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Abstract

In 1959 Batchelor predicted that the stationary statistics of passive scalars ad-
vected in fluids with small diffusivity � should display a jkj�1 power spectrum
along an inertial range contained in the viscous-convective range of the fluid
model. This prediction has been extensively tested, both experimentally and nu-
merically, and is a core prediction of passive scalar turbulence.

In this article we provide a rigorous proof of a version of Batchelor’s pre-
diction in the � ! 0 limit when the scalar is subjected to a spatially smooth,
white-in-time stochastic source and is advected by the 2D Navier-Stokes equa-
tions or 3D hyperviscous Navier-Stokes equations in Td forced by sufficiently
regular, nondegenerate stochastic forcing. Although our results hold for fluids
at arbitrary Reynolds number, this value is fixed throughout. Our results rely
on the quantitative understanding of Lagrangian chaos and passive scalar mixing
established in our recent works. Additionally, in the � ! 0 limit, we obtain sta-
tistically stationary, weak solutions in H�� to the stochastically forced advection
problem without diffusivity. These solutions are almost-surely not locally inte-
grable distributions with nonvanishing average anomalous flux and satisfy the
Batchelor spectrum at all sufficiently small scales. We also prove an Onsager-
type criticality result that shows that no such dissipative, weak solutions with a
little more regularity can exist. © 2021 Wiley Periodicals LLC.
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1 Introduction
A fundamental problem in fluid mechanics concerns the behavior of the con-

centration of a scalar g�t being passively advected by an incompressible fluid ve-
locity ut while also undergoing some small amount of molecular diffusion. In
many circumstances the scalar exhibits complex, (approximately) statistically self-
similar patterns over a range of scales, referred to as passive scalar turbulence
(see, e.g., [48, 80, 89, 100, 103] for more discussions of the physical background
and Remark 1.1 for some context for the use of the word “turbulence”).

In this work, we consider a fluid in the periodic box Td , d D 2 or 3, where
the fluid velocity ut evolves according to a time-continuous, randomly driven er-
godic motion. The scalar g�t solves the following advection diffusion equation with
stochastic source:

@tg
�
t C ut � rg�t � ��g�t D Pst :

Here � > 0 is the molecular diffusivity, and the source Pst is a white-in-time, Gauss-
ian process supported at low spatial frequencies. For simplicity, it suffices to con-
sider st .x/ D b.x/�t , where b is a nonzero smooth function on Td and �t is a
1D Brownian motion independent from ut . We will assume that the velocity ut
itself evolves according to an incompressible, stochastically forced fluid model, for
instance the stochastic Navier-Stokes equations on T2,

@tut C ut � rut Crpt � ��ut D Q PWt ;

divut D 0;

or the stochastic hyperviscous Navier-Stokes equations on T3, both of which are
known to be ergodic with a unique stationary measure under fairly mild nonde-
generacy assumptions on the stochastic forcing (see Sections 2.1 for more precise
details). We also consider a variety of other finite-dimensional fluid models with
better time and space regularity (see Section 2.2).

The presence of the source st and the ergodicity of ut allows for the scalar
to settle into a statistical steady state with ensemble E, where the scalar input
from the source Pst is balanced by dissipation due to the diffusion from �� and the
law of g�t is the same for all times. Specifically, when st D b�t , Itô’s formula
implies that in a statistical steady state, there is an average constant dissipation rate
� WD kbk2

L2 > 0,

2�Ekrg�k2
L2 D �

providing a mechanism for a cascade to high frequencies (see Proposition 1.2 for
details).

When � is taken very small, complex (approximately) self-similar patterns in
the scalar g�t emerge. In a statistical steady state, these patterns usually have an
L2 power spectrum that approximates a power law over a certain range of frequen-
cies. For physical fluid flows and in numerical simulations of the Navier-Stokes
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FIGURE 1.1. The solid line above is the full prediction for the power
spectrum �.k/ D jkjd�1Ejyg�.k/j2 of a statistically stationary passive
scalar g� advected by a turbulent fluid ut in 3D. In the Batchelor regime
� � �, it is theorized that the power law jkj�1 holds for scales be-
tween `NSE

D (the dissipative scale for Navier-Stokes) and �1=2 (the dissi-
pative scale for Batchelor’s regime). Between `I and `NSE

D one expects
Obukhov-Corrsin statistics, e.g., the jkj�5=3 law in dimension d D 3, as
depicted by the dashed curve above (E.k/ D jkjd�1Ejyu.k/j2). No uni-
versality is expected at length-scales in the integral range above `I . We
emphasize that in the setting of the present manuscript, � is fixed O.1/

and � � 1; as such, even if � itself is quite small, our methods do not
distinguish the Obukhov-Corrsin regime from the integral range.

equations, such power laws are frequently observed, with different regimes de-
pending on the size of the Schmidt number Sc WD Pr =Re, where Re D ��1 is the
Reynold’s number and Pr D ��1 is the Prandtl number. In his foundational pa-
per [12], Batchelor predicted that when Sc � 1 (known as the Batchelor regime),
the steady-state statistics for a passive scalar exhibit a jkj�1 power spectrum over
the viscous-convective subrange of frequencies, known as Batchelor’s law (or the
Batchelor spectrum):1

(1.1) �.jkj/ WD jkjd�1Ejyg�.k/j2 � �jkj�1 for .`NSE
D /�1 � jkj . ��1=2;

where for each k 2 Zd , yg�.k/, denotes the Fourier transform of g� on Td and
`NSE
D D .�=�/d=4 is the dissipative range for the Navier-Stokes equations with �

being the fluid energy dissipation rate.
Since Batchelor made his prediction, engineers and physicists have been making

measurements of the spectrum in nature, e.g., temperature and salinity variations

1 Batchelor’s original prediction was actually for scalars on R3 (see Section 1.1 for more details)
instead of the periodic box; the prediction below is adapted to the periodic setting.
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in the ocean (see [38,58,89] and the references therein), in laboratory experiments
(see [2, 56, 68, 83, 104, 105] and the references therein), and in numerical studies
(see [4, 23, 40, 62, 109] and the references therein). As discussed in [4, 40, 80] it
remains an open problem in physics to determine the settings in which the Batch-
elor spectrum is expected and to what degree of accuracy it holds. We will briefly
discuss some theoretical studies in the physics literature in Section 1.2.

