in Section 4.2) is
considerably more general and applies to linear cocycles over continuous-time RDS on
possibly infinite-dimensional Polish spaces. Our more general setting entails numerous
complications not addressed in [12]; see Remark 4.15 for a more thorough discussion
of these.

Alternatives (a)—(b) in Proposition 2.5 can now be ruled out by straightforward con-
tinuity arguments and approximate controllability as in Proposition 2.4; see Section 4.3
for more details. Once this has been carried out, the proof of Theorem 1.6 for Systems 3
and 4 is complete.

Remark 2.6. As far as the authors are aware, the strong Feller property of the Lagrangian
process (u;, x;) is required for Proposition 2.5. Specifically, the strong Feller property is
used to verify that the “configurations” appearing in alternatives (a), (b) of Proposition 2.5
are continuously-varying in an appropriate sense. We emphasize that this continuity is
critical to the argument for ruling out (a), (b) using the approximate controllability condi-
tion in Proposition 2.4.

In particular, this is precisely the step we are not able to execute for 2D Navier—
Stokes with “truly hypoelliptic” forcing (that is, forcing only a handful of low modes as
in Assumption | and forgoing forcing all sufficiently high modes as in Assumption 2). In
this regime, the strong Feller property is likely to be false for Systems 3—4 (see [64]).

2.5. Expansion in all directions: Proof of Corollary 1.7

For both the finite and infinite-dimensional systems considered in this paper, Corollary 1.7
does not follow immediately from Theorem 1.6. Indeed, a priori it is possible that given
(u,x) € Hx T9, there are some v € R¢ for which lim SUP; 00 %log | D@l vl < AT
holds with probability 1.

We can rule this out using the ergodic theory of the projective process (us, x;, v¢)
as in equation (2.3) above. There is a well-known correspondence between the station-
ary probab1l1ty measures v on Hx T¢ x P4~1 and the asymptotic exponential growth
rates lim; .o + + log |Dx¢w’uv| realized “with probability 17 as v varies in R¢ \ {0}. The
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correspondence is given by the so-called Random Multiplicative Ergodic Theorem (see
[73, Theorem III.1.2]). We will not state the full result here, except to note the following
relevant consequence.

Proposition 2.7. Assume that there is a unique stationary measure v for the projec-
tive process (u;,x;,v;). Then, for (i x Leb)-almost every (u,x) € Hx T¢ and every
v € R\ {0}, we have that

. 1 t + . -y
thm ; log |Dx¢,, ,v| = A" with probability 1.
—00 ’

Proposition 2.7 is formulated in a more general way as Proposition 3.16 in Sec-
tion 3.2.3, to which we refer the reader for more details. The expansion estimate appearing
in Corollary 1.7 now follows from a straightforward argument.

Added to our growing list of ingredients is uniqueness of the stationary measure v for
the projective process, to which we refer the reader to Section 2.7 for more information.

2.6. Gradient growth: Proof of Theorem 1.14

Given an initial ug = u € ﬁ an initial scalar fo = f € H L f fdx =0, and a noise
parameter @ € €2, the corresponding solution ( f;) for the passive advection equation (1.5)
is given by
fi(x) = f o (¢.) 7 (%),
By incompressibility, we have (recall —T is standard shorthand for the inverse trans-
pose)

IV fillor = / IV £, ()| dx = / (Dl )TV o)) d.

The object (Dx¢’, )~ " defines a cocycle over the RDS ©%, on H x T< in the same
manner as D¢/, ,. To complete the proof of Theorem 1.14, it suffices to obtain the
following analogue of Corollary 1.7 for this new cocycle.

Proposition 2.8. There is a constant A > 0 with the following property. For any n > 0,
n < A, u x Leb-almost every (u, x) € H x T4, and every unit vector v € R?, there is
a (random) constant § = 8, (u, x,v, 1) (i.e., depending on the noise parameter » € 2)
such that with probability 1, § > 0 and

[(Dxgly )" T v] = 8!
When d = 2, we have A = AT,

Setting v = V fo(x)/|V fo(x)| and integrating over {x € T? : V f, # 0}, we obtain
Theorem 1.14 for p = 1. The estimate for the remaining L7 spaces follows from

IV fillLt IV fellze

for all p € [1, o0].

To prove Proposition 2.8, we will prove Theorem 1.6 and Corollary 1.7 with the
(=T)-cocycle (Dx¢')~T replacing the usual D,¢’. Let us summarize briefly how this
will be done. For Theorem 1.6 we have the following.
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Proposition 2.9. The following statements hold:
(a) For u x Leb-almost every (u, x) € H x TY9, the growth rate

v .1 -
A (.u.x) = Jim —log|(Dxg, )|

exists with probability 1. Moreover, if |1 x Leb is the unique (hence ergodic) station-
ary measure for the (u;, x;) process, then AT is independent of w, u, x.

(b) Let AT be as in Proposition 2.1. Then AT > 0 iﬁi"‘ > 0. Indeed, A\t = A+ ifd =2.

Item (a) is merely a repetition of Proposition 2.1 for the (—T)-cocycle and is a con-
sequence of the Multiplicative Ergodic Theorem; see Theorem 3.13 for details. As in
Theorem 1.6, passing between “almost every” and “every” is done using the Strong Feller
property; see Remark 2.2. Item (b) is a consequence of a general relationship between the
Lyapunov exponents of Dx¢’v and (Dx¢")T; see Section 3.2.5 for details. In particular,
note that the relation A* = A% is exclusive to d = 2; the authors are unaware of any
reason to expect it to hold in dimension d = 3. 5

Having shown (Theorem 1.6) that AT > 0, we conclude A™ > 0. To prove the ana-
logue of Corollary 1.7 for the (—T)-cocycle will require, as in Proposition 2.7, for us
to study the so-called (—T)-projective process (u;, x¢, V) on H x T? x P9~ defined
for initial ¥9 € P4~ by setting ¥, to be the projective representative of (Dx¢>fuju)_T Vo.
Equivalently, the (v;) process is governed by (u,), (1.1), and

00 = —Hz“;, (Dut(xt))—rﬁr

Repeating Proposition 2.7 verbatim with D, ¢’ replaced by (D,¢*)™ ", we see that Propo-
sition 2.8 follows immediately from the existence of a unique (hence ergodic) stationary
measure ¥ for the (—T)-projective process (uz, x;, V).

2.7. Hypoellipticity

The previous discussion of the proofs of Theorems 1.6 and 1.14 requires a number of
ingredients pertaining to the properties of the various stochastic processes (Lagrangian,
projective, (—T)-projective, and matrix) mentioned so far. Specifically, we need:

(a) Uniqueness of the stationary measure for the
(i) Lagrangian,
(i) projective,
(iii) (—T)-projective processes.
(b) For the infinite-dimensional Systems 3—4, the Strong Feller property (Definition 4.1)
for the Lagrangian process (u;, X;).

(c) For the matrix process (u;, x;, A;) and projective process (U, X;, vy), either:

(i) Hormander’s condition for the SDE defining (u,, x;, A;) for the finite-dimen-
sional Systems -2, or

(i)  approximate controllability condition in Proposition 2.4 for the infinite-dimen-
sional Systems 3—4.
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Let us recall briefly where each of these is used. First, ingredient (a) (i) was used to deduce
the almost-sure constancy of the exponential growth rates A, A1 as in Proposition 2.1
and Proposition 2.9 (a), respectively. Meanwhile, (a) (ii) was used to deduce almost sure
growth for (D¢")v in Corollary 1.7 (see Proposition 2.7); analogously, (a) (iii) was used
to deduce growth of the (D,¢?)~Tv in Proposition 2.8. On the other hand, (b) is used to
justify the refinement of Furstenberg’s criterion (Proposition 2.5) used for Systems 3—4.
For the finite-dimensional Systems 1, 2, ingredient (c) (i) was used to rule out Fursten-
berg’s criterion (Proposition 2.3); see the discussion in Section 2.3. Lastly, ingredient
(c) (i1) was used to rule out the refinement of Furstenberg’s criterion in Proposition 2.5 for
Systems 3—4.

All of items (a)—(c) require us to understand how the noise in the low modes of u,
spread to the degrees of freedom associated with the Lagrangian flow. Note the additional
degrees of freedom (x;, v, Vs, A;) solve a series of random ODEs (collected below in
equation (1.9)). Since these unknowns are not directly forced by any noise, the corre-
sponding SDEs are degenerate and we need to depend on hypoellipticity to show (a)—(c).

2.7.1. Finite dimensions: Systems | and 2. Let us discuss how the ingredients for the
finite-dimensional Systems 1 and 2 are obtained. For these models, all relevant stochas-
tic processes as above are given by an SDE on a finite-dimensional manifold. Provided
that one can show the algebra formed by taking successive Lie brackets of vector fields
associated to the drift and the noise directions e y,i span the tangent space at every point,
a condition known as Hormander’s condition (see Definition 5.1 for a precise definition
and Remark 2.11 for a conceptual discussion), we may apply Hormander’s Theorem (see
[67,68] and the discussions in [37,63]) to deduce that the Markov transition kernels for the
Lagrangian, projective, (— T )-projective and matrix processes have a smooth positive den-
sity. Assumption 1 ultimately ensures that Hormander’s condition is satisfied. Specifically
we prove the following proposition in Section 5:

Proposition 2.10. Assume (u;) is governed by either of the finite-dimensional Systems 1
or 2. For each of
(1)  the Lagrangian process (us, x;),
(ii)  the projective process (Uy, Xy, Vt),
(iii) the matrix process (u;, x;, A;), and
(iv) the (—T)-projective process (u;, Xy, Uy),
the SDE governing the relevant process satisfies Hormander’s condition.
By standard arguments (see, e.g., [38]), uniqueness of the stationary measures then
follows for the Lagrangian, projective and (— T )-projective processes [37], thereby fulfill-

ing ingredients (a) (i)—(iii) above as well as (b). Likewise (c) (i) is immediately satisfied
for the matrix process.

Remark 2.11. Physically, one may view Hormander’s condition as an infinitesimal con-
trollability statement. When it is satisfied for the (u;, x;, vs, A;) process, one can infinites-
imally move each component of this process independently of the others using special
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choices of noise paths. Hence, all possible infinitesimal deformations of the flow map are
realized with nonzero probability.

2.7.2. Infinite dimensions: Systems 3—4. In infinite dimensions, Hormander’s condition
is not applicable and so we must work harder to verify ingredients (a) (i)—(iii). There have
been a number of works proving uniqueness of the stationary measure for the Navier—
Stokes equations under degenerate and nondegenerate noise (for instance [50,52,64,65]).
A standard approach is to apply the Doob—Khasminskii Theorem [41, 72], the fact that
distinct ergodic stationary measures for strong Feller processes (Definition 4.1) have dis-
joint supports, and then to check that there exists a point which belongs to the support of
every invariant measure (a.k.a. weak irreducibility). Following this strategy, in Section 6
we prove the strong Feller property for the Lagrangian, projective and (—T)-projective
processes.

Proposition 2.12 (Strong Feller). For Systems 3—4, the Markov semigroups associated
with the Lagrangian process (U, x;) and the projective processes (U, Xy, Vy), (Uys, Xy, V)
are all strong Feller in Hx T? x p4—1,

Remark 2.13. This proposition is where we need the lower bound 0 > o — 2(d — 1) as
in (1.3).

Remark 2.14. If the noise is suitably nondegenerate, then the strong Feller property
for the Navier-Stokes equations can be proved by the Bismut-Elworthy—-Li formula
(see for instance [52] and [29]). However, if the noise is too degenerate, then it is not
known whether the strong Feller property even holds. Indeed, to get around this difficulty,
Hairer and Mattingly [64, 65] introduced a weaker notion, the asymptotic strong Feller
property, which when combined with weak irreducibility, gives a generalization of the
Doob-Khasminskii Theorem, still giving uniqueness of the stationary measure. While the
asymptotic strong Feller property is clearly good enough obtain ingredients (a) (i)—(iii), it
does not appear to be enough to prove the refinement of Furstenberg’s criterion (Propo-
sition 2.5), which requires that (u,, x;) be strong Feller (ingredient (b)). It is precisely
this strong Feller requirement for Furstenberg’s criterion that dictates our nondegeneracy
Assumption 2.

To conclude uniqueness of the stationary measures as in (a) (i)—(iii), it suffices to prove
the following weak irreducibility properties, proved in Section 7 below.
Proposition 2.15. For Systems 3-4, we have the following:

(1) The support of any stationary measure for the Lagrangian process (u;, x;) on Hx T¢
must contain the set {0} x T<.

(2) The support of any stationary measure for the projective processes (Uz, Xy, V) and
(s, x1,07) on H x T4 x P4~ just contain {0} x T4 x pa-1,

Uniqueness of the stationary measures now follow.

Corollary 2.16. The processes (u;), (s, xy), (Uy, X, v¢) and (Uy, X¢, Vy) all have unique
stationary measures.
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Additionally, it remains to address ingredient (c) (ii), the approximate controllability
condition in Proposition 2.4. Once Propositions 2.15 and 2.4 are completed, the proof of
Theorem 1.6 for Systems 3-4 is complete.

2.7.3. Strong Feller. Our proof of Proposition 2.12 is inspired by methods of Eckmann
and Hairer [45]. In [45], the authors prove strong Feller for the complex Ginzburg—Landau
equations with forcing that satisfies Assumption 2, using a cut-off technique and a high-
low frequency splitting. This cut-off approach has since been extended to Markov selec-
tions of the 3D Navier—Stokes equations in [100]. Similar results to [100] were proved
in [5] using the infinite-dimensional Kolmogorov equation. Our proof of strong Feller
is closer to [45] and [100], but differs in our choice of the cut-off process, the use of
non-adapted controls, estimates on Skorokhod integrals, and an interpolation inequality
introduced in [65] used to circumvent some technicalities with applying Norris’s Lemma
in L2([0, 1]).

Similarly to [45,52,100], it does not seem possible to obtain an estimate on the deriva-
tive of the Markov semigroup of the projective process (u;, x¢, v;). The strategy is to show
that such an estimate is available for a “cut-off” or “regularized” process. In our setting,
we will find it convenient to augment the projective process (uy, x;, v;) by a Brownian
motion (z;) on R24 (likewise for the (—T) projective process). The augmented process
w; = (g, X¢, Vg, 27 ) solves an abstract evolution equation

8twt = F(wt) —Awt + QWt

on H x M, where M is a smooth finite-dimensional manifold. Let f’t be the Markov
semigroup associated to w,, then our goal is to find a regularized process w? such that
P((w¢)sefo,r) # (w',o),e[o,r]) is vanishingly small as p — oo but for which one can obtain
a derivative estimate on the associated semigroup P/ .

Remark 2.17. It is important to note that our choice of cut-off process w? is different
from that used in [45] and [100] and uses the augmentation by z; to introduce new sources
of noise while avoiding technical difficulties with multiplicative white noise (see Section 6
for more details on the cut-off process).

Our main effort is then to prove that the cut-off semigroup fA’tp satisfies the following
gradient estimate (Proposition 6.1):

1D BLGw)h| S 17 (1 + [wlg) oo 1 mer, 24

for all bounded measurable ¢ on H x M, h € H x T, M, and sufficiently small ¢, and
ax and by are certain positive constants. We show in the proof of Proposition 2.12 in
Section 6 this estimate on P/ implies that P; is strong Feller, albeit without an estimate
on the derivative.

The fundamental tool for proving (2.4) is Malliavin calculus. This involves taking
derivatives of the solution with respect to the noise. Well-posedness of the cutoff pro-
cess implies that for each p and initial data w € H x M, the solution w? at time ¢ > 0
is a continuous function of the noise path W € C(R4, H™?), where ¢ > 0 is such that
QO (H™*) C H. Specifically, we have the 1td map W |, — w?[W|jo,] is a continuous
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mapping from C([0,¢], H™?) to H x M for each ¢ > 0. In fact, it is straightforward to
show that W |js] > wf[W |[o.¢]] is actually Fréchet differentiable over the Banach space
C([0, ¢]; H™?) (see for instance [65, Proposition 4.1]). Indeed, for any process g = (g¢)
(not necessarily adapted to %) that belongs almost surely to L?(R 4, L?), the Malliavin
derivative Dy w? of w in the direction of g, defined by

dh
exists for each ¢ > 0. We will often refer to g as a control. A key feature of the Malliavin
derivative is the celebrated Malliavin integration by parts formula, which states that for
each¢ € C bl (H x M) and a suitably regular g (see Proposition 6.4 for the precise condi-
tions) one has the identity

E(Dp(w?) Dguf) = EDgp (w?) =E(¢<wf) [O <gs,5WS>Lz), 2.6)

where the stochastic integral fot (gs, 6Ws)2 above denotes the Skorokhod integral (see,
e.g., [95, Definition 1.3.1] or [37, Section 11.3]). If g is adapted to the filtration ¥, then
the Skorokhod integral coincides with the usual 1t6 integral. Formula (2.6) can be used to
obtain smoothing estimates on the semigroup ﬁtp . Indeed, if for every h € H x T, M, one
could find a “nice enough” control g such that Dgw? = Dw!h, where Dw?h denotes
the direction derivative of w’ in the direction & with respect to the initial data, then an
estimate on DIS,” follows from (2.6) as long as one can bound the Skorokhod integral
term (see (2.8) below for more details). However, in our setting we are unable to find such
a control g due to subtleties in infinite dimensions. Instead we opt to find a control g such
that for each fixed 0 < T < 1, we have

Dewh = Dwhh +rr, .7
where rr is a remainder which will be small when T is small, and consequently the Sko-
rokhod integral E | f(; (gs, 6W;)| will be singular as T approaches 0 (see Lemma 6.5 for
the exact estimates). The (non-adapted) control g is chosen with an elaboration of the
high-low splitting used in [45]. At high frequencies it is chosen such that the contribu-
tion to the Malliavin integration by parts formula reduces to the Bismut—Elworthy-Li
formula, while at lower frequencies, the control is set by inverting a finite-dimensional
approximation of the Malliavin matrix (the partial Malliavin matrix) while attempting to
minimize the amount by which the low frequency control perturbs the higher frequen-
cies. The invertibility of the partial Malliavin matrix can be deduced from the fact that the
projective process associated to finite-dimensional approximations of the Navier—Stokes
equations satisfy Hormander’s condition (shown in Section 5).

The fact that we can have a remainder in (2.7) and can still prove a smoothing esti-
mate depends heavily on the precise dependence of the bounds on 77 and the Skorokhod
integral. The key idea, inspired by [45] and [29] involves using the semigroup property
and the integration by parts formula (2.6) to write

D PLr¢(w)h = E(D PLp(wh) Dwhh)

d .
Dew; = —wi[W +hG]|,_,. G =/0 gs ds, (2.5)

A T X (2.8)
- E(P;:qs(w;) /0 (g, SW@))Lz) —E(DPrg(wr)rr).
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Using the estimates on r7 and the Skorokhod integral, one can close estimates on D ﬁtp [0}
for sufficiently short times. The details of this argument can be found in the proof of
Proposition 6.1.

2.7.4. Weak irreducibility and approximate control. Let us first discuss Proposition 2.15.
For simplicity, here we only discuss the 2D case, System 3. Weak irreducibility for (u,) is
a consequence of the energy/enstrophy dissipation (see Section 7 and, e.g., [44]), which
shows that 0 is in the support of all stationary measures for the (u;) processes. Using
a stability argument and the positivity of the Wiener measures, the main content of the
irreducibility in Proposition 2.15 is the study of the control problem

8tut = —B(ut,ut) — Au, + Qg(l), (29)
where g € C®(R4, L?) is a smooth control,
A=—-A,

Bu,u) = (I + V(=A)"'V)(u- Vu).

Here, x;, vs, Uy and A, are implicitly controlled through (u,). First, we prove that for all
(x,v), (x’,v") € T x P4~ there exist smooth controls g such that

(10, X0, v0) = (0,x,v), (u1,x1,v1) = (0,x",0)

(and analogously for the (u;, x;, V;) process). We note that it suffices to control near
Uy ~ 0 precisely because 0 is in the support of the stationary measure . To solve this
control problem we use that the following flows are exact solutions (for arbitrary a, b) of
the steady Euler equation B(u, u) = 0 as well as eigenfunctions of A:

_ (cos(y2 —b) 0 sin(y, — b)
u(yr, y2) = ( 8 ) ’ (cos(y1 — a)) ’ (— sin()zfl —a)) ' (2.10)

The first two are shear flows whereas the last flow is a cellular flow with separatrices
aligned along the diagonals. The first two flows are used to move the particle x; whereas
the latter flow is used to move v, without moving the particle. Once these flows can
be formed, it is not difficult to verify the necessary controllability of system (2.9); see
Lemma 7.1 for details. Note that Assumption 1 is slightly stronger than what is necessary
to form the flows (2.10), which is why, for example, Remark 1.13 holds (see Lemma 7.1
and Remark 7.5). Similarly, for the case of Systems 3 and 4, one can prove Theorem 1.6
(and all of the other main results) using only Assumption 2; see Remark 7.6.

