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Abstract

In 1959 Batchelor predicted that the stationary statistics of passive scalars ad-
vected in fluids with small diffusivity « should display a |k|~! power spectrum
along an inertial range contained in the viscous-convective range of the fluid
model. This prediction has been extensively tested, both experimentally and nu-
merically, and is a core prediction of passive scalar turbulence.

In this article we provide a rigorous proof of a version of Batchelor’s pre-
diction in the ¥k — O limit when the scalar is subjected to a spatially smooth,
white-in-time stochastic source and is advected by the 2D Navier-Stokes equa-
tions or 3D hyperviscous Navier-Stokes equations in T4 forced by sufficiently
regular, nondegenerate stochastic forcing. Although our results hold for fluids
at arbitrary Reynolds number, this value is fixed throughout. Our results rely
on the quantitative understanding of Lagrangian chaos and passive scalar mixing
established in our recent works. Additionally, in the x — O limit, we obtain sta-
tistically stationary, weak solutions in H ~¢ to the stochastically forced advection
problem without diffusivity. These solutions are almost-surely not locally inte-
grable distributions with nonvanishing average anomalous flux and satisfy the
Batchelor spectrum at all sufficiently small scales. We also prove an Onsager-
type criticality result that shows that no such dissipative, weak solutions with a
little more regularity can exist. © 2021 Wiley Periodicals LLC.
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1 Introduction

A fundamental problem in fluid mechanics concerns the behavior of the con-
centration of a scalar g being passively advected by an incompressible fluid ve-
locity u; while also undergoing some small amount of molecular diffusion. In
many circumstances the scalar exhibits complex, (approximately) statistically self-
similar patterns over a range of scales, referred to as passive scalar turbulence
(see, e.g., [48},[80,89,/100L/103]] for more discussions of the physical background
and Remark [I.1] for some context for the use of the word “turbulence”).

In this work, we consider a fluid in the periodic box T4 ,d = 2 or 3, where
the fluid velocity u; evolves according to a time-continuous, randomly driven er-
godic motion. The scalar g% solves the following advection diffusion equation with
stochastic source:

atglzc + ur - Vgltc _’CAglzC = $s.

Here ¥ > 0 is the molecular diffusivity, and the source s; is a white-in-time, Gauss-
ian process supported at low spatial frequencies. For simplicity, it suffices to con-
sider 5;(x) = b(x)B;, where b is a nonzero smooth function on T4 and B; is a
1D Brownian motion independent from u,. We will assume that the velocity u;
itself evolves according to an incompressible, stochastically forced fluid model, for
instance the stochastic Navier-Stokes equations on T2,

Btu, + Uy - Vut + th —VAM[ = QW[,
diVMt =0,

or the stochastic hyperviscous Navier-Stokes equations on T3, both of which are
known to be ergodic with a unique stationary measure under fairly mild nonde-
generacy assumptions on the stochastic forcing (see Sections [2.1] for more precise
details). We also consider a variety of other finite-dimensional fluid models with
better time and space regularity (see Section [2.2).

The presence of the source s; and the ergodicity of u; allows for the scalar
to settle into a statistical steady state with ensemble E, where the scalar input
from the source §; is balanced by dissipation due to the diffusion from «A and the
law of g¥ is the same for all times. Specifically, when s; = bf;, Itd’s formula
implies that in a statistical steady state, there is an average constant dissipation rate
1= 1612, >0,

2«E[|Vg |7, = x

providing a mechanism for a cascade to high frequencies (see Proposition for
details).

When « is taken very small, complex (approximately) self-similar patterns in
the scalar g§ emerge. In a statistical steady state, these patterns usually have an
L? power spectrum that approximates a power law over a certain range of frequen-
cies. For physical fluid flows and in numerical simulations of the Navier-Stokes
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FIGURE 1.1. The solid line above is the full prediction for the power
spectrum I'(k) = |k|¢~'E|g*(k)|? of a statistically stationary passive
scalar g“ advected by a turbulent fluid u, in 3D. In the Batchelor regime
k <& v, it is theorized that the power law |k|~! holds for scales be-
tween ¢3S (the dissipative scale for Navier-Stokes) and «/2 (the dissi-
pative scale for Batchelor’s regime). Between £; and K%SE one expects
Obukhov-Corrsin statistics, e.g., the |k|_5/3 law in dimension d = 3, as
depicted by the dashed curve above (E(k) = |k|?~'E|#i(k)|?). No uni-
versality is expected at length-scales in the integral range above £;. We
emphasize that in the setting of the present manuscript, v is fixed O(1)
and k < 1; as such, even if v itself is quite small, our methods do not
distinguish the Obukhov-Corrsin regime from the integral range.

equations, such power laws are frequently observed, with different regimes de-
pending on the size of the Schmidt number Sc := Pr/ Re, where Re = v™! is the
Reynold’s number and Pr = k! is the Prandtl number. In his foundational pa-
per [12[], Batchelor predicted that when Sc > 1 (known as the Batchelor regime),
the steady-state statistics for a passive scalar exhibit a [k|~! power spectrum over
the viscous-convective subrange of frequencies, known as Batchelor’s law (or the
Batchelor spectrum)

(1) T(k]) = [k[*TEIg () ~ glk| ™ for ((5F) 7! < k] S 672,

where for each k € Z4, g*(k), denotes the Fourier transform of g on T¢ and
E%SE = (v/€)4/4 is the dissipative range for the Navier-Stokes equations with €
being the fluid energy dissipation rate.

Since Batchelor made his prediction, engineers and physicists have been making
measurements of the spectrum in nature, e.g., temperature and salinity variations

! Batchelor’s original prediction was actually for scalars on R3 (see Section@for more details)
instead of the periodic box; the prediction below is adapted to the periodic setting.
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in the ocean (see [38],58.[89]] and the references therein), in laboratory experiments
(see [2,156,(68./83.(104,105]] and the references therein), and in numerical studies
(see [41123],/40,62,/109] and the references therein). As discussed in [[4}/40,80] it
remains an open problem in physics to determine the settings in which the Batch-
elor spectrum is expected and to what degree of accuracy it holds. We will briefly
discuss some theoretical studies in the physics literature in Section[1.2]

In this paper, we are primarily concerned with the Batchelor regime at fixed
Reynolds number: where v is considered fixed at an arbitrary (potentially small)
number and ¥ << v. Itis important to note that at length scales below the dissipative
scale K%SE for the fluid (or equivalently, frequencies above (Z%SE)_I) the velocity
field u; is expected to be smooth while only g; becomes rougher and rougher as
k — 0, which makes it significantly easier to understand the “nonlinear’ﬂ advec-
tion term u; - Vg, in low regularity.

The Batchelor spectrum is, in some sense, predicated on smoothness of the ve-
locity field — it only holds over length scales relative to which the velocity field
is essentially smooth. This can be seen from Batchelor’s original argument [[12]];
see further discussions in [5,(6,/11},124,/48|] and below in Section @} In this regard,
the much simpler case of fixed Reynolds number seems to be a reasonable first
place to begin any mathematical study of Batchelor-regime passive scalar turbu-
lence, and indeed, of passive scalar turbulence in general. For frequencies below
(E%SE)_l, hydrodynamic turbulence gives rise to a different approximate power

law (a |k|~>/3 law for d = 3), known as Obukhov-Corrsin spectra for the pas-
sive scalar [31,/90]]; see [4,/100]. See Figure [I.1]and the associated caption for a
description of these two different expected regimes of passive scalar turbulence.
If one does not fix the Reynolds number and simultaneously takes v,k — 0,
while sending Sc — oo, then the fluid itself is becoming turbulent while neverthe-
less, the viscous-convective subrange remains in the Batchelor regime. This is a
situation that we cannot treat in this work. Indeed, since almost nothing rigorous
has been established mathematically for the (very singular) turbulent limit v — 0
for statistically stationary solutions u#; to the Navier-Stokes equationsE] this ap-
pears well out of reach of rigorous mathematical analysis for the time being. One
model where this kind of ‘turbulent advection’ has been studied is in the Kraich-
nan model, in which u; is replaced by an idealized rough-in-space, white-in-time
Gaussian velocity field, and the equation for g; is interpreted as a Stratonovich
stochastic transport equation. This model was introduced for this purpose in [[71]],
and there is now a wide literature on this model in physics (see [32],33,[100] and
the references therein). Properties of stochastic transport with rough velocities
have also been studied mathematically as well in the work on isotropic stochastic
flows [14,/67,(79] and well-posedness by stochastic perturbation [50}/52,/85]. See

2 Nonlinear here refers to nonlinearity of the mapping (u, g) — u - Vg.
3 For example, it is unknown whether the kinetic energy remains bounded in 3D.
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also the recent preprint [41]] for a deterministic work on turbulent advection by
rough velocities.

Remark 1.1. In the physics and engineering literature, “turbulence” is used to
describe a wide range of observed phenomena in dynamics of weakly damped,
infinite-dimensional, nonlinear conservative systems in “generic” settings, includ-
ing both 2D and 3D incompressible or compressible Navier-Stokes, passive scalars
advected by fluids, nonlinear dispersive equations, magnetohydrodynamics mod-
els, and kinetic models in plasmas [20,[22}/55//59.(76/87,(100, 103}, 110].

In the Batchelor regime, the passive scalar model we consider is one of the
simplest settings in applications where turbulent phenomena can be observed that
share many similarities with hydrodynamic turbulence [100], specifically a fre-
quency cascade, “anomalous” dissipation, power laws on the power spectrum, and
scaling laws on structure functions.

1.1 Review of Batchelor’s argument

In [12] Batchelor made his prediction by studying the effect of advection and
diffusion on pure Fourier modes when the velocity field is a linear “pure straining
flow,” namely a linear velocity field u; (x) = Ax on R? whose matrix 4 is traceless
with real distinct eigenvalues. He argued that, upon zooming in on the velocity field
all the way down to the viscous-convective subrange, the flow is most likely to be
approximated by a pure straining flow (see Section [I.2] for more discussion on the
validity of this approximation). For such flows he showed that frequencies increase
exponentially fast, and in a steady state exhibit an exact asymptotic formula for the
power spectral density.

To understand the essence of this approach, let us consider the case d = 2 and
take the velocity field u#,(x) = Ax on R2, where

)

If one takes a pure Fourier mode as initial data go(x) = sin(&p-x) for the advection
diffusion equation without a source, then the solution takes the form Cf sin(§; - x),
where the amplitude C/ and frequency &; solve the ODE system

CF = —xl&>CF, & = —At,.

If the initial frequency & € R? has a nontrivial projection onto &; = (1, 0), say, for
example, |{€g, €1)| = 1, then there is an exponential-in-time increase in frequency
|E;| ~ e”?, indicating a cascade from low to high frequencies. At the same time,
the amplitude decays double exponentially fast due to diffusion, to wit, C} ~
exp(—ke?! /2y), since the diffusion acts more strongly at high frequencies.

To see what effect this has on the steady-state power spectrum, consider a sto-
chastic source §; = sin(&o - x)B; supported at frequency &. In a statistical steady
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state, the scalar field g* is equal in law to the stochastic integral
xR
g = [ CFsinte - 1)dpi.
0

which is a Gaussian random variable in leoc‘ Using 1t6’s isometry and the fact

that y 1= limg_ f[o RP2 sin(&; - x)|? dx does not depend on s, we find that the
average L2 mass density carried by frequencies less than n > 0 is given by

(M<,g“?) := lim E|[1<,g"(x)|?dx
R—o0 [0,R]2

t(n)
= Xf Cszxds,
0

where 1<, denotes the projection onto frequencies || < n and #(n) is the unique
time such that |€;¢,)| = n (which exists for large enough n by monotonicity of
t — |&;|). The power spectral density is then defined by

d
) o= - (Mng”?) = 1’2 CF.

That || ~ ¥’ implies the asymptotic ¢ (n) ~ logn/y and t’(n) ~ yln therefore

2
I'n) ~ X exp(—ﬂ).
yn 4

We recover Batchelor’s prediction I' (1) ~ yin inthe range 1 < n < (y/x)'/2.

1.2 Going beyond pure straining flows

It is natural to question whether a time-stationary pure straining flow is actually
a good approximation of a fluid at small scales. Indeed, since the velocity fields
change in time, so too does the approximating linear flow (i.e., the gradient), so
one should at least expect a linear phase portrait changing in time. Moreover,
there are many coherent Lagrangian structures (e.g., vortices) that locally exhibit
shearing or rotational phase portraits, incompatible with the expansion/contraction
exhibited by the pure strain flow. Remarkably, however, Batchelor’s argument gets
the right answer; in fact, Batchelor’s law is a robust prediction, holding for a large
class of smooth incompressible flows not necessarily arising from a physical fluid
mechanical model.

The purpose of this paper is to show that a “cumulative” version of Batchelor’s
prediction (see Theorem[I.3]for an exact statement) is a consequence of the chaotic
mixing properties of u; proved in our previous works [16H18§]].