In this paper, we are primarily concerned with the Batchelor regime at fixed
Reynolds number: where � is considered fixed at an arbitrary (potentially small)
number and � � �. It is important to note that at length scales below the dissipative
scale `NSE

D for the fluid (or equivalently, frequencies above .`NSE
D /�1) the velocity

field ut is expected to be smooth while only gt becomes rougher and rougher as
� ! 0, which makes it significantly easier to understand the “nonlinear”2 advec-
tion term ut � rgt in low regularity.

The Batchelor spectrum is, in some sense, predicated on smoothness of the ve-
locity field – it only holds over length scales relative to which the velocity field
is essentially smooth. This can be seen from Batchelor’s original argument [12];
see further discussions in [5, 6, 11, 24, 48] and below in Section 1.2. In this regard,
the much simpler case of fixed Reynolds number seems to be a reasonable first
place to begin any mathematical study of Batchelor-regime passive scalar turbu-
lence, and indeed, of passive scalar turbulence in general. For frequencies below
.`NSE
D /�1, hydrodynamic turbulence gives rise to a different approximate power

law (a jkj�5=3 law for d D 3), known as Obukhov-Corrsin spectra for the pas-
sive scalar [31, 90]; see [4, 100]. See Figure 1.1 and the associated caption for a
description of these two different expected regimes of passive scalar turbulence.

If one does not fix the Reynolds number and simultaneously takes �; � ! 0 ,
while sending Sc !1, then the fluid itself is becoming turbulent while neverthe-
less, the viscous-convective subrange remains in the Batchelor regime. This is a
situation that we cannot treat in this work. Indeed, since almost nothing rigorous
has been established mathematically for the (very singular) turbulent limit � ! 0

for statistically stationary solutions ut to the Navier-Stokes equations,3 this ap-
pears well out of reach of rigorous mathematical analysis for the time being. One
model where this kind of ‘turbulent advection’ has been studied is in the Kraich-
nan model, in which ut is replaced by an idealized rough-in-space, white-in-time
Gaussian velocity field, and the equation for gt is interpreted as a Stratonovich
stochastic transport equation. This model was introduced for this purpose in [71],
and there is now a wide literature on this model in physics (see [32, 33, 100] and
the references therein). Properties of stochastic transport with rough velocities
have also been studied mathematically as well in the work on isotropic stochastic
flows [14, 67, 79] and well-posedness by stochastic perturbation [50, 52, 85]. See

2 Nonlinear here refers to nonlinearity of the mapping .u; g/ 7! u � rg.
3 For example, it is unknown whether the kinetic energy remains bounded in 3D.



BATCHELOR’S LAW FOR STOCHASTIC NSE 5

also the recent preprint [41] for a deterministic work on turbulent advection by
rough velocities.

Remark 1.1. In the physics and engineering literature, “turbulence” is used to
describe a wide range of observed phenomena in dynamics of weakly damped,
infinite-dimensional, nonlinear conservative systems in “generic” settings, includ-
ing both 2D and 3D incompressible or compressible Navier-Stokes, passive scalars
advected by fluids, nonlinear dispersive equations, magnetohydrodynamics mod-
els, and kinetic models in plasmas [20, 22, 55, 59, 76, 87, 100, 103, 110].

In the Batchelor regime, the passive scalar model we consider is one of the
simplest settings in applications where turbulent phenomena can be observed that
share many similarities with hydrodynamic turbulence [100], specifically a fre-
quency cascade, “anomalous” dissipation, power laws on the power spectrum, and
scaling laws on structure functions.

1.1 Review of Batchelor’s argument
In [12] Batchelor made his prediction by studying the effect of advection and

diffusion on pure Fourier modes when the velocity field is a linear “pure straining
flow,” namely a linear velocity field ut .x/ D Ax on R3 whose matrixA is traceless
with real distinct eigenvalues. He argued that, upon zooming in on the velocity field
all the way down to the viscous-convective subrange, the flow is most likely to be
approximated by a pure straining flow (see Section 1.2 for more discussion on the
validity of this approximation). For such flows he showed that frequencies increase
exponentially fast, and in a steady state exhibit an exact asymptotic formula for the
power spectral density.

To understand the essence of this approach, let us consider the case d D 2 and
take the velocity field ut .x/ D Ax on R2, where

A D
�

 0

0 �

�
:

If one takes a pure Fourier mode as initial data g0.x/ D sin.�0 �x/ for the advection
diffusion equation without a source, then the solution takes the form C �

t sin.�t �x/,
where the amplitude C �

t and frequency �t solve the ODE system

PC �
t D ��j�t j2C �

t ;
P�t D �A�t :

If the initial frequency �0 2 R2 has a nontrivial projection onto ye1 D .1; 0/, say, for
example, jh�0; ye1ij D 1, then there is an exponential-in-time increase in frequency
j�t j � e
t , indicating a cascade from low to high frequencies. At the same time,
the amplitude decays double exponentially fast due to diffusion, to wit, C �

t �
exp.��e2
t=2
/, since the diffusion acts more strongly at high frequencies.