The nondegeneracy of the (u;,xs,v;) and (u;, x;,V;) processes needed to prove
Proposition 2.15 and condition (b) in Proposition 2.4 then follow from the controllability
and suitable stability estimates (see Section 7 for details). In order to satisfy condition (a)
in Proposition 2.4, we also need to demonstrate arbitrarily large growth of A, in the
(uy, x¢, Ay) process (under similar constraints as for the projective control statements).
This is done by applying the cellular flow as above, but shifted so that the hyperbolic fixed
point causes exponential growth of A; without moving the particle x;; see Proposition 7.4
for details.
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2.8. Proof of Yaglom’s Law (1.8) as in Theorem 1.16 (ii)

Next, we summarize the proof of Theorem 1.16 (see Section 8 for details). First, we prove
the limit (1.7). This result follows from a straightforward adaptation of the compactness
method of [17], originally applied to passive scalars with deterministic, constant-in-time
velocity fields. The first step is to renormalize f = \/kg; to obtain

D ff +u -V =kAff 4+ JcQW,. (2.11)
The balance (1.6) then becomes, for statistically stationary solutions,
E|Vf )7, =& (2.12)

Denote by {ji*}¢~0 a sequence of stationary measures to (2.11) supported on Hx H'.
Equality (2.12) is sufficient to obtain tightness of {ji“},~¢ to pass to the limit and deduce
the existence of a stationary measure i1° of the problem (2.11) with k¥ = 0 supported
on H x H'. Theorem 1.14 is then applied to prove by contradiction that necessarily
1% = 11 x 89, where 8y denotes the Dirac delta centered at zero and y is the station-
ary measure for (u;). The limit (1.7) then follows from additional moment bounds in L?;
see Section 8 for more details.

In order to prove (1.8) we in turn adapt the method of [17] . One of the basic identities
used in [17] is a version of the classical Karman—Horvath—Monin relation [40, 55, 90]
which is a refinement of the L? energy balance. Here, we apply a similar identity, now
a refinement of the L2 balance for g; (see Proposition 8.4 below). This identity implies
a differential equation (in weak form) for the quantity (see (8.5)),

D) =E][ ][ Sentt - 11|8gng|* dS(n) dx.
Td Jsd—1

Solving the ODE (8.5) in terms of the source and dissipation, we apply (1.7) to show that
the effect of the diffusivity on the balance vanishes over an appropriate range of scales
[€p(k), £r] satisfying lim,_.¢ £p (k) = 0. This then yields (1.8).

3. Random dynamical systems preliminaries

In this section we will present necessary background from random dynamical systems
theory. This section is mostly an exposition of material drawn from various sources in the
dynamics literature. General references include the books of Arnold [8], Kifer [73], and
Kuksin and Shirikyan [86].

The plan for Section 3 is as follows. We begin in Section 3.1 with some essen-
tial ergodic-theoretical background: the definition and standard axioms we use for ran-
dom dynamical systems (RDS) and some elementary results. Section 3.2 introduces the
notion of linear cocycle over a given RDS and formulates the Multiplicative Ergodic
Theorem (MET), allowing us to define the Lyapunov exponent A1 appearing in Theo-
rem 1.6. In Section 3.3 we turn our attention to the problem of how to prove A+ > 0
using Furstenberg’s criterion (Theorem 3.18).
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3.1. Elements of ergodic theory of random dynamical systems

3.1.1. Basic setup for random dynamics. Let (2,5 ,P) be a probability space and let
(6") be a measure-preserving semiflow on 2, i.e., 8 : [0,00) x @ — Q, (t,w) — 0'w is
a measurable mapping satisfying

i) O’w=wforallweQ,

(ii) 6% 06 =0' S foralls,t >0, and

(iii) Po(#")~! =Pforallz > 0.

At times (which we will specify), it will be useful to assume that £2 has some topological
structure. If so, we will assume additionally that €2 is a Borel subset of a Polish space,
and ¥ is the set of Borel subsets of 2.

Let (Z, d) be a separable, complete metric space. A random dynamical system or RDS
on Z is an assignment to each w € Q of a mapping 7, : [0, 00) x Z — Z satisfying the
following basic properties:

(i)  (Measurability) The mapping T : [0,00) X Q X Z — Z, (t,w,z) Tafz, is mea-
surable with respect to Bor([0, 00)) ® ¥ ® Bor(Z) and Bor(Z).

(ii)  (Cocycle property) For all w € 2, we have 7, = Id (the identity mapping on Z),
and for s,7 > 0, we have 751! = 'J‘bﬁw o T35,

(iii) (Continuity) For all elements w € €2, the mapping Ty, : [0, 00) X Z — Z belongs
to Cy, 5 ([0,00) X Z, Z).

Here, for metric spaces V, W, the space C,, 5 (V, W) C C(V, W) is defined as follows:

Definition 3.1. We define’ C,, ,(V, W) to be the space of continuous maps F : V — W
for which the following holds for each bounded U C V:

(a) The restriction F |y is uniformly continuous.

(b) the image F(U) is a bounded subset of W.

We endow C,, , (V, W) with the topology of uniform convergence on bounded sets (abbre-
viated UCBS). It is a simple exercise to check that if (F;), is a sequence in Cy, 5 (V, W)

converging to some F : V — W in the UCBS mode, then F € C, ;(V, W) holds. More-
over, it is a simple exercise to check in this setting that C,, 5 (V, W) is metrizable.

Note that automatically, condition (iii) implies that ‘Taf €eCyp(Z,Z) forall t >0,
w € 2. Indeed, by condition (iii), for any w € 2, T > 0 and bounded U C Z, the fam-
ily {7} |u : U = Z}sep0,1 is equicontinuous since T, : [0, 7] x U — Z is uniformly
continuous.

Definition 3.2. We refer to T satisfying (i)—(iii) above as a continuous RDS on Z.

In addition to (i)—(iii) above, we will almost always assume that the RDS T satisfies
the following independent increments assumption.

7We use the slightly nonstandard topology Cy »(Z, Z) to accommodate for the situation when
Z is not locally compact. The regularity of C, ;-topology is used in several places, especially in
Section 4, and so will be assumed from this point on.
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(H1) For all s,¢ > 0, we have that Taﬁ is independent of ’J'es,w. That is, the o-subalgebra
o(T") C ¥ generated by the Cy, ,(Z, Z)-valued random variable @ + T is inde-

pendent of the o-subalgebra o (7,; ) generated by w > Tp; .

Example 3.3. Let » > 1 and let Yy, Y1,...,Y, be smooth, globally Lipschitz vector
fields on R”. Let W,l, ..., W/ be independent standard Brownian motions. Then the
stochastic differential equation

m
dX¢ = Yo(Xo) dr + ) Yi(Xo)dW,

i=1
defines a random dynamical system on Z = R”, where Q = Cy([0, 00), R)®™ is the
k-fold product of Canonical Spaces equipped with the k-fold product Borel o-algebra
and Wiener measure P, and 6 : Q — Q is the shift of increments by ¢ > 0, written
P'w(s) := w(t + s) — (). The resulting RDS satisfies the measurability and continuity
conditions (i)—(iii). The independent increments condition (H1) follows from the inde-
pendence of the Brownian increments W/, — W/ and W/ for all 5,7 > 0 and each
1 <i,j <k.See,e.g., [8,87] for more details.

3.1.2. Markov chain formulation and stationary measures. For fixed z € Z, consider the
stochastic process (z;);>o given by z; = Tl zg, zo := z.

Lemma 3.4. Let T be a continuous RDS as in Section 3.1.1 satisfying the independent
increments condition (H1). Then, the process (z;)s>0 as above is Markovian.

For a proof of Lemma 3.4, see, e.g., Kuksin and Shirikyan [86], where the Markov
property is proved under a somewhat weaker hypothesis than (H1).
Fort > 0,z € Z and K € Bor(Z), we define the Markov kernel
Pi(z,K) :=P(z; € K | zg = 2).

The Markov kernel P;(z, K) has a natural action on any bounded measurable observable
h:Z—->R

P:h(z) := / h(z") P (z,dzZ).
The Markov property of (z;) implies the semigroup relation Ps4; = P; o Ps. We refer to
the operators (P;);>o as the Markov semigroup associated to (z;).
The proof of the following proposition is straightforward and omitted for brevity.
Proposition 3.5. Assume the setting of Lemma 3.4.

(a) The semigroup (Py) has the Feller property, i.e., for any t > 0 and any h : Z — R
be continuous and bounded, we have that P, h is defined and is a continuous function
Z — R.

(b) The semigroup (P;) has the following C°-continuity property: for any bounded
h € C, p(Z,R), we have that

(1) Pih € Cyp(Z, R), with || Pihllzss < [z, for allt > 0,
(2) the mapping t — P¢h,t > 0 is continuous in the topology on Cy 5 (Z,R).
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We regard the (formal) dual (P;)* of the operator P, as acting on the space of finite
signed Borel measures on Z. Given a finite signed Borel p on Z, (P;)*u is defined for
Borel A C Z by

(P))* 1u(A) = / Pi(z. 4) dp(z).

If u is a Borel probability on Z for which (P;)*u = u forall t > 0, we call u stationary.

The following lemma is a consequence of a standard Krylov—Bogoliubov argument.
Recall that a collection § of Borel probabilities on a Polish space X is called tight if for
all & > 0 there is some compact subset K = K, C X such that for all v € §, we have
V(Kg)>1—¢.

Lemma 3.6. Assume the setting of Lemma 3.4. Then the Markov semigroup (P;) admits
at least one stationary measure [ in either of the following circumstances:

(@) The space Z is compact.
(b) There exists a Borel probability [y for which the sequence {(P¢)* [Lo}s>0 is tight.

Note that (a) implies (b).

3.1.3. Skew product formulation and invariant measures. The material in Section 3.1.3
is mostly taken from [73, Chapter I].

The Markov chain formulation given above is useful in that it identifies “time-invar-
iant” statistics on Z for the RDS, namely, its stationary measures. On the other hand, the
Markov kernel loses some structure of the RDS, in the sense that the same Markov kernel
can arise from qualitatively different RDS. See, e.g., [73, Example 1.1.1] for an extreme
example of this.

The following skew product formulation, unlike the Markov chain, encodes the entire
RDS.

Definition 3.7. The skew product associated to the above random dynamics is the map-
ping 7 : [0,00) X Q X Z — Q x Z given by

(t,w,z) =1t (0,2) = ('w, T} 2).

We regard t as a single “deterministic”, measurable semiflow on the augmented space
Q x Z. In particular, this provides us a connection between “standard” ergodic theory,
i.e., the theory of invariant measures for individual mappings of a measurable space,
and our present setting of random dynamical systems. The following lemma makes this
connection explicit.

Recall that a probability measure n on 2 x Z is invariant for the semiflow t if
no (")~ =nforallt > 0.

Lemma 3.8 ([73, Lemma 1.2.3]). Assume T is a continuous RDS as in Section 3.1.1
satisfying (H1) and generating the Markov semigroup (P;) as in Lemma 3.4. Let |t be
a Borel probability measure on Z. Then the following are equivalent:

(a) The measure P x [ is invariant for the skew product (t*).

(b) The measure | is stationary for the Markov semigroup (Py).
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A similar correspondence exists between the ergodic stationary measures of the semi-
group (P;) and the ergodic invariant measures of the skew product (z?).

Recall the following standard definition from ergodic theory (see, for example, [109]):
a (t")-invariant measure 7 is ergodic if, for any bounded measurable / : Q x Z — R for
which 4 o ¥ = h holds n-almost-surely for all 7 > 0, we have that /4 is constant n-almost
surely. For stationary measures p of the Markov semigroup (P;), we use the following
definitions:

Definition 3.9 ([73, p.19]). Let 7 : Z — R be bounded and Borel measurable. Given
a stationary u, we say that ¢ is (Py, u)-invariant if P;¢p = ¢ holds pu-almost surely for
all + > 0. We say that a set K C Z is (P;, u) invariant if its characteristic function yg is
(P;, w)-invariant in the above sense.

We call a stationary measure u ergodic if the only (P, p)-invariant functions are
p-almost-surely constant.

Proposition 3.10 ([73, Theorem 1.2.1]). Assume the setting of Lemma 3.8. Let | be a sta-
tionary measure for (P;), noting that P X [ is an invariant measure for (t*) by Lemma
3.8. Then the following are equivalent:

(a) The invariant measure P x i is ergodic for the skew product (t").

(b) The stationary measure i is ergodic for the Markov semigroup (Py).

3.2. Linear cocycles over RDS and the Multiplicative Ergodic Theorem

We start by defining and motivating the concept of a linear cocycle over a random dynam-
ical system in Section 3.2.1. Next, in Section 3.2.2 we state precisely the Multiplicative
Ergodic Theorem (Theorem 3.13). The remainder of Section 3.2 is devoted to establishing
useful corollaries and refinements of Theorem 3.13.

3.2.1. Basic setting: Linear cocycles over RDS. Fix a positive integer d. Roughly speak-
ing, a linear cocycle over a given “base” dynamical system is a composition of time-
dependent d x d-matrices driven by the dynamics on the base. More precisely, in our
setting we have the following definition.

Definition 3.11. Let 7 be a continuous RDS as in Section 3.1.1, referred to below as the
base RDS, and let (z*) be its associated skew product as in Section 3.1.3. A d -dimensional
linear cocycle 4 over the base RDS 7 is a mapping 4 : 2 — C,, 5 ([0, 00) X Z, M x4 (R))
with the following properties:
(i)  The evaluation mapping 2 x [0,00) X Z — Myx4(R) sending (w,?,z) > Ai),z
is ¥ ® Bor([0, 00)) ® Bor(Z)-measurable.
(ii) The mapping A satisfies the cocycle property: for any z € Z,w € Q2 we have
AJ , = Idga, the d x d identity matrix, and for 5,7 > 0 we have
AT = A o A, . (3.1)

! (w,z)

To motivate this definition, consider the following example.
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Example 3.12. Let Z be a Riemannian manifold and assume that for each element
weQ, Tl:Z— ZisaC! mapping on Z (e.g., the RDS defined in Example 3.3).
The cocycle Az),z :=D,T!,z € Z,t >0, is often referred to as the derivative cocycle
for 7. The cocycle property (3.1) is a manifestation of the Chain Rule from standard cal-
culus and the cocycle property (ii) in Section 3.1 for the RDS 7. For more information,
see, e.g., [8,73].

3.2.2. The Multiplicative Ergodic Theorem (MET). It is of natural interest, in the setting
described above, to study the asymptotic exponential growth rate

. 1 t
tll)ngo ;log |Ag, -V (3.2)

at z € Z,v € R?. When it exists, the quantity in (3.2) is the Lyapunov exponent at z in
the direction v. For systems such as those in Example 3.12, the existence and positivity
of the limit (3.2) implies that the orbit of z is sensitive with respect to initial conditions,
a possible symptom of an asymptotically chaotic regime for 7.

However, there is a priori no guarantee that the limits (3.2) even exist in the first
place. As it turns out, the most successful approach to the problem of the existence of the
limits (3.2) is through ergodic theory: the limits (3.2) exist for all v € R4, P-almost all
w € 2, and for points z € Z generic with respect to stationary measures for the RDS T,
modulo a condition ensuring |¢A{072| does not get too large too fast as ¢+ — oo for “most”
(w,z) € Q x Z. This is the content of the MET, which we will now state precisely.

Let u be a stationary measure for the RDS 7 satisfying the independent increments
condition (H1). Let +A be a linear cocycle as above. Throughout, we will assume the
following integrability condition for the cocycle .

(H2) The triple (7, 4, ) has the property that 04)2), . 1s an invertible matrix forall w € Q,
t €]0,00),z € Z, and®

E/( sup 10g+|=A>Z,,Z|) du(z),E/( sup 10g+|(<>4>£0,z)_1|> du(z) < oo. (3.3)
0=<r<1 0<r<1

These conditions are standard for the derivative cocycles of stochastic flows generated by
SDE,; see, e.g., [74].

Theorem 3.13 (Multiplicative Ergodic Theorem; Theorem 3.4.1 in [8]). Let T be a con-
tinuous RDS as in Section 3.1.1 satisfying condition (H1). Let i be an ergodic stationary
measure associated to T and assume that A is a linear cocycle over T for which the
integrability condition (H2) holds. Then there exist r distinct deterministic real numbers

Al >'-->/\r,

re{l,....d}, a (t")-invariant’ set T C Q x Z of full P x j-measure, and for each

8Here, log™* (1) := max{0, loga} fora > 0.
9That is, 7%(I') C T with probability 1 for all # > 0.
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(w,z) €T, aflag of subspaces
R =: F; D Fo(w.,2) D -+ D Fr(w,2) D Fryq := {0},

with dim F; = m; for constants m; € {1,...,d},1 <i <r, for which the following holds.
Foranyl1 <i <randv € Fij(w,z)\ Fi+1(w, z), we have

o1
}E{}o;108|=">io,zv| =A;. (3.4

Moreover, the assignment (w, z) — F;(w, z) varies measurably.'”

Note that automatically, for any (w,z) € I and # > 0 we have that
A;,ZFi (w,2) = Fi (" (0, 2))

foreachi = 1,...,r. For instance, at i = 2, the forward growth rates of v and ,Asi)’zv as
in (3.4) must coincide for any s > 0, hence 4y, , must map F>(w, z) to F2(t¥(w, 2)). A
similar argument applies for i > 2; see, e.g., [108] for more details.

The MET as above is originally due to Oseledets [96]; since then many proofs of
the MET have been recorded, each providing a different perspective on this seminal
result. One perspective useful to us in this study is that given by the proof-technique of
Ragunathan [98] and Ruelle [101, 102]. For future use, we record the following interme-
diate step in this proof.

Below, for a d x d-matrix A and for 1 <i < d, we write o; (A) for the i -th singular
value of 4.

Lemma 3.14. Let A; and (w,z) — Fj(w,z),1 <i <r be as in Theorem 3.13.
(i) Foranyl <i <d, the limits

.1 p
xi = lim n log o; (A

w.2)

exist and are constant for P x p-almost every (w,z) € Q x Z. Moreover, the
Lyapunov exponents A;, 1 <i <r are precisely the distinct values among the y;,
1<i=<d.

(ii)) For P x p-almost every (w,z) € Q x Z, the limit
. ; 1 t T 4t
ANy, = tll>nc;lo ; IOg((an},z) EA’cu,z)

exists. The matrix A, ; is symmetric with distinct eigenvalues A;,1 <i <r and
corresponding eigenspaces E1(w,z), ..., Er(w, z). Moreover, for each 1 <i <r
we have

Fi(0.2) = P Ej(.2).
j=i

10We view the codomain of this mapping as the Grassmannian manifold Gr(Rd) of subspaces
of R4 equipped with its corresponding Borel o-algebra.
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Lemma 3.14 (i) is often proved using the Kingman Subadditive Ergodic Theorem [75].
Item (ii) follows from item (i) and a linear algebra argument; see [98,101] for more details.
Note that from Lemma 3.14 (i), we have that A; = A+ and A, = A~, where

1 1
+ _ 1im o t - — i o t \—1
AT = tlggo ; log |4, .|, A tlirgo ; log [(A,, )7 |, (3.5)

since for any invertible matrix A € Myx4(R) we have o1(4) = |4], 04(A) = |A7'|7L.
In particular, r > 1 (i.e., there exist at least two distinct Lyapunov exponents) if and only
if AT > A~. Of course, the problem of verifying that A™ > A~ for concrete systems is
often extremely challenging: this is precisely the subject of Sections 3.3 and 4.

For the remainder of Section 3.2 we will continue our discussion of linear cocycles
and the MET by introducing several auxiliary processes associated to a linear cocycle 4,
namely, the projective process (Section 3.2.3) and matrix processes (Section 3.2.4), as
well as the (—T)-cocycle A associated to +4 (Section 3.2.5).

3.2.3. Projective RDS associated to the cocycle A. Let us write P¢~! for the projective
space associated to R4 . The action of an invertible matrix A € M4 (R) on R¢ descends
to a well-defined action 4 : P4~1 — pd-1,

With this understanding, we can think of the cocycle + as giving rise to an RDS on
the product Z x P4~ i.e., that given for € Q by

(t.z.,v) = (Tyz, AL v), (z.v) € Z x P41t €]0,00).

We refer to the RDS on Z x P¢~! as the projective RDS or projective process. As one can
easily check, this is a continuous RDS in the sense of Section 3.1.1 with Z x P4~ replac-
ing Z. Correspondingly, we will assume in what follows that the following independent
increments condition, analogous to (H1), is satisfied:

(H3) For all s,¢ > 0, we have that the C, 5(Z, Z) x C, 5 (Z, M x4 (R))-valued random
variables (7.7, A" ) and (T , A}, _.)on (R, ¥, P) are independent.
Assumption (H3) ensures (Lemma 3.4) that associated to the RDS on Z x Pa-1ig
a Markov process (z;, V¢)s>0 on Z X P41 with transition kernel

Pi((z,v), K) = P((z1,v1) € K | (20, v0) = (2,0))
= P{(T}z, AL, ,v) € K}

defined for (z,v) € Z x Pd_l, K C Z x P41 Borel. In addition, we can consider the
associated skew product semiflow 7 : Q x Z x Pi-1 . QxZx Pl ¢ [0, 00), as
in Section 3.1.3.

We now turn our attention to the relationship between the ergodic theory of the projec-
tive process and the MET. It is not hard to see that any stationary measure v for (ﬁt) must
project to some (P;)-stationary measure p on the Z-factor. Conversely, by Lemma 3.6
we have the following.

Lemma 3.15. Given a stationary measure i for (Py), there exists at least one stationary
measure v for the projective semigroup (Py) such that v(A x P471) = u(A).
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If v as above is the unique stationary measure with marginal x, then we obtain the
following refinement of the MET.

Proposition 3.16. Assume that there is only one stationary measure v for the projective
RDS projecting to |4 on the Z-factor. Then we have the following: for p-almost every
z € Z and any v € R? \ {0}, we have

. 1 t
tll)rgo A log A, ,v] = A1

with P-probability 1.