Lagrangian chaos

In short, Batchelor’s argument succeeds because, even though the flow u; is not
always well-approximated by a pure straining flow, the linearized time- motion of
passive tracers (i.e., time-¢ Lagrangian flow) does resemble a pure strain flow for
large times ¢. To make this more explicit, recall that in the absence of diffusivity
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(« = 0) and sources (s; = 0), the scalar g is given by g; = go o (¢’)~!, where
the Lagrangian flow map ¢ : T4 — T9 describes the position of a particle x; =
¢! (x) starting from x € T< and solves the ODE

d
79 ) =u(@'(x), ¢°x) = x.
The derivative of the flow D¢’ (x) : R? — R¥ then solves the linearized equation

D! () = Duy(@' () D). D) = 1d

By incompressibility (note det D¢’ (x) = 1), growth in time of |D¢!(x)| for
typical x is associated with the development of strongly expanding and contract-
ing directions of D¢’ (x) for each fixed 7, features resembling those of the linear
pure strain flow phase portrait. Growth of | D¢’ (x)| can be quantified in terms of
positivity of the Lyapunov exponent

1
(1.2) Ailx) = limsup;log | D¢ (x)| > 0
t—00

for “typical” x € T4, which we refer to as Lagrangian chaos. Previously La-
grangian chaos has been proved for stationary, white-in-time velocity fields in
[13L/15]]. In [16], we proved that the Lagrangian flow associated to solutions u;
of the stochastically forced 2D Navier-Stokes and 3D hyperviscous Navier-Stokes
is chaotic in the sense that there is a deterministic constant A1 > 0 such that (I.2))
holds with lim-sup replaced with lim for all x and all initial fluid configurations,
almost surely (see [16] for rigorous statements).

As has been observed by a long line of previous authors (see, e.g., [5,(6,/11}
24,48,93]]), Lagrangian chaos is associated with a low-to-high transfer of an L?
mass of passive scalars and provides a clear mechanism for Batchelors law. Indeed,
without diffusivity (x = 0) and sources (5; = 0) we clearly have that Vg; o ¢’ =
(D¢?)~ T Vgo, hence one expects || Vg || 2 to grow exponentially fast in time. In
view of L2 conservation (||g¢||;2 = |lgoll2). this is strongly reminiscent of the
transfer of L2 mass from low to high frequencies appearing in Batchelor’s original
argument for pure shear-strain flow.

We emphasize that the results of [16] and the proof of (I.2)) rely crucially upon
the stochastic framework: it is often very difficult to provide rigorous proofs of
positivity of Lyapunov exponents, even for deceptively simple models such as the
Chirikov standard map family [420)57] (a discrete-time toy model of the Lagrangian
flow [32]]); see [92]/108]] for more discussions. In Navier-Stokes, one of the enemies
is the formation of coherent vortices inside of which hyperbolicity is halted (see
[10]). The arguments in our paper [[16] imply that with probability 1, vortices of
this kind cannot permanently trap any particles.



8 J. BEDROSSIAN, A. BLUMENTHAL, AND S. PUNSHON-SMITH

Uniform in diffusivity chaotic mixing

For the fluid models considered in this paper, a positive Lyapunov exponent
alone is not enough to prove Batchelor’s law. Lagrangian chaos only implies that
some “scalar energy” is going to high frequencies; i.e., some small scales are being
created. However, we need here that small scales are being created everyhere in a
reasonably uniform way with high probability (i.e., with explicit moment bounds
on fluctuations in the rate of small scale creation). To quantify this, we use a
much stronger property: uniform-in-«, almost-sure exponential mixingﬂ In [18],
we proved that if g§ is mean zero and solves the initial value problem

with diffusivity but no random source, then there exists a deterministic constant
y > 0 independent of k and random constant D, (depending on initial fluid con-

figuration) such that
[ rares

where D, also has suitable moment bounds independent of « (see Definition [2.9]
and Theorem [2.12]for precise statements). See [102]] for a discussion of using neg-
ative Sobolev norms to quantify mixing. There is a large mathematical literature
on scalar mixing in the mathematics literature; see [[1,25,41,45/,65.(77,/97,(107]] and
the references therein.

To see why uniform-in-«x scalar mixing implies an exponential increase of fre-
quency scale, note that

I8 -1 = sup < Dee " |Zollp

Slgr=1

IT<ngilz2 < NIgFlIlg—1 < DeNe " (|Zoll g1

where [1<y denotes projection to Fourier modes of frequency < N . From this,
log N
Y

one can see that for times ¢ > , most of the scalar has been transferred from

frequencies < N to higher frequenciesﬂ As in Batchelor’s original argument, this
exponentially fast transfer from low to high frequencies is exactly the mechanism
that gives rise to Batchelor’s law when u; is given by Navier-Stokes—one difficulty
is of course dealing with potential unboundedness of the random constant D, which
captures fluctuations in the mixing time.

Our work [18]] builds on our earlier work [[17] that proved the corresponding
statement for & = 0; similarly, this latter work uses the Lagrangian chaos result
of [16] as a lemma. Our works [17}|18]] are based on analyzing two-point statistics

4 One can construct dynamical systems with a positive Lyapunov exponent but arbitrarily slow
(e.g., polynomial or logarithmic) mixing/decay of Lagrangian correlations, for example, Pommeau-

Manneville maps (see, [78196]).
log N

3 The appearance of the mixing rate y here in the estimate 7 > for the low-to-high transfer

is suggestive of why Lagrangian chaos alone is insufficient to prove Batchelor’s law.
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of the Lagrangian flow, and a key step is to upgrade the positivity of the Lyapunov
exponent to positivity of the moment Lyapunov exponents

1
Alp) = —tl_i)rgo;logE|D¢t(x)|_p, 0<p<kl.

This is deeply related to large deviations of the finite-time Lagrangian Lyapunov
exponents as ¢ — oo (for the relation of moment Lyapunov exponents to large
deviations in the convergence of Lyapunov exponents, see [[/-9]). It had already
been realized by physicists that fluctuations of Lagrangian Lyapunov exponents
should play a key role in Batchelor’s law (see discussions in [S}6L/11] and the
references therein), and so our works are in some ways a mathematically rigorous
completion of some of these ideas.

1.3 Main results

We now turn to detailed statements of the main results of this paper. After
providing some preliminary definitions and conventions, in Section [[.3] we state a
“cumulative” version of Batchelor’s power law spectrum for fluids at fixed, finite
Reynolds number. Section describes a version of Yaglom’s law, a scaling law
analogous to the —4/5 law in hydrodynamic turbulence. In Section and
we turn our attention to the description of ideal passive scalar turbulence, i.e., the
description of a class of low-regularity solutions to the “inviscid” ¥ = 0 advection-
diffusion equation exhibiting a scale-by-scale flux of L? mass from low to high
modes.

The velocity field (u,) will take values in the space H consisting of mean zero
divergence free velocity fields belongs to H® = H?(T¢;R%), the Sobolev space
of mappings from T¢ — R? with regularity o > % + 3; note that this implies
velocities are always at least C3 in space. The velocity process (1) will evolve
in H according to one of the following stochastic PDEs depending on whether
d =2or3:

SYSTEM 1 (2D Navier-Stokes equations). When d = 2, (u;) solves
Bty +up - Vuy = —Vpr +vAu, + QW;
divu; =0,
where ug = u € H. Here, the viscosity v > 0 is a fixed constant.
SYSTEM 2 (3D hyper-viscous Navier-Stokes). When d = 3, (u;) solves
du; +u; - Vu, = —Vp, —vA%u, + OW;
divu, =0,
where uyg = u € H. Here, the hyperviscosity v > 0 is a fixed constant.

In the above systems, W; is a cylindrical Wiener process on mean-zero, diver-

gence free L2 vector fields with respect to an associated canonical stochastic basis

Qw.,F W, FV ,Pw) and Q a positive Hilbert-Schmidt operator on mean-zero,
t p p
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divergence free L2 vector fields satisfying suitable nondegeneracy and regularity
assumptions. See Section [2.1] for full details. We couple systems [I] or 2] to the
advection-diffusion equation

988 +u-Vgk —kAgk = bp,

(1.3)
g0 =&,

where f; is a Wiener process on another canonical probability space denoted by
(Qﬂ,ﬁﬂ, (ﬂ’,ﬂ), Pg). We denote the product measure P = Py x Pg our main
probability measure on the associated product space 2 = Qw x Qg with the

standard product sigma-algebra .# = .ZW ® .## and filtration .#; = .7 tW ®F ,ﬁ .
Equation has a P almost-sure, unique, .%;-adapted weak solution for every
initial (u, g) € HxL? (see Propositionbelow) and defines a Markov semigroup
P{ on bounded, measurable observables ¢ : H x L? — Rvia

PtK(p(u’ g) = E(M,g)(p(ul‘vg’tc) = E[(p(ulsgltc)|(u0’ gg) = (u’ g)]

The cumulative Batchelor spectrum

Recall that a probability measure 1 on Hx L? is called stationary for the Markov
semigroup P/ if for all bounded, measurable ¢ : H x L2 — Rand all ¢ > 0,

fPffpdu=f¢dM-

For observables ¢ : H x L? — R, we frequently write E o(u,g) = f pdu. We
will also say a probability measure is stationary for a given process if it is stationary
for the corresponding Markov semigroup.

Due to the infinite-dimensionality of H, uniqueness of stationary measures for
(u;) is in general a subtle question: on the domain T? this was first proved in [53]]
in the setting of completely nondegenerate noise, and has by now been established
even for highly degenerate noise [[60]]. In comparison, the homogeneous part of the
evolution equation for g7 is linear, and so uniqueness of stationary measures for
(ur, g°) is relatively straightforward due to the contracting nature on 2.

PROPOSITION 1.2. Assume (u;) admits a unique stationary probability measure [t
on H. Then for all k > 0, there exists a unique stationary measure W~ for (us, g5)
on H x L2. Moreover,

(1.4) 2B ||Vgl7. = 116117, = .

Uniqueness of u* is proved in Section and has the following consequence
by the Birkhoff ergodic theorem: for p*-typical initial (x, g) € H x L? and any
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continuous observable ¢ € L!(u*) on H x L2, we have P—almost—surelyﬁ

(1.5) lim —/ d(ue, gf)de =/¢du’€.

T—oo T

Equation (1.4) follows from (I.5) and 1t6’s formula. The convergence of time
averages to ensemble averages in (1.3) for typical initial data (u, g) confirms the
statistically stationary setting described above: typical time-asymptotic behavior is
captured by a unique stationary measure p*.

Our main result is Batchelor’s law on the cumulative power spectrum (see Re-
mark . Let TT<y denote the L2 projection to the Fourier basis functions with
frequency |k| < N (see Section[2.1).

THEOREM 1.3 (Batchelor’s law on the cumulative power spectrum). There exists
an Ny (depending on v but independent of k) such that for all x € (0, 1) sufficiently
small and p € [1,o0), the following holds with implicit constantsﬂ independent of
kand N:

(1.6) (Epux ||H5Ng||i’;)l/p ~plogN forall Ng <N < k12,
Moreover, forall s € [0,0 — 2% — 1) and ¥V p € [1, 00),

1
(1.7) (Eyux ||g||21’) P S ps ™ llogrl.

Remark 1.4. Batchelor’s law is often stated with a constant proportional to y =
2/(E||Vg"||i2 = ||b||12J2, as in (I.T). A careful reading of our proof provides a
simple estimate on the constants in in terms of b, specifically, Vs > 0, the
following holds with implicit constants independent of b:

12
1
(A8) g b” <pis (B IT<ngl22)"? <pos 10113 log N
HS
forall Ngo < N < K_l/z, and that it suffices to take

o2\

NO %S,S 1/S

for any § > 0 (the implicit constants in (1.8) will also depend on §). The use of
regularity is because mixing estimates require the source to have some positive reg-
ularity in order to get quantitative, «-independent decay rates in negative Sobolev

% When (uy) is forced with nondegenerate noise, as we do in this paper, it is possible to promote
the convergence in to all initial (u,g) € H x L2 when one considers bounded, uniformly
continuous observables ¢ : H x L? — R. This follows from (1) the strong Feller property for the
Markov semigroup associated to u; (see [53]]) and (2) a small variation of the proof of Proposition
given in Section Details are omitted for brevity.

7We denote f Zp.q.... hif there exists a constant C > 0 depending on p, g, ... but independent
of the other parameters of interest such that f < Ch and f =~ h when f < hand h < f. For the
entire paper, these implicit constants will never depend on «, N, or t.
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spaces. It is unclear if Batchelor’s law as stated in Theorem [1.3]is still true if 5 has
no more than L? regularity. If b takes values in any

Ac={be H*: CTYblle> < |bllus < ClbllL2},

then both implicit constants in (I.6) are proportional to y and Ny depends only
onC.