To see what effect this has on the steady-state power spectrum, consider a sto-
chastic source Pst D sin.�0 � x/ P�t supported at frequency �0. In a statistical steady
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state, the scalar field g� is equal in law to the stochastic integral

g�.x/ D
Z 1

0

C �
s sin.�s � x/d�s;

which is a Gaussian random variable in L2loc. Using Itô’s isometry and the fact
that � WD limR!1

ª
�0;R�2 jsin.�s � x/j2 dx does not depend on s, we find that the

average L2 mass density carried by frequencies less than n � 0 is given by

hj��ng
� j2i WD lim

R!1

­
�0;R�2

Ej��ng
�.x/j2dx

D �

Z t.n/

0

C 2�
s ds;

where ��n denotes the projection onto frequencies j�j � n and t .n/ is the unique
time such that j�t.n/j D n (which exists for large enough n by monotonicity of
t 7! j�t j). The power spectral density is then defined by

�.n/ WD d
dn
hj��ng

� j2i D t 0.n/�C 2�
t.n/:

That j�t j � e
t implies the asymptotic t .n/ � logn=
 and t 0.n/ � 1

n

, therefore

�.n/ � �


n
exp

�
��n

2




�
:

We recover Batchelor’s prediction �.n/ � �

n

in the range 1� n . .
=�/1=2.

1.2 Going beyond pure straining flows
It is natural to question whether a time-stationary pure straining flow is actually

a good approximation of a fluid at small scales. Indeed, since the velocity fields
change in time, so too does the approximating linear flow (i.e., the gradient), so
one should at least expect a linear phase portrait changing in time. Moreover,
there are many coherent Lagrangian structures (e.g., vortices) that locally exhibit
shearing or rotational phase portraits, incompatible with the expansion/contraction
exhibited by the pure strain flow. Remarkably, however, Batchelor’s argument gets
the right answer; in fact, Batchelor’s law is a robust prediction, holding for a large
class of smooth incompressible flows not necessarily arising from a physical fluid
mechanical model.

The purpose of this paper is to show that a “cumulative” version of Batchelor’s
prediction (see Theorem 1.3 for an exact statement) is a consequence of the chaotic
mixing properties of ut proved in our previous works [16–18].

Lagrangian chaos
In short, Batchelor’s argument succeeds because, even though the flow ut is not

always well-approximated by a pure straining flow, the linearized time-t motion of
passive tracers (i.e., time-t Lagrangian flow) does resemble a pure strain flow for
large times t . To make this more explicit, recall that in the absence of diffusivity
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(� D 0) and sources (st � 0), the scalar gt is given by gt D g0 � .�t /�1, where
the Lagrangian flow map �t W Td ! Td describes the position of a particle xt D
�t .x/ starting from x 2 Td and solves the ODE

d
dt
�t .x/ D ut .�

t .x//; �0.x/ D x:

The derivative of the flow D�t .x/ W Rd ! Rd then solves the linearized equation

d
dt
D�t .x/ D Dut .�

t .x//D�t .x/; D�0.x/ D Id:

By incompressibility (note detD�t .x/ � 1), growth in time of jD�t .x/j for
typical x is associated with the development of strongly expanding and contract-
ing directions of D�t .x/ for each fixed t , features resembling those of the linear
pure strain flow phase portrait. Growth of jD�t .x/j can be quantified in terms of
positivity of the Lyapunov exponent

�1.x/ D lim sup
t!1

1

t
log jD�t .x/j > 0(1.2)

for “typical” x 2 Td , which we refer to as Lagrangian chaos. Previously La-
grangian chaos has been proved for stationary, white-in-time velocity fields in
[13, 15]. In [16], we proved that the Lagrangian flow associated to solutions ut
of the stochastically forced 2D Navier-Stokes and 3D hyperviscous Navier-Stokes
is chaotic in the sense that there is a deterministic constant �1 > 0 such that (1.2)
holds with lim-sup replaced with lim for all x and all initial fluid configurations,
almost surely (see [16] for rigorous statements).

As has been observed by a long line of previous authors (see, e.g., [5, 6, 11,
24, 48, 93]), Lagrangian chaos is associated with a low-to-high transfer of an L2

mass of passive scalars and provides a clear mechanism for Batchelors law. Indeed,
without diffusivity (� D 0) and sources (Pst D 0) we clearly have that rgt � �t D
.D�t /�>rg0, hence one expects krgtkL2 to grow exponentially fast in time. In
view of L2 conservation (kgtkL2 D kg0kL2), this is strongly reminiscent of the
transfer of L2 mass from low to high frequencies appearing in Batchelor’s original
argument for pure shear-strain flow.

We emphasize that the results of [16] and the proof of (1.2) rely crucially upon
the stochastic framework: it is often very difficult to provide rigorous proofs of
positivity of Lyapunov exponents, even for deceptively simple models such as the
Chirikov standard map family [42,57] (a discrete-time toy model of the Lagrangian
flow [32]); see [92,108] for more discussions. In Navier-Stokes, one of the enemies
is the formation of coherent vortices inside of which hyperbolicity is halted (see
[10]). The arguments in our paper [16] imply that with probability 1, vortices of
this kind cannot permanently trap any particles.
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Uniform in diffusivity chaotic mixing
For the fluid models considered in this paper, a positive Lyapunov exponent

alone is not enough to prove Batchelor’s law. Lagrangian chaos only implies that
some “scalar energy” is going to high frequencies; i.e., some small scales are being
created. However, we need here that small scales are being created everyhere in a
reasonably uniform way with high probability (i.e., with explicit moment bounds
on fluctuations in the rate of small scale creation). To quantify this, we use a
much stronger property: uniform-in-�, almost-sure exponential mixing.4 In [18],
we proved that if xg�t is mean zero and solves the initial value problem