Note that Proposition 3.16 is actually a corollary of the more general Random Mul-
tiplicative Ergodic Theorem, discovered independently by Kifer ([73, Theorem III.1.2])
and Carverhill ([27]), describing the situation when several stationary measures v project
to a single stationary w. Since we do not use this more general formulation here, we omit
it and refer the interested reader to the references above for more information.

3.2.4. Matrix RDS associated to the cocycle 4. The cocycle 4 also gives rise to an
RDS on the product space Z x Myxq(R); for w € €2, the time-t mapping applied to
(z, B) € Z x Mgx4(R) is given by

(z,B) — (T7) z, AZ’ZB).

Like before, this RDS on Z x M ;x4 (R) falls into the framework given in Section 3.1.1
with Z x M ;x4 (R) replacing Z.

Similarly, under the independent increments hypothesis (H3) we can associate to this
RDS a Markov process (z¢, A;) on Z X Mgxq(R) with transition kernel Q;((z, A), K).
Note that if the matrix A € Myx4(R) is invertible and K = K; x K;, where K; C Z,
K, C ded(]R), then

Q:((z. A). K) = Q:((z,1d), K1 x (K247")),

where Id = Idgs. Thus, frequently we are only interested in the Markov kernel (Q;)
evaluated at (z, Id).

3.2.5. The MET for the (—T)-cocycle A. In this paper we will also need to consider what
we call the (—T)-cocycle A, defined forz € Z,w € Q,t > 0 by

Al = (AL )T

Here, “(—T)” refers to the inverse-transpose of a (d x d)-matrix. As one can easily check,
s is a linear cocycle over the RDS 7; when (1—{2) and (H3) for the original cocycle + are
assumed, the same hold for the (—T)-cocycle +. Therefore the MET (Theorem 3.13) and
all the aforementioned material applies, yielding Lyapunov exponents A; > --- > A and
associated subspaces F> (w,2),..., F; (w,2).

These objects can be directly represented in terms of the exponents and subspaces of
the original cocycle .



J. Bedrossian, A. Blumenthal, S. Punshon-Smith 38

Proposition 3.17 ([8, Theorem 5.1.1]). We have i = r, and for each 1 <i < r, we have

Ai = —Ar_(i-1), (3.6)
Fi(,2) = (Fr_g-ns1(@,2))" foralmost all (0,z) € Q2 x Z. (3.7)
Proof. This follows on applying Lemma 3.14 to the cocycle A and noting that
log((Af, )T A, ;) = —log((A],.) T AL,.)

,z

holds for all (w,z) € 2 x Z and ¢t > 0. n

Under assumption (H3), the cocycle A induces the (—T)-projective process (z;, V)
on Z x P2~1 defined for fixed initial zo € Z, Vg € P2=1 by setting ¥; to be the projec-
tive representative of ,AZ,,ZO Up. Then all the material from Section 3.2.3 applies with 4
replacing # and (z;, V;) replacing (z;, v;). 5

In particular, the conclusions of Proposition 3.16 hold with # replacing 4 when the
stationary measure for (z;, U;) projecting to u on the Z factor is unique.

3.3. The MET in the random setting: Furstenberg’s criterion

Furstenberg’s criterion was originally discovered by Furstenberg in his seminal 1968
paper, Noncommuting random products [56]. It has since been refined and extended over
the subsequent years by a variety of authors; see Section 2.2 for some citations.

In Section 3.3.1 we will state Furstenberg’s criterion precisely in the setup of Sec-
tions 3.1 and 3.2. In Section 3.3.2 we provide a condition for checking Furstenberg’s
criterion which is most useful when 7 and 4 are generated by finite-dimensional SDE.
In Section 4 we will consider conditions for checking Furstenberg’s criterion which are
amenable to the situation when the phase space for 7 is more general and, possibly,
infinite-dimensional.

For the remainder of Section 3 we assume the setting of Sections 3.1 and 3.2. Specif-
ically, T is a continuous RDS on the metric space Z as in Section 3.1.1 satisfying (H1)
and admitting an ergodic stationary measure |1, while the cocycle 4 over T satisfies the
conditions of Section 3.2.1 as well as the integrability condition (H2) and the independent
increments condition (H3).

3.3.1. Furstenberg’s criterion in the RDS setting. Furstenberg’s criterion revolves around
a central theme: if AT = A1~ as above, then there is a deterministic, i.e., w-independent,
structure preserved by the cocycle # with probability one. Below, given an invertible
matrix M and a probability measure v on P9~!, we write M,v = v o M~! for the
pushforward of v by M. Here and throughout, we abuse notation and think of invertible
matrices M as mappings P4~ — P41,

Theorem 3.18. If AT = A~ then for each z € Z there a is Borel measure v; on P41
such that (i) the assignment z v« v, is measurable'' and (ii) for each t € [0, 00) and

"o wit, for any Borel K C P2=1 the function z > vz(K) is Borel measurable. Equivalently,
z +> vy is Borel measurable in the weak™* topology on finite Borel measures on P41,
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(P x p)-almost all (w, z) € Q x Z (perhaps depending on t), we have that
(Ap )wvz = Vi 5. (3.8)

Theorem 3.18 as above is a consequence of [88, Proposition 2 and Theorem 3]. Deduc-
ing the version given above requires passing from the discrete-time setting of [88] to our
present continuous-time setting, and is the reason why the (P x p)-almost sure set may
depend on ¢. Further details are left to the reader.

Note that automatically, if AT = A, then the measure v on Z x P?~! defined by

dv(z,v) =du(z)dv,(v), (z,v) € Z x pa1,

is a stationary measure for the Markov semigroup (ﬁ’) associated to the projective RDS
on Z x P41,

We conclude that AT > A~ if, from the conclusions of Theorem 3.18, we can derive
a contradiction. Our goal in the remainder of Section 3 is to identify criteria for the cocycle
A under which a contradiction can be derived.

Before continuing, let us establish some useful vocabulary. Any measurable fam-
ily (v;) of probability measures on P4=1 will be referred to as a family of fiber mea-
sures, while for z € Z the individual measure v, will be called the fiber measure at z.
If the family of fiber measures (v;) satisfies (3.8) for all # > 0 and P x p-almost every
(w,z) € Q x Z (the almost-sure set perhaps depending on t), we call (v;) an invariant
fiber measure family.

3.3.2. Nondegeneracy of conditional laws. For simplicity, and since our primary appli-
cation in this paper falls in this special case, let us restrict our attention to the case when
4 is an SL4(R) cocycle. That is, det Ay, , = 1 forallt > 0,z € Z,w € Q.

Our starting point is the following observation.

Lemma 3.19. Let v,V be Borel probability measures on P2~. Then the set
{A €SLy(R) : A4v =’} C SLy(R)
has empty interior.

The proof is straightforward and is omitted.

In relation to condition (3.8), Lemma 3.19 says that if for some 7y > 0 we can some-
how fix both z and the image z’ = 702, then the set of matrices mapping the measure
v = v, to v/ = v, is “small” in the topological sense.

We can make sense of this using regular conditional probabilities. Let us consider the
measure Qy,((z,1d),-) on Z x M;x4(R) and disintegrate it according to the value z;,
attained by the (z;) process, conditioned on zy = z. To wit, fix ty > 0; for Py, (z, - )-gen-
eric z’ € Z, we intend to define the regular conditional probability

0% (K):=P(A_ € K|TNz=z), K eBor(SLy(R)).
This is justified rigorously below.

Lemma 3.20 ([30]). Assume 4 is an SLz(R) cocycle and that Q2 is a Borel subset of
a Polish space equipped with the o-algebra ¥ of Borel subsets of Q2. Fix z € Z. Then
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there is a mapping Z x Bor(SL; (R)) [0, 1], (z/, K) > Q;OZ/(K), with the following
properties:

(1) For each K € Bor(SLy;(R)), the mapping z' +— Q;O,Z,(K) is Borel measurable.

(2) For Pyy(z,-)-almost all z’ € Z, the set function Q;‘TZ,(-) : Bor(SL; (R)) — [0, 1] is
a Borel probability measure on SL; (R).

(3) For any bounded measurable function h : Z x SLz(R) — R, we have that

/ h(z', A') 0%, (dA) Py (z.d2") = / h(z', A') Q4 ((2.1d). d(2, A)).

Definition 3.21. Let 4 be an SL; (R)-cocycle and assume (€2, ) is as in Lemma 3.20.
We say that #A satisfies condition (C) if there is a fp > 0 and a set S C Z of positive
pn-measure with the following property: for each z € S, there is a Py (z, - )-positive mea-
sure set S, C Z such that Q;‘fz/( -) is defined and is absolutely continuous with respect
to Lebesgue measure on SL; (R).

Note that if (C) holds and z € S, z’ € S, then the support of Q’°_,(-) has nonempty

z,z/
interior in SL; (R). Therefore by Theorem 3.18 and Lemma 3.19 we conclude the follow-

ing.

Corollary 3.22. If the SL(R)-cocycle 4 satisfies condition (C), then AT > A~. In par-
ticular, A1 > 0.

Proof. By Theorem 3.18, AT > 1™, Since +# is an SLy (R) cocycle, it follows from basic
linear algebra that

d
I = det(A, ) = [ [ oi(AL )
i=1
forallz € Z,w € Q,t > 0. Thus from Lemma 3.14 we have that Z?:l xi =0, (x;) as
in Lemma 3.14 (i). Since A; = At = y1, 4, = A~ = x4, we conclude from AT > A~
that y; > Oand y4 <O. ]

Condition (C) holds for a large class of systems for which the process (z;, A;) is
governed by a finite-dimensional SDE on Z x SL;(R); see Section 2.7. We note that
condition (C) is a straightforward adaptation of a condition given in [27] for the Lyapunov
exponent of a divergence-free SDE be positive.

4. Positive Lyapunov exponents for cocycles over infinite-dimensional RDS

For stochastic processes on infinite-dimensional spaces there is no corresponding ana-
logue of Hormander’s Theorem. As a result it is frequently quite difficult in applications
to verify the condition (C) (Definition 3.21).

Thankfully, condition (C) is far from necessary to rule out the criterion in Theo-
rem 3.18. In this section we prove a sufficient condition, weaker than (C), which is better
suited for infinite-dimensional RDS. To the best of our knowledge, this result appears to
be new. The proof is carried out in several steps.
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First, in Section 4.1 we will establish the continuous dependence of an invariant fiber
measure family (v;) on the base point z under the assumption that the Markov semi-
group P; associated to the RDS T has the strong Feller property (Definition 4.1 below).
Leveraging this continuity result, in Section 4.2 we will take advantage of algebraic prop-
erties of SLy(R) to obtain a classification (Theorem 4.7) for the family (v;) under the
assumption that At = A~ as in Furstenberg’s criterion (Theorem 3.18). Finally, in Sec-
tion 4.3 we will state a weakening (C’) (Definition 4.16) ruling out each alternative in the
classification we obtain.

For the entirety of Section 4, we assume the setting given at the beginning of Sec-
tion 3.3.

4.1. From measurable to topological

The goal of Section 4.1 is to turn the measurable information contained in Theorem 3.18,
namely, that the invariant measure family (v) satisfies (3.8) for (P x u)-almost all (w, z),
into topological information concerning “all” w, in a suitable sense, and all z in a closed
set. This will be accomplished in two phases: First, the family (v,) will be replaced with
a p-almost sure version (V;)zesuppy, Which is weak™ continuous as z varies in supp u
(Proposition 4.3). Second, the P x p-almost sure relation (3.8) for the family (v,) will
be turned into a corresponding relation among the family (v,) for all z € supp u and
“P-almost-all” replaced by “all”, in a sense to be made precise (Lemma 4.4).

The material in Section 4.1 is analogous to [12, Proposition 6.3 and Lemma 6.5].
For a summary of the differences between the latter and our results in this setting, see
Remark 4.15 below.

Going forward, we will require an additional regularity assumption on the Markov
semigroup (P;) associated to the RDS 7, which we now spell out here.

Definition 4.1. We say that the Markov semigroup (P;) has the strong Feller property if
for all bounded, measurable 4 : Z — R, and for all # > 0, the function P;h : Z — R is
bounded and continuous.

At times it will be helpful to use the following well-known result regarding strong
Feller semigroups.

Lemma 4.2. Assume Z is a Polish space.

(a) If the Markov semigroup (P;) on Z has the strong Feller property, then it is auto-
matically ultra Feller, i.e., for all t > O the mapping z — P;(z,-) is continuous in
the total variation distance'” | - ||;», on the space of finite signed measures on Z.

(b) Let u be a stationary measure for (P;) and let K C Z be a Borel set of full u
measure. Then P;(z, K) = 1 forallt > 0 and z € supp [

12Given two finite signed measures 11 and 7, on the same measurable space (X, &), the total
variation distance is defined by [|71 — n2[rv = supgeg |11 (K) — n2(K)|.
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Proof. Ttem (a) is proved in [103].
For (b), one checks that for all # > 0, the set {z € Z : P;(z, K) = 1} is dense in
supp p. Item (b) now follows from continuity in total variation as in (a). ]

With these preparations out of the way, we can now state precisely the first step in our
program, a continuity result for the invariant measure family (v,),ez.

Proposition 4.3. Assume (P;) is strong Feller, and let (v;) be an invariant fiber measure

Sfamily on Z as in Section 3.3.1. Then, there exists an invariant fiber measure family (V;),

defined for z € supp u C Z, with the following properties:

(@) The family (v;) is a pu-almost sure version of the original family (v;), that is, for
w-almost every z € supp i, we have v, = V.

(b) The family (v,) is continuously varying in the weak* topology on P41,
That is, by Proposition 4.3 we can replace the possibly discontinuous invariant mea-
sure family (v;) with a continuously-varying invariant measure family (V) defined at

each z € supp u, at the expense of modifying (v,) on a set of p-measure zero. So as not
to interrupt the flow of ideas, Proposition 4.3 is proved at the end of Section 4.1.

Let us now describe the second step in our program, namely, turning the P x p-almost
sure relation (3.8) into an analogous relation holding “surely” — roughly speaking, holding
for all (w, z) € Q x supp i and for all # > 0, in a sense we make precise below.

To begin, some notation: let us write

€ =Cyup(Z,Z)x Cyp(Z, Mgxq(R))

equipped with the product topology, where the C, 5 spaces are as in Definition 3.1.
Elements of € are written (7, A), where

T:Z—>272, z—TzeZ

and
A:Z — ded(R), zH—> A, € ded(R).

Given t > 0, let us write §; for the topological support of the €-valued random variable
(T, AL) where w is distributed as P. We set

s=Js

>0

for the closure of the union of the §; in €.

Lemma 4.4. Assume the setting, notation and conclusions of Proposition 4.3. Then, for
any z € supp u and (T, A) € §, we have that Tz € supp u, and

Ay v, = s 4.1)

Relation (4.1) for all (7, A) € § is analogous to the “measure-theoretical” relation
(3.8); in contrast to the latter, (4.1) holds identically for all (7, A) in the closed sub-
set § C €. For this reason we regard (4.1) as a “topological” statement, as opposed to
a measure-theoretic one.
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We now turn to the proofs of Proposition 4.3 and Lemma 4.4.

Proof of Proposition 4.3. Fix a continuous function g : P4~! — R. Define G : Z — R
by

66) = [ ) dna(w).
We begin by making the following claim.

Claim 4.5. There is a full p-measure subset Z C supp i with the following property.
Let G : Z — R be as above. Then G|z has the property that for any Cauchy sequence
{z™}m>1 C Z, we have that the sequence {G(z"™)}mz1 is Cauchy.

Assuming the claim, let us define the family (¥,). To start, for z € 7 we set DV, 1= Vy.
Note that this ensures (v,) is a version of (v;) as in item (a) above.

Next, for z € supp  \ 7, we define 7 as follows. Since Z is dense in supp (4, we can
find a sequence {z"},,>1 C Z converging to z. We now define v, to be any weak* limit
of the v, m (at least one exists by Prokhorov’s Theorem since P41 compact [19]).

Indeed, the weak™ limit limy,_, o, V,m actually exists: to see this, fix any g : Pi-1 LR
continuous and observe that the sequence {G(z™) = [ g(v) di;m (v)}m>1 is Cauchy by
the Claim; this implies weak™ convergence. Moreover, this same argument implies that the
definition of v,z € supp  \ 7 is independent of the approximating sequence {z™ tm>1
in Z.

To show continuity as in item (b), fix a continuous g : P4=1 5 R; we will check that
G(z) = J g(u)dv, (u) is a continuous real-valued function. For this, fix z € supp u and
let {z™},>1 C supp i be a sequence converging to z. For each m, fix z™ € Z such that
d(z™,z™) < 1/m and |G(3™) — G(z)| < 1/m. Then

_ _ _ a 1 _
G(E") =G| =1G(E") = GEM +GE™) = G| = — +]GE") = G(2)].

The claim and our definition of v, imply that the second right-hand-side-term goes to
zero. This completes the proof of continuity as in item (b). It remains to prove the claim.

Proof of Claim 4.5. Ttis straightforward to construct a full y-measure subset ZcC supp
with the property that for all z € Z and rational ¢, we have with probability 1 that Tz € Z
and that (3.8) holds. For such z € V4 , on integrating the left- and right-hand sides of (3.8)
with respect to d P(w), we obtain that

/ (Brg)(z.v) db; (v) = P,G (),

where P; denotes the Markov semigroup associated to the projective process as defined
in Section 3.2.3.

Now, fix a Cauchy sequence {z™},;,>1 C Z converging to some z € Z. Fix ¢ >0
and fix a neighborhood U of z; without loss, {z"},;>1 C U. Since P;g — g uniformly
on bounded subsets of Z x P41 (Proposition 3.5 (b)), we have P,g — g uniformly on
U x P! Fix t = t, for which |Psg gl <eonallof U x P41 foralls € [0, t,].
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Fix a rational ¢, € [0, z,]. Given integers m, m’ > 1, we estimate (note that the func-
tion G(z) = [ g(v) dv;(v) is measurable and bounded from above):

GE™) — GE™)| = ' / ¢ (v) dvym (v) — / 2 (0) v, (0)

< / 1200) — Pr,g(0)] dvom (v)
+ ‘ [ Prg@ v )~ [ Prg) v )

4 / 12(v) — Prog(0)]dv, (v)
<2e+ |P,G(z™) = P, G(Z™)|.

Now, P;, G is a continuous function by the strong Feller property, and so { Py, G(z")}m>1
is a Cauchy sequence. The Cauchy property for {G(z")},,>1 now follows. |

Proof of Lemma 4.4. We begin by verifying that 7z € supp u for any z € supp i and
(T, A) € §. To start, observe that since supp p has full pu-measure, we have from sta-
tionarity that P;(z,supp ) = 1 for all £ > 0 and for p-almost all z € Z. As one can
easily check, for continuous RDS 7 as in Section 3.1.1 satisfying (H1), the mapping
z +> Py(z,-) is weak™ continuous (irrespective of the strong Feller property). Thus, by
the Portmanteau Theorem and the density of w-almost sure sets in supp @, we conclude
that P;(z,supp ) = 1 for all z € supp p.

So, for any fixed z € Z, we have forall # > 0 that 7,/ z € supp p with probability 1. In
particular, any (7, A) € §; is the limit (in the topology on €) of elements (7™, A™) € §;
for which T™z € supp u for all m. Therefore Tz € supp i holds by the closedness of
supp u for any (7, A) € S;. A similar argument implies 7z € supp u for any (7, A) € S.

Let us now move on to verifying relation (4.1). For z € supp u, we define
G, ={(T,A) €€ :(A;)«V; = b7z}

Note that by the argument in the previous two paragraphs, v is defined for all z € supp n
and (7, A) € S. To complete the proof of Lemma 4.4 it will suffice to show that G; O §
for all z € supp .

To start, one checks that G, is closed in € by the closedness of supp p and the fact
that z — v, is weak™ continuous. Next, let 7 be as constructed in the proof of Claim 4.5.
It follows that for z € Z and all rational 7 that

P(T}, AL) € G;) = 1.

[0)

So, for all rational # > 0 we deduce that G, is dense in §;, hence G, D §; since G5, S;
are closed in €. Moreover, for irrational ¢ > 0, each (7, A) € §; is a limit of elements
(T, A™) € 8, in €, where {t,,} is a sequence of rationals for which ¢, — t as n — oo.
Again by closedness of G, we deduce that G, D §; for all t > 0. We conclude G, O §
forallz € Z.
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To conclude for z € supp u \ Z,letz" — zbea convergent sequence, z"" € 7, and
fix (T, A) € §. That (T, A) € G, now follows from the fact that (7, A) € G,m for all m
from above and from the continuity of z + v,. This completes the proof of Lemma 4.4.

4.2. A refinement of Furstenberg’s criterion

The refinement of Furstenberg’s criterion we present here is effectively a classification of
the fiber measures v;, z € supp u comprising a family satisfying the “topological” rela-
tion (4.1). For the sake of brevity, and because it serves our purposes in this paper, we
prove this classification when d, the dimension of the cocycle #, is less than or equal
to 3, although it is likely to hold in higher dimensions (see Remark 4.14).

This classification, Theorem 4.7 below, is the analogue in our setting of [12, Theo-
rem 6.8]. Our situation is significantly more general and entails several subtleties unique
to our setting; see Remarks 4.12 and 4.15 for more discussion.