Theorem [I.3]implies the following uniform-in-x estimate:

COROLLARY 1.5. Forall s > 0 and p > 1 the following holds:
(1.9) supEc |glI37s Sp.s 1.
K

PROOF. Note that by Minkowski’s inequality (denoting [Ty = [T<y —Il<py/2
for N > 2and I1; = 1<),

2p 1 ogi p\1/p
(BpxllglF-) """ ~ (B (3272 1My g12,) )
j=0

) 1/p
_ 2
<3272 (Bl My gl}2)
j=0

which is bounded < 1 by (1.6). O

Remark 1.6. Note that Theorem [I.3| (with s = 0) implies the logarithmic diver-
gence in L?:

(1.10) | D ||g||i2 ~ |logk]|.

Remark 1.7. The cumulative power spectrum estimate in (I.6) comes in two parts.
The lower bound is easier to establish and contains relatively little dynamical infor-
mation: we show in Section [3.2]that it follows from the fact that Lipschitz velocity
fields cannot mix a scalar faster than exponential (provided that one has suitable
exponential moment estimates to control large deviations). The upper bound on
the other hand is much more difficult. It makes crucial use of the optimal, almost-
sure uniform-in-x mixing estimates obtained in our recent work [18]], which in turn
depends heavily on the results and methods of our earlier works on mixing and
Lagrangian chaos [16,(17]. Without these results, we would not be able to obtain
an upper bound. See below in Section |1.2| for more discussion on this sequence of
works.

Remark 1.8. The proof of the upper bound in (1.6) holds directly for all N <
oo. By itself, the estimates on the cumulative power spectrum in (I.6) are not
precise enough to localize the dissipative range. Indeed, it is easy to check that
(T.6) implies for all ¢ > 0,

(B | T<ngl?2)""? ~¢ p log N forall No < N <75,
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However, (1.4) provides the additional information needed to localize the dissipa-

tive scale to approximately k~1/2 as one should expect from parabolic regularity.
Indeed,
2 1 2 X
Eus (7~ Mgl < —5Eus IVel3: = 72555,

The estimate (1.7) provides more precise high-frequency moment control, albeit
with a logarithmic deviation from (I.4)).

Remark 1.9. The cumulative power spectrum estimate (1.6)) is a little weaker than
(T.1) or a dyadic-shell averaged version (i.e., E||IT,; g* ||i2 ~ 1). However, if
E,«|g(k)?| ~ F(k) for F(k) amonotone function, then (T.6) implies that F (k) =
lk|=¢ (and analogously for any dyadic-shell averaged version). In a dyadic-shell
averaged version, the only kind of violations of Batchelor’s law that is not ruled
out by (I.6) are if some dyadic shells have too little mass and/or a sparse set (i.e.,
zero asymptotic density) of dyadic shells that have too much L2 mass (but never
more than log 2/). The pointwise version in (T.T)) could also be violated if the 1.2
mass was not distributed evenly enough in angle. This is the case, for example, for
discrete-time pulsed-diffusion models of advection-diffusion by CAT maps (see,
e.g., [51])). Bridging this gap is the subject of a possible future line of research: see
Section[L.4] below.

Yaglom’s law

Yaglom’s law was predicted in 1949 in [[106] for all passive scalar turbulence
regimes, and consists of a reformulation of the constant scale-by-scale L2 flux
characteristic of anomalous dissipation. This is analogous to scaling laws for
other turbulent systems, e.g., the Kolmogorov —4/5 law for 3D Navier-Stokes
(see [19,/55]/88]] and the references therein). In [|16]], we showed as a consequence
of Lagrangian chaos that Yaglom’s law holds over some inertial range with an un-
specified lower bound £, with £, — 0 asx — 0. Theorem allows us to show
that this law essentially holds over the entire inertial range £ > x1/2. The proof is
an easy application of the methods of [16,[19] and the a priori estimate (I.10) from
Theorem[I.3]and so is omitted for brevity.

COROLLARY 1.10 (Yaglom’s law over sharp inertial range). Denote the finite in-
crement for h € R4,

Spg(x) = g(x +h) — g(x).
Let £ > 0 be such that £;' = o((klogk)~"2) as k — 0. Then,

(1.11) lim limsup sup
=0 k>0 et ts)

1 5 2
ZEMK de de-l|85ng| Sgpu -ndndx + E)( = 0.

Note that by (T.10), statistically stationary solutions are blowing up in L2, and
so (L.IT)) is only possible with the assistance of a large amount of cancellations.
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Remark 1.11. For 3D Navier-Stokes, the Kolmogorov —4/5 law together with
statistical self-similarity formally predicts the Kolmogorov —5/3 power spectrum
(|k|2E|7i(k)|? ~ |k|75/3). It is unclear at the moment how intermittency may or
may not add corrections [3},55,/69,86L(101]]. While passive scalar turbulence in
the Batchelor regime is expected to display intermittency [62,/80,91,/94,99], we
nevertheless do not see intermittency corrections to Batchelor’s prediction on the
power spectrum, at least in the case where v is fixed. Heuristically, one might
guess this from Yaglom’s law (I.I1): the regularity of the velocity implies that
(L.T1) formally scales like the second-order structure function E .« |5, g ||i2 which
formally scales as the power spectrum by the Wiener-Khinchin theorem. Hence,
Yaglom’s law suggests a certain rigidity to Batchelor-regime passive scalars that is
not present in many other “turbulent” systems.

The vanishing diffusivity limit

For many turbulent systems consisting of a weakly damped system subjected
to forcing, it is expected to be able to pass to the zero-damping limit and obtain
statistically stationary solutions for the zero-damping problem [54,/81,/87]. The
limiting regime is sometimes referred to as ideal turbulence [47]]; in this limit, one
expects weak solutions in very low regularity spaces with a nonvanishing scale-by-
scale flux of conserved quantities through all sufficiently small scales. A prominent
line of mathematical research in this direction is the work on Onsager’s conjecture
for the 3D Euler equations [30,36,37,/46,|47,/64], which seeks to identify low-
regularity solutions to the Euler equations capable of dissipating kinetic energy as
one expects of ideal turbulent solutions to 3D Euler. Work on weak turbulence in
dispersive equations can also be considered to be in a type of “ideal turbulence
limit” [[26,49].

A consequence of our results on the Batchelor spectrum is a realization of the
ideal turbulence program for passive scalar turbulence. Indeed, in contrast with
contemporary advances on Onsager criticality for 3D Euler (capable only of gen-
erating specific solutions to 3D Euler with nonvanishing flux), in our setting we
are able to exhibit probability measures supported in low-regularity spaces, typi-
cal samples of which exhibit the desired scale-by-scale flux across all sufficiently
small scalesf

For this, we consider weak-* subsequential limits of the sequence {u*} of sta-
tionary measures for the (u,, g¥) process as k — 0, yielding (possibly more than
one) stationary measures u° for the zero-diffusivity process (u;, g?) governed by

deur +up - Vug + Vpr —vAu, = QW

(1.12) .
382 +ur-Vg? =bp;.

8See [54,81] for examples of simplified shell models where the inviscid limit to rough, weak
solutions dissipating constant energy through the inertial range was successfully carried out in the
statistically stationary regime.
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Existence of weak-* limits in H %, s > 0, follows from Prokhorov’s theorem and
the x-uniform moment estimates in Corollary[I.5} as a result, the limiting measures
u® are supported on some low-regularity subspace of H~ = (N0 H°. See
Section . T|for more details. The following summarizes the basic properties of this
construction.

THEOREM 1.12 (Vanishing dissipation limit). There exists a subsequence {j*"}
and a limit measure u° on H x H™ such that for each s > 0, u*n converges
weakly to ;1° as a measure on Hx H 5. Moreover, any limit point u° is a stationary
measure for (Uy, g?), and the limit satisfies Batchelor’s law over an infinite inertial
range: for Ng as in Theorem there holds

(1.13) (EM0||n5Ng||i§)1/P ~p logN forall N > Ny,

and moreover, there is nonvanishing L flux:
1
(1.14) Eo(M<n (ug), VII<n ) = = ITT<nbIIZ,.

Remark 1.13. Note that the absence of the kA dissipation in the transport equation
makes the existence of nontrivial stationary solutions far from obvious. The
Markov process (4, g°) has bad regularity properties on Hx H ~* (it is not Feller)
due to a lack of stability in the transport equation with respect to H perturbations of
the velocity field, and so a Krylov-Bogoliubov argument using the uniform mixing
bound does not apply. See Section 4.3] for more discussion.

Remark 1.14. The nonvanishing flux (I.14)) is analogous to Yaglom’s law (I.11)
for the ¥ = 0 equation in that both results say something about the constancy of
the L2 flux in the ¥ — O limit. However, as we show below in Theorem 1.15} 1°
generic g are not even integrable on T¢, and so we are unsure how to pass to the
k — 0 limit in Yaglom’s law directly.

Irregularity of x = 0 stationary statistics

As mentioned previously, the limiting stationary statistics associated to u° are
very irregular. Indeed, the uniform bound (T.9) used to extract the limit x suggests
that the measure is concentrated, at best, in H~ = Ng=gH ~*, while the limiting
version of Batchelor’s law (I.13)) implies that

(1.15) E,ollgll7> = oo

i.e., u° cannot give second moments to functions in L2. The primary reason for
this irregularity is that, in the absence of a Laplacian, stationary solutions to the
zero diffusivity equation

must “anomalously” dissipate the input from the noise through the advection term.
Since the velocity field (u;) is regular, we cannot rely on roughness of the velocity
field to dissipate and must rely solely on the mixing properties of (1;). Due to
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the regularity of (u;), one can prove that the x = 0 transport equation (I.12))
conserves the L' norm of g?, and therefore one should expect that ! solutions to
cannot dissipate. In fact, we are able to confirm that u° assigns zero mass
to L1 (see Sectionfor proof):

THEOREM 1.15 (Limiting solutions are not L'). Any limit measure u°® from The-

orem[1.12] satisfies
wHx LY = 0.

Remark 1.16. It is important to note that contrary to (1.15]), which only states that
u® can’t have second moments on 1.2, Theorem is much stronger in that it
implies that 1° generic scalars g are “true” distributions in the sense that they do
not take values in any space of integrable functions, regardless of moments.

Remark 1.17. In general, DiPerna/Lions theory (see, e.g., [39]) predicts that
conserves the .? norm of g? if the velocity field is in the Sobolev space W 14 (T?)
forg = p/(p — 1). In general, velocity fields (u,) that are not Lipschitz do not
propagate L' and should not be considered as belonging to the “Batchelor regime.”
See [84] for an example of a continuous W I velocity field that does not propagate
L1 and also [41]] for a related example.

Theorem is based on understanding the formal L' conservation law of the
inviscid equation (I.T6). However, another clear question is to determine how
irregular g must be to have a nonvanishing .2 flux as in (T.14), i.e., studying
violation of the L? conservation law. This is analogous to the problem for weak
solutions of the 3D Euler equations known as Onsager’s conjecture, which has
received a significant amount of mathematical attention in recent years (see [35}

37,/64] and the review [27]]). In the context of the 3D Euler equations, Onsager’s
0,1/3—
t,x

cannot dissipate energy if in Ct(f ;Cl/ 3 The easier direction, that weak solutions

conjecture states that weak solutions can dissipate energy when not in C and

of 3D Euler conserve energy with sufficient regularity, was studied previously in
[28,[30,/46]]. Specifically, in [28] it was shown that the Onsager-critical space (the
space that divides dissipative from conservative) is the Besov space L-:’B31 /030

In the spirit of [28|], we show below that the space L%Bg,oo is Onsager-type
critical for the passive scalar turbulence problem, where Bg’ oo & H™ is the Besov
space of tempered distributions f € H ™ such that

sup  ||TLy fll> < o0
Ne{2/:jeNL}

(recall that [1y = IM<y — [l<p/> is a projection onto the dyadic shell of fre-
quencies of length between N and N/2 and N, = {0} U N). Time-integrability
will be connected to moments with respect to the stationary measure u° since for
statistically stationary processes, expectations of time averages are exactly equal
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to ensemble averages. Just past this critical boundary is the space Bg ¢ C Bg oo Of
distributions such that

limsup|[IT,, f L2 = 0,

Jj—o0

which possess just barely enough regularity to rule out L2 flux (see Section [5.2)).
In order to quantify regularity in Bg o+ We introduce generalized fractional de-
rivative norms, which play the same role that the modulus of continuity does to
generalize Holder regularity.

DEFINITION 1.18. We call a multiplier M : [0, 00) — [1, 00) Bg o-Suitable if
(i) M is monotone increasing and limg_, o, M(k) = o0;
(i) M is (globally) Lipschitz-continuous and VC > 0 and Ic > 0 such that if
CHel < |k < Clel,

(M (k) — M ()| <

:

c
V1+|k|?

Given such an M, we define the generalized Besov norm

| fllgn = sup  M(N)|TIn fllz2-
2,00 Ne{2/:jeNy}

M)k —1).

We show below in Lemmathat fe Bg’ o ifand only if || /| BM <00 for some
Bg, -suitable M. We prove the following theorem by contradiction with (I.14) in

Section

THEOREM 1.19 (Onsager-type criticality of L%Bg’oo). Let 11° be a stationary mea-

sure for the k = 0 limit process extended to H x H™'. Then for every p > 2 and
all Bg,c -suitable M ,

Eyollglhy = +oo.