@t xg�t C ut � rxg�t � ��xg�t D 0

with diffusivity but no random source, then there exists a deterministic constant

 > 0 independent of � and random constant D� (depending on initial fluid con-
figuration) such that

kxg�t kH�1 WD sup
kf k

H1D1

����Z f xg�t dx
���� � D�e

�
tkxg0kH1 ;

where D� also has suitable moment bounds independent of � (see Definition 2.9
and Theorem 2.12 for precise statements). See [102] for a discussion of using neg-
ative Sobolev norms to quantify mixing. There is a large mathematical literature
on scalar mixing in the mathematics literature; see [1,25,41,45,65,77,97,107] and
the references therein.

To see why uniform-in-� scalar mixing implies an exponential increase of fre-
quency scale, note that

k��N xg�t kL2 � N kxg�t kH�1 � D�Ne
�
tkxg0kH1 ;

where ��N denotes projection to Fourier modes of frequency � N . From this,
one can see that for times t � logN



, most of the scalar has been transferred from

frequencies � N to higher frequencies.5 As in Batchelor’s original argument, this
exponentially fast transfer from low to high frequencies is exactly the mechanism
that gives rise to Batchelor’s law when ut is given by Navier-Stokes—one difficulty
is of course dealing with potential unboundedness of the random constantD, which
captures fluctuations in the mixing time.

Our work [18] builds on our earlier work [17] that proved the corresponding
statement for � D 0; similarly, this latter work uses the Lagrangian chaos result
of [16] as a lemma. Our works [17, 18] are based on analyzing two-point statistics

4 One can construct dynamical systems with a positive Lyapunov exponent but arbitrarily slow
(e.g., polynomial or logarithmic) mixing/decay of Lagrangian correlations, for example, Pommeau-
Manneville maps (see, [78, 96]).

5 The appearance of the mixing rate 
 here in the estimate t � logN

 for the low-to-high transfer

is suggestive of why Lagrangian chaos alone is insufficient to prove Batchelor’s law.
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of the Lagrangian flow, and a key step is to upgrade the positivity of the Lyapunov
exponent to positivity of the moment Lyapunov exponents

�.p/ D � lim
t!1

1

t
log EjD�t .x/j�p; 0 < p � 1:

This is deeply related to large deviations of the finite-time Lagrangian Lyapunov
exponents as t ! 1 (for the relation of moment Lyapunov exponents to large
deviations in the convergence of Lyapunov exponents, see [7–9]). It had already
been realized by physicists that fluctuations of Lagrangian Lyapunov exponents
should play a key role in Batchelor’s law (see discussions in [5, 6, 11] and the
references therein), and so our works are in some ways a mathematically rigorous
completion of some of these ideas.

1.3 Main results
We now turn to detailed statements of the main results of this paper. After

providing some preliminary definitions and conventions, in Section 1.3 we state a
“cumulative” version of Batchelor’s power law spectrum for fluids at fixed, finite
Reynolds number. Section 1.3 describes a version of Yaglom’s law, a scaling law
analogous to the �4=5 law in hydrodynamic turbulence. In Section 1.3 and 1.3,
we turn our attention to the description of ideal passive scalar turbulence, i.e., the
description of a class of low-regularity solutions to the “inviscid” � D 0 advection-
diffusion equation exhibiting a scale-by-scale flux of L2 mass from low to high
modes.

The velocity field .ut / will take values in the space H consisting of mean zero
divergence free velocity fields belongs to H� D H� .Td IRd /, the Sobolev space
of mappings from Td ! Rd with regularity � > d

2
C 3; note that this implies

velocities are always at least C 3 in space. The velocity process .ut / will evolve
in H according to one of the following stochastic PDEs depending on whether
d D 2 or 3:

SYSTEM 1 (2D Navier-Stokes equations). When d D 2, .ut / solves

@tut C ut � rut D �rpt C ��ut CQ PWt

divut D 0;

where u0 D u 2 H. Here, the viscosity � > 0 is a fixed constant.

SYSTEM 2 (3D hyper-viscous Navier-Stokes). When d D 3, .ut / solves

@tut C ut � rut D �rpt � ��2ut CQ PWt

divut D 0;

where u0 D u 2 H. Here, the hyperviscosity � > 0 is a fixed constant.

In the above systems, Wt is a cylindrical Wiener process on mean-zero, diver-
gence free L2 vector fields with respect to an associated canonical stochastic basis
.�W ;F

W ; .FW
t /;PW / andQ a positive Hilbert-Schmidt operator on mean-zero,
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divergence free L2 vector fields satisfying suitable nondegeneracy and regularity
assumptions. See Section 2.1 for full details. We couple systems 1 or 2 to the
advection-diffusion equation

(1.3)
@tg

�
t C ut � rg�t � ��g�t D b P�t

g�0 D g;

where �t is a Wiener process on another canonical probability space denoted by
.�� ;F

� ; .F�
t /;P� /. We denote the product measure P D PW � P� our main

probability measure on the associated product space � D �W � �� with the
standard product sigma-algebra F D FW 
F� and filtration Ft D FW

t 
F�
t .