The germ of this idea comes from the geometry of SL; (R) and the restrictions placed
on the subgroup of matrices preserving a single projective measure. To wit, we have the
following (for any dimension d > 1):

Lemma 4.6. Let d > 1. Let 1) be a Borel measure on P4~". Define H = Hy, C SL;(R)
to be the subgroup of matrices A € SLg(R) for which A«n = n. Then H is closed, and
moreover we have the following dichotomy:

(a) If H is compact, then there is an inner product (- ,-) on R?, with corresponding
norm || - ||', with respect to which every A € H is an isometry.

(b) If H is noncompact, then there exist distinct, proper, nontrivial linear subspaces

E',... E? C R?, p > 1, with the following properties:

(i)  Wehaven(|J; E') = 1.

(ii) Forall A € H, we have AE! = E”(i)for all 1 <i < p, where 1 =g isa
permutation on {1, ..., p}.

(iii) For each 1 <i < p there is an inner product (-,-)i on E' such that for all
A € H, we have that A|gi is conformal with respect to the inner products
(-, () TD respectively.

Lemma 4.6 (a) can be found in [12, Proposition 6.7 (ii)], while the argument for
Lemma 4.6 (b) is an extension of arguments appearing in [56, proof of Theorem 8.6].
Since Lemma 4.6 is crucial to our approach and contains strictly more information than
what the authors can find in the literature, we will provide a proof sketch later on in
Section 4.2.

Building off Lemma 4.6, we give below a corresponding classification of the linear
cocycles 4 preserving the invariant measure family (V) as in (4.1).

Theorem 4.7 (Classification of invariant fiber measure families). Assume d < 3, and
assume the setting, notation and conclusions of Proposition 4.3 and Lemma 4.4. Let
(Vz)zesupp . denote the invariant measure family so-obtained. Then one of the following
alternatives holds.
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(a) There is a continuously-varying assignment to each z € supp p of an inner product

(-.-); on R with the property that for all (T, A) € S and z € supp i1, we have that
2 (R, (-,2);) = (RE, (-, -)72) is an isometry.

(b) Forsome p > 1, the following holds. There are p measurably-varying assignments to
each element z € supp W of a proper; distinct, nontrivial linear subspace E ; c R4,
1 <i < p, with the property that for each z € supp u and (T, A) € S, we have
A EL = E”(l)for all1 <i < p, where m = m(r,4) is a permutation on {1, ..., p}.
Moreover v;(UP_, EL) = 1. Finally, the collection (EL) is locally continuous up
to re-labelling: for every z € supp u there is an open neighborhood U C Z and
a labelling of the subspaces E;,z € U N supp u with the property that z — E;
z € U N supp w is continuously varying.

The proof of Theorem 4.7 deviates significantly from that in [12, Theorem 6.8], partic-
ularly where it is proved that the objects in alternatives (a) and (b) above are continuously
varying. See Remark 4.12 below for a discussion of the subtleties involved.

For the remainder of Section 4.2 we will prove Lemma 4.6 and Theorem 4.7.

Proof of Lemma 4.6

We will prove Lemma 4.6 for any value of the dimension d. Let us first dispense with
the relatively easier proof of part (a), i.e., the case when H = H; is a compact subgroup
of SLy(R). If H is compact, then it admits a right-invariant Haar probability measure y
([54, Proposition 11.4]). That is, y is a Borel probability measure on H with the property
that for any A € H and Borel K C H, we have y(KA) = y(K). With (-, -) the standard
inner product on R, we define (-, -)" on R¢ for v, w € R¥ by

(v, w) = /H(A'U,A'w)dy(A’).

Using right-invariance of y, one easily checks that (Av, Aw)’ = (v, w)’ forallv, w € R4
and A € H. This completes the proof of Lemma 4.6 in case (a).
Before proceeding to case (b), let us state and prove the following useful claim.

Claim 4.8. Let k > 1 and let (M,) be a sequence of determinant 1 matrices in My (R)
for which |M,| — oo as n — oco. Then, on refining to a subsequence (M,), there exist
proper linear subspaces V', V2 C R¥ for which dist(M,v, V?) — 0 as n' — oo for all
vV

Proof of Claim 4.8. Using the fact that det M,, = 1 for all n, we can, without loss, pass
to a subsequence with the property that for some fixed 1 <[ < k, we have
o1 (My)
o1+1(Mp)

Applying the Singular Value Decomposition to each matrix M,, let V,! be the unique
(k — I)-dimensional subspace for which | M, |V1 | = 0741(My), and let V2 be the unique
[-dimensional subspace for which |M,~ 1|Vz| = (07(M,))~!. Passing to a further subse-

— 0. 4.2)
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quence, we can assume that the subspaces V,!, V.2 converge to subspaces V!, V2, respec-
tively. It now follows from (4.2) that for all v ¢ V1, lim, oo dist(M,v, V?) = 0, as
desired. ]

‘We now proceed to case (b), which we prove in a series of lemmas. Assume H = H,
is noncompact, and consider the set g of finite tuples of proper, nontrivial, distinct sub-
spaces (E’)f’=1 of R? for which n(U; EY) = 1. Applying Claim 4.8 to a sequence { M} }
in H with [M,| — oo, note that the pair (V’)l.z=1 so-obtained is such a tuple. If (E’);D=1
and (E' )f’ —; are two such tuples, let us write

(EN) < (E") if| JE c|JE:.
Note that < is a partial order on §. We say that two tuples (EHP_,, ()I:?j)f=1 in § are
equivalent up to relabeling if p = p and there is some permutation 7 on {1,..., p}
for which E/ = E™() forall 1 < j < p.

Lemma 4.9. Let n, H; be as in the setting of Lemma 4.6 and assume H, is noncompact
(case (b)). Then there is a unique tuple (E’ )f’zl (up to relabeling) of distinct, proper and
nontrivial linear subspaces of R minimal with respect to the partial order < on §. This
tuple has the property that for each A € Hy, there is a permutation w1 = w4 of {1, ..., p}
for which AE" = E™9 forall 1 <i < p.

Lemma 4.9 is straightforw_ard and left to the reader (see Theorem 8.6 in [56] for more
detail). The minimal tuple (E") therefore satisfies conditions (i)—(ii) in Lemma 4.6. Item
(iii) is verified below.

Lemma 4.10. Foreach 1 <i < p, there is an inner product (-,- }i on E' with the prop-
erty that for each A € H, we have that A : (E', (-,-)') — (E™® (. VD) 7 = 74,
is a conformal mapping.

Proof. For (ii), form the subgroup H = I-},, ={Ae€H,: AE' = E' forall 1 <i < p}.
As one can check, H C H is a closed, normal subgroup of finite index. The quotient
group H/ H is naturally isomorphic to a subgroup & of the group of permutations on p
symbols. Let us assume for the moment that & acts transitively'® on {1, ..., p}; we will
remove this restriction at the end of the proof.

Fix an arbitrary i € {1,..., p} and form

« (s -1 g
HO — {(det(A|gi)) amET A|gi: A€ H}.

Note that linear operators in H® preserve the measure 7| ;. Since any A € H maps E’
into itself, we can think of H® a5 a subgroup of SLy,, gi (R) on identifying E? with
RYmE" We claim that H@ is compact. If not, then by Claim 4.8 there are proper linear
subspaces V!, V2 C E' for which (V! U V2) = p(E"). This contradicts minimality of
(E"F_, as in item (i). Thus H® is compact; it now follows from Lemma 4.6 (a) that

Blet s c{l,..., p} and assume &S = S. We say that & acts transitively on S if for all
i,j € S there is some = € & for which 7 (i) = ;.
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there exists an inner product (-,-) on E’ with respect to which H® acts isometri-
cally. Equivalently, linear operators of the form A|gi, A € H act conformally with respect
to (-, ).

We now define ('?')j, 1 <j <p,j#i, asfollows: foreach such j, fixan M € H
for which ME' = E/ (such an M exists since © = H/H acts transitively on {1, ..., p}
by assumption) and define

(v,w)' = (M_lv,M_lw)i, v,we E/. 4.3)

This definition is independent of M: if M’'E’ = E/ for some other M’ € H, then we
have ) ) .

(M) to, (M) w) = (Mo, M w) = (v, w)/
for all v, w € E/. By a similar computation, one checks that if 4 € H maps AE' = E/,
then A is conformal with respect to the inner products (-,-)*, (-,-)/, respectively. This

completes the proof when @ =~ H/H acts transitively on {1, ..., p}.
Let us now address the situation when & does not act transitively on {1,..., p}. In
this case, by a standard argument there is a unique partition of {1,..., p} into disjoint

sets P, 1 <1 <k, such that for each partition atom £;, we have (1) &P, = &P, and
(2) @ acts transitively on 4. For each &, repeat the construction of (-, - )’ for some fixed
arbitrary i € #;, and then define (-,-)/,j € #;,j # i, as in (4.3) for some arbitrary
M € H sending ME' = E/ (such an M exists since & acts transitively on $; by con-
struction). Lemma 4.10 now follows from the previous arguments, since for all A € H,
we can have AE’ = E/ only if i, j belong to the same &; for some 1 <[ < k. |

Proof of Theorem 4.7. We first give the following preliminary lemma. For z € supp u,
define

O, ={Tz:(T,A) €S}
Note that O, C supp p holds by Lemma 4.4. Using ergodicity of u and the strong Feller
property, we get the following.

Lemma 4.11. For all z € supp , we have u(0;) = 1.

Proof. First, let us check that O; is a (P;, (t)-invariant set in the sense of Definition 3.9.
Fix t >0 and let y € O,. Then y = Tz for some (7, A) € §. Now, fix a P-generic
weQandset T =T A" = Al . Noting (7', A’) € § with probability 1, we see that
T'y =T 0Tz, hence T'y € O;. Since y € O, was arbitrary, we conclude 7'y € O,
for any ¢ > 0 with probability 1, hence O; is (P, (t)-invariant.

It follows from ergodicity for p (Definition 3.9) that O, has zero or full u-measure.
To check u(0;) > 0, assume otherwise and observe that by stationarity, P;(y, O;) = 0
for p-almost all y € Z. From the ultra-Feller property for the semigroup (P;) as in
Lemma 4.2, we conclude P;(z, O;) = 0, a contradiction (note {y € Z : P;(y, O;) = 0}
must be dense in supp ). We conclude pu(O;) > 0, hence u(0;) = 1. ]

Proof of Theorem 4.71. Fix zo € supp i, thought of as a reference point, and consider the
SL,(R) subgroup
H;y ={A € SLa(R) : AxVzy = V).
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Note that H, is closed by Lemma 4.6. We claim that if H is compact we are in case (a),
while if H, is noncompact then we are in case (b). Crucially, this distinction does not
depend on the choice of reference point zyg € Z; see Remark 4.13 below for a discussion
of this point.

Case (a): H, is compact. By Lemma 4.6 there is an inner product (-, - ) ;, with respect to
which all matrices in H,,, act as isometries. We define the family {(-,-);}zesupp as fol-
lows. For each z € supp u, fix y € Oz, N O (such a point exists since ©(0z, N O;) =1
by Lemma 4.11) and let (T, A), (T', A’) € $ be such that Tzg = y, T’z = y.

For v, w € R4 we define

(v,w), = (A;O1 OA’Zv,AZ_O1 o ALw), .

Let us check this definition does not depend on the exact choice of (T, A), (T', A"). If
(T,A),(T',A") € § are any other elements for which Tzg = y, T’z = y, then Lem-
ma 4.4 implies B B

(Azo) T AL(AL) ™! Az € Hz,

and so
(A7) 0 ALv, A7) 0 ALw);, = (A7) 0 AL, A7) o ALw)z,

holds by Lemma 4.6 (a). By a similar proof, one checks that for each (T, A) € § and

z € supp i, we have that A, : (R4, (-,-),) = (R?, (-,-)r,) is an isometry.

To prove continuity of z — (-,-),, we do the following. For each z € supp u, the
inner product (-,-), gives rise to a Euclidean volume on R¢ and an induced volume
D, on P4~1, By the isometry property, it follows that for all (T, A) € §, we have that
(Az)«V; = V1 forall z € supp . Thus (V;)zesupp . defines an invariant measure family
on supp . Repeating the proof of Proposition 4.3 for this new invariant measure family,
we conclude (y) is continuously varying in the weak™ topology.

From the weak™ continuity of z — 7, and the fact that b, < Lebps—: for all z, we
conclude that the densities

dv,
Pz -

= I :Pd_1—>R,
d Lebpa-—1 Pz

vary continuously in the uniform norm on C(P¢~!, R). It is now straightforward to check
that the corresponding inner products z + (-, - ), vary continuously.

Remark 4.12. It is a subtle point in the proof of Theorem 4.7 (a) above that the orig-
inal invariant measure family (V;);esuppy, Deed not coincide with the measure family
(P2) zesupp - Indeed, we do not rule out the possibility that the (v;) consist of some com-
bination of atomic, singular continuous and absolutely continuous measures. As such, one
cannot deduce continuity of the resulting inner products (-, - )., z € supp u directly from
the (V). As we will see below, the proof of Theorem 4.7(b) has a similar complication
which must be addressed.
By comparison, [12, Theorem 6.8] avoids this subtlety for two reasons:

(1) in that framework, under a nondegeneracy condition it follows that the fiber measures
7, are automatically absolutely continuous with respect to the volume on P41,
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(2) [12, Theorem 6.8] invokes an additional hypothesis that we are not able to justify
either at the level of generality of Theorem 4.7 or for the Lagrangian flow corre-
sponding to the infinite-dimensional Systems 3 and 4.

Case (b): H, is noncompact. Let EZ, ! = FE' 1<i < p,beasinLemma 4.6 (b) applied
to H = H,,. Foreach i, let ( - denote the corresponding inner product on E! = E? Zo-
For z € supp © we define E7 as follows. Fix y € O, N O, as in the proof for case (a),
and fix (T, A), (T, A’) for which Tzg = y, T’z = y. We define

EL = (A))"" o A5 (EL).
We also define the inner products (-, - )’Z on E ; by setting, for v,w € E ;,
(vow)l = ((Az9) "' ALv, (4z,) " A w)'.

As in the proof of case (a), one checks that the above definitions do not depend on
the exact choices of y € O, N Oy, or (T, A),(T', A’) € §. By a similar check, the invari-
ance property for the Ei, z € supp 4 similarly holds, and moreover, for (7, 4) € § and
z € supp i, we have that Az D (EL (-,)) — (E;Z'), (-~ )T(Z ) is conformal.

Let us now prove the continuity statement. Observe that since d < 3, there are two
cases: either dim E. = 1 for all i or dim E. = 2 for some i, z. If the former, local conti-
nuity of z = E} ! up to relabeling follows 1mmedlately from the fact that v, | Ei is a delta
mass supported on the projective point corresponding to E7. I If the latter, then by Claim
4.8 we must have that p < 2 and that at most one of the E; is two-dimensional for
each z € supp . We focus on the case p = 1; essentially the same proof applies when
p = 2. Hereafter letus write E, := E Zl Note that this can only occur when d = 3, which
hereafter we assume.

In analogy with the proof of Theorem 4.7 (a), consider for each element z € supp u,
the Euclidean volume m, on E, C R? induced by the inner product (-,-), := (-,-)L.
This induces a normalized volume ¥, on the projectivization of E in P2. As in the proof
for case (a), the fiber measure family (V;);equppy i invariant as in (3.8). This follows
from the conformality property for the inner product (-, -),. As in the proof of case (a),
we can repeat the arguments of Proposition 4.3, from which we obtain that the family (v,)
is weak™® continuous. Continuity of z > E, now follows. |

We conclude Section 4.2 with several remarks.

Remark 4.13. The determination between case (a) and (b) made at the beginning of
the proof of Theorem 4.7 does not depend on the reference point zy € supp u. Indeed,
given z,z’ € supp i one can obtain a group isomorphism H, — H, as follows: fix
y € 0, N Oy andlet (T, A),(T’,A’) € $ besuchthat Tz = y, T’z = y. Then the map-
ping H, — H,/ given by H; > M + (A,,)"'A,MA;' A/, € H, is an isomorphism
from H, to H,.

Remark 4.14. The restriction to d < 3 is only relevant in case (b) of Theorem 4.7. For

d = 4 the result s likely to be true, but the proof is lengthier due to the fact that among the
El,z esuppp, 1 <i < p, there may be arbitrarily many subspaces of dimension > 2.
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Thus, the trick applied in case (b) above must be applied to the projectivization of the
Euclidean volume on each E! separately, and continuity derived in this way. Since the
case d < 3 suits the purpose of our main application in this paper, we leave off the d > 4
case to a future work.

Remark 4.15. Let us summarize the differences between [12, Theorem 6.8] and the ana-
logue pursued here in Section 4.2. To start, [12, Theorem 6.8] proves the classification in
Theorem 4.7 above in the special case when Z is a locally compact Riemannian manifold,
T is the stochastic flow of diffeomorphisms generated by a hypoelliptic SDE satisfying
suitable nondegeneracy properties, and # is its corresponding derivative cocycle.

In comparison, Theorem 4.7 does not require that 4 be the derivative cocycle of 7.
This requires that we work with the product space € of pairs of mappings and cocycles, as
is done in Lemma 4.4. Moreover, and arguably of greater consequence, is the fact that the
base RDS 7 is not necessarily invertible, nor is its phase space Z locally compact. These
differences are emblematic of dynamics on infinite-dimensional spaces and are exempli-
fied by our intended application to the Navier—Stokes equations and more generally to
regularizing semilinear parabolic problems. This raises numerous issues which we have
dealt with over the course of Section 3, e.g., the definition of the topology on observables
with respect to which (P?) is a C°-semigroup (Proposition 3.5).

Finally, [12, Theorem 6.8], of which the main result Theorem 4.7 is an analogue,
invokes an additional hypothesis to get continuity of the obtained invariant inner products
in case (a) (resp., finite union of proper linear subspaces in case (b)). This additional
hypothesis is not accessible in our setting. This brings up a significant subtlety (Remark
4.12), unique to our setting, which our argument addresses.

4.3. Sufficient condition for A, > 0: Approximate controllability criteria

We will now state a weaker version of the criterion (C) in Section 3.3 which can be used
to rule out the alternatives (a) and (b) in Theorem 4.7.

Definition 4.16. We say that the cocycle 4 satisfies the approximate controllability con-
dition (C) if there exist z, z/ € supp p such that z’ belongs to the support of the measure
Py, (z,-) for some 7o > 0, and we have each of the following.

(a) Wehave Qy((z,1d), Bs(z') x {4 € SL4(R) : |[A| > M}) > O forany &, M > 0.
(b) Forany ve P4~! open V C P4~ and & > 0, we have Py, ((z,v), Be(z') x V) > 0.

We can now prove the following.

Proposition 4.17. Let d < 3. Let A be an SLy(R) linear cocycle as in Section 3.2.1
over a continuous RDS T as in Section 3.1.1 satisfying (H1)—(H3) for which the Markov
semigroup (P;) has the strong Feller property. Let |1 be an ergodic stationary measure
for which the approximate controllability condition (C’) holds. Then, At > A=, and in
particular Ay > 0, in the MET (Theorem 3.13).

Proof. If AT = A, then Theorem 3.18 applies, and so either case (a) or case (b) holds in
Theorem 4.7.
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We start by ruling out (a). For y € supp u, write | - |, for the norm corresponding to
the inner product (-, -),. Let

{ |U|Z |U|z’ }
K = maxq max , ax .
veR4\{0} [v] veRr9\{0} ||
Fix & > Osothat 3| - [, < |- |, <2|-|y forall y € Bs(').

Now, condition (C’) (a) says that there is a P-positive measure set £ C 2 such that
Tz € By(z') and |Aff,),z| > 2«2 for all w € E. Without loss we can assume

(T, A% )t 0 € E} C 84,

perhaps on paring off an P-measure zero set from E. By Theorem 4.7 (a), for all w € E
we deduce
|<A’£g,z|z,y =1,
where | - |;,, is the matrix norm induced by the norms |- |; at z and |- |, at y = Tlog.
From this we obtain the estimate |AZ(,’, | < 2«? in the matrix norm induced from | - |. This
is a contradiction to (C’) (a).
Turning to case (b), take ¢ > 0 sufficiently small so that
(i)  alabelling of the E!,y € B,(z’) exists for which the mapping y EJ’, is continu-
ousfor1 <i < p,and
(ii)  there is an open set V C P4~ for which V N U; EJ’;) = @ forall y € B.(Z').
Fix an arbitrary 1 <i < pandv € E} \ (U, E7). Condition (C’) (b) implies that there
is a P-positive measure set E C € such that for all w € E, we have 7,.°z € By(z’) and

AZ‘,), -V € V. As before, on paring off a P-measure zero set we can assume (Tafo, AZ?) € Sy
for all w € E, from which we deduce (Theorem 4.7 (b)) that

to J _ pro()
Al B = ET%)
w Z

forallw € Fand 1 < j < p, where 7, is some permutationon {1, ..., p}. Butat j =i
.. .. . ; 1

this isa contradiction, since v € E. yet Ay ;v ¢ E;JOZ forany / € {1,..., p} by con-

struction. @ [ ]

5. Lie brackets and Hormander’s condition

The main goal of this section is to explore how noise in the low modes of a fluid model
spreads to other variables coupled to the flow. Specifically, for (u,) given by Systems 1
and 2, we will show that the projective processes (u;, X;, v¢), (U, X, U;), and the matrix
process (u;, x;, A;) are all generated by vector fields satisfying the parabolic Hormander
condition in both 2 and 3 dimensions (Definition 5.1). Using the a priori estimates on (1)
and that T4 x P41 s compact, Hérmander’s theorem (see, e.g., [67, 68] and [37, 63])
then implies (v, x¢), (uy, x¢,v¢), (Uy, X¢, Uy) have absolutely continuous Markov ker-
nels (with respect to Lebesgue measures) and unique stationary measures. Similarly,
(uy, x¢, A;) also has an absolutely continuous Markov kernel and therefore the arguments
given in Section 2.3 are validated. Theorem 1.6 hence follows for Systems | and 2.
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In what follows it is technically more convenient to deal with the space S~ in place
of P41 while still denoting v; and ¥; the corresponding versions in S~1. Since P41
and S¢~! are locally diffeomorphic, proving Hérmander’s condition on S?~! implies
Hormander’s condition for P4~

5.1. Preliminaries

Recall the orthogonal L2(T?) basis {ek}kezd and the family of d x (d — 1) matrices
{)/k}kezd introduced in Section 1.1.1 satlsfylng

kk—O and ykykzld.