Remark 1.20. Note that we are not able to show that ;1 assigns zero mass to Bg c

as we could for L', and instead can only show that moments with p > 2 cannot be
finite. This obstruction is related to the fact that moments in u° are related to time
integrability of stationary solutions and the fact that the critical space is L%Bg 0"

It is unclear if it is possible for u° to assign positive measure to H x Bg o
Using TheoremsI.19)and[I.15| we can deduce the following about the solutions

studied in Theorem [I.3] In particular, we show that moments of solutions diverge
in certain norms, analogous to (I.10).

COROLLARY 1.21. Let ® on [0, >0) be a convex monotone function satisfying
®(0) = 0 and limy 60 (r)/7 = 00, and let M be a Bg’c-suitable multiplier.

The unique stationary measure i on Hx L? satisfies the following for each § > 0

§
lim E,,, (/ <I>(|g|)dx) = 00
k—>0
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and for each p > 2

lim Eyeg]2, = oo.

k—0 Bz.oo

1.4 Open problems in Batchelor-regime passive scalar turbulence

Theorems|I.3HI.2T|provide a starting point for a mathematical understanding of
Batchelor-regime passive scalar turbulence at fixed Reynolds number. However,
there are many remaining open questions, all of which are potentially accessible
in the near future using a combination of stochastic PDEs, harmonic analysis, and
random dynamical systems. Let us briefly outline these here.

e INTERMITTENCY. Certainly the most important set of open questions regard
intermittency. Following discussions in, e.g., [29,|55], we can begin to study
intermittency by looking at the flatness parameters

2
E|lygl75,
(E[TIngl2,)”

A nonintermittent field would satisfy F,(N) < C(p)as N < k"2, N — oo,
k — 0. An example of such a field is white noise. At the opposite extreme is a
maximally intermittent random field consisting of a single Dirac delta function
placed with uniform probability on T4, which satisfies F, »(N) ~, N? —1. Pas-
sive scalar turbulence is expected to be intermittent [62,(911/94,99]]. A major step
in our understanding would be to provide an analytic derivation of powers {(p)
such that F,(N) ~ N &(P) for N — oo, k — 0, if such powers exist.

A helpful intermediate step might be to consider the power spectrum of a
discrete-time pulsed diffusion model [51]], e.g., using a randomly driven Chirikov
standard map to model advectiorﬂ [21]].

Fp(N) =

e HOW UNIVERSAL IS “UNIVERSAL”? Another set of important problems is to
study how widely applicable the Batchelor spectrum and other tenets of the the-
ory, such as uniqueness of stationary measures, Lagrangian chaos, etc., to differ-
ent and more realistic settings.

— Problems on T¢ with body forcing are far removed from any real physical
applications. Extending existing theories to include boundaries (exterior or
interior domains) and replacing body forces with boundary driving are proba-
bly the most physically important extensions. Even relatively basic questions,
such as uniqueness of stationary measures of the Navier-Stokes equations, are
to our knowledge, quite challenging and still open for most questions of this
type. See [98]] for some progress in this direction. A related direction is to
study spatially homogeneous solutions on R,

9 Note that the presence of noise makes this tractable, unlike the deterministic case which is
notoriously difficult [42}|57].
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— Even on T¢ with stochastic forcing, in the case of the Navier-Stokes equa-
tions, our results on Lagrangian chaos and scalar mixing [[16+18]] cannot han-
dle C2° forcing yet. It is natural to seek to extend this to C2° forcing and
further to include non-white-in-time forcing such as OU tower forcing (see
Section and [17]) and the class of bounded forcing studied in [66,(72}73].
Note that the hypoellipticity theory of Hairer and Mattingly [61]] applies to the
one-point Lagrangian flow (X; = u;(x;)) generated by 2D Navier-Stokes with
OU tower forcing (and so the (us, Z;, x;) Markov process has a unique sta-
tionary measure); however, our Lagrangian chaos results require strong Feller
in order to use the version of the Furstenberg criterion in [16].

e SHARPER REGULARITY ESTIMATES AND STRUCTURE FUNCTION RENORMAL-
1ZATION. Even just concerning basic questions related to Batchelor’s law (1.6),
there are still remaining questions.

— There are three basic levels of precision when discussing the power spectrum.
After the cumulative spectrum, the next most difficult is a dyadic shell-by-
shell estimate, which so far remains unaddressed by the results in this paper.
The next most difficult after that is the pointwise estimate

E<|2(0)? ~ |k|™¢, No < |k| <«71/2,

In fact, one can even try to search for an estimate of the type (see the discus-
sion in the physics literature, e.g., [40]), where of course we mean that the
error is uniformly controlled in «: A colon was added here.

E,c|8(k)]> = Cplk|™ + ok soo(Ik]™9),  No < [k| < k™2,

These three basic levels are not equivalent. Pulsed-diffusion models based on
discrete-time random dynamical systems might be able to shed some light on
the subtle differences between these spectral characterizations.

— It is an interesting and subtle question to determine if the limiting solutions
we obtain in Theorem|1.3|are exactly in the Onsager critical space L%Bg’ 0o OF,
more to the point, whether the ¥ > 0 approximations are uniformly bounded
in this space, that is,

Euc sup [Tngl7. < 1.
Ne2t Please reword to avoid
— Batchelor’s law should concern the second-order structure function E i« || 5, g ||i2 line overrun.

However, as the scalar does not even remain a locally integrable function as
k — 0, it is hard to make sense of exactly how the second-order structure
function will behave in and at the limit k — 0; instead, this may require a
suitable renormalization. Similarly, Yaglom’s law on the L? flux (T.T1) is
hard to make sense of rigorously at the x = 0 limit.

2 Preliminaries
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2.1 Fluid models

Let d = 2 or 3. We fix a real Fourier basis of of L2 = {u € L?(T¢,R?) :
fudx = 0,divu = 0} as follows: form = (ki) € K := Zg x{l,...,d — 1},
we set
cayisintk-x). keZd,
cdy,i cos(k - x), k ez2.

Here, Z{ := 7% \ {0}, and Z§ = Z% U ZZ is the partition defined by Z9 =
k=D, kDyezd k@D > 03Utk ezd kW > 0,k@ = 0} and
78 = —Zi. Foreach k € Zg , we have fixed a set {y,i };’:11 of orthonormal vectors
spanning the complement of the line spanned by k € R¥; these are assumed to
satisfy y' , = —y;. The coefficients ¢; > 0 are normalization constants. Note
thatif d = 2, yp = ]/]i spans the perpendicular to k£, and may therefore be taken
tobe g = kL/|k|, kL = (K@, —kW).

In terms of this Fourier basis, we consider the white-in-time, spatially Sobolev
stochastic forcing term

@.1) OW; = )" gmem (X)W,

mekK

em(x) =

where W™, m € K, are a family of independent standard one-dimensional Wiener
processes with respect to the cannonical stochastic basis (Qw,.ZV | (ﬁtW), Py ).

The following decay and nondegeneracy assumption is made throughout this
and our previous works [[16-18].
ASSUMPTION 1. There exists o > % such that for allm = (k,i) € K, we have

1
dm ~ ke
The state space for our fluid velocity fields is

H:= {u e H°(TY RY) : /udx =0, divu = o},

where

o€ (a—2(d—1),a—%).

Note that by our choice of «, we have ¢ > % + 3, s0 H < C3. We will write the
Navier-Stokes system as an abstract evolution equation on H by

(2.2) du + Bu,u) + Au = QW = Z gmemW™,
meK

where

B(u,v) = (Id— V(=A)"'V) V- (u ® v)
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—vAu ifd =2,

Au = 2 ]
—V'Au + vA%u ifd = 3.

The (u;) process with initial data u is defined as the solution to (2.2) in the mild
sense [|34.74]:

t t
(2.3) u; =e My —/ e_(t_s)AB(us, Ug)ds + f e_(t_S)AQ dW(s),
0 0

where the above identity holds Py almost surely for all # > 0. We have the
following well-posedness theorem:

PROPOSITION 2.1 ([34L/74]])). Let d = 2 or 3. Under Assumption for all initial
ue HNH witho' <o — % andall T > 0, p > 1, there exists a Py -a.s. unique

solution (uy) to 2.3) that is F,)" -adapted, and belongs to

LP(Qw;C(0, T; HNHT)) N L>(Qw: L2(0, T;H T@=Dy),

.. d
Additionally, forall p > 1 and 0 < o’ < 0" <a — 5,
Ew sup el Srpor 1+ 12 )

t€[0,T]
T 2 2
B [ slsia s S70 1+ Il
0

o —o’ p P
EW sup ([z(dfl) ||ut||H(7”) sp,T,O",O’” 1 =+ ||M||HG,.
t€[0,T]

PROPOSITION 2.2. Under Assumption (I} the process (u;) solving admits a
unique stationary measure [L.

Proposition [2.2] was first proved for d = 2 in [53]] under Assumption [I} the
generalization to d = 3 is a straightforward extension.

Remark 2.3. Uniqueness of stationary measures is known for Navier-Stokes under
much weaker nondegeneracy conditions than Assumption[I] e.g., the truly hypoel-
liptic setting of [60] with d = 2 that only requires to force modes |m|x < 1.
However, Assumption [I]is necessary for the Lagrangian chaos and scalar mixing
results in [[16-18]] because our methods require, for now, strong Feller regularity of
the semigroup ¢ — u;. See remark 2.6 in [[16] and remark 2.19 in [17] for more
discussion.

Because we require Assumption [T} we do not know how to extend our results
to fluid models solving the Navier-Stokes equations that are spatially C*° or dif-
ferentiable in time. However, we are able to apply our results to a class of finite-
dimensional fluid models for which solutions are C tk C°. This is the subject of the
following short section.
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2.2 Ctk C° fluid models governed by finite-dimensional SDE

If the fluid evolves according to a finite-dimensional SDE, then the methods in-
volved are significantly simpler at a technical level and the strength of Hérmander’s
theorem [63]] allows us to impose much weaker conditions on the noise models we
consider. Consequently, we can produce fluid models which have better spatial and
time regularity.

Below, for QW; given by (2.I), we define K9 = {m € K : g, # 0}. For
m=(k,i) e K=727¢ x{l,...,d — 1}, we define |m|o = max; [k\/)].

For the following finite-dimensional stochastic fluids models we will make the
following less restrictive assumption to Assumption

ASSUMPTION 2. Assume m € Ko if |m|ooc < 2.

For I C K we define Hy to be the linear span of the Fourier modes {e,, }mek.
One model we consider is the Stokes system on T, d = 2,3, prescribing the time
evolution (u;) on the state space Hy,, for fixed initial ug € Hy, by

atut = —th + Aut + QW;

24
( ) div Uy = 0.

When K is finite, (Z-4) is a finite-dimensional SDE on Hy, = RI®0l; indeed, it is
essentially a product of independent Ornstein-Uhlenbeck processes on RI%ol and
in particular an elliptic diffusion on RIXol,

For N > 1 we define Hy C H to be the linear span of the ey, with [m|sc < N.
Define I1<y : H — Hpy to be the orthogonal projection. Another model we
consider for (u,) is the Galerkin-Navier-Stokes system, defined for fixed ug € Hy
by

3;74, = _HfN(th + Uy - VM;) + VAM[ + QW;

25
( ) div Uy = 0,

where implicitly we assume that g, # 0 only if |m|s < N. As with the Stokes
system, Galerkin-Navier-Stokes is an SDE on the finite-dimensional space Hy;
under Assumption [2, equation is known to satisfy the parabolic Hormander
condition [43},95]], and so results in a hypoelliptic diffusion.

Standard finite-dimensional stochastic analysis [75] applies to both and
(2.5), yielding velocity field processes (u;) that are C 1/2= in time and spatially
C®°. In addition to these, our methods also apply to a class of models including
those that vary C k in time for any fixed k > 1. These models are effectively driven
by the projection of a coupled system of Ornstein-Uhlenbeck processes. More
precisely: fix 2 < N < M and let A4 : Hps x Hys be diagonalizable with strictly
positive spectrum. Let

TW; = > TmenW™

|m|co<M
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and let X : Hy x Hy — Hpy be a bilinear mapping with u - X(u,u) = 0
and X(em,en) = 0 for all |m|oe < N. We consider the following generalized

Galerkin-Navier-Stokes system with OU tower noise, defined by
(26) Btut =—X(ut,ut)—|-vAut + QZ[
' atZt =—AZ;+FWt

Here, the noise term applied to the (u;) process is
0Zi= Y qmZl"em(x),
|m|co<N

where t — Z7* € R are the Fourier coefficients of Z,, i.e.,
Zi(x) =) ZVem(x).
m

Note that (u,) is not a Markov process, but (Z;) alone and (u;, Z;) are. The
appropriate nondegeneracy assumption in this setting is as follows:

ASSUMPTION 3. Assume that the coefficients {qm } satisfy Assumption|2| and ad-
ditionally that the parabolic Hormander condition holds for the (us, Z¢) process
on H N X HM.