Equation (1.3) has a P almost-sure, unique, Ft -adapted weak solution for every
initial .u; g/ 2 H�L2 (see Proposition 2.1 below) and defines a Markov semigroup
P �
t on bounded, measurable observables ' W H � L2 ! R via

P �
t '.u; g/ D E.u;g/'.ut ; g

�
t / WD E

�
'.ut ; g

�
t /j.u0; g�0/ D .u; g/

�
:

The cumulative Batchelor spectrum
Recall that a probability measure� on H�L2 is called stationary for the Markov

semigroup P �
t if for all bounded, measurable ' W H � L2 ! R and all t > 0,Z

P �
t ' d� D

Z
' d�:

For observables ' W H � L2 ! R, we frequently write E�'.u; g/ WD
R
' d�. We

will also say a probability measure is stationary for a given process if it is stationary
for the corresponding Markov semigroup.

Due to the infinite-dimensionality of H, uniqueness of stationary measures for
.ut / is in general a subtle question: on the domain T2 this was first proved in [53]
in the setting of completely nondegenerate noise, and has by now been established
even for highly degenerate noise [60]. In comparison, the homogeneous part of the
evolution equation for g�t is linear, and so uniqueness of stationary measures for
.ut ; g

�
t / is relatively straightforward due to the contracting nature on L2.

PROPOSITION 1.2. Assume .ut / admits a unique stationary probability measure �
on H. Then for all � > 0, there exists a unique stationary measure �� for .ut ; g�t /
on H � L2. Moreover,

2�E��krgk2L2 D kbk2
L2 DW �:(1.4)

Uniqueness of �� is proved in Section 2.5 and has the following consequence
by the Birkhoff ergodic theorem: for ��-typical initial .u; g/ 2 H � L2 and any
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continuous observable � 2 L1.��/ on H � L2, we have P-almost-surely.6

lim
T!1

1

T

Z T

0

�.ut ; g
�
t / dt D

Z
� d�� :(1.5)

Equation (1.4) follows from (1.5) and Itô’s formula. The convergence of time
averages to ensemble averages in (1.5) for typical initial data .u; g/ confirms the
statistically stationary setting described above: typical time-asymptotic behavior is
captured by a unique stationary measure �� .

Our main result is Batchelor’s law on the cumulative power spectrum (see Re-
mark 1.9). Let ��N denote the L2 projection to the Fourier basis functions with
frequency jkj � N (see Section 2.1).

THEOREM 1.3 (Batchelor’s law on the cumulative power spectrum). There exists
anN0 (depending on � but independent of �) such that for all � 2 .0; 1/ sufficiently
small and p 2 �1;1/, the following holds with implicit constants7 independent of
� and N : �

E��k��Ngk2pL2

�1=p �p logN for all N0 � N � ��1=2:(1.6)

Moreover, for all s 2 �0; � � 3d
2
� 1/ and 8p 2 �1;1/,�

E��kgk2pH s

�1=p
.p;s �

�sjlog �j:(1.7)

Remark 1.4. Batchelor’s law is often stated with a constant proportional to � D
2�Ekrg�k2

L2 D kbk2
L2 , as in (1.1). A careful reading of our proof provides a

simple estimate on the constants in (1.6) in terms of b, specifically, 8s > 0, the
following holds with implicit constants independent of b:

logN
�2

kbk2H s

.p;s
�
E��k��Ngk2pL2

�1=p
.p;s kbk2H s logN(1.8)

for all N0 � N � ��1=2, and that it suffices to take

N0 �s;�

 
kbk2=sH s

�1=s

!1C�
for any � > 0 (the implicit constants in (1.8) will also depend on �). The use of
regularity is because mixing estimates require the source to have some positive reg-
ularity in order to get quantitative, �-independent decay rates in negative Sobolev

6 When .ut / is forced with nondegenerate noise, as we do in this paper, it is possible to promote
the convergence in (1.5) to all initial .u; g/ 2 H � L2 when one considers bounded, uniformly
continuous observables ' W H � L2 ! R. This follows from (1) the strong Feller property for the
Markov semigroup associated to ut (see [53]) and (2) a small variation of the proof of Proposition
1.2 given in Section 2.5. Details are omitted for brevity.

7 We denote f .p;q;::: h if there exists a constant C > 0 depending on p; q; : : : but independent
of the other parameters of interest such that f � Ch and f � h when f . h and h . f . For the
entire paper, these implicit constants will never depend on �, N , or t .
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spaces. It is unclear if Batchelor’s law as stated in Theorem 1.3 is still true if b has
no more than L2 regularity. If b takes values in any

�C D fb 2 H s W C�1kbkL2 � kbkH s � CkbkL2g;
then both implicit constants in (1.6) are proportional to � and N0 depends only
on C .

Theorem 1.3 implies the following uniform-in-� estimate:

COROLLARY 1.5. For all s > 0 and p � 1 the following holds:

sup
�

E��kgk2pH�s .p;s 1:(1.9)

PROOF. Note that by Minkowski’s inequality (denoting�N D ��N ���N=2

for N � 2 and �1 D ��1),�
E��kgk2pH�s

�1=p � �
E��

�X
j�0

2�2sj k�2j gk2L2

�p�1=p
.
X
j�0

2�2sj
�

E��k�2j gk2pL2

�1=p
;

which is bounded . 1 by (1.6). �

Remark 1.6. Note that Theorem 1.3 (with s D 0) implies the logarithmic diver-
gence in L2:

E��kgk2L2 � jlog �j:(1.10)

Remark 1.7. The cumulative power spectrum estimate in (1.6) comes in two parts.
The lower bound is easier to establish and contains relatively little dynamical infor-
mation: we show in Section 3.2 that it follows from the fact that Lipschitz velocity
fields cannot mix a scalar faster than exponential (provided that one has suitable
exponential moment estimates to control large deviations). The upper bound on
the other hand is much more difficult. It makes crucial use of the optimal, almost-
sure uniform-in-� mixing estimates obtained in our recent work [18], which in turn
depends heavily on the results and methods of our earlier works on mixing and
Lagrangian chaos [16, 17]. Without these results, we would not be able to obtain
an upper bound. See below in Section 1.2 for more discussion on this sequence of
works.