We will denote for each k € Z(‘f the column vectors {y,i, e, y,f_l} of the matrix yg.
These vectors consequently form an orthonormal basis for the subspace of vectors in
R? perpendicular to k. Note that for each k € Zg and i € {1,...,d — 1}, eky]i is a
divergence-free, mean-zero vector field on T 4 and the collection

lexyh ikezd i={1,....d -1}

forms an orthogonal basis for L? with respect to the inner product

(', u?)y2 =/ ul (x) - u?(x) dx.
Td

This means that given a u € L2, we can write

d—1
. . . 1 .
— ] 1 T __ 1
U= E E (u)peryy. where (u);, = —n(zn)d—l (u, exyiz

i=1gezd

It follows that, given (u,) solving any of Systems | or 2, we can write the equations for
(xz,v;)in T4 x S4-1
d—1

d ) .

d_xt Z Z (ue)rer(xX0) Vg 5.1

! i=1rezd

—vt Z D )ik - vie_g (x0) Ty, v (5.2)
i=1ezd

Likewise the inverse transpose projective process (¥;) in S~ is given by

d—1

d., TR

Evt =- Z Z () (vg - Ve)e— (xe) g, k,
i=1fezd

and the matrix process (A4;) in sL4 (R) satisfies

d d—1

—Ar =) Y wie k()i ® kA, (5.3)

dr
i=1rezd
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We are interested in studying the hypoellipticity of the processes (u;, x;,v;) and
(ur,x¢, Ar) , when (u;) is governed by System | or 2. Recall that Systems | and 2 both
live in a finite-dimensional subspace H of H (see Section 1.3). In both cases the process
of interest will take the form of an abstract degenerate SDE

M

dy; = Xo(y)dt + Y X;dW/ (5.4)
j=1

on H x M , where M is a finite-dimensional ARiemannian manifold (either T4 x S4-1 or
T4 x SL4(R)). Here X, is a vector field on H x M associated to the drift, while {X; }jle
is an enumeration of the vectors {qxery; :k € K,i =1,...,d —1}in H.

Recall the Lie bracket (or commutator) of two vector fields X and Y on a smooth
manifold ¥ is defined for each y € ¥ by

[X.Y](y) = DxY(y) — Dy X(y),

where Dy and Dy denote the directional derivatives in the direction X and Y respec-
tively. The Hormander condition is now stated as follows:

Definition 5.1 (Parabolic Hérmander Condition). A family of vector fields {X, k}llc”: o On
a smooth manifold M is said to satisfy the parabolic Hormander condition if for each
y € ¥ the vectors

Xr(»), k=1,....M
[Xk. X;1(»), k=1,....M, j=0,....M,
[ Xk, [X;. X)), k=1,....M, j£=0,....M,

span T, M.

Theorem 5.2 ([67]; see also [37, 63, 68]). Let P,(y,A) =P(y; € A| yo = y) be the
Markov kernel associated to the finite-dimensional SDE (5.4). If Definition 5.1 is satisfied,
then Py(y,-) is absolutely continuous with respect to Leby, 4,

5.2. Lie brackets for the projective process

In this subsection we study the spanning properties of Lie brackets for the process (x;, v;)
in T4 x S4~1. The equations (5.1) and (5.2) can be written as

d (x;
— = V(uz, X¢,v¢),
d (Ut) (s, x¢,07)

where V(u, x, v) is the vector field defined for each (u, x,v) € H x Td x §d-1 by

d—1 . }
_ (W) (1)} P
Ve =2, 2 (oo e g ) €T < T~
= ezg
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Note that V' (u, x, v) is linear in u and therefore the Lie-bracket [ej y]i, V] does not depend
on u and is readily seen to be given by

l_ B er(x)y;
lex g, V](x,v) = ((k . v)e_k(x)l(cnv?’li)) .

The following lemma gives sufficient conditions for [ey y,i, V] to span T, T¥ x T,S471,
Lemma 5.3. Let k', ... k% be d linearly independent elements of Z‘g and define
K={k',.. . k9 u{=k',. .. ,—k%y czd.
Then at each point (x,v) € T x S, we have
span{[eky,i, Vix,v):keK, i=1,....,d =1} =T, T% x T,S%".

Proof. Let k € K. Using the identity e,% + eik = 1 and the fact that —k € K, we find
that for each (x,v) € T? x S~ (recall the symmetry y_x = —yx)

ek ()exyi VI v) = e ()le—kyly, VIGx v) = (Vé‘)

and

e ey VIO, + el e VI = ()

Therefore it suffices to show that

span{y} :k € K,i € {l,...,d —1}} = R?, (5.5)

and for each v € S¢~!
span{(k - v)(Myy}) :k € K, i € {l,...,d —1}} = T,S971. (5.6)
andition (5.5) follows from the linear independence of k! and k2 and the fact that
Wk fl;l spans the space perpendicular to k. Condition (5.6) follows from the fact that
by linear independence of k!, . .. ,k‘?, that for each v € S?71, there exists a k € K such
that v - k # 0 and therefore, since {y; }l‘-i;ll spans the space perpendicular to k, the vectors
{I,y}}¢=} span T, S971. n

Remark 5.4. As discussed in Section 2.3, for System 1, this is the only place where
Assumption 1 is used.

Remark 5.5. It is not difficult to see that we may replace v, with ¥, in the above lemma,
without changing the proof much. The only difference being that condition (5.6) is now
replaced with

span{(y} - v)(IT,k) k€ K, i € {l,....d — 1}} = T,S*7 ",

which can be deduced from the fact that by linear independence of k1, e k9, there exists
atleastd — 1 linearly independent elements k 1., ..., k971 of K such V,l;,- - v # 0 for some
i =1,...,d — 1 and such that the sets {IT,k/ : j = 1,...,d — 1} spans T,S%~!.
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5.3. Lie brackets for the matrix process

We would also like to study the spanning properties of Lie brackets for the process
(x7, A7) in T? x SLy(R). Similarly to the (x;, v;) process, equations (5.1) and (5.3) can

be written as q
X
5 (Att) = G(Ut,Xt,At),
where for each (1, x, A) € Hx T? x SLy(R),

d—1 , ,
_ (u)iex (X)y; d
Gu,x, A) = l;kXZ:d ((u)ie_k'zx)% (Xk>k)A) € TuT¢ x T4 SLy(R).

Again, G(u, x, A) is linear in u and so the Lie-bracket [eg y,i, G| does not depend on u.
Lemma5.6. Letk!,... k4T bed + 1 elements of Z.8 given by k' = (0,1), k? = (1,0),
k3= (1,1) for d =2 and k' = (0,0, 1), ky = (0,1,0), k> = (0,0,1), k* = (1,1, 1)
ford = 3. Define K = {k',... k9t U{—k',...,—k9+1} C Z4. Then at each point
(x,A) € T4 x SL;z(R), we have
span{[eky,i,G](x,A) ckeK,ief{l,....d =1} = TxT? x T4 SLy4(R).
Proof. Following the same proof strategy as in the proof of Lemma 5.3, we may conclude
that it suffices to show that
span{(y; ® k)A:k € K,i €{l,....d — 1}} = T4 SLa(R).

Using that the Lie algebra sly(R) of traceless d x d matrices is linearly isomorphic
to T4SL4(R) by right (or left) multiplication by A, the above spanning condition is
equivalent to showing that

span{(y; ® k) :k e K, i €{l,...,d — 1}} = slz(R). (5.7)
Condition (5..7) follows from the fact that for the vectors k!, ... k9! given, the d 21
matrices {(y} ® k) : k = {k',... . k?T1}, i € {1.....d —1}} are all linearly indepen-
dent in slz (R). Since sl (R) is (d? — 1)-dimensional, condition (5.7) must hold. |

5.4. Hormander condition for Stokes and Galerkin—Navier—Stokes systems

We now turn to study the hypoellipticity of the projective process (u;, x;, v;) and matrix
process (uy, x;, A;) when (u,) satisfies either Systems 1 or 2. We will define the vector
field US on Hy associated with the Stokes System 1 by

d—1
US ) == ) kP ()ervi.
i=1keX
and the vector field UNS on Hy associated with the Galerkin—Navier—Stokes System 2
by

d—1
UNS):==>" D" (Bi(u.u) + k> )ex vy

i=1 [kloo=N
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where for each u € Hy (recall the definition of B from Section 1.3),

B! (u,u) := (B(u,u),eryi)yz.

r(2m)d-1

The following lemma gives sufficient conditions for (u,, x;, v,) to satisfy the parabol-
ic Hormander condition:

Lemma 5.7. Let {X; }j”: | denote an enumeration of the vectors
{qeexyi ke X, i=1,...,d -1}
and let Xo be a vector field on Hx T4 x S9-1 of the form
Xo(u,x,v) =UW) + V(u,x,v).

The following holds:

(1) If U(u) = US(u) and X contains the elements (1,0),(0,1) and their inversions
for d = 2 and the elements (1,0,0), (0,1,0), and (0,0, 1) and their inversions for
d =3, then {X; }jM=0 satisfies the parabolic Hirmander condition.

(2) IfU(u) = UNS (u) and X contains the elements (1,0) and (1, 1) and their inversions
for d = 2 and the elements (1,0,0), (0,1,0), and (0,0, 1) and their inversions for
d =3, then {X; }jM=O satisfies the parabolic Hirmander condition.

Proof. We will consider only the Galerkin—Navier—Stokes case, since the Stokes case
is even simpler. Fix (1, x,v) € Hy x T? x S9! and denote V(u, x, v) the span of the
iterated Lie brackets of {X; }jM=0. We have foreachk € K andi =1,...,d — 1,

lex L. Xol = [exy. UNS] + [exyi. V1.
and because of the linear dependence of the vector field V' on u, we obtain
[ejv. lexvic. Xol] = [ej¥]. lexyi. UM]].
We will find it useful to use the following result adapted from [44] and [99].

Lemma 5.8. Suppose that K C Zg satisfies K = —K. Then at each u € Hy and for
eachi =1,...,d —1,

span{[exy;. [e; vl UNS]] : j.k € K}
= Span{ej+kyjl'+k’ej—k)’_/l'—kvek—jV;c__/’e—j—k)/l_j_k 1 j, ke K}.

Using the fact that (1,0) and (1,1) and (1,0,0), (0,1,0), and (0,0, 1) are gener-
ators for the groups (Z2,+) and (Z3, +), respectively, we can iterate Lemma 5.8 for
fixed i, taking further Lie brackets with of these new directions. Then repeating the same
argument foreachi = 1,...,d — 1 to obtain all directions in Hy and conclude that

Hy € V(u, x,v).

This means that in order for {X; }?’LO to satisfy the parabolic Hérmander condition, it
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suffices to show that
span{[exyi, V] : k€ K, i e{l,...,d —1}} = T,S7".
This follows from Lemma 5.3. [

Analogously we have sufficient conditions for (u;, x;, A;) to satisfy the parabolic
Hormander condition. The proof is almost exactly the same as the proof of Lemma 5.7,
with V replaced with G. We omit the proof.

Lemma 5.9. Let {X; }ﬁ”: | denote an enumeration of the vectors
{qrery, ke X, i=1,...,d —1}

and let X be a vector field on Hx T x SL;(R) given by
Xo(u,x,A) = U) + G(u, x, A).

The following holds:

(1) If Uu) = US(u) and X contains the elements (1,0), (0, 1), (1, 1) and their inver-
sions for d = 2 and the elements (1,0,0), (0,1,0), (0,0, 1), (1, 1, 1) and their inver-
sions for d = 3, then {X; }JM= o Satisfies the parabolic Hormander condition.

() IfU(u) = UNS (u) and X contains the elements (1,0) and (1, 1) and their inversions
ford = 2 and the elements (1,0, 0), (0, 1,0), (0,0, 1) and their inversions for d = 3,
then {X; }j”: o Satisfies the parabolic Hormander condition.

6. Strong Feller for the Lagrangian and projective processes

In Section 6 we will prove Proposition 2.12. We show the proof for the (u;, x;, v;) pro-
cess; the (u;, x¢, V) process is the same. Note that strong Feller for (u,, x;, v;) implies
the same for (u,) and (u;, x;) due to the structure of the coupling.

6.1. The cutoff process

As described in Section 2.7.3 the main strategy involves proving gradient estimates on
a suitable cut-off process w?. To begin, define the following augmented system:

druy = —B(us, up) — Auy + QWu,

drxr = ur(xy),

0rvy = Iy, Dus(xy) vy,

0;z; = W,Z,
where W} is a cylindrical Wiener process on L2 and W7 e R24 s a finite-dimensional
Wiener process independent from W;*. We denote this augmented process by

wy = (u,,xt,v,,Z,) e H x M,
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where M = T4 x S9! x R24 which satisfies the abstract SPDE
0w = F(w,) — Aw; + QWi 6.1)

where F and Q W are given by

—B(u,u) oW
A _ u(x) e 0
F(u.x.v.z) = I, Du(x)v |’ oW = 0
0 Wz

(with extended definitions Aw = (v(—=A)u,0,0,0) in d =2 and Aw = (v(—=A)u +
r)Azu, 0,0,0) in d = 3). For the remainder of this section, we will refer to the initial
data of the process simply as

Wo =: W.

Our goal will be to prove strong Feller for the augmented process (6.1). As z; is com-
pletely uncoupled from (u,, x;, v;), by restricting the class of test functions, this implies
strong Feller for the original (u;, x;, v;) process. Further, note that by restricting the class
of test functions, strong Feller for the process defined with v; € S?~! implies strong
Feller for the process defined directly with v, € P4~ by relating elements in P¢~! to
representatives in S

To define w®, we will couple z; to the x; and v, variables to regularize the dynamics.
Specifically, as in [45], define a smooth, nonnegative cutoff function y satisfying

X(Z)Z{o, <1,

1, z>2,
and let y,(x) = y(x/p) for p > 0. We then define a regularized drift F,(w) by

Fp(u.x.v.2) = (1= yap(lullo) F (. x.v.2) + 2, (luw) H(v. 2).
where H (v, z) is a bounded vector-field on H x M given by

0
d ~ .
Zj:]e'z—ll

— (1+|Z‘|2)7
H(U’Z) - H Z 1 Z/d+J : ’
B (1+|Zd+]\2)7
0

and where we are denoting {&; } =1 the canonical basis elements in R?, and we are using
that for each v e Si! the elements {IT,e;}? 4_, span T S9~1. The cutoff/regularized
process wf = (u?,x? v?,z,) then satisfies the SPDE (replacing Q +— Q for notational
simplicity),

dw? = Fy(w?) — Aw? + QW,. (6.2)

It is for this process we will prove a gradient estimate on the Markov semigroup. As
in [45, 100], the purpose of the cutoff is to regularize the nonlinearity so that the flow
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is globally Lipschitz, which is very convenient for the Malliavin calculus and high/low
frequency splitting methods employed below. However, when the nonlinearity is turned
off, the hypoellipticity disappears. Recovering the hypoelliptic effect is the purpose of the
additional noise coming from the coupling with z,. In [45, 100], this role is played by
multiplicative white noise. This is too singular to carry out directly on the Navier—Stokes
equations; in [100] it is dealt with by further mollifying the nonlinearity. One can view
the use of z; as providing a suitable regularization of the multiplicative white noise.
In what follows, we denote (via a slight abuse of notation) for H?, L2, and H,

llwe g = Nuella + |21,

where the z; factor is treated implicitly and the manifold-valued nature of w; is disre-
garded. This “norm” is not really a norm since w; does not below to a linear space. We
will also denote 77 M the tangent space of M at (x, v, z); note that the tangent space only
depends on v since the other components are flat.

We are now ready to begin the proof of Proposition 2.12. The proof requires a number
of estimates on wf ,its Jacobian (Fréchet derivative with respect to the initial data), various
approximate Jacobians and approximate inverse Jacobians, and the Malliavin derivatives
thereof. These are outlined in Section 6.5 below after the main bulk of the proof. Finally,
we emphasize that for the rest of the section, the implicit constants are always independent
oft, T, |h|luxT,m> and ||w; || unless specifically indicated otherwise. Moreover, we are
always assuming 7' < 1.

The main effort in the proof of Proposition 2.12 is to obtain the following derivative
estimate on the cutoff process, the proof of which comprises the rest of Section 6.

Proposition 6.1. There exists ax, bs« > 0 such that for all p sufficiently large, there exists
a T* > 0 such that for all ¢ € C2(H x M) and for t < T* the mapping w qu,’)(u))
is differentiable and for each w € H x M the derivative DP’ ¢(w) is a bounded linear
operator on H x Ty M and satisfies for each h € H x TyM,

p —ax by
[DP o] <pt™* (1 + [[wlig) g llzoe 1l ac- (6.3)
Indeed, we do not expect that such a gradient estimate (6.3) is available for P;.

Nonetheless, estimate (6.3) is enough to prove the strong Feller property for w;, P;.

Proof of Proposition 2.12. Let ¢ be a bounded, measurable observable on H x M. Let
t < 1 be chosen small shortly. Let w!, w? € H x M be such that d(w!, w?) < 1. Natu-
rally, we estimate the non-cut-off process by approximation and an &/3 argument:

|Pep(w) = Prpw?)] < |Prgw") — PP w)] + [Prg(w?) — PP (w?)]
+ PP w') — PP w?)].
We will show that for all £ > 0, we may choose p sufficiently large and d(w', w?) suf-

ficiently small such that each term is < ¢ in size. For the first two terms in (6.4), note
that

(6.4)

|Brp(w') — B (wh)] = [E(wr (w') — B (wf (w)

= gllzeP( sup sl > p),
s€(0,1)
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where i = 1,2. Then, by the moment bounds in Proposition A.3, this gives the following
(with implicit constant independent of ¢):

|Prp(w') = PLGw)] < p7 [ lloe (1 + ([0 [lw).

We may now choose p sufficiently large depending only on ||¢ ||z, |w’|u, and & such
that
|Prp(w) — Prp(w?)| < [Pfp(w') — Pp(w?)| + 2.

Once we have fixed p, we may now fix ¢ < T such that (6.3) holds for the cutoff process.
By an adaptation of [38, Lemma 7.1.5], we see that Proposition 6.1 implies

[P (w") = PLopw?)| S 7 [[pllLoe (1 + [[w[IF)d (w", w?), (6.5)
where for w' = (u!, x',v’, z") € H x M, we denote
d(wlﬁ w2) = ”ul - uZHH + deM((-xlv vlv Zl)’ (xz’ v2722)),

where d y is the geodesic distance on M. Therefore, for the third term in (6.4), we may
apply (6.5) and choose d(w!, w?) sufficiently small such that

|Pip(w') — P (w?)] < 3e.
Hence, f’t is strong Feller. [

In what follows, we will drop the p superscripts and w; will denote the solution to the
cut-off equation (6.2).

6.2. Derivative estimate for cutoff process via Malliavin calculus

6.2.1. Malliavin Calculus preliminaries. First, let us recall some basics on Malliavin cal-
culus. For the interested reader, we recommend taking a look at the monographs [23,24,
37,95] for a more in-depth coverage of some of these tools and techniques.

Denote (27, H7, P7) the classical Wiener space associated with a cylindrical Wiener
process (W;);e[o,7] taking values in a separable Hilbert space ‘W for some finite time
horizon T > 0 which takes values in

Qr = Co([0, T, W) ={W e C([0, T]; W7) : Wp = 0},

where W~ is any Hilbert extension of W such that the inclusion is Hilbert—Schmidt
(since a cylindrical Wiener process W; does not actually take values in ‘W). The Gaussian
measure Pz on Q7 is uniquely determined by its Cameron-Martin space

Hr := {G = /.gs ds: g € L*([0,T]; 'W)},
0

which compactly and densely embeds into Co ([0, T']; W) (see, e.g., [24, Section 2.4]).
For most of this section we will be dealing with Fréchet differentiable random vari-
ables X : Q7 — H x IR, where ¥ is a separable Hilbert space and I is a smooth finite-
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dimensional Riemannian manifold. For a given Fréchet differentiable random variable X,
on Qr = C([0,T]; W™), we define the Malliavin derivative g X of X in direction
g € L%([0,T], W) by

d .
DX = d—X(W +&G)|p=9, G = / gs ds.
€ 0

The Fréchet differentiability of X implies that D, X admits a representation of the form

T
i)gX=/ DsXgsds, (6.6)
0

where for almost every s € [0, T], we think of £ X as a random, bounded linear operator
from W to H x T,,N, where m denotes the projection of X onto I)t. Equivalently, we can
identify £;X as an element of the tensor bundle W ® (K x Tt). We will commonly
use the following norm of Dy X:
D5 X [l w—sexT,m = sup [ Ds X[ [l sext,m.
few
I w=1

where D; X f denotes the action of ;s X as a linear operator on an element f € W. Note
that (up to isomorphism) we can identify the quantity DX = (Ds X )sefo,7] as a random
curve in the tensor bundle W ® (J x TIN).