THEOREM 2.4. All of the main results in Section hold whenever (u;) evolves
according to 2.4) or 2.5) under Assumption 2} or (2.6) under Assumption 3]

Remark 2.5 (see remark 1.10 in [17]). Consider the following example of a system
in the setting of (2.6)). Fix n > 1 and consider the model

2.7) w ()= Y ulem(x),
|m]oo<2
where the coefficients u7" evolve according to
doul = —um 4+ 720,

0zt =~z 1z 1 <t<n—1

diZmm = _Zmn 4y,
Up to re-indexing, this fits into the framework of with X = 0. The parabolic
Hormander condition for (u;, Z,) is satisfied, and so Theorem [2.4]holds for (u;) as
above. Notably, solutions (u,) to (2.7) are C"**!-differentiable in time and smooth
(indeed, analytic) in space. The authors hope this serves as an indication that al-

though the methods in this paper rely strongly on the stochastic framework, they
are not inherently restricted to the rough time regularity of white-in-time noise.

Going forward, we will assume (u,) solves (2.2) with Assumption [T/ for the re-
mainder of the paper. The application of these arguments to the finite-dimensional
models (2.4)), (2.3), and (2.06)) is straightforward and omitted for brevity.
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2.3 Lyapunov functions and exponential estimates

The results in our previous series of papers [17,{18]] require the use of the family
of Lyapunov functions

2.8) Vi) = Vg ) == (1 + ullf)’ eI

where 8 > 0, n > 0. Here, for velocity fields u we define

lcurlu|;2, d =2,
[ llw :=
[l d=3.

Below, we formulate a drift condition for the family V' = Vj ,, ensuring that
trajectories of the (u;) process frequently visit the sublevel sets of V. Define . =
v/Q, where

o — oafPmeslkllanl. d =2
Supm€K|Qm|, d = 3.

LEMMA 2.6 (Lemma 3.7 in [17]]). Let (u;) be a solution to the stochastic Navier-
Stokes equations (2.2) with initial datau € H. Forall0 <y < v/8 r € (0,3),
Co>0,andV(u) = Vgy where B=>0and0 < eVTr] < Nx, there exist constants
¢c = cyr,Co.B,m) >0, C = C(y,r,Co,B,n) > 1, such that the following
estimate holds for any T > 0:

T
(2.9) Ew exp(CO/ ||us||Hrds) sup Ve (uy) < CefT V().
0 0<t<T
Remark 2.7. To connect (2.9) with more standard drift conditions given in, e.g.,
[82], write Py for the Markov semigroup for the Navier-Stokes process (1) and
apply Jensen’s inequality to (2.9) to deduce that 3C; > O such that P,V <
(e€L V)¢ In particular, we have the following drift condition:

V5 > 0,3Cs >0 suchthat PV <4V + Cs.

Note that the contraction constant § > O above can be made arbitrarily small.
Iterating this bound, it is straightforward to show that VA > 0, 3K such that for
all ¢ > 0O there holds

(2.10) P,V <e ™™V + K.

We will also need the following basic stability estimate for solutions to the
Navier-Stokes equations.

LEMMA 2.8. For all u,u’ € H, let (u;) and (u},) be the corresponding solutions
with the same noise path w. Then ¥ p € [1, o0), there exists a deterministic K > 0
such that the following stability estimate holds for V(u) as in (2.8),

Elus — il Sp PX (V)P + V@) lu — ' .
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PROOF. Define w; = u; —u)},
drw, + B(ut, wt) + B(wtau;:) + Aw; = 0.

The proof proceeds as a variation of, e.g., [17, lemma 3.10]. Analogous to the
calculations therein we have for some C > 0 and some r € (% +1,3)

t
il < exp(c / el + ||u;||Hrdr) -
0

and for some g, C > 0 (possibly a different C),

t
w2 < exp(c /0 I ——- dr)

< ( sup (e + ||u;||%))||u —d' 2

O<s<t

The result then follows from Lemma 2.6l O

2.4 Uniform mixing and enhanced dissipation

In this section we will summarize the results of [[16+18]], which are used to prove
Batchelor’s law (Theorem [1.3) and the other results of this paper. Throughout,
assume (u,) solves and that Assumption (1| holds. Consider the advection-
diffusion equation with diffusivity 0 < « < 1,

(2.11) 0:8¢ +ur - Vg = kAg;

for fixed initial gop = g € L2, f g dx = 0. This defines the following (random)
two-parameter semigroup of linear operators on L2: for 0 < s < f, € Q,
and initial ¥ = uo € H, define Sf (w,u) : L? — L2, the two-time solution
operator satisfying g = S7  (w,u)gs. When starting from s = 0 we will write
S{(w.u) = S o(w, u). Note that S§ (w,u) = I, the identity on L?. Note as well
the following cocycle property: for any s,¢ > 0, we have

Sll‘c-i-s(a)’ M) = S;,C(@ta), ut)S;c(a)’ M),
where 6; : Qw — Qyy is the standard time-shift on Wiener space defined for each
w € Qw by
Orw() := w(-+ 1) —w(t).
This implies that we can write the two-parameter semigroup Sy s(w, u) as
(2.12) St s(w,u) = S (Osw, uy).

Note that for any p > 1, Sf extends in a natural way to a defined mapping on L7,
with range contained in L 7. The same is true of Sobolev spaces H*, s > 0.

Several of the important results in this section involve random constants of the
form D : Qw x H — R, the P-law of which are controlled in terms of V'(u).
Since random constants of this type appear many times in this paper, we introduce
the following definition.
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DEFINITION 2.9. Let D : Qw x H — R be measurable. We say that D has V'
bounded p™ moment if 3B > 0 such that YO < n < 7. we have for V = Vg, (u)
ED?(-,u) <p V(u).

The following lemma is very important since it provides us some control on the

fluctuations of the mixing time in terms of the Lyapunov function V' (u).

LEMMA 2.10. Let D : Qw x H — [1,00) have V-bounded p™ moment. Then,
VYA >0,3K, > 0 such that
(2.13) ED? (Oyw,ur) Spa e M V) + K;.

PROOF. Using, in sequence, the tower property of conditional expectation, the
fact that u, is .%” -measurable and the increment 6;w is independent of .}V and

equations (2.13) and (2.10), we have:
ED? (0,0, u) = E(E[D? (B;0,u)|ZV]) SEV(us) S e V(u) + K;.0
The following lemma is a useful corollary of (2.9).

LEMMA 2.11. For all p € [1,0), there exists a (deterministic) Co > 0 and a
random constant Do : H x Qw — Rx>1 with V -bounded p’h moment such that

t
exp(/ IV || Loo df) < Do(w’u)eC()t'
0

PROOF. We provide the proof when p = 1; other values of p require straight-
forward adjustments.

Set V. = Vy 5, where n € (0, n%) is arbitrary. To start, note that by Lemma
and Chebyshev’s inequality, 3¢ = ¢(n) > 0 such that

t Eexp(2 [; || Viis| roe ds)
4ct 0
P(eXp(2 /0 Vs || Loo ds) > V(ue™ ) < V(u)etet

—3ct
Spe .

By Borel-Cantelli, there exists N(w,u) > 1 with P(N(-,u) > n) <, e3¢ such
that

n
CXP(/ [Vats|| oo dS) < V@)e*" forn > N(w,u).
0

To bound when n < N(w, u), we find

n N(w,u)
exp(/ IVus| oo ds) < Do(w,u) := exp(/ Vsl oo ds)
0 0

and note that by Cauchy-Schwarz,

n 1/2
EDo(-.u) <) (P(N = n))1/2|:Eexp(2/ V| oo ds)]
0

n

< Z(e—3cn)l/2(v(u)ecn)l/2 < V(M)Zé’_cn < V(M) 0
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With these preparations in place, we now state the main results of [[16-18]].

THEOREM 2.12 (Theorem 1.2 in [18]]). There exists kg > 0 for which the following
holds for all k € [0,ko]. Let (u;) solve 2.2) for an arbitrary initial condition
g =u € H. Foralls > 0, p > 1, there exists a deterministic y = y(s, p) > 0
(depending only on s, p, and the parameters Q, v, etc.) and a random constant
Dy(w,u) : Q xH — [1,00) (also depending on p, s, as well as k) such that for
allg € HY,

18§ (@, u)gll—s < D@, w)e™""[|g | as.

The random constant D, has V -bounded p™ moment with implicit constant inde-
pendent of k.

Theorem is proved in [17] for « = 0 and [18]] for ¥ € [0, ko]. Both papers
rely heavily on Lagrangian chaos as proved in [16]. From Theorem [2.12] it is
relatively straightforward to prove the following enhanced dissipation result.

THEOREM 2.13 (Theorem 1.3 in [18]]). Let ko > 0 and v = y(1, p) be as in
Theorem where p > 2 is arbitrary. Let (u;) solve 2.2) for an arbitrary
initial condition ug = u € H. Then, there is a random constant D/(w,u) such
that for all g € L?

IS5 (@,w)g]l 2 < min{l, Dy (0,u)c e }gll 2.

The random constant Dy, has V -bounded p™ moment with implicit constant inde-
pendent of k.

THEOREM 2.14 (Theorem 1.5 in [[18])). In the setting of Theorem[2.12] let

e = telw,u, ) = inf{r : [lgell 2 < 3lgllz2)
Then, there exists a kg > 0, a sufficiently small universal constant such that for all
k € (0, ko], one has
(W, u, g) > 6(g,u,w)|logk| with probability 1,

where (g, u,w) € (0,1) is a k-independent random constant with the property
that there exists a § > 1 such that for all p > 1 and n > 0 with V(u) = Vg _,(u)
we have

lgl7

E(S‘_p(',u) 5 M,
PP g,

V(u)?.

2.5 Unique stationary measure for (u;, g;)

We provide here an argument proving uniqueness of the stationary measure for
the passive scalar process (i, g€) on H x L2. The following argument is quite
general and applies in a variety of cases outside the scope of the main results; see
Remark below.
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PROPOSITION 2.15. For any k > 0, the Markov process (u;, g¥) admits a unique
stationary measure 1% on H x L2.

PROOF. It suffices to show that any two ergodic stationary measures uff, u% for
(4, g§) coincide. By standard ergodic theory for random dynamical systems [70]
and the ergodic decomposition theorem (see, e.g., [44]]), uniqueness of ergodic
stationary measures for (i, g§) implies uniqueness of stationary measures.

Assume now that pf are two ergodic stationary measures, i = 1,2. To prove
wi = pf, it suffices to show that for each bounded, globally Lipschitz v : H x
L? — R, we have that [y du* = [ duk. Without loss of generality, we can
assume ||V ||Lip = 1.

By ergodicity of pf and the Birkhoff ergodic theorem, we have the following
fori = 1, 2: there is a set Qi = @ () CHx L2 of full /L;-C -measure such that for

all initial (, g) € Gi, we have

Jim wa e = [ v

with probability 1. Next, observe that u¥ projects to the unique stationary measure
w for the (u;) process (Proposition [2.2). It follows from Fubini’s theorem that
fori = 1,2, we have u(G;) = 1, where G; is the projection of G to H, ie.,
Gi = {u e H:3g € L?suchthat (u, g) € QA,} Since u(G;) = 1,i = 1,2, we
conclude that Gy N G, is nonempty. Fixu € Gy NGy andlet g, h € L2 be such that
(u,g) € G, (u,h) € G». Observe that

—he = i (0, u)(g —h),

ie., g+ — h; solves (2.11). Theorem [2.13|implies ||g; — h;llp2 — O ast — oc.
Given § > 0, let Ng = Ny(8') be such that ||g; — A2 < § forall £ > Np.

With these preparations in place, fix u € Gy N Gy and g,h € L2 such that
(u,g) € G, (u,h) € G». With § > 0 as above, let N = No(6). We have

n—1

< lim —Zw(uz, gf) — e, hf)|

‘/¢dﬂ'f— ¥ dus

= lim — Z [V (ue, g) — VU, hy)|.

n—oon
t=No

Each summand on the RHS is < §, and so the whole limit is < §. Since § > 0 was
arbitrary, this completes the proof. 0

Remark 2.16. The proof given above has two main ingredients: (1) uniqueness
for the stationary measure x on H, and (2) L? dissipation estimates for Sf(w,u)
for k > 0. Item (1) is known to hold for 2D Navier-Stokes under a very weak
nondegeneracy condition on the noise [60]], while item (2) holds for a wide variety
of fluid models by standard estimates. Thus, the proof given above is applicable at
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a much higher level of generality than that of Assumption[I] including the setting
of 2D Navier-Stokes with “truly hypoelliptic” forcing as in [60].

3 Proof of Batchelor’s Law

In this section we prove the main result of this paper, Theorem To summa-
rize the main approach, observe that by uniqueness of the stationary measure p*
for (1.3)) (Proposition [2.15)), the Birkhoff ergodic theorem implies

1T
B IMawels = Jim - [ 1Myt a

for p*-generic initial u = uo € H, g = g§ € L?. On the other hand, the mild
formulation for (1.3)) reads as

t
3.1) gt = Sf(w,u)g —i—/o St s(w, u)bdBs.