Remark 1.8. The proof of the upper bound in (1.6) holds directly for all N <

1. By itself, the estimates on the cumulative power spectrum in (1.6) are not
precise enough to localize the dissipative range. Indeed, it is easy to check that
(1.6) implies for all � > 0,�

E��k��Ngk2pL2

�1=p ��;p logN for all N0 � N � ��� :
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However, (1.4) provides the additional information needed to localize the dissipa-
tive scale to approximately ��1=2, as one should expect from parabolic regularity.
Indeed,

E��k.I ���N /gk2L2 �
1

N 2
E��krgk2L2 D

�

2�N 2
:

The estimate (1.7) provides more precise high-frequency moment control, albeit
with a logarithmic deviation from (1.4).

Remark 1.9. The cumulative power spectrum estimate (1.6) is a little weaker than
(1.1) or a dyadic-shell averaged version (i.e., Ek�2j g

�k2
L2 � 1). However, if

E�� jyg.k/2j � F.k/ for F.k/ a monotone function, then (1.6) implies that F.k/ �
jkj�d (and analogously for any dyadic-shell averaged version). In a dyadic-shell
averaged version, the only kind of violations of Batchelor’s law that is not ruled
out by (1.6) are if some dyadic shells have too little mass and/or a sparse set (i.e.,
zero asymptotic density) of dyadic shells that have too much L2 mass (but never
more than log 2j ). The pointwise version in (1.1) could also be violated if the L2

mass was not distributed evenly enough in angle. This is the case, for example, for
discrete-time pulsed-diffusion models of advection-diffusion by CAT maps (see,
e.g., [51]). Bridging this gap is the subject of a possible future line of research: see
Section 1.4 below.

Yaglom’s law
Yaglom’s law was predicted in 1949 in [106] for all passive scalar turbulence

regimes, and consists of a reformulation of the constant scale-by-scale L2 flux
characteristic of anomalous dissipation. This is analogous to scaling laws for
other turbulent systems, e.g., the Kolmogorov �4=5 law for 3D Navier-Stokes
(see [19, 55, 88] and the references therein). In [16], we showed as a consequence
of Lagrangian chaos that Yaglom’s law holds over some inertial range with an un-
specified lower bound `� with `� ! 0 as � ! 0. Theorem 1.3 allows us to show
that this law essentially holds over the entire inertial range ` & �1=2. The proof is
an easy application of the methods of [16,19] and the a priori estimate (1.10) from
Theorem 1.3 and so is omitted for brevity.

COROLLARY 1.10 (Yaglom’s law over sharp inertial range). Denote the finite in-
crement for h 2 Rd ,

�hg.x/ D g.x C h/ � g.x/:
Let `� > 0 be such that `�1� D o..�jlog �j/�1=2/ as � ! 0. Then,

(1.11) lim
`I!0

lim sup
�!0

sup
`2.`� ;`I /

����1`E��

­
Td

­
Sd�1

j�`ngj2�`nu � n dn dx C 2

d
�

���� D 0:

Note that by (1.10), statistically stationary solutions are blowing up in L2, and
so (1.11) is only possible with the assistance of a large amount of cancellations.
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Remark 1.11. For 3D Navier-Stokes, the Kolmogorov �4=5 law together with
statistical self-similarity formally predicts the Kolmogorov �5=3 power spectrum
(jkj2Ejyu.k/j2 � jkj�5=3). It is unclear at the moment how intermittency may or
may not add corrections [3, 55, 69, 86, 101]. While passive scalar turbulence in
the Batchelor regime is expected to display intermittency [62, 80, 91, 94, 99], we
nevertheless do not see intermittency corrections to Batchelor’s prediction on the
power spectrum, at least in the case where � is fixed. Heuristically, one might
guess this from Yaglom’s law (1.11): the regularity of the velocity implies that
(1.11) formally scales like the second-order structure function E��k�`gk2L2 which
formally scales as the power spectrum by the Wiener-Khinchin theorem. Hence,
Yaglom’s law suggests a certain rigidity to Batchelor-regime passive scalars that is
not present in many other “turbulent” systems.

The vanishing diffusivity limit
For many turbulent systems consisting of a weakly damped system subjected

to forcing, it is expected to be able to pass to the zero-damping limit and obtain
statistically stationary solutions for the zero-damping problem [54, 81, 87]. The
limiting regime is sometimes referred to as ideal turbulence [47]; in this limit, one
expects weak solutions in very low regularity spaces with a nonvanishing scale-by-
scale flux of conserved quantities through all sufficiently small scales. A prominent
line of mathematical research in this direction is the work on Onsager’s conjecture
for the 3D Euler equations [30, 36, 37, 46, 47, 64], which seeks to identify low-
regularity solutions to the Euler equations capable of dissipating kinetic energy as
one expects of ideal turbulent solutions to 3D Euler. Work on weak turbulence in
dispersive equations can also be considered to be in a type of “ideal turbulence
limit” [26, 49].