For each initial w € H x M we may view the solution w, to (6.1) as an Itd map
oY : C([0,¢], H™® x R24) — H x M for an appropriate choice of ¢ > 0 such that

OH °*CH:=H°".
We have the following well-known result (cf. [65, Proposition 4.1]):

Proposition 6.2. For each initial data w € H x M, let ®f be the It6 map associated
to the abstract SPDE (6.1). Then ®} is Fréchet differentiable and its Fréchet derivative
DOY : Q; — H x TM foreach G € C(R;; H™® x R24) satisfies

dD®YG = DF(®¥)DOYG dt — AD®Y G dt + Q dG,.

Since the solution w; to (6.1) is adapted to the filtration ¥; generated by W;, we have
Dyw; = 0ifs > r. Indeed, from Proposition 6.2 we see that for g € L2([0, T']; L2 x R24)
we have an exact formula for D, wy,

8ti)gu)t = DF(wt)i)gw, — Ao(Dgwt + le‘, i)gwo =0.

Then, if one defines for 0 < s < ¢ the Jacobian J;; (viewed as a bounded linear operator
from H x Ty, M to H x T, M) as the solution to the equation

8th,t = DF(wt)Js,t - A-Is,t» Js,s =1d,

Duhamel’s formula implies that

t
Dewy =/ Js1 Qg ds,
0
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consequently, by equation (6.6), this implies the following formula for Dsw;:

JS,th s <t,

i)swt:{o s>t

If the random variable X : Q7 — H takes values in a separable Hilbert space #, then
for Fréchet differentiable X which belong to L?(Q7; #) the Malliavin derivative DX
belongs to the space L2(Q7; L2([0, T]; W x #)). It is well known (see [95, Chapter 1])
that the operator X — DX is closable unbounded linear operator from L?(Q7; #) to
L%(Q7; L%([0, T]; W x J)) and that the closure £ has dense domain

Dom(D) = Wh(Qr: K) € L*(Qr: #),
which is a Hilbert space of random variables closed with respect to the “Sobolev”” norm

B9 = E[[X[3 +E|DX |2,

2 .
WE2(Q7;3) - 0,T; WeH)*

It is important to note that, in light of the isomorphisms
L2(Qr; #) ~ L*(Q1) @ H
and
L>(Q7; L*([0,T]; W ® #)) ~ L2(Qr; L*([0,T]; W) ® ¥,

the operator O simply acts a the identity map on the J factor and therefore only needs
to be described via its action on R-valued random variables

D Wh(Qr) € L*(Qr) — L*(Q7: L*([0. T]; W)).
Working instead with just real-valued random variables X € L?(Q7), we denote the
adjoint operator D* by
D* : Dom(D*) € L*(Qr: L*([0, T]: W) — L*(Qr)

and referred to as the Skorokhod integral. We will denote its action on g € Dom(D*) by

T
/ (gt,SWt)'WZZ cj)*g
0

In general, D* is also an unbounded linear operator with a dense domain. The Skorokhod
integral can be viewed as an extension of the usual Itd integral to non-adapted integrands.
Indeed, when g € L2(Q27; L2([0, T], W)) is adapted to the filtration F; generated by W,
then fOT (g¢, 8W; )2 coincides with the usual Itd integral fOT (g¢,dW;)12, and is therefore
a bounded operator on adapted integrands via the Ito isometry (see [95, Section 1.3]).
More generally, there is an extension of the It6 isometry for non-adapted integrands:

Proposition 6.3 ([95, Proposition 1.3.1]). Let g € Dom(D*). Then the following identity
holds:

T 2 T T T
E(/ (gz,fth)'W) = E/ ||gs||%vds + E/ / tryy (Dsg¢ D gs) ds dt.
0 0 o Jo
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Note that when g is adapted, we automatically have D;sg;D;gs = 0, and therefore
(6.3) recovers the standard It6 formula and therefore g belongs to Dom(£D*). Moreover,
if g € WH2(Qr: L2([0, T]; W)) is not necessarily adapted, then we have

T T T
E / g5l ds +E / / (9 (Dy gDy g5) ds
0 0 0

T T T
sE/ ||gs||%vds+E/ / 1Drg5 13y ds dr
0 0 0

= gl 12@rse2qo.rwy:
so that in general we have that W12(Qr; L2([0, T]; W)) € Dom(D*).

One of the valuable features of the Skorokhod integral is the role it plays in the so-
called Malliavin integration by parts formula, which plays a crucial role in the regularity
theory for the law of the stochastic process w;. We state the formula in the following
form, which follows immediately from the definition of the Skorokhod integral and the
Malliavin derivative on real-valued random variables.

Proposition 6.4. Let ¢ be a bounded differentiable function on H x M with bounded
derivatives and g € WV2(Qr; L2([0, T]; L? x R?%)). Then the following relation holds
foreacht €0, T]:

EDg ¢ (w;) = E(DP(w:), &) 12(j0,1].12xR24) = E(‘i’(wz)/o (gs,5Ws)L2)~

6.2.2. Derivative estimate. As discussed in Section 2.7, the integration by parts formula
(6.4) can be used to obtain a gradient estimate on the Markov semigroup if for any
h € Hx Ty M and some T > 0, one can obtain a control

g € Wh(Qr: L2([0. T);L? x R*®))
(depending on /) such that we have the equality
@ng = DwTh,

where Dwr : Hx TM — H x T M denotes the Fréchet derivative with respect to the
initial data. This however, does not appear to be possible to do in general. We must instead
find a control g € L2([0, T]; ‘W) which satisfies this approximately, so that for some time
T > 0 we have
c(Dng = Dwrh +rr,
where rr is a remainder that satisfies rp — 0as T — 0.
Indeed, most of the work of this section is to prove the following key lemma.

Lemma 6.5. For all p > 0, there exist constants ax, b > 0 such that for T sufficiently
small and h € H x T, M there exists a corresponding control g = (g¢)¢e[o,T] Satisfying

T T T
E / g2 dt + E / f 1Dsgels_ s dsdr
0 o Jo (6.7)

2 2b 2
Sp T2 (14 [wllw)*™ 1l G,
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such that for rr = Dgwr — Dwrh, we have

Elrr Ier,, s So TIA NG, ac- (6.8)
We remark that it would suffice to prove E||rr ”ﬁxTuTcM <p q(D)||h ||ﬁxTvM for some

q satisfying limr_,o ¢(T) = 0.
Lemma 6.5 is indeed enough to prove Proposition 6.1.

Proof of Proposition 6.1. Using the control from Lemma 6.5, we can now estimate the
derivative of the semigroup in direction / at time 27 for ¢ € C2,

D Pyr¢(w)h = E(D Pr(wr) Dwrh)
= E(D Pré(wr)Dgwr) — E(D Pro(wr)rr).
Using the chain rule D, 13T¢(wT) = DﬁTgb(wT)SDg wr, the Malliavin integration by

parts formula (Proposition 6.4) gives

T
D Pyrop(wyh = E(ﬁT¢(wT) [0 <gz,5W,>Lz) _EDProwryr). (69

where the stochastic integral is interpreted as a Skorokhod integral, since the control is
not adapted. By identity (6.3) and estimate (6.7) we have

T 2 T T T
E(/ <gt,5W,>Lz) <k [ gl a+E [ [ 10 s
0 0 o Jo (6.10)

Sp T724 (1 + wlli)®®* 12l ac-

To finish the proof, introduce the seminorm | - |4, ,.7, on C([0, Tx]; C1(H x M)),
for as,bs > 0and 0 < Ty < 1 by

1**|Dfi (w)h|
I Nlaspe,e = sup

reio.re]  Wllaxryac (1 + wlr)b*
wEeHXM
heHxTy M, h£0

Then it follows from (6.8) and (6.10) that for 2T < T,
|DPar¢(w)h| < [ pllLoo T~ (1 + [wlg) 12 llmxr, 4

F 1P lar . T EQ + oz 020 BT er, o

<l T™ (1 + [lwlla)?* | hlluxr,

_ 1
FNPPllawonr. T T2+ [wlle) > 17| sty b

and therefore

1
IPPllaspe,r < NPl + TEN1PPllas b1,
then by taking T small enough, we obtain

[P@llasb.t. < lPllLoe.

This is the a priori estimate stated in (6.3). [
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6.3. Construction of control and estimates of remainder

The rest of the section is dedicated to proving Lemma 6.5. First, we implement a splitting
into high and low frequencies similar to that of [45, 100]. This will allow us to build
a control that works differently on the high and low frequencies. To this, denote the set
K; C Zg of low modes by

Kp ={k e Zd : |kl < L},

where L is as in Assumption 2. Let I1;, : H — H denote the corresponding orthogonal
projection onto the “low modes” belonging to K7 and let [Tz = I — 1 be the comple-
mentary projection onto the “high modes” belonging to Zg \ Kr.LetHy and Hy denote
the ranges of I17 and I1g, respectively, so that we have the orthogonal decomposition

H=H; $Hy.

Given w = (u, x,v,z) € H x M, we will extend the definition of I1;, and ITg to H x M
so that M is included with the low modes by

wL=HLw=(uL,x,v,z) and wH=HHw=uH.

Naturally this defines low and high processes th and w fl , which satisfy (note of course
they are coupled)

8tth = FL(w,) —ALth + QLWL,
dqwH = Fy(w) — Agwf + ogWH,

where
FL(w) = HLF(U)), FH(w) = HHF(w), AHw = HHAw,
0L =T1.0, On =Mgyo.
We also define the finite-dimensional matrix Uft which we view a linear operator from
H; x Ty, M to Hy, x Ty, M as well as the bounded linear operator Us’g from Hy to Hy
by
UL =-ALUL + DLFL(w)US,, UL =1d,

s,

andfor0 <s <t,
3 UH = —-AgUl + Dy Fy(w)UL, UM =1d.

Both U, sljl and U S{{ serve as approximations for the full Jacobian Jy; of the flow w — w;
projected onto the low and high-modes when 7 is small. We see that Usft is an invertible
operator: denote its inverse by

vh =wi™.
When s = 0, we write UL = U(ft and VE = VOL,t. Using the fact that UF is invertible,
we can write Uft =ULVE

Definition 6.6. Define the partial Malliavin matrix ‘(?tL :Hp X TyM — Hp X Ty M by

t
el .= / VEQL(VEQL)T ds.
0
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Remark 6.7. The matrix ‘C’,L is the analogue of the reduced Malliavin matrix, introduced
by Norris [94], in order to simplify Malliavin’s proof of Hormander’s theorem. The name
partial Malliavin matrix comes from [45], and indicates that it is a finite-dimensional
Malliavin matrix associated to the low modes. The reduced Malliavin matrix is conve-
nient primarily because, unlike the original Malliavin matrix, ‘G,L is adapted which greatly
simplifies calculations, for example, It6’s lemma giving rise to the brackets in a straight-
forward manner. Note the reduction here is only possible because UtL is invertible due
to finite dimensionality; see [64, 65] for more discussion. This invertibility motivates the
frequency splitting between high and low frequencies.

One of main results of Section 6 is the nondegeneracy of ‘€tL, which allows us to build
the low frequencies part of the control g;. That is, we have the following; the proof is
involved and is carried out in Section 6.4 below.

Lemma 6.8. The matrix ‘6’% is almost surely invertible on Hy x Ty M. Furthermore,
there exists constants a, b such that for all p > 1,

E|CF) ™7 Spp T7P (1 + |2])7.

Using Lemma 6.8, we can now construct the control. Specifically, fixanh € Hx T, M,
a T €(0,1), a frequency cut-off N chosen as N := T2¢(1 + |z])?® (a and b as in
Lemma 6.8) and define t — g; € L? by

gr = (Vo Tep) Vi Dwkh, 6.11)
gl = — 0 N DL Fr ()t + 2T Q7 UL hig Uiz 4 37741 (1), (6.12)

where 1<y is a projection onto frequencies less than N and ({;) is a process belonging
foreacht € [0, T] to Hy x T, M and solving the following system:

{ = —ALl + DLFL(w)E + QLgl + Du Fr(w)é:,
& = —Ank + D Fu(w)é + Ty DL Fur (w4 (6.13)
+ 2T U hg iz ya57y4 (1),
with & = 0 and {o = 0. If one assumes that a solution to (6.13) exists and is unique
(this is proved in Lemma 6.10 below), then we find that the choice of control is made

specifically so that the remainder r7 assumes a nice form. The intuitive choice is to use
the much simpler control, as was done in [45],

gf = o) T (ep) TV Dwrh,

g = 2T Q5 Ugthrlir/asr/a (1),
however, this leads to errors which are too large at high frequencies in the case of
Navier—Stokes, specifically, the low frequencies create too large of an effect on the high
frequencies. The choice (6.12) adjusts the control to account for this perturbation at

high frequencies, however, this procedure is not straightforward as this would require,
in some sense, choosing the control based on the Malliavin derivative itself, which is
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why we must solve the entire system (6.13). Indeed, by uniqueness we see below a self-
consistency: Dy wl = ¢, and DgwH = &,.

In what follows the implicit constant is always independent of N unless otherwise
indicated.

Lemma 6.9. Assume that g is defined as above and that exists a unique solution (¢;,&;)
to system (6.13) in the space L*(2; C([0, T]; H x Ty, M)), then the remainder

rr = i)ng — DwTh

satisfies
Ul Dy Fr(wy)é; dt, (6.14)
UM Ty D Fy (we)¢; dt
—/0 UMDy Fy(w;)Dgwihg dt — Dpwf hy. (6.15)
Proof. Using (6.13), Proposition 6.2, and uniqueness for the system

Dok = [0 UEVEDy Fr(w,)(DgwH — &) dr,

:ogw,HZ/ UHE DL Fy(w)(Dgwk — ¢7) dr,

in L2(; C([0, T]; H x Ty, M)), we obtain that in fact Dg th = {; and i)gth = &; and
we obtain the following formulas for the Malliavin derivatives at time 7':

Dowk = Dwkh + UL / VD Fr(wo); dt,

T
Dewi = Ugrhy + / UR-T.y Dy Fpr (wy)¢, dr.

Note that D wT is equal to DwTh plus remainders, while O wT is a perturbation of
U, ThH, that is,

DwHhy = Uflhy +/ UH Dy Fy(ws)Dgwkhy ds.

Using this relation, we now write

Dy wk = Dwkh + rk
! e (6.16)
DewH = DwHn 4+ rH.
where r% and rﬁ are given by (6.14) and (6.15). ]

Next, we construct a unique solution to (6.13) and provide the necessary quantitative
estimates. These in turn will imply the existence of a suitable control g;.
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Lemma 6.10. For all T > 0 sufficiently small (depending only on p), and all p > 2,
there exists a unique solution 1y = ({;,&) € Hx Ty, M on [0,T] to system (6.13) in
L?(Q2;C([0, T]; H x T, M)) satisfying

=

1
E sup 0lfr, ) + (E sup [ Denil)? )
( re[0.7] HXTy, M 5.4€[0.T] s L2—>HxTy, M

S T2+ 2D Wl -
Note that n; is not adapted to the filtration (7).

Proof. Formally we may re-write a solution to (6.13) as

St

t t
/ UL Orgkds + / UL Dy Fr(wy)és ds. (6.17)
0 0

2 t
& = 2|00 (%, F1Uohn + / Ui TN D Fr ()8 ds. (6.18)
0

The lemma is proved via a fixed point for the pair n = {(¢;, &), ¢ € [0, T']} in the Banach
space X7 defined by the following norm:

1 1
Iy = (B sup lnilfer, a)” + (B sup 0Dsnelta sy o)
T vel0.7] HxTy, M 5.1¢[0.7] SULIL2 SHX Ty, M

Note that equations (6.17) and (6.18) are linear and can be written more compactly on X7
as
n=Lrn+ Fr,

where L7 and Fr are given by

L) = Jo UL Dy Fr(wy)é ds
=
Jo UL N DL Fr (wg)&s ds

and

(Fr), = ( Jo UL OLgt ds )

Our goal will be to estimate L7n and Fr in Xr. Specifically, we will show that

1

IL7nllx7r <p T2 Inlx7- (6.19)

IFrlx, <p T72000+ 12D Al ac- (6.20)

This implies that for small enough 7' (depending only on p), the mapping n — Lrn + Fr
is a contraction and maps the ball Br = {n € X7 : |nlx; < 2||Fr|x,} into itself. By

the Contraction Mapping Theorem this implies the existence of a unique solution to
n = Ltn + Fr satisfying

Inlxy < 201 Frlixy Sp T724(1 + 1272 o, u-
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To estimate L77n and Fr in X7, we need to compute the Malliavin derivatives. We
find for each f € L2,

(DyFrf)e = <f5 [DsUf £1018f dr + fg U OLDsgf f dr)

[DUF flhu 210,61 0[5, 2]
and for each n € X7 using the chain rule
Os(Lrn) f = [DsLt fln+ LT Dsnf,
where ([Ds L7 f]n): is
JolDsUL f1D g Fr(we)Er dr + [o UL QLD FilEr, Jr O f 1dr
(D5 Ut f1Tsn DLy (wp)Sr dr + fg U TLon D> Fr (S, 15 Of1)
Jo , o Ur,
We observe by Lemmas 6.8, 6.21, and 6.19, that

E sup [gE|? S T (14 |z))%7 | hlluxr, a0
s€[0,T]

and by the product rule, Lemmas 6.21, 6.23, and 6.24, there holds

E sup [[Dsgl 17, 2 S T 0P+ 1207 I fr ae
s,t€[0,T] L

Using the bounds on U,ﬁ, U,Ij, Ds Urft and Dy Urg,
over have

IFrlix, <o Tlg" I + Ihmln, < T340+ 12D IR laxr, a0

U,I} (from Lemma 6.21) to obtain the

in Lemmas 6.21 and 6.23, we more-

To estimate L7, we use the bounds on Urljt,
almost sure bounds

1
sup [[(Lrm)ellaxr, s Sp T sup |[&lluy, + T2 sup |G|
t€l0,T] t€l0,T] t€l0,T] (6 21

1
Sp T2 sup |nllaxr,, u
t€[0,T]
Additionally, using bounds on Js;, Ds Urf, and Dy Urf{ (from Lemmas 6.19 and 6.23),
we also find

1
sup ”([i)sLT]r))t”Lz—)HxTvt,M Sp T2 sup ”nt”HxTvtM»
s,t€[0,T] t€[0,T]

and therefore by estimate (6.21) applied to D7 instead of 1, we find

sup || Ds(Lrn)ell2—nxT,, M
s,t€[0,T]
A (6.22)
STH( sup Pnillwer, s+ S0 1Dsmellzcomers, a0)-
t€[0,T] 5,¢€[0,T]

Putting (6.21) and (6.22) together and taking the L? (£2) norm gives estimate (6.19). =
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We are now ready to prove Lemma 6.5.

Proof of Lemma 6.5. First we prove estimate (6.8) on the remainder rr. It is here where
we will need to set the choice of N depending on T and |z|. To begin, we note that from
equation (6.18), using the cut-off 1. y, we obtain the following improved estimate on &;:

1
2 —g —
(B sup 1617, )" < Whllicr,ac + N' 077291 + 22 e,
t€l0,T]

Therefore, since 0 — 1 > 1 and the definition N = T—24(1 + |Z|)2b , we obtain the T
independent bound

1
2
(B sup N2 )" < Ihllmer,ac
t€l0,T]
Recall the definition of the remainders (6.14) and (6.15). We estlmate rL first. We find

(noting | Dp FL(wo)é:| < x3p(lluellm)lusllmv el 2, forany y > 5 4 + 1 due to the fre-
quency projection)

L
lr7| =

UTL/ VEDy Fr(w,)g, dt
0

Sp T sup ](IULIIVLIIISzIILz ),

telo,
and therefore using almost sure bounds on U} and V,F* from Lemma 6.21,

Elrfl> Sp T?E sup &2, < T 1hller, ac-

2~
t€l0,T] L

Hence, r% satisfies the estimate required for (6.8).
Turn next to estimating rt We again use the frequency truncation II<xy and the
choice N = T724(1 + |z])?? to find

T T
1 1
It % [ optldon [+ 1Duwf

1 1
<p T22(1 42D sup ||+ T2 sup |Dpwlhy|+ |DLwd s,
te[0,T] t€f0,T]

Using that Lemma 6.10 gives

T*(1+ z)*E sup [&* <1,
t€l0,T]
along with Lemma 6.22 for Dy wL and D; w#, we conclude that r%‘l satisfies the esti-
mate required for (6.8).
Next we show estimate (6.7) on the control g. Recall from the proof of Lemma 6.10
that we can use the bounds on the partial Malliavin matrix €% to get the following
estimate on gL

E sup |gEP+E sup | Dsgl)?

ST+ 1zZD* 10l e, a1
0<t<T s,t€[0,T]

L2>L2 ~

It remains to estimate g*7. Recall the following formulas for g/ and D,gH

gl = —Op' ey DL Fy(w)e + 2T QR U hig Ui ja a/4 (1)
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and

Dsgl f = 0g' TN D*Fy(w)[Lr, J5,0 O f 1 + O ey D Frr (W) Ds &y f
+277' 0y o{Don,tthﬂ[T/4,3T/4] (7).