Using the fact that

t
E,g<Sf(a),u)g,/ HSNS;"S(w,u)bdﬂs> =0
0 L2

results in the identity

E[M<ngfl7> = ElM<nSf (0, u)gll7>

(3.2) t )
LE / 1Ty S¥ (@, u)b ]2 ds
0

after taking an L2 norm in T¢, then an expectation, and finally the Itd isometry. By

Theorem [2.13] the first such term vanishes exponentially fast in L2 as t — oo, and
so it is the second term that dominates the long-time behavior of E|| g ||i2, hence

the value of E «|| H5Ng||i2. While the above is stated for p = 1, the case p > |

is handled similarly using the Burkholder-Davis-Gundy inequality.

The upper bound for (I.6) in the inertial range is carried out in Section [3.1]
and the lower bound in Section[3.2] The dissipative-range upper bound is done in
Section[3.3

3.1 Upper bound in the inertial range
In this section we prove the < direction of (1.6), that is:

LEMMA 3.1. Under the conditions of Theorem[1.3| there holds for all p € [1, 00)
andforall2 < N < oo,

1
(3.3) (B IT<ngl22)"7 <, Tog N.

We begin with the following lemma.
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LEMMA 3.2. Forall p € [1,00) and2 < N < oo,

t
limsup | (EIT<nSE,(@,10)b]25)""7 dv <, log N.

t—o0 JO

PROOF. Recall that [|[TT<y/|;2 < N||TI<yh| g1 for h € L2. By (2.12) and
Theorem [2.12] followed by Lemma [2.10]

t
1
/O (B My S¥ (. 1)b]22) "7 dr
_ t P 2pN\1/p
_/(; (E||H5N5t_t(9160»ut)b”Lz) de
t
S / (EDZP (Q‘Ew’ ur))l/p min(l, Nze_ZA(t_r))dT
0
t
< f (e7*V () + Kp) min(1, N2e™22(7%)dr
0

< (V@) + 1) log N.
The proof then follows by sending t — o0. U
We are now ready to complete the proof of Lemma [3.1]

PROOF OF LEMMA First observe that, for all (1, g) € H x L? there holds
by (3.1)

t 2p
2
INeng 2 <p | Man S, w)g]2 + H / My S, (0. u)b dBe

L2

From the initial data term, by Theorem [2.13] A (depending on p) such that for a
suitable V' as in (2.8)),

231 - -
(EIM<n St (@ wgl72)"” < ™ Ve ™ g7
By Burkholder-Davis-Gundy (e.g., [34, theorem 5.2.4]) followed by Minkowski’s

inequality,

t
E / My SE (. u)b dB;
0

2p t p
<r E(f IT<n Sf (. )] dt)
L2 0
D

! 1/p
< ([ (Emnavsic@ansis) o)

Hence, Lemma [3.2]implies

lim sup(E|| <y :172)"/” < log N.

t—>o0
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By standard moment estimates (see, e.g., [74]]), for all p,« > 0, E « ||g||Ilj2 < Q.
Hence, by the Birkhoff ergodic theorem, for p€-a.e. (i, g) € H x L? we have

T
2p\l/p . 1 2p\1/p
(B gl7)"” = tim 2 [ (B 10wz 32) /701 5 log .
This completes the proof of Lemma [3.1] O

3.2 Lower bound in the inertial range

In this section we prove the = direction of (I.6).

LEMMA 3.3. Under the conditions of Theorem|[L.3] there exists an No > 2 chosen
sufficiently large (depending on b and the fluid parameters only) such that for all
k € (0, ko] the following holds for all p € [1,00) and all N € [Ny, k~'/2]:

2 1
(B | TT<ngl?2)"? 2, log N.

We begin with the following, which follows from an H! energy estimate and

Lemma2.11]
LEMMA 3.4. There holds (with Cy and Dy as in Lemma[2.11))
18§ (@108l < Dolw.1w)e™ gl

The next lemma provides the lower bound on the stochastic integral contribu-
tion.

LEMMA 3.5. There exists an Ny > 2 chosen sufficiently large (depending on b and
the fluid parameters only) such that for all k € (0, ko] the following limit holds for
all N € [Ng,k~1/2):
t
liminf | E|T<ySf_ (w,u)b|7,dr 2 log N.
t—>00 0 -

PROOF. Fix u € Hand let y € (0, 1) to be chosen later. Write for t > y log N
and N > 2,

t
/ I S5, 6y 10,)b]12 dr
0

t
> / 1S5, (Breo. up)b12 dr
t—ylogN
t
[ ISt bl dr
t—ylog N
The first term is controlled by the /1! norm growth bound in Lemma
t
E / ITay SE, (Breo, up)b2, dr
t—ylog N
t
< / N2ED2 (6,0, u,)e* " ar.
t—ylog N
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By Lemma[2.10]
EDZ(brw.uy) S e *V(u) + Ky,

and hence, choosing y < 271 we have

t
lim sup E / ITT N SE, By, u)b]2, dr
t—00 t—ylog N

< yNY*"21og N limsup(e MV (u) + K;) < CoN "'y log N
=00

for some constant Cy universal independent of y, «, £, u. This completes the second

term in (3.2)).
For the first term in (3.2)), we use the stopping time defined in Theorem
with initial data b:

1
E|SE, (6rw,ur)bl7, > §||b||22P('c*(9ra),ur) >1—7),
where (analogously to Theorem [2.14) 74 (w, u) is defined by

b 2
a(o) = inf)e > 0 ISK@.w0p, = L

Theorem then implies that 3 C; > 0 (independent of ¢, 7, k,u) and 6(w, u) :
Q xH — Rsg with E§7!(-,u) < C{V(u) such that 7, > §|logk|. Using
Chebyshev’s inequality and an argument similar to that used to prove Lemma[2.10]

P(te(brw,ur) >t —r) = 1 —=P(§7 (6,0, uy) > |logk|/(t — 1))

t—r _
>1- E(E(5 '6ro, Mr)|<gr))
llog k|
t —
> 1= Cr—(e V() + Ky).
llog k|
It follows that for2 < N < K_l/z,
¢
liminfE / IS (Brew, ur)b|7, dr
1—>00 t—ylog N
1 Ci1y log N
> 1iminf—||b||izylogN 1— ﬂi(e—lf[/(u) + K3)
t—oo 2 2 |10gl€|

1 2 ClKA)/
> EllblleylogN(l - )
Therefore, for K;Cy < 1/8and N > Ny := 8Cy,

t
liminfE/ [M<n Sy, (bro, ur)b||12J2 dr = (1 — %ClK,x — 2C0N—1) log N
0

t—o0
Z log N.
g
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PROOF OF LEMMA By Jensen’s inequality,
2
EucNanglys = Euc|Oangl7.)? forp > 1,
and so in the following argument it suffices to consider the p = 1 case. For
arbitrary initial data g € L2, we have by (3.2) that
13
Blfeveil?: 2 E [ I0enSE, Gro.unblR, o
0

hence liminf; o0 E|| TI<n g; ||1242 = log N by Lemmafor No < N < «~V/2,
By the Birkhoff ergodic theorem (as in Lemma|[3.1] above),

1T
BelMeveils = fim 2 [ EIMavgi 3 2 log N,
This completes the proof of Lemma [3.3] O

3.3 Upper bound in the dissipative range

First, we derive the upper bound on the L2 norm stated in (I.7). If we were not
also interested in higher moments we could use the following simple observation
using the L2 balance (T.4) and the upper bound in Batchelor’s law, (3:3)

Epclgl7s S BuclMop128)172 + kBpc [ Mop12Vgl72 S 14 [logkl.
The following argument also provides estimates on moments p > 2.

LEMMA 3.6. Under the conditions of Theorem[1.3] there holds for all p € [1, 00)
and for all k € (0, ko]

2 1
(EucIT<ngl?2)'"? <, llogkl.

PROOF. The proof proceeds similarly to that for Lemma [3.3| with the enhanced
dissipation estimate (Theorem [2.13) in place of the uniform mixing estimate (The-
orem [2.12)). As in Lemma [3.3] by Burkholder-Davis-Gundy and Minkowski’s in-
equality,

2p\1/p « 2p\1/p ! « 2p\1/p
(Ellg: ;%) """ < (EISF (@, gl 5) "7 + /0 (EISf (@, w)b];5) " dr.

By Theorem[2.13| 34 > 0 and D (w,u) with V-bounded 2 p" moments, we have
for any (1, g) € H x L2,

t
1 1 1
(ElgI?2)? < (155 @ u)gl22) "7 + [0 (EISE (@.10)b]22)"/” dr
1/ 1 _
< (EDp(w.u)??) P e ™|g|2,

t
+ / (E(D,’C(Hrw,ut))zl’)l/p min(1, ke A dr,
0
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By Lemma[2.10] we therefore have

2p\1 1 —
(Ellg:122)"7 <, Vo e g2,
t
—i—f (e V(u) + 1)min(1, ke A" D)dr
0

<p Vo™ e (1 + |glI7) + llogx].
Hence for all (1, g) € Hx L?,

limsupE||g; |75 < [logk|.
t—>00

Finally, by the Birkhoff ergodic theorem, for ;* a.e. (u, g) € H x L2,

1 T
2 . 2
Bur 132 = lim 2 [ B i3 0r 5 flogl”

g

We now turn to the proof of for g > 0, which is a relatively straightforward
consequence of parabolic regularity and the L2 a priori estimate in Lemma
First we prove the following quantitative H* regularization estimate. Below we
use the Fourier multiplier notation: for m : C? — R measurable, we define the

operator

m(V)f = (m(ik)f (k)" .

LEMMA 3.7. For all initial data (u,g) € H x L?, forally € (0,a —d — 1),

3B > 0, such that ¥V p € [1,00) and V1 > 0 there holds for V = Vg ,
El|(1 + V()" Sf(0.10g]12, Spy VP gL

PROOF. We first deduce a pathwise a priori estimate assuming g is sufficiently

smooth. To this end, by Plancherel’s identity we have for ¢ € [0, 1],
35 100+ VR g1z
= 3 (vlog(1 + Vie(k)) —relk ) (1 + Vi (k)™ g5 (k)2
kezd
+((1+ VRV g (1 + VW)V - (uegh)
=11 + 1.
For 71, by y log(1 + x) < x2 + C(y),
i Sy (14 V() gs] .
By incompressibility and Plancherel’s identity,
Tr = {(1 + V& (V))" gk,
(14 Vie(V))'V - rg) = V- (e 1+ V() gD)) 2 =
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= > L+ Vi) ZE((1+ Vi (k)" — (1 + Vic(k — £))7")

ktezd
X ik -7 (O)F5 Kk — )

= 2 (pegzi + D<)+ V) 2E(R)
ktezd

x (1 4+ Vi) = (1 + i) )ik - i, (k — OF ()
= IQ;HL + IZ;LH-

On the support of the Z,.y, (here HL stands for “high-low”), we use that |k |+ |£]| <

|k — £|, together with Cauchy-Schwarz, Young’s inequality, and H” < L! for
r> %to deduce that for any r € (% + 1, 3),

t t
Zomil < 11+ V(W) gf 2 gl 2 I (1 + Vi () el

On the support of the Z,.7, 5, we use the mean value theorem and |k| < |£] to
deduce

(1+ Vitk)" = (1 + itk — )" 5 Vieyr (1 + Vietk — )" el

Therefore, by Cauchy-Schwarz, Young’s inequality, and H" < Z\l forr > %, for

any r € (% + 1, 3) we have

(1+ V(v g |2,

|Zo; ul < lluellar

By Gronwall’s inequality, there is some C > 0 (independent of g, «, u, ) such that
the following holds:

(1 + Ve (V) g2,
t
< exp(cl i fo ltellar dr) el
t t
+exp(Cr+ [0 ||uf||Hrdr) /O (1 + V(W) e |70 lgel3 2 d.

Taking expectations and applying Lemma [2.6|completes the a priori estimate (3.7).
For an arbitrary g € L2, the desired result follows by density. g

LEMMA 3.8. Under the assumptions of Theorem[1.3| (I.7) holds.
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PROOF. By standard moment estimates (see, e.g., [74]), E« ||g||12q’§ < oo for
sef0,0— % — 1) and p < oo. By stationarity,

2 2
E, g2 = f Equo)lg5 122 di (. g)
<, f E[IS5 @, 10)g ]2, du* (u. g)

1
+ [BI [ St @o.u0pape B awtiu o).
0
By Lemma 3B > 0 such that for Vn > 0, V = Vg ,, and all (u, g) € H x L2,

2 — 2
E||S (0. u)gllzf < k7 PVPw)gl}5.

Because b € C*°, it follows from Burkholder-Davis-Gundy, Minkowski’s inequal-
ity, and classical H* estimates for the transport equation (together with Lemma
2.10) that 38 > 0 such that V5 > 0, there holds for suitable V' = Vg .

2p

1 1
EH/ Si—c(Oro,ur)bdf| < / E||SY_,(6:0.u:)b| 7 dT < VP (u).
0 0

HS
Therefore by Lemmas [3.6/and [3.7] and Holder’s inequality,

2 — 2 —
Eucllglys < Eue[VE@)(1+«Pllgl;5)] <p ™7 llogx|?.