A consequence of our results on the Batchelor spectrum is a realization of the
ideal turbulence program for passive scalar turbulence. Indeed, in contrast with
contemporary advances on Onsager criticality for 3D Euler (capable only of gen-
erating specific solutions to 3D Euler with nonvanishing flux), in our setting we
are able to exhibit probability measures supported in low-regularity spaces, typi-
cal samples of which exhibit the desired scale-by-scale flux across all sufficiently
small scales.8

For this, we consider weak-� subsequential limits of the sequence f��g of sta-
tionary measures for the .ut ; g�t / process as � ! 0, yielding (possibly more than
one) stationary measures �0 for the zero-diffusivity process .ut ; g0t / governed by

@tut C ut � rut Crpt � ��ut D Q PWt ;

@tg
0
t C ut � rg0t D b P�t :

(1.12)

8 See [54, 81] for examples of simplified shell models where the inviscid limit to rough, weak
solutions dissipating constant energy through the inertial range was successfully carried out in the
statistically stationary regime.
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Existence of weak-� limits in H�s; s > 0, follows from Prokhorov’s theorem and
the �-uniform moment estimates in Corollary 1.5; as a result, the limiting measures
�0 are supported on some low-regularity subspace of H� D T

s>0H
�s . See

Section 4.1 for more details. The following summarizes the basic properties of this
construction.

THEOREM 1.12 (Vanishing dissipation limit). There exists a subsequence f��ng
and a limit measure �0 on H � H� such that for each s > 0, ��n converges
weakly to�0 as a measure on H�H�s . Moreover, any limit point�0 is a stationary
measure for .ut ; g0t /, and the limit satisfies Batchelor’s law over an infinite inertial
range: for N0 as in Theorem 1.3 there holds

(1.13)
�
E�0k��Ngk2pL2

�1=p �p logN for all N � N0;

and moreover, there is nonvanishing L2 flux:

(1.14) E�0h��N .ug/;r��Ngi D �1
2
k��N bk2L2 :

Remark 1.13. Note that the absence of the �� dissipation in the transport equation
(1.12) makes the existence of nontrivial stationary solutions far from obvious. The
Markov process .ut ; g0t / has bad regularity properties on H�H�s (it is not Feller)
due to a lack of stability in the transport equation with respect to H perturbations of
the velocity field, and so a Krylov-Bogoliubov argument using the uniform mixing
bound does not apply. See Section 4.3 for more discussion.

Remark 1.14. The nonvanishing flux (1.14) is analogous to Yaglom’s law (1.11)
for the � D 0 equation in that both results say something about the constancy of
the L2 flux in the � ! 0 limit. However, as we show below in Theorem 1.15, �0

generic g are not even integrable on Td , and so we are unsure how to pass to the
� ! 0 limit in Yaglom’s law directly.

Irregularity of � D 0 stationary statistics
As mentioned previously, the limiting stationary statistics associated to �0 are

very irregular. Indeed, the uniform bound (1.9) used to extract the limit�0 suggests
that the measure is concentrated, at best, in H� D \s>0H�s , while the limiting
version of Batchelor’s law (1.13) implies that

(1.15) E�0kgk2L2 D1I
i.e., �0 cannot give second moments to functions in L2. The primary reason for
this irregularity is that, in the absence of a Laplacian, stationary solutions to the
zero diffusivity equation

(1.16) @tg
0
t C ut � rg0t D b P�t

must “anomalously” dissipate the input from the noise through the advection term.
Since the velocity field .ut / is regular, we cannot rely on roughness of the velocity
field to dissipate and must rely solely on the mixing properties of .ut /. Due to
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the regularity of .ut /, one can prove that the � D 0 transport equation (1.12)
conserves the L1 norm of g0t , and therefore one should expect that L1 solutions to
(1.16) cannot dissipate. In fact, we are able to confirm that �0 assigns zero mass
to L1 (see Section 5.1 for proof):

THEOREM 1.15 (Limiting solutions are not L1). Any limit measure �0 from The-
orem 1.12 satisfies

�0.H � L1/ D 0:

Remark 1.16. It is important to note that contrary to (1.15), which only states that
�0 can’t have second moments on L2, Theorem 1.15 is much stronger in that it
implies that �0 generic scalars g are “true” distributions in the sense that they do
not take values in any space of integrable functions, regardless of moments.

Remark 1.17. In general, DiPerna/Lions theory (see, e.g., [39]) predicts that (1.12)
conserves theLp norm of g0t if the velocity field is in the Sobolev spaceW 1;q.Td /
for q D p=.p � 1/. In general, velocity fields .ut / that are not Lipschitz do not
propagateL1 and should not be considered as belonging to the “Batchelor regime.”
See [84] for an example of a continuousW 1;p velocity field that does not propagate
L1 and also [41] for a related example.

Theorem 1.15 is based on understanding the formal L1 conservation law of the
inviscid equation (1.16). However, another clear question is to determine how
irregular g must be to have a nonvanishing L2 flux as in (1.14), i.e., studying
violation of the L2 conservation law. This is analogous to the problem for weak
solutions of the 3D Euler equations known as Onsager’s conjecture, which has
received a significant amount of mathematical attention in recent years (see [35,
37, 64] and the review [27]). In the context of the 3D Euler equations, Onsager’s
conjecture states that weak solutions can dissipate energy when not in C 0;1=3�

t;x and

cannot dissipate energy if in C 0;1=3C
t;x . The easier direction, that weak solutions

of 3D Euler conserve energy with sufficient regularity, was studied previously in
[28, 30, 46]. Specifically, in [28] it was shown that the Onsager-critical space (the
space that divides dissipative from conservative) is the Besov space L3tB

1=3
3;1.