Using the cut-off IT<y and the lower bound in Assumption 2,

T
B[ 113, 0 < [ 107 aw DL En ot
3T/4
L TR / 105 Utk I, ar
T/4
T
<E /0 | T Dr Frr (wo)s e dr

1 3T/4 H )
+77E [  NUdih e

Sp NT sup |62+ T72(1+ |wlf)lha I, -
t€[0,T]

where in the last line we used (6.36) on UOHt with y = o — 1. This is where we use the
requirement o € (¢ —2(d — 1), — ) A similar calculation for Dy g, yields and

T T
E / / 1Do8l 72, drds
0 0

So NUT2E( sup (6l + sup D12, o )
t€0,T] 5,0€[0,T1] 4

+ T2+ [wlif) ey, -

Using the estimate on &, from Lemma 6.10 and our choice of N = T724(1 + |z])??, we
find
E / g2, de +E / / 1Dygf 12, drds
0
So T8+ w217 Fper, ae-
Therefore we have the desired estimate (6.7) on g;. [

6.4. Nondegeneracy of the partial Malliavin matrix

For simplicity of presentation and brevity, we will only detail the proof in the case of
nondegenerate noise on the Navier—Stokes equations (i.e., L = 1), that is,

lgx| ~ |k|~% forallk € Z4.

Once one has the hypoellipticity deduced in Section 5, the adaptation to the weaker
Assumption 2 is a well-understood extension using methods from previous works [44,
45,63,99, 100]. This is discussed in more detail in Remark 6.16 below.
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Define the set
K= (Z& x{1,....d —1) U{1,2,...,2d}.

Note that each element m € K is either a pair (k,i) € Z& x {1,...,d — 1} or an integer
j e{l,...,2d}. We will also denote the set K, in a similar way with Zg replaced by K,
and define Ky = K \ K. The operator Q on L2 x R?? gives rise to a family of vector
fields { Q™ }mek on H x M defined by

om - {qkeky,g itm = (k.i) e Zd x{1.....d — 1},

& itm=je{l,....2d},

where we are denoting {éf } the canonical basis on R??. The pivotal lemma is the follow-
ing nondegeneracy of the partial Malliavin matrix ‘é’tL.

Lemma 6.11. Forallp > 1,1t < 1,& > 0and w € H X M, there exist constants a,b > 1
such that

sup P(
heHy XTy M
|h|=1

t
S [ whemmids <) s, s laper
0

meKy,

where the constant is independent of € and the initial data.

Above (-,-)r denotes the Riemannian metric on H x M. We omit the dependence
onv e S471,
Note that

t
> /0(VSLQm(ws),h)gds=(h,t’,Lh)L,
meKy,

so that Lemma 6.11 is really about nondegeneracy of ‘C’tL. It is a standard fact in the
theory of Malliavin calculus that Lemma 6.8 is sufficient to deduce the moment bounds
on (€¢£)~! stated in Lemma 6.11.

To begin, we will need the following lemma that relates time-derivatives of certain
quantities to appropriate Lie brackets.

Proposition 6.12. Let G be a bounded vector field on H x M whose range belongs to
Hy x T M and with two bounded derivatives. Then the following formula holds:

t
VEG(w) = G(w) +/0 VE([F. Glr(wy) — [4, G]L(wy)) ds

+3 X [ vED*Guiem. omas 629

meK
t

+ [ vEDGw.)0aw.
0

and for any two differentiable vector fields F, G over H x M, we denote

[F.G]L = IIL[F, G](w) = (DGL)(w) F(w) — (DFL)(w)G(w)



J. Bedrossian, A. Blumenthal, S. Punshon-Smith 74

and

[4,G]L(w) = DG (w)Apw — AL G(w).

Proof. The proof follows from Itd‘s formula on G (w;) and the fact that V,L satisfies
t
vE = Id—/ VE(Dy Fr(ws) — AL) ds. "
0

Remark 6.13. Note that since we assume that Ran G(w) € Hy x T, M and that the
vector fields {Q™},,ex have the property that Ran Q™ € Hy x Ty M if m € K and
Ran Q™ C Hy if m € Kg, then the sum above converges by the fact that the noise is
of Hilbert—Schmidt type and therefore the sum over high frequencies can be bounded

Z ”DZG(w)[va Qm]”HLxTUM =< ”D%]G(w)”HH(X)HH%HLxTUeM Z QI% < o0.
meK g keKpy

For convenience, we define the following operator Az that maps smooth vector fields
on H x M to smooth vector fields on H x M with range in Hy, x T M, defined by

ALG = [F.GlL~[4.Gl + 5 Y D*GIQ", 0]

mekK
Lemma 6.14. The following estimates hold for each m € Ky :
IALQ™ (W) Sp 1. [AZQ™(w) Sp 1. Y _I[Q7. ALQ™ILIP(w) S, 1.
jekK
Proof. The proof follows from the fact that below the cut-off ||u|jg < 6p, we can bound

I[F, 0™l + 1[4, 0™zl Sp (1 + llullf) <p 1.

When |u|lg > 6p, the Navier-Stokes nonlinearity is turned off and the above nonlinear
term does not contribute, so we can just use the estimate |[A, ex y,i] | < 1. There are also
terms which are nonlinear in z, however they are bounded and have bounded derivatives,
so that |[F, éf ]| < 1. The only other subtlety involves ensuring that the infinite sum
in m € K converges. However, this is due to the fact that the m € K and the noise is
Hilbert—Schmidt. ]

Lemma 6.15. The uniform lower-bound

h
max{|(Q" h), |.(ALQ™ h)L| : m € KL} 2, ﬁ

holds for every initial data w = (u,x,v,z) € Hx M, and h € Hy, x Ty M.

(6.24)

Proof. To show (6.24), we must consider the different behaviors of

(ALQ™. )L = ([F.Q™|L.h)r — ([A. Q™]L. h)L.

for different values of the initial data w € H x M due to the presence of the cut-off. We
divide the proof into two cases using a parameter § € (0, 1), which will be determined
later.
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Case 1. We first consider the case where y,(||u ) > &. This case is the easiest, since we
can use the z process to help span the (x, v) directions. Indeed, notice that if we choose

anm € Kz sothatm = j € {1,...,2d}, then Q" = é]?, then one easily computes for
j=1,...,d
Kollulla) . § A
A m ,h —_ " a~ ',h > -sh )
ALQ™ (). Wl = 7 ey el = (s e

where {é; }jlzl is the canonical basis for R¢, taken here to be elements of 7xT¢ € Hy x
Ty M. Similarly for j =d + 1,...,2d, we have

(AL QF (w), h) (1,6, g, h)L|

|2 L
(I+1z])?

and {IT,é; };?:1 is a spanning set for 7,S¢~! € Hy x T, M. Therefore we can easily

conclude the lower bound
|
(1+1z?
Case 2. We now consider the case y,(||u|la) < §. Here, we cannot rely on the regular-
ization introduced by the z process since we are in a region where its coupling with x

and v may be turned off or very small. Here, the drift is fully turned on and if we choose
m € K sothatm = (k,i) and Q™ = qgrexy;, we obtain

max{[(Q™ h)L|,(ALQ™ )| :m €KL} 2§

ALO™(w) = q[Vo(w), exvi] — qi[Bu,u), exvile — qrlA. exvilL

1 Uk
—qk=)'(lulla/p)~——H(v, 2).
1Y vl

Using the fact that we are in the region ||u||g < 2p, we have

d—1

(A, exvile. hLl + [([Bauw) ewvile. MLl Sp D Y Wewvi-h)el, (629
i=1keKy

additionally, since y,(||u|lg) <6,

1 ||
=X (lulln/p)r——I(H (v, 2). h)L| <p 8|h].
P [l x

This implies that

d—1

Slhl+ [(ALQ™ WLl + Y > arllexvi- W)Ll Zp (V. exvil B,
i=1 kEKL

which, in turn, implies that
81h] + max{|{Q™ . h)L|. (AL Q™ h)L| - m € KL}
2o max{[{[V.exr]. el lewyf- W)Ll sk € Kp i e {1.....d —1}).
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Finally, an easy modification of Lemma 5.3 gives
max{|([V, exyl. h)Ll, ek vi Aol ik € Kp. i €{l,....d —1}} 2 |h],
so that taking § small enough (depending on p) we obtain the desired lower bound. ]
We are now equipped to prove Lemma 6.11.

Proof of Lemma 6.11. Fix initial data w € Hx M and let h € Hy, x Ty M with |h| = 1,
fix t € (0, 1). Denote for each m € Ky,

X" = (VSLQm7h)L-

S
It is sufficient to show that
P( ﬂ {||Xm||i2([0’t]) < 8}) SP,P t_ap(l + |Z|)bp8p, (626)
meKy,

where the constant does not depend on /£ or the initial data. Using Proposition 6.12, as
well as Lemmas A.7, 6.14 and 6.21, we find that we have the almost-sure bound

[X ]Cl(O 1) — = Cp» (627)

where C, > 1 is a deterministic constant depending only on p. Applying the interpolation
Lemma A.6 with f = fo X ds and ¢ = 1, and then applying Cauchy—Schwarz, we arrive
at the inequality

1
X" oo < 40X 1oy max X" 1o X1 oy} (629

Therefore, we can deduce

( N X" oo, <e}) <P( () {X™ ooy < 4Cp 1 e i}).

meK;, meK;,

Next, using Proposition 6.12, we write
S
0

where B?" is the R-valued adapted process defined by
= (VEALO™(wy), h)rL.

This means that when || X" ||Lc0 (0,5 < 4C, t~1/2g1/4 then one also has

‘/ B dr

Applying Lemma A.6 again with f = fo Bl'dsand o = %, we find

1/4 3/4
IB™ Lo qo.n < 40 1 I qo.qy X max{l £ 175 0.y [B" eyt (629)

1

<8Cp “2¢

-N'—‘
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Again an application of Proposition 6.12 to f(s) along with the bounds given by Lem-
mas 6.14 and 6.21 easily gives, by Lemma A.7, the moment estimate on the Holder
seminorm of B}" for each p > 1,

E[B'"]Zm([o,l]) <p.p 1. (6.30)
Since estimate (6.27) implies that for each p € (1, 0c0) and every ¢ € (0, 1),
P([Bm]cl/3([0’1]) > Scpl‘_%é‘_ﬁ) sp,p &‘p,
we can with overwhelming probability restrict ourselves to the event
ﬂ {[Xm]cl/ii([(),l]) < SCP l‘_%é‘_ﬁ}.
meKL

The choice of the exact power for e~1/204 above is somewhat arbitrary and is chosen
simply to give rise to the power of £'/18 in the final inequality (6.32). It is certainly
possible to use other powers on ¢ without changing the essence of the proof.

Using inequality (6.29), we conclude that for every p > 1,

aNCEAET)

me]KL

11
Spp P( m {1 X oo (o, < 4Cpt~ 264} (6.31)

meKL

NI B™ [l (fo.7) < 32Cpt_3gll7}) + &P,

By choosing ¢ < ¢ small enough for a large enough constant ¢ > 1, we can remove
the factor of +71/2 and +~3/2 above at the expense of a slightly worse power on &. To
remove this #-dependent restriction on &, we can treat the case t* < ¢ by simply using
the fact that probabilities are bounded by 1 and that 1 < t7%P¢? to deduce that for all
g€ (0,1)and p > 1,

P( ) A1IX™ 17200 <8})

meK;,

Sp.p P( m {IX™ oo qo,1) < 8%} (6.32)

meKy, .
n {”Bm”Loo([o’t]) < 818}) 4 TP,

Next, we show that for small enough &, and each initial data w € H x M,
() X5 <ef n{|BF| <™} =0. (6.33)
meKy,

where r* is some number less than 1. That is, at time # = 0 for small enough ¢, it is not
possible for all the { X"} and all the { B™} to be small. Indeed, since X" = (Q™, k) and
By’ = (AL Q™, h)p, this follows from Lemma 6.15 since the estimates [{(Q™,h)| < €
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and |(AL Q™ h)r| < &"" imply by (6.24) that
1S, (L |23

Therefore choosing & small enough so that ¢ <, (1 + |z|)~? for a sufficiently large con-
stant b > 0 we deduce a contradiction and conclude that (6.33) must hold. Again, to
remove the z-dependent restriction on & we can replace & by (1 + |z|)?e on the right-hand
side of estimate (6.32), giving our desired estimate (6.26). ]

Remark 6.16. In order to treat noise as in Assumption 2, one needs to adjust the above
proof in two ways. First, in the definition of the cutoff process (6.2), one needs to add addi-
tional Brownian motions to the modes k in (u;) for which k ¢ X, in the same manner as
was done for the Lagrangian flow, that is, y,(||u|lu)ex y,’;zk,i/(l + |z )2 fork ¢ X.
Then in the proof of Lemma 6.11, for x,(||u||u) < &, one needs to use Lie brackets of the
Navier—Stokes nonlinearity to fill the missing degrees of freedom in Navier—Stokes (these
brackets are computed for 2D and 3D, respectively, in [44,99]; see also Section 5). This
requires taking one more time derivative in the proof of Lemma 6.11 (allowing noise from
the high frequencies to propagate to the lower modes), which in turn, requires the use of
a version of Norris’ Lemma [94] (in addition to Lemma A.6), as described in, e.g., [63].
Analogous to [45, 100], one needs to slightly refine the statement found in, e.g., [63] to
handle the singularity for short-times but this is a straightforward calculation.

6.5. Basic estimates on Jacobians and Malliavin derivatives
The proofs of the following lemmas are standard and are omitted for brevity (see [38]).

Lemma 6.17. The statements of Proposition A.3 hold for the (w;) process. We record the
quantitative estimates here for the readers’ convenience. For all y < a — % T <1, and
p € [2,00) there holds

E sup ||wt||21/ Spoye 1+ ”wO”Zw
t€l0,T]

T
2 2
E /0 10512y A5 Syop 1+ 030

We also need the following improved short-time regularization estimates. Specifically,
for regularities all the way upto y < o + (d — 1). This is crucial for dealing with the high
frequencies of the control.

Lemma 6.18. For all y € (0,0 + (d — 1)), p € [2,00), and T < 1 there holds for all
5§ >0,

—0 D
B sup o270 fwi iy ) Sp 1+ lwollfo (6.34)
t€[0,T]
T
E / 1512 ooy ds <5 1+ 172 oo 6.35)
t

where

_o-(+2-d+2d -1

2d — 1) 0
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Lemma 6.19. The following properties are satisfied for Js; and US{‘: for0 <s <t <
T <1:

(i)  There holds for y < o, (almost surely)

s .chll ey <y, s + MU |y So Wl <z, a0,

T T
2 Hi H 2 2
| TR 7 R TR LA

(i) Forally € (0,0 + (d — 1)) there holds (almost surely),

y—o y—o
(t = )20 | Js ehll g ry, b + (¢ = )20 U R gy <p16 Wl oy, p-

(iii) Forally € (0,0 4+ (d — 1)) and all § sufficiently small

T T
E / 1aahlyysaaty gyt +E / WUERH 2, py i
s+s’ vt s+s’ (636)

-2 2 2
<s ()7 (A + llwollzo) Il o sy, ac:

where

_o—(y+2-d+2(d—1)J) -
N 2(d — 1)
Remark 6.20. Note that the above estimates all hold almost surely and are independent
of wy except for (6.36). This is because only (6.36) requires regularities above o on the
(linearization of) the nonlinear term.

0.

Lemma 6.21. Foreach p > 1 an T < 1, the processes U,L and VtL satisfy the following
bounds:

sup (IUF|+ V5D Spp 1.
t€[0,T]

and the constants do not depend on the initial data for w;.

We also require the following estimates on the Jacobian, as in [45], which control the
effect of low frequencies on high frequencies and vice-versa.

Lemma 6.22. Foreach T < 1, ht € Hy x TyM and h* € Hy we have the almost sure
bounds

1
sup [DurwHh*|ln, <, T2|hLl,
0<t<T

sup |DpwEh®| <, Tllhe |y, (6.37)
0<t<T

where the constants do not depend on the initial data w.

Proof. Consider the case of Dy w? . In this case we have
0 (DLwfnt) = Dy Fy (w)Dpwf h" + Dy Fy (w) Dpwih™ — Ag(Dpwf nt)

and Dy, w(',q hL = 0. Therefore

t
DLthhL :/ USIjDLFH(ws)DLwSLhLds.
0



J. Bedrossian, A. Blumenthal, S. Punshon-Smith 80

By Lemma 6.19,

t

1

IDLw i |, < / ——— I DL Fr (ws) DLwi " || o1 ds
0 (t—s)2

! 1
SP / 1 ds( sup ”JO,shL”HxTvSM)
0 (t—s)2 0<s<t
< Vit
The estimate on (6.37) follows similarly (except no smoothing is necessary). [

Next, we compute and estimate the Malliavin derivatives of the necessary quantities.
First, we compute

chwtf = Js,t va

t

UL f = / UL B? Fy w)[USh, T4 O f)dl.
r
t

DUHR) f = / UM D2 Fy () [UE b, 7, 0.f]dl.

where D2 F denotes the full second variation of F extended to the linear space Hy x R*?.
We further have

t
:DsDwthf =/ Jr,tDZF(wr)[i)swrfa JO,rh]dr
0

t
_ / .t D2 F(wy)[Jsr Of, Jorh] dr.
S

Furthermore, one has the following for the derivatives of the inverse Malliavin matrix
and VtL:

Ds(ef) f = —ep) T DseF f1ep) T D VEf = -VEID,UE FIVE.

Lemma 6.23. The following estimates hold almost surely for T < 1 (and are independent
of lwollu):
LyL L
sup | DU 1= | 2my <, s Sp LI 0L Ty, 00
o<r<t<T

LL L
sup | DV h™ |2 my <1y, 0 Sp LI g <7y, M
O<r<t<T

Hi H L H
sup | DsU h™ Ml 2smyy Sp 021107 Iy <7y, M
O<r<t<T

1
sup ||@er,th||L2—>H><TU,M Spt? ||h||HL><Tvr=M~
o<r<t<T

Proof. By using the formula above, the case of Dy U,]j, follows immediately from Lem-
ma 6.21. The case of U follows from (noting that 0 < o — % and that Q : L2 — Hx M
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is bounded)
H ! 1 H
1D (U R) fllyy / IO 1€ e, s
r — 2

< \/;||h||HxTUM||f||L2-

Consider next estimating Dy Dw,h f . For this we get (almost surely due to the cutoff)
t 1 1
|Ds(Dw:h) fllug <p / ﬁ”‘]s,r Oflluxr,, sl Jorhllgodr <22 m
s (t—r)2

Lemma 6.24. The following holds for all s < T and 1 < p < oo (the constants a, b are
from Lemma 6.8):
E[Ds(€F) I} e Sp (T2 (14 |z))P

L2—H; xTy

Proof. Follows by Lemma 6.21 and Lemma 6.8. ]

7. Weak irreducibility and approximate control

First, we prove Proposition 2.15, hence deducing the weak irreducibility of the stationary
measures for the Markov processes (u;, x¢), (U¢, Xs, Vs), (Uy, Xz, Uy). Combined with the
strong Feller property, this yields unique stationary measures for these processes by the
Doob—Khasminskii Theorem [41,72].

Lemma 7.1. Recall the control problem (2.9) for Systems 3-4. Suppose that K is sym-
metric and (1,0), (0,1) € KX in 2D and (1,0,0), (0,1,0), (0,0,1) € K in 3D. Let (x, v),
(x’,v') be arbitrary points in T? x S4~1. Then there exists a smooth control Qg such
that

(10, X0,v0) = (0,x,v),  (u1,x1,v1) = (0,x",0").
Furthermore, g can be chosen to depend smoothly on x,x’,v,v’ and supported only in
frequencies |k|s < 1. All of the above holds also for the (uy, x¢, Vy) process.

Remark 7.2. By choosing arbitrary representatives on S?~!, it is clear that controlling
the (us, x¢,v¢) and (uy, x¢, U;) processes, regarding v;, U; as elements on sd-1, implies
controllability of the processes when considered on P4~1.

Proof. First, let us consider the two-dimensional case. Let x = (ag, bo) and x’ = (a1, by).
Fort € (0, 1/4), suppose the velocity field is given by the shear flow

wnm = £ (O3 )

such that f, € C2°(0,1/4) and f01/4 fa(t)dt = ay —ap. Similarly, for t € (1/4,1/2),

suppose the velocity field was the shear flow

w1 v2) = i) ( 0 ) ,

cos(y; —ay)
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such that f € C2°((1/4,1/2)) and f11//42

to the ODE (1.9a) satisfies x; = (ay, b1).

Next, we explain how to set g in order to produce these flows. Notice that the shear
flows (cos(y — bg), 0) and (0, cos(x — a1)) are stationary solutions of 2D Euler: the non-
linearity vanishes on these flows. Hence, it suffices to control the Stokes flow, which gives
the following control:

05(t) = (1104 £u) (057" )+ O+ 5O (qogor gy )

cos(y1 —ayp)

By the angle-difference formula and the assumptions on K, g satisfies the requisite
properties.

Next, we augment the previous control also to deal with v;; the treatment for v, is
analogous and is omitted for brevity. During this time we have moved v; some amount,
let vy, be the new value. Suppose that the velocity field were given by the cellular flow

u(t, y1,y2) = fo(t) (_ sin(y2 - bl)) 7.1)

sin(y; —az)

Jfp(t) dt = by — byg. It follows that the solution

such that f,, € C2°((1/2, 1)) with
1
[ fwa =20,
1/2

where Z(v', v1/2) = cos™! (v, v1/2) denotes the angle between v’ and vy /5. This induces
a rotation of v, by the angle Z(v’,vy/5) via (1.9b) into the desired final point without
moving x;.