This completes the proof of (1.7). g

4 Vanishing Diffusivity Limit

This section is devoted to the proof of Theorem describing weak limits of
the stationary measures p* for the passive scalar process (u;, g7 ). In Section
we show that such weak limits exist in the weak topology of measures on Hx H —*
and satisfy Batchelor’s law over an infinite inertial range.

Once these are established, it remains to show that p© is a stationary measure
for the passive scalar process (u;, g?). As we check in Section the latter can be
extended to a Markov process defined by a random dynamical system on Hx H 1,
the trajectories of which are weak solutions to the passive scalar advection equation
at k = 0. However, to check that weak limits ;1 are stationary is a nontrivial task
due to poor continuity properties of (u;, g?) in 4! with respect to perturbations
of the initial data u € H for the velocity field (u,), and so stationarity of u° requires
careful justification; see Section {.3|for more discussion. The proof is completed
in Section 4.4l

Finally, we complete this section with a proof of the L2 nonvanishing flux rela-

tion (I.14).
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4.1 Existence of weak limits of {u*}

Corollary |1.5]of Batchelor’s law in Theorem is that for each s € (0, 1] we
have the uniform in « estimate

2
@.1) sup Eyc ||l 7/ Ss.p 1.
k>0

Since H ~5/2 is compactly embedded in H ~* for all s > 0, we can use this to show
tightness of {u*}, which permits us to take weak limits by Prokhorov’s theorem.
Precisely, we have the following.

LEMMA 4.1. There exists a sequence {kp}, kn — 0 as n — oo, and a measure j1.°
on H x L? such that for each s € (0, 1], the following holds: p* — u° weakly as
a measure on Hx H™5; i.e., for each ¢ € Cp,(H x H™*) we have

f¢du"" — /¢dM0-

PROOF. Fix s,¢ > 0 and define
K={heH™ |hl}_> <€ *Euligllz—}-

In light of the compact embedding H /2 <> H™5, K is a compact subset of
H™%; by (4.1) and Chebyshev’s inequality, we have

sup pu“(Hx (H°\K)) <e.

k€(0,k0]
It follows by Prokhorov’s theorem that (1), ~¢ has a subsequence that converges
weakly as a measure on H x ¥, Choosing s = s; = 27/ we can extract a

diagonal subsequence k,, and a limit measure ;° such that u“7 — p® weakly as a
measure on Hx H 5/ for every j > 0, hence on Hx H~* forevery s € (0,1]. [

It is now straightforward to verify the infinite-inertial range version of Batch-
elor’s law as in (I.13). With u® = lim, u*» fixed as above, observe that g +—
|ITI<ngllz> varies continuously in H~*. Therefore, one may use a straightfor-
ward truncation argument along with the fact

2
sup Euc|M<nygl;5 < oo
kel[0,1]

to conclude that

2 . 2
EolNengls = lim Euon [Dongll}s ~p (ogN)?

for all N > Ny, using the fact that the inertial range N9 < N < K—1/2 grows to
all of {N > Ny} ask — 0.
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4.2 The scalar process (u;, g?) atk =0

In this section we study the properties of the passive scalar process (¢, g?) that
solves the advection equation

4.2) 3tg? + Uy - Vg? = bBt

in the absence of any diffusion term. Since the limiting measure u° assigns full
measure to [ !, it is natural to consider # > g as a process in the negative
Sobolev space H 1, for which it will be necessary to show that weak solutions to
(@2) are well-posed for H ! initial data.
To formulate this, recall that the solution operator S to (w,u) : L? — L2, defined
by
0 N |
Si(w,u)g =go(Pyu) >
solves ([@2) in the absence of the noise term bf,, where by T4 — T9 is the
Lagrangian flow associated to (1;). By incompressibility, for f € H', g € L2,
we have

4.3) / ISP (w u)gdx = / (f © ¢y )8 dx.

LEMMA 4.2. The following holds:

(a) For each t > 0 the operator S (w,u) defined by @2) admits a unique
extension to a bounded linear operator on H™' satisfying for all
gel? fe H ' andforallg € H7', t — S,(w,u)g is strongly
continuous in H™1.

(b) For initial data g € H™' the unique weak solution g? to equation is
given by

¢
g? = Sto(a),u)g —i—/ S?_S(Qsa),us)b dfs.
0

PROOF. Part (b) follows from (a), which in turn follows from a density argument
and the following estimate for g € L?
4.4) ISP (@.)gllg-1 = D(@.we |gly-1.

where ¢ > 0, and for each p € [I,00) we can take D(w.u) : @ x H — Rxj to
have a V -bounded p™ moment. To see this, fix f € H!, g € L?, and observe that
by Gronwall’s inequality and Lemma [2.T1]

IV(f 0 ¢") ()] < eXp(/O IVatg || o dS)IVf(fﬁc’u,u(X))l
< Do(w,u)e’" |V f(¢, 1 (X)),

where ¢ > 0 and Do(w, u) has a V-bounded p" moment. Using incompressibility
of ¢, ,,» we obtain

Lf © b ullzr = Do(w, e || g,
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hence

< llglz—11f o ¢%ull

‘/ Sto(a), u)gfdx

=‘/Qdfo¢au¢x

< Do(w,w)e " gl g—1 1l fll 1

We conclude || S?(w,u)gllg—1 < Do(w,u)e | g|lg—1, as desired. Strong conti-
nuity of 7 > S? follows by density of C o (T4yin H1. g

4.3 Stationarity of 0: restricted Feller property of (u;, g?)

With the evolution ¢ +— g? defined, let Pt0 denote its corresponding Markov
semigroup:
Pt0¢(u, g) = E(u,g)¢(uta g?)
for each bounded measurable ¢ : H x H~! — R. We seek to show that if 0 is
a weak limit of ©*», k, — 0, then u° is stationary for (u;, g?); equivalently, it
suffices to show that for all globally Lipschitz, bounded ¢ : H x H~! — R, we

have
/P10¢d/¢° =f¢dM0-

By the weak convergence p# — % and stationarity of %", it suffices to show
that

: Kn Kn _ 0 0
nlggo/Pl pdu —fP1¢du :

where P/ is the Markov semigroup on H x L? for the process (u;, g¥). To this
end the strategy is to write

[ Prrgan — [ popane

s rooe

and show that each term vanishes as n — oo. The first term is relatively straight-
forward to bound, having to do with the nearness of g;", g¢ when initiated at the
same initial condition g € L? and subjected to the same noise sample bf;. This is
dealt with by Lemma 4] below.

The second term in (4.3) is more challenging. One would like to use weak
convergence to justify passing the limit using weak convergence u*? — u°, but
this will not work: to the best of our knowledge, the semigroup PtO for (uy, g?)
does not send continuous functions on H x H~! to continuous functions H x
H~!, namely, P? is not Feller on H x H~!. When « > 0 it is a straightforward
consequence of parabolic regularity that the semigroup P/ is Feller on H x L2
However, when « = 0 this mechanism is not available and consequently P2 is not
necessarily Feller on H x H ™! due to a lack of stability of the transport equation
in H~! under perturbations of the velocity field.

4.5)

=

+ ‘ / PP¢ (dp* —du)
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Instead, we will show the following restricted Feller property: namely, Pt0 has
the Feller property in H x H ~! when restricted to initial g in a bounded subset of
L?. We state this property below for Lipschitz observables.

LEMMA 4.3 (Restricted Feller). Let ¢ € Lip(H x H™'); then for all u,u’ ¢ H
and g, g’ € L? we have
|PP¢ . g) = PPo'. )] < I lluipW (. g u'. ") (lu — 'l + llg — &'l -1

where

Wu,g.u',g") = (V) + VN + llgl2) A + llg'llz2).
andV = Vg , for a sufficiently large universal > 0 and all n > 0.

PROOF. To prove this, it suffices to consider two cases: (i) u = u’ and g # g’
and (i) u # u' and g’ = g.

Case (i) is straightforward since the difference between any two solutions g,
and g; to (4.2) with different initial data and the same noise and same velocity
field (u,) immediately satisfy

g — g = S0 u)(g — g);
hence by #.4),
PP, &) — PP (u, 8" < I$llipED(u, )|l g — &'l g1
S NellipV ) lg — &'l -1

For case (ii) let u; and u/; be two solutions to (I) with initial data ¥ and v’,

respectively, and g, and g} the solutions to (4.2)) with velocity fields (u) and (u}),

respectively, and the same initial data g € H'. Then the difference g, = g, — g}
satisfies

018 +ur - Vgr + (ug —”;)'Vg; =0, g =0,
and therefore can be written as

t
g = / S?_S(Qsa),us)[(us —uf) - Vgi]ds.
0
It follows from (4.4) (choosing D to have a V-bounded fourth moment) that for
0<s<t<l
HStO—s(Gsw, us)[(us - u/s) : Vg;] HH—l = E(GSQ)’ ug) || (us — uiv) ) Vg:v”H*1
< D(Osw, us)llus — ugllwr.oollgslz2,

where in the last inequality we used that if f € W1 and h € H~', then
| £hllgg—1 < Il.fllw1.eollk]l -1, which can be seen by duality between H' and
H~!. Consequently, we have

1
Elg1lz-1 S/O E[D(sw, us)llus — ullullggl 2]ds.
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We use Holder’s inequality under E. The fourth moment ED (w, u)* is bounded
< V(u) by construction, while by Lemmaﬁwe have Ellus — uj ||f4_I < (V(u) +

V(') |lu — u'|a. Tobound E|| g§ ||22, we estimate as follows: by Ito’s formula,

N

14125 = lgl22 + 225 + /0 (g b2 dBy.

By taking E of both sides, the stochastic integral vanishes, hence E|| g;||i2 =
||g||1%2 + 2ys. Putting this together, we conclude for suitable V(1)

[P1g(u. g) — Pro(u’, g)| = 9llLipEl &1 1171
<p 19llLip(V @) + V@) + lIgllz2)llu —u'ln. O

4.4 Stationarity of 1°: Completing the proof

It suffices to show that the right-hand side of (4.5)) vanishes. The first term
| [(P{"¢ — P2¢)dun| in (@3) will be estimated using the following.

LEMMA 4.4. Let g€ and g% have the same initial data g € L?, the same velocity
field (uy), and the same source path bf;. Then,

1
E|gf — &0yt < V) fo KE|g% ] 1 ds.

PROOF. Note that ¢ = g% — g9 satisfies
0:8% +u;-Vgi —kAgf =0.
with g5 = 0. This implies that
1
& = K/ SO (fsw.u5)Agk ds,
0

and therefore using the ! bound @4) on S?_(6;w, uy), we find

1
&l Sk [ Dol s .

where D(w,u) has V-bounded first moment. Taking an expectation w.r.t. @ and
applying Lemma[2.6] completes the proof. O

From here, to prove convergence | (P{C " — P10¢)du"" — 0, we have from
Lemma[.4]and the Lipschitz property of ¢ that

1
[(PEp — Po)(u. 9)| < 9llLipE] gl — g¥ y—1 < Vi) /0 KE| g | ;1 ds.

hence upon integrating in ©* and using Cauchy-Schwarz,
1
1/2
[1Pt0 - PPolant s [ (s lel) s < v

by the energy balance relation KE .« || g; ||i,1 = yx (see (I.4)).
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It remains to show that | [ P2p(du*r — du®)| — 0 in @3). As observed
already, this does not follow immediately from weak convergence since P10 ¢ need
not be continuous. Instead, we will use the restricted Feller property from Lemma
which guarantees continuity of Plogb along g € L?. To bridge the gap from L?

to H !, we use the following mollification argument: for § € (0,1) and g € H ™5,
s € (0,1], define Tsg to be the molliﬁcatio of g, and define the regularized
semigroup

(PP9)5 (1. 8) 1= PLY(u. T5g).
Note that a straightforward duality argument shows that
1758 —gllg-1 <8 lgla—s.

This, in turn, gives rise to the following approximation property for (Plo P)s.

LEMMA 4.5. For each § € (0,1), s € (0,1], (PX¢)s € Co(H x H™"), and for
each globally Lipschitz ¢ : Hx H™! — Rand g € H™S, we have

((P1gp)s — P1opl(u, @) S V()8 ~*llglms,
where V = Vg , forany B > 0 and n > 0.

PROOF. Note that Lemma}4.3|implies (Ploqﬁ)g € Cpb(Hx H™'). Forg € H™,
denote gf and g1 solutions at time # = 1 of the transport equation (4.2)) with the
same velocity path (u#,) and noise bf; but with different initial data Tgg and g,
respectively. We have

((PP9)5 — PP9) . 9)| <E[¢(u1.87) — 1. g1)]
< I ILipElSP (. ) (Tsg — &)l -1
SVWITsg —glg— S VS llgla—s.
having used (#34) and the V' -boundedness of the first moment of D. g

To complete the proof: for § > 0, we estimate

‘ / PPp(dp*r —dp®)| < ‘ / (PP)s (dp’r — dp®)

+ /\(Plofﬁ)g — PP¢|(dp* + du”).