As above, the cellular flow is both a stationary solution of the 2D Euler equations and
an eigenfunction of the Stokes operator. Therefore, it suffices to set g ont € (1/2,1) to
be such that in( b

’ —Ssmyz — 01
05(0) = (150 + 1) (o)
This completes the proof in 2D.

Next, consider the 3D argument. It is clear that a similar proof applies to the (u;, x;)
process by utilizing 2D shear flows aligned with any of the three Cartesian directions.
For the (u;, x¢, v;) process, we consider the problem of controlling the v; process (as an
element of S?) from one arbitrary position v € S? to another v’ € S? without moving x;,
using 2D cellular flows aligned with any of the three Cartesian directions. Each of these
flows induces rotation along curves of constant “latitude” aligned with one of the three
Cartesian directions. Note that no flow gives lines of constant longitude in any direction.
Arbitrarily, set the x, y plane to be the equatorial plane relative to which we assign latitude
and longitude. Using the cellular flow that is constant in z, adjust the longitude of v; so
that vy/3 lies in the y, z plane. Then, using a cellular flow that is constant in x, adjust the
latitude so that v, 3 lies at the latitude of v’. Finally, by re-applying the cellular flow that
is constant in z, adjust the longitude so that v’ = v;. ]

The controllability provided in Lemma 7.1 implies the following nondegeneracy of
the Markov transition kernels.
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Lemma 7.3. Forallt > 0and ¢ > 0, there exists & > 0 such that for all (x,v), (x',v") €
T4 x S ! and all u € By (0),
P((us, x:) € B:(0) x Bo(x")|(u0,x0) = (u,x)) > 0,
P((ur, X1, v¢) € Bs(0) X Be(x') x Bs(v') | (1o, X0, v0) = (u,x,v)) >0,
P((ur, X1, Vr) € Bs(0) X Be(x') x By (v') | (1o, X0, v0) = (u,x,v)) > 0.
Proof. Such nondegeneracy properties normally follow from standard perturbation argu-
ments. However, one must be somewhat careful with the regularity, as we require that
occ(@—2(d-1),a— %) (i.e., close to the highest available regularity). Let us treat
the (u,, x;) process; the (uy, x;,v,) and (u, x;, U;) processes are the same. Let Qg be

a control given as in Lemma 7.1 corresponding to the desired endpoints x, x’. Let u¢ be
the controlled solution from Lemma 7.1. The first step is to prove that for all ¢, there holds

P(Jlus — utllLooqo,11:m) < &) > 0. (7.2)

Note that the control is built from only I1<; Qg. By the regularity of the stochastic
convolution I'; (see Lemma A.4) and positivity of the Wiener measure, for all ¢ > 0,

t
P( sup ||T; — / e 40 e ds| oo qo.11m) < g) > 0. (7.3)
t€(0,1) 0

Let u; be a solution to the stochastic Navier—Stokes with a sample path  such that
the event in (7.3) holds. Then from the mild form

t
uy —ué = ey, ~|—/0 e O Bug, ug) — BuS, u))ds

t
+ T, — / e~ =94 Qgsds
0

(actually by our choice of control B(u¢, u$) = 0). By a generalized Gronwall’s inequality
[82, Lemma A.2] and parabolic smoothing, we have

llur — ufllLoo o1y < K'e

for a universal constant K’ depending only on ¢, « (provided that ||ug|lg < &). Therefore,
we have (7.2). For the x; process, we similarly let x; and x{ be the trajectories associated
with the controlled system and that of the sample path w (respectively). Then (viewing
X, x¢ as elements in Rd)

d
g O =X = up () —ue () = (up (xp) — uy (60) + (0 (x0) — 10 (x1)).-

We then obtain by the stability of the (u;) process (by potentially adjusting K’ and using
o> % + 1 to apply Sobolev embedding to Vu),

P({llurllu < K'e} N {d(x1.x') < K'e}) > 0.

The desired nondegeneracy for the Markov transition kernel then follows. ]
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Proof of Proposition 2.15. We prove this in the case of (u,, x;); the processes including
P41 are the same. First, we verify irreducibility of stationary measures of the (u;) pro-
cess in HC. In the case L? this is well known; see, e.g., [44]. This can be proved by
observing that if there were no forcing we have,

2 2 2
E”ut”Lz < —IVuellz> < —lluellz--

At the same time, in the absence of forcing, standard energy estimates give the uniform
bound with 6§ > 0, |[u¢||go+s Ss 4ol go+s with an implicit constant that is indepen-
dent of time. Hence, Sobolev interpolation gives |[u;|mo < |luol go+se ", for some
constant ¢ depending only on o, §.

Let fi be an arbitrary stationary measure supported on H x T¢. By the parabolic

smoothing (see, e.g., (A.4)) and stationarity, fi is also supported on H° %4 for 0 < § <

o — % — 0. Therefore, there exists a C > 0 such that

~ 1
a{llull go+s < C}x Td) > X

Denote the set B = {u € H: ||u||go+s < C} x T? C H x T?. The stability argument
applied in Lemma 7.3 (with g = 0) gives the desired uniform decay: for all y, there exists
a T, such that for all (u, x) € 8,

P((ur,.x1,) € By(0) x By (x') | (1o, x0) = (u,x)) > 0.

Next, it follows from Lemma 7.3 that for y’ sufficiently small, there exists a y (depending
only y’) such that for any x’ € T4, and all (u, x) € B,

P((uT,+1,%xT,+1) € By (0) X By (xX) | (w0, x0) = (u,x)) > 0.

Since this implies that

[L(By(0) x By (x")) = / P, +1((u, x). By (0) x By (x")) fi(du, dx) > 0,
B
it follows that (0, x’) is in the support of the stationary measure. ]

Next, in order to complete the proof of Theorem 1.6 in the case of Systems 34, it
suffices to prove the following, which shows that arbitrarily large gradient growth can be
obtained on the unit time interval.

Proposition 7.4. For all M > 0 and ¢ > 0,
P((ul,xl, A1) € B:(0) x B;(0) x {4 € SL;(R) : |A] > M} |
(u(), X0, A()) = (0, 0, Id)) > 0.

Together with Lemma 7.3, this implies that Systems 3—4 satisfy Definition 4.16 and hence
Proposition 4.17 applies and the proof of Theorem 1.6 is completed.

(7.4)

Proof. The control step is proved as in Lemma 7.1, except now we apply the cellular flow
translated so that the hyperbolic point is at the origin:

_ sin(y, — b)
un = I+ (sm(yf - a)) ’
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with fol f+(s)ds = log M. Then set g analogous to the choices in Lemma 7.1 (the size
of g now depends on M). The stability step proceeds as in Lemma 7.3. |

Remark 7.5. All of the above controllability arguments also apply to the System 1 in T?2
with only the condition: K symmetric and (1, 0), (0, 1) € K. This condition is not enough
to guarantee that the (u,, x;, A;) process satisfies Héormander’s condition. We can still
verify Definition 4.16 in this case, and hence it is sufficient to deduce Theorem 1.6. The
claim in Remark 1.13 follows. Further, our arguments on Navier—Stokes similarly apply
to the System 1 in T¢ with infinitely many modes forced, under Assumption 2.

Remark 7.6. For Systems 3—4, using higher frequency shear flows and cellular flows, one
can make all the same arguments in this section if we only take Assumption 2. Hence, by
also Remark 6.16, we can prove Theorem 1.6 (and all our other results) for Systems 3—4
using only Assumption 2.

8. Applications to scalar turbulence

In this section we prove Theorem 1.16. First, we prove the weak anomalous dissipation
property (1.7), Theorem 1.16, part (i). For this, we adapt the compactness-contradiction
method of [17]. Hence, it is easiest to begin by defining f* = /kg as in (2.11) and
recall the re-scaled balance relation (2.12). Next, we are interested in studying the lim-
its of stationary measures it“ to the problem (2.11) coupled with any of Systems 1-4.
It is standard that this (one-way) coupled system is well posed in the sense of Proposi-
tion 1.3 and defines an F;-adapted, Feller Markov process; see, e.g., [86]. Similarly, the
Krylov-Bogoliubov method implies the following:

Lemma 8.1. For all k > 0, there exists a stationary probability measure [1* for the
Markov process (u;, f) supported on H x H'. Furthermore, the measure satisfies the
following for all p > 2 (with implicit constant independent of k),

/ IV £ 1125 di . f) = . 8.1)
HxH!

iy

[ NI ) 5, 8. 82

The following lemma is a straightforward adaptation of arguments in [17, 83, 86].
Unlike in [17], the velocity field is not bounded a.s., however, the situation is not signif-
icantly different (using Proposition 1.3); indeed, the original arguments of Kuksin [83]
were specifically on the Navier—Stokes equations (see also [85, 86]).

Lemma 8.2. Let {i*},~0 be a family of stationary probability measure of problem (2.11)
as in Lemma 8.1, indexed by the diffusivity parameter «, and (u;) given by one of Sys-
tems 1-4. Then, the measures { i} o are tight on H x L? as k — 0 and the subsequen-
tial weak limit i° is a stationary measure of the inviscid problem (1.5) with

u(A) = 24 x H')
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and ji° satisfies
[ VR ) <
HxH (8.3)
- P
[ I ) 5, 5.
HxH!

Proof. Tightness follows from equation (8.1) (and the corresponding balance on u) and
Prokhorov’s theorem. The estimates follow from (8.1) and lower semicontinuity. Finally,
that /10 is a stationary measure of the inviscid problem (1.5) follows as in the correspond-
ing statements in [17,83] and is omitted for the sake of brevity. ]

Analogous to the arguments in [17], we deduce that necessarily i° = 1 x 8y via
Theorem 1.14.

Corollary 8.3. The only stationary measure for the process (u;, f;) is the measure
U X 8.

Proof. Let us use the notation f;,, s to denote the scalar process f,* associated with
initial conditions (u¢, fo) = (4, f) € Hx H!. Let ji be any ergodic stationary measure
for the process; by stationarity we have

Bf (/;r |Vf,,u,f|2dx) )= [ (/T |Vf|2dx) diitu. f)

at all times ¢ > 0. On the other hand, if & is not of the form w x 8y, then by Theo-
rem 1.14 there is a positive ji-measure set 4 C H x H! \ {0} with the property that for
all (u, f) € A, we have E([14 IV fiu.r|?dx) — oo as t — oo. This implies a contra-
diction. ]

Theorem 1.16, part (i). Follows from Lemma 8.2 together with Corollary 8.3 and (8.3)
(with p > 2). [

Next, a variant of arguments in [17] gives Yaglom’s law (1.8).

Proof of Theorem 1.16, part (ii). To adapt the arguments of [17], the first step is to derive
the analogue of the Karman—Howarth—Monin (KHM) relation [40, 55, 90] for the passive
scalar. In what follows u and g denote statistically stationary solutions to (1.2.2). Define
the scalar two point correlation

Gy) = E]{yd g(x)g(x + y)dx,
and the vector

() =E ]{r By Payudx,
Similarly, denote the two point covariance of the noise

a0 =5 X § e @ e + ).

kezd
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Note that a(0) = &. The KHM relation is the manifestation of the L2 balance on the two
point correlation &; it is significantly simpler for scalars than for the 3D Navier—Stokes
equations. Hence, the proof is omitted for brevity; see [17] for details.

Proposition 8.4 (Scalar KHM relation). Let (u;, g;) be a statistically stationary solution
to (1.2.2) coupled to one of Systems 1-4. Then, for any n = n(y) a smooth, compactly
supported test function on R?, there holds

1
3 L v omay =2 [ agmsmay+2 [ amamiay. 64

Define (suppressing the time-dependence as anyway, the time-dependence vanishes
after expectations due to stationarity)

@(@):E][ ][ 180ng|28entt - ndS(n) dx.
Td Jsd—1

Equipped with Proposition 8.4, we may proceed as in [17] by testing (8.4) with a radially
symmetric test function (%) = ¢(|h|). Hence, we obtain the following ODE for ® in the
distributional sense:

d%(zd—lzi')) = —4/(% (Zd_I%@_;’) — 40471, (8.5)

where we denote the spherically averaged quantities
&) = ][ & (n)dS(n),
sd—1

) = ]g . altn)dS(n).

From here, the proof proceeds as in the proof of the 4/3 law in [17]. Specifically, one first
integrates (8.5) yielding,
D) &'
= —4x
4 4

4
— 40 / rd=ta(r) dr.
0

Then the weak anomalous dissipation (1.7) is used to eliminate the term involving « as
k — 0 over an appropriate range of scales [{p, £;] with £p (k)?> = o(kE| g|?) as k — 0,
to conclude that B

&'(0) ‘ y

14

lim sup 4«
201 (0).41]

Finally, regularity of a(¢) near £ = 0 is used to deduce that

L
4
46_‘1/ rd_la(r) dr — Eé as{ — 0.
0

D(t)
4

The resulting estimate for is then asymptotically —%é asf{y — 0. ]
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Appendix A. Some background lemmas

A.1. Well-posedness and the RDS framework

In this section we will confirm that the various processes considered in this paper, e.g.,
the Eulerian process (1) and the Lagrangian process (u;, x;), arise as random dynamical
systems in the framework of Section 3.

To start, without loss of generality, we may regard our probability space €2 as a count-
able product of canonical spaces (C ([0, 00), R))®N with the product topology; likewise,
F is the corresponding Borel sigma algebra and P the countable product of Wiener
measures.

For each of Systems 1-4, we follow the standard procedure of defining the (u;)
process to be a solution of the corresponding equation in the mild sense [38, 86], i.e.,

t

u, = e Mug + T, + / e_(t_s)AB(us, ug) ds, (A.1)
0

where I'; = fé e~ =940 dW(s) is the pertinent stochastic convolution for our additive

noise. Recall that for all systems in consideration, A denotes the dominant linear term and

B the pertinent bilinear nonlinearity (note B = 0 for System 1).

Proposition A.1 ([38]). For System 1 we have the following. For P-almost every w € €2;
all ug e Hy and all T > 0, p > 1, there is a unique solution (u;) € C([0, T]; Hy) to
(A.1). Moreover, the process (u;) is F-adapted, with u € LP(2; C([0, T]; Hx)). Addi-
tionally suppose there holds

Tim (| QWy = OW llLoo(o, 0 = O,
. (n) _ —
Jim " —uolluye = 0.

Then the corresponding solutions uﬁ”) satisfy

lim [u' — —
Jdim flug™” = [Lee, i) = 0

Moreover, this convergence is uniform over bounded sets, e.g., one has ||uo|u, < C and
[OWlLoo,;1,) < C for C < oc.

Proposition A.2 ([38, 86]). For System 2 we have the following. For P-almost every
weQalluyeHy and all T > 0, p > 1, we have that there exists a unique solution
(uy) € C([0, T]; Hy) to equation (A.1). Moreover, the process (u;) is ¥;-adapted, with
u e LP(Q;C([0, T]; Hy)). Additionally suppose there holds

Tim | QW, — QW l|oo(o,rsmy) = 0.

. ” 0 0 ”HN
Then the COVVESPOIldiIlg solutions ugn) satisfy

Jug”

li — . =0.
nggo| ut||L°°(0,T,HN) 0
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Moreover, this convergence is uniform over bounded sets, e.g., one has ||ug|lay < C and
OW |lLoo,r:1y) < C for C < cc.

Proposition A.3 ([38, 86]). For Systems 3 and 4 we have the following with d = 2
if System 3 and d = 3 if System 4. For P-almost every w € Q, for all ug e HN HY
with y <o — % and for all T > 0, p > 1, we have that there exists a unique solution
(ur) € C([0, TI; HN HY) to equation (A.1). Moreover, the process (u;) is ¥;-adapted,
withu € LP(Q;C([0, T;HN HY)) N L2(Q; L2(0, T; HY @YY, Additionally:

: d

(i) Forallp>landy <y’ <a-—73,
E sup |u/lfyy Sropy 14 luollfgnpy - (A2)

t€l0,T]

T
E / sl camy ds <z 1+ ol (A3)
0
y'—y )4 p

E sup (20 gl ) Sy 1+ ol (A4)

t€l0,T]
(i1)  Suppose for y,§ > 0 arbitrary satisfying y + 8 < o — %, there holds
Jim [[OWy — OW | oo o,7;m7+8) = O,
lim [|ul — || zr = 0.
n—>oo
Then the corresponding solutions uﬁ”) satisfy
lim [u{™ — ;|| oo, ;%) = 0.
n—o0

Moreover, this convergence is uniform over bounded sets, e.g., |uo||lgy < C and
I1OW I oo (o,7;v+8y < C for C < o0

Proof. Ttem (i) is a consequence of standard arguments (see, e.g., [86]) combined with
the following estimates on the stochastic convolution I';:

Lemma A 4. Let ,
I, = / e QAW (s).
0
d
ThenforallT >0, p € [l,00),andy <a + 5 —1,

E sup [T¢lzy Spry L,
t€[0,T]

T
E/ Tl 74— At Sp1y 1.
0

Lemma A.4 follows from the Factorization Lemma, the Burkholder—Davis—Gundy
inequality, and the smoothing properties of the heat semigroup (see, e.g., [38]).

Proposition A.3 (ii) can be proved by essentially the same stability argument as that
in the proof of Lemma 7.3, to which we refer the reader for details. ]
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Let
U:[0.00) x QxH—H, (t,0,u) — U, (1)

denote the mapping sending, for a given ¢ > 0 and P-generic w € €2, a given u € H to
the time-¢ vector field u; conditioned on ug = u. We conclude from PropositiAon A3
that U is a continuous RDS in the sense of Section 3.1.1 on the space Z = H satis-
fying condition (H1). Similarly, the random ODE (1.1) defining the auxiliary process
X; = ¢(’U’u0x0 is well posed, and we conclude as before that the corresponding map-
ping © 1 [0,00) x Q x Hx T? — H x T for the Lagrangian flow process (u;, x;) is
a continuous RDS satisfying (H1) on the space Z = H x T?. We leave it to the reader
to confirm that the same is true for each of the processes (uy, x;,v;) and (uy, x;, V;)
on Z=HxT9x P9" and (us,x;, As) on Z = Hx T4 x SLy(R), defined by the
random ODE in (1.9).
In addition, in this paper we consider the linear cocycles

A,AI[0,00)XQXﬁXTd—)ded(R)

defined by 5
Al =Dx¢l, and AL = (AL, )7

,U,Xx [ORTISY ,U,X

The integrability condition (H2) in Section 3.2.2 for each of these processes follows from
(A.4) above, while the independent increments condition (H3) is equivalent to condi-
tion (H1) for the (u,, x¢, A;) process.

We close this part with a brief check that pu x Leb is a stationary measure for the
(uy, x;) process.

Lemma A.5. For any of Systems 1-4, we have that (1 x Leb is a stationary measure for
the Markov process (u;, x;).

Proof. 1t suffices to show that for all bounded measurable ¥ : HxT? > R, we have
that

B [ x) dpun) dso = [ ¥ duto a.
To see this, define 1}(14) := [ ¥ (u, x) dx and observe that by Fubini, the above left-hand
side coincides with
(495=E [ ([ Wt 08,000 %0 ) o) = [ ) i)
having used that x +— ¢fu,u0 (x) preserves Leb on T <. By stationarity of j, the expression
(*) equals
[ i = [ due . .

A.2. Holder estimates and interpolation inequalities

The following interpolation lemma is very useful for proving invertibility of the Malliavin
matrix and is taken from [65, Lemma 6.14].
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Lemma A.6. Let f be a C! function on [0, 1] and let o € (0, 1]. Then the following
inequality holds for all t € (0, 1):

192 F Moo = 171 w1 1 g0y e £ 10 -

where [-]ca((o,¢]) denotes the a-Holder seminorm on [0, t].

The following estimate on the Holder norms of a process in a general Hilbert space is
also useful for verifying the Holder estimates required to use the previous lemma.

Lemma A.7. Let # and ‘W be separable Hilbert spaces and let Yy, t € [0, 1], be an
H -valued process given by

t t
Yz=Y0+/ Byds + | QsdW,,
0 0

where Wy is a cylindrical Wiener process on ‘W, and B;, Q; are predictable processes
taking values in J and £2('W, H), the space of bounded Hilbert-Schmidt operators from
W to H. Assume that By and Q; satisfy, for every p > 2,

Rp _E(”B”Loo(()l ¥) + ||Q||L°°(01] 22(W, gg))) < 00,

then for every p > 2, and y € (0,1/2 — 1/ p) we have the estimate

p
ElY iy qo,11:90) Sp Ro-

Proof. The proof is a more or less classical. It involves the Burkholder—Davis—Gundy
(BDG) inequality. Indeed, the BDG inequality for the stochastic integral above (see, e.g.,
[39, Theorem 4.37]) implies for ¢ # s, t,s € [0, 1] that for p > 2,

E”YI Y ”P ~p |t - S|pE||B||Loo( 0,1];#) + It - S|p/2E||Q||Loo([0 11;£2(W,#))"
It follows that for ¢, s € [0,1],and 1/p < r < 1/2,

E|Y; — Y[l
[t —s|P+1

1 p1
/ / [t —s|PA/2 D145 dr < 0
0o Jo

for r < 1/2, we find after applying Fubini

LY = Yl
<
// |t_S|rp+lddt Rp.

By a classic application of the Garcia—Rodemich—Rumsey—Rosenblatt inequality (see
[58]) we obtain fory = r — 1/p > 0 that

P = Yl g
EHYZHCV(Ol 3() / / |[—S|r1’+1 dsdr < ]

<p Rplt — s|pQ/2=n=1,

Since
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