The first term on the right vanishes as n — oo since (P1¢)s € Cp(H x H™') by
Lemma and p“n — p® weakly. For the second term, Lemma4.5{and Cauchy-
Schwarz imply

_ 1/2
[ 16219 = Pl + ) < 81 (B Ty -)

+ (B llglz—) "),

10 Here mollification is defined by convolution with ng = §=99(-/8), where 5 is a smooth,
symmetric, compactly supported test function with [ = 1.
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which converges to 0 as § — 0 uniformly in «, by @.I). This completes the proof
of stationarity of u° for P2, the last item remaining from Theorem

4.5 Nonvanishing flux

We conclude this section by proving the nonvanishing flux law (1.14). To do
this, we remark that I[1<y g7 satisfies

t
Mowgt = Moygk — / My (s - VeS)ds + Ty b,
0

and therefore applying 1t6’s formula gives

t
IM<ng?ll7> = IM<ngoll7- —2/ (M<ngs. M<n (us - Vgs)) 2 0ds
0

t
+Menblor + [ 2Mewg Mayb)so d.
0

Taking expectation, integrating the initial data (u, g) with respect to the stationary
measure 10, and using the stationarity of (u;, g?) with respect to 2, we readily
obtain the flux balance

1
Epe(ll<ng <y @-Vg))2 = §||H5Nb||iz-

Using the divergence free property and integrating by parts in the L2 inner product

gives (I.14).
5 Irregularity of the Limiting Statistically Stationary Solutions

In the previous section, we produced a k — 0 subsequential limit of ©* which
converges to a stationary measure u° of the Markov semigroup associated with
(uy, g2), where the scalar solves

5.1 3,8 +u,-Vg? = b,

Since there is no dissipation in the equation, the input from the noise must be
“anomalously” dissipated by the mixing mechanism (that is, the formally conser-
vative transport equation must nonetheless dissipate). As discussed in Section[I.3]
this requires a degree of roughness of statistically stationary g°. Specifically, in
this section we prove

(a) ul-generic (u,g) €e Hx H~ = H x MNs>o H =% are such that g is not
locally integrable, hence are ‘strictly” distributions (Theorem[I.13));

(b) the Besov space L%Bgm is “Onsager-type critical” in the sense that no sta-
tistically stationary solution g? can have even a small amount of additional
regularity (Theorem [I.19).

Part (a) is carried out by applying a variant of the DiPerna-Lions theory of renor-
malized solutions for the transport equation and is carried out in Section[5.1] while
part (b) is carried out in Section[5.2]
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5.1 u° generic functions cannot be L1

Our proof is by contradiction, based on invariance of H x L' by solutions to
G.I).
LEMMA 5.1. The set Hx L' is almost surely invariant for (u;, g%): ifuo € H and
g8 €L, theng? € L' forallt > 0.

PROOF. This follows from Lemma[4.2b) by noting that due to the smoothness
of b, the stochastic convolution

t
f Sp_ (65w, ugs)b dBy
0
takes values in (at least) L2, and S tO propagates L' regularity. In fact, we have

157 (@, gl = llg o @l Iz = llgllz

by the fact that ¢fu,u is volume preserving. 0

To continue, we will find it convenient to show that any L!-valued solutions to
can be renormalized in the sense of DiPerna and Lions [39]], meaning that we
show that F(g?) solves another transport-type equation for some suitably regular
function F : R — R. In our setting the velocity field (u,) is not rough, which
allows for the transport part of the equation to be easily renormalized, but the pres-
ence of noise introduces Itd corrections and imposes higher regularity requirements
on F. In what follows we define

F(z) := /14 |z]%

LEMMA 5.2. Let g° € L' and g? be a mild solution to (5.1)); then the following
holds almost surely:

/F(g?)dx =/F(g8)dx+/0t (/%dx)ds
- ([ 7)o

PROOF. For a given function f € L', we denote by (f)s the mollification of
f (see the proof of Lemmal4.5)). It is straightforward to show that (f)s — f both
in L' and pointwise a.e. Since g? is a weak solution to (5.1I), we see that (g?)g
solves the following equation almost surely:

()5 = (805 — /0 s - V(g5 ds + (B)shi + fo Rs(us. g%)ds.

where we write

5.2)

0 0 0
Rs(us, g;) =us - V(gy)s — (ur - Vg,)s
for the commutator term, noting that convolution () does not commute with u;-V.
Since the equation for (g?) § holds pointwise as an identity on smooth functions for
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each x € T4, we can apply Itd’s formula to F ((g2)s(x)) to deduce the pointwise
identity

F((g1)s) = F((20)s) — / us - VF((g5)s)ds + / SF (D) B)} ds
(5.3) 0

4 / F/((89)5)(b)s dBs + / F'((89)5) Ry 115 89)ds.
0 0

Here we have used the fact that (g?); is smooth and therefore F’(g%)u,-V(g?)s =

¢t - VF((g%)s). 1t0’s formula for the unbounded function F(z) = /1 + |z|? is
]ustlﬁed in this case because F((g%)s) <s 1 + ||g?||;1; hence for each t € R,

P( sup (g5l < o0) = 1.
s€[0,¢]

Next, we note that since divu; = 0, it is standard that (see [39]])

f|Rs<ut,g?)|dxs||ut||W1.oo(fB |y~w5|dy) sup 182+ ) — g2
S

|y|<$

Since [ |y - Vngldy = [|y - Vn|dy and g? belongs to L! almost surely, we
conclude by the L!-continuity of spatial translations that for each t € R

(5.4) Rs(uy, g?) — 0 in L!as § — 0 almost surely.

Using the facts

we can integrate (3.3)) and use the fact that u, is divergence free to obtain

t b 2
[ Pashmax = [ P+ [ ( / %%m)m
(O )
5.5) \P)§ s )s .
( +, (/ Fiahy )%
: (gt)S 0 )
+/0 (/ F((gt)g)RS(us’gS)dx &

The proof will be complete if we can pass the § — 0 limit in both sides of (5.3))
almost-surely for each fixed 7. Since we have (gt)(g — gt in L' and almost
everywhere on T¢, as well as the convergence of the commutator (5.4) in L' and
(b)s — b in L?, we can use bounded convergence to pass the § — 0 limits almost-
surely in every term of (5.5) except for the stochastic integral. To deal with the
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stochastic integral, note that by It6’s formula

LOr(b)s(eDs b 2
E ( ( )S(gt)S gt dx )d,Bt
F((gd)s)  F(g?
b 0 bg?
=E//()3(‘§f)5— Si_laxds — 0
o | F((g)s)  Flgy)
as § — 0 by the bounded convergence theorem. U

We are now ready to prove Theorem [[.15]

PROOF OF THEOREM [[L13l We assume that u®(H x L) > 0 in pursuit of a
contradiction. By Lemma H x L! is an invariant set for (u;, g?), and so the
conditional measure

o . nOC-NHxLY)
T pPHx LY

is another stationary measure for (u,, g?) that assigns full measure to H x L1,

We would like to conclude the proof by taking expectations of both sides of
(5.2) using stationarity with respect to i°. However, we are unable to justify this,
since a priori we do not know whether F (g ) has finite moments. To get around
this, apply Itd’s formula to ¢ (/" F(g?)dx), where ¢ is a bounded C? function, to

deduce
¢( / F(g?)dx) - ¢( / F(g8)dx)
+/ot(/ 2Fl();£>3 dx)"y(/ F(gg)dx)ds
2

t Ob
3 [ ([ peme) o ([ Feta
t Ob
[ Fapes)o ([ raacan.

Taking the expectation and integrating the initial data with respect to i° (crucially
using that ji° assigns full measure to L!), we find

ol o ) ] g )] o

For € > 0, define ¢(z) =

1+€z, so that

E-o IF(g)* — E-o (f F(g) )
(1+efF(@dx)> " (1+e/fF(g)dx)’

2
2 < 2¢[bliz-.
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Sending € — 0 and applying monotone convergence gives

b2
EA /F( )3dx—0

which contradicts fi°(H x L) = 1. Therefore u°(H x L) = 0, which completes
the proof. U

5.2 Onsager-type criticality of L%Bg o
In this section we prove Theorem Recall Definition of a Bg, c-Suitable

multiplier M, and the associated generalized Besov norm

[ fllgm = sup  M(N)[TIn f L2
2% Nef2/ijeNy}

We denote by B%OO the space of tempered distributions f* with || /|| p < 0.
The following lemma shows that we can exhaust Bg’c in terms of the spaces
§ BM }
LEMMA 5.3. The following holds:
0 M
BZ,c = U B2,oo’
M
where the union is over all Bg,c -suitable multipliers M.

PROOF. That ||f||B£u <oco= f € BS,C follows from limy, _, ., M (k) = o0

Conversely, let g € BO Let Cp be such that sup;ey, [T,/ g2 < Co. By
g€ B2 .» there exists a strlctly increasing sequence {N}72 | € 2/ :j e N}

such that VN > Ny, [[TIyg|l;2 < 27F. Define M(k) : [I, 00) — [, 00) to be the
monotone increasing multiplier

M(k) 2 k <N1,
e 2/+1
—NjJrl N (Njy1— k)+N+1 —N; (k—Nj) Nj <k <Nji.

We see that M is piecewise linear with slope < 1, and therefore satisfies conditions
(i) and (ii) of Definition [I.18] O

We introduce Littlewood-Paley decomposition for future use. Let { € C5°(R: R)
be such that {(§) = 1 for |§] < | and ¢(§) = O for |§] > 3/2, and define
(&) = ¢(€/2) — ¢ (&), supported in the range £ € (1, 3). Denote, for each N > 0,
EN(E) = C(NTYE) and wn(§) := Y(NT'E). For f € L*(R) we define the
Littlewood-Paley projections

anfi=yn(V)f and m<nf:=I{N(V)S
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Note by Definition (denoting N = {0} U N and analogously for Z¢ =
{0} U Z4 below),
sup  M(N)|TIngllz>
Ne{2/:jeNy}

~ [M(VDr<iglie +  sup [M(VDangllze.
Ne{2/:jeNy}

LEMMA 5.4. Forany (u,g) e Hx H™1, if||g||Béu < o0 for some Bg,c-suimble
M, then .

(m<ng . m<nV - (ug))| < IIgIIf;éu [z

1
M?2(N)
PROOF. By the incompressibility of u and Plancherel’s identity,

(r<Ng <NV - (ug))
= (r<ng <NV (ug) = V- (ur<ng))

= > (Lg<aik—t) + Lez2ik—e))n ()31 (K)
G Cn (k) = En(0)ik -, (k —£)g: (L)

=Ty + Z1n.

Note that due to the presence of the cutoffs (¢ (k) — {n (£)), we see that one of |k|
or |£| must be larger or equal to %N for the corresponding term in the summation
to be nonzero. The “high-low” term is treated by noting that on the support of the
summation, |k| + |£| < |k — £|, and therefore for any § > 0,

VIZARS % > Ng<ap—llEn ()2, (k) (k — €T, (k — £ (0)]
ktezd
1
< N2 1jg|<2k—|
ktezd

(k)51< 7 VRO~ 0Pk~ 07O

Then, using Cauchy-Schwarz, Young’s inequality, and H” < L! for r > d/2,
(recallo > 3 + %),
< ] 2 P 2
IZaLl Ss 3z lI8lz-slula < WllgllB%mllulln,

where the last inequality followed from M(N) < N by Definition and the
embedding H % < BY .
We turn next to the “low-high” term. First, by the mean value theorem,

(5.6) [En (k) = In (D] < %Ik—ﬁl-
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Second, observe that on the support of the summation, we have N =~ |k| ~ |{
because of the frequency cutoff and that at least one of |k| or |£| must be larger
or equal to %N , but one of |k| and |£| must also be less than 3N . Therefore, we
deduce from part (ii) of Definition[I.18]and (5.6),

1
Zrm| < N2 Y Lsap—alon )M (KD (K)k — €tk — OM(LNE)-

klezd

Again by using Cauchy-Schwarz, Young’s inequality, and H” < L! forr > d /2,

2
Zrul < Iglga llula.
2,00

M(N)?
This completes the proof. U
PROOF OF THEOREM [[.19] We proceed by contradiction and assume

EMo||g||pM < oo forsome p > 2.
Bz.oo

By repeating the proof of the flux balance (I.14) as in Section 4.5 with <y re-
placing IT<y, we have

1
(5.7) E o(m<ng m<nV - (ug)) = EllnsNbH,’{z.

However, Lemma [5.4/and the assumption that E 0| g|| g w < oo forsome p > 2
2,00

implies that

Eyo(reng men'V - )] S Eyo| g1y _lula]

1
M(N )2
1 2/p _p_\ P52
P =AW
arvyz Ewoliglgy ) (Bluli )
1
<—-
MV

A

On the other hand, limy _ oo %Hﬂs Nb ||22 = y, and so by choosing N sufficiently
large in (5.7) gives the desired contradiction. 0
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