In the spirit of [28], we show below that the space L2tB
0
2;1 is Onsager-type

critical for the passive scalar turbulence problem, where B0
2;1 � H� is the Besov

space of tempered distributions f 2 H� such that

sup
N2f2j Wj2N�g

k�Nf kL2 <1

(recall that �N D ��N � ��N=2 is a projection onto the dyadic shell of fre-
quencies of length between N and N=2 and N� D f0g [ N). Time-integrability
will be connected to moments with respect to the stationary measure �0 since for
statistically stationary processes, expectations of time averages are exactly equal
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to ensemble averages. Just past this critical boundary is the space B0
2;c � B0

2;1 of
distributions such that

lim sup
j!1

k�2j f kL2 D 0;

which possess just barely enough regularity to rule out L2 flux (see Section 5.2).
In order to quantify regularity in B0

2;1, we introduce generalized fractional de-
rivative norms, which play the same role that the modulus of continuity does to
generalize Hölder regularity.

DEFINITION 1.18. We call a multiplier M W �0;1/! �1;1/ B0
2;c-suitable if

(i) M is monotone increasing and limk!1M.k/ D1;
(ii) M is (globally) Lipschitz-continuous and 8C > 0 and 9c > 0 such that if

C�1j`j � jkj � C j`j,
jM.k/ �M.`/j � cp

1C jkj2
M.`/jk � `j:

Given such an M , we define the generalized Besov norm

kf kBM
2;1

WD sup
N2f2j Wj2N�g

M.N/k�Nf kL2 :

We show below in Lemma 5.3 that f 2 B0
2;c if and only if kf kBM

2;1
<1 for some

B0
2;c-suitable M . We prove the following theorem by contradiction with (1.14) in

Section 5.2.

THEOREM 1.19 (Onsager-type criticality ofL2tB
0
2;1). Let�0 be a stationary mea-

sure for the � D 0 limit process extended to H �H�1. Then for every p > 2 and
all B0

2;c-suitable M ,
E�0kgkpBM

2;1

D C1:

Remark 1.20. Note that we are not able to show that �0 assigns zero mass to B0
2;c

as we could for L1, and instead can only show that moments with p > 2 cannot be
finite. This obstruction is related to the fact that moments in �0 are related to time
integrability of stationary solutions and the fact that the critical space is L2tB

0
2;1.

It is unclear if it is possible for �0 to assign positive measure to H � B0
2;c .

Using Theorems 1.19 and 1.15 we can deduce the following about the solutions
studied in Theorem 1.3. In particular, we show that moments of solutions diverge
in certain norms, analogous to (1.10).

COROLLARY 1.21. Let � on �0;1/ be a convex monotone function satisfying
�.0/ D 0 and limr!1�.r/=r D 1, and let M be a B0

2;c-suitable multiplier.
The unique stationary measure �� on H�L2 satisfies the following for each � > 0

lim
�!0

E��

�Z
�.jgj/dx

��
D1
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and for each p > 2

lim
�!0

E��kgkp
BM
2;1

D1:

1.4 Open problems in Batchelor-regime passive scalar turbulence
Theorems 1.3–1.21 provide a starting point for a mathematical understanding of

Batchelor-regime passive scalar turbulence at fixed Reynolds number. However,
there are many remaining open questions, all of which are potentially accessible
in the near future using a combination of stochastic PDEs, harmonic analysis, and
random dynamical systems. Let us briefly outline these here.

� INTERMITTENCY. Certainly the most important set of open questions regard
intermittency. Following discussions in, e.g., [29, 55], we can begin to study
intermittency by looking at the flatness parameters

Fp.N / D
Ek�Ngk2pL2p�
Ek�Ngk2L2

�p :
A nonintermittent field would satisfy Fp.N / � C.p/ as N . ��1=2, N ! 1,
� ! 0. An example of such a field is white noise. At the opposite extreme is a
maximally intermittent random field consisting of a single Dirac delta function
placed with uniform probability on Td , which satisfies Fp.N / �p N

p�1. Pas-
sive scalar turbulence is expected to be intermittent [62,91,94,99]. A major step
in our understanding would be to provide an analytic derivation of powers �.p/
such that Fp.N / � N �.p/ for N !1, � ! 0, if such powers exist.

A helpful intermediate step might be to consider the power spectrum of a
discrete-time pulsed diffusion model [51], e.g., using a randomly driven Chirikov
standard map to model advection9 [21].

� HOW UNIVERSAL IS “UNIVERSAL”? Another set of important problems is to
study how widely applicable the Batchelor spectrum and other tenets of the the-
ory, such as uniqueness of stationary measures, Lagrangian chaos, etc., to differ-
ent and more realistic settings.
– Problems on Td with body forcing are far removed from any real physical

applications. Extending existing theories to include boundaries (exterior or
interior domains) and replacing body forces with boundary driving are proba-
bly the most physically important extensions. Even relatively basic questions,
such as uniqueness of stationary measures of the Navier-Stokes equations, are
to our knowledge, quite challenging and still open for most questions of this
type. See [98] for some progress in this direction. A related direction is to
study spatially homogeneous solutions on Rd .

9 Note that the presence of noise makes this tractable, unlike the deterministic case which is
notoriously difficult [42, 57].
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– Even on Td with stochastic forcing, in the case of the Navier-Stokes equa-
tions, our results on Lagrangian chaos and scalar mixing [16–18] cannot han-
dle C1

x forcing yet. It is natural to seek to extend this to C1
x forcing and

further to include non-white-in-time forcing such as OU tower forcing (see
Section 2.2 and [17]) and the class of bounded forcing studied in [66, 72, 73].
Note that the hypoellipticity theory of Hairer and Mattingly [61] applies to the
one-point Lagrangian flow ( Pxt D ut .xt /) generated by 2D Navier-Stokes with
OU tower forcing (and so the .ut ; Zt ; xt / Markov process has a unique sta-
tionary measure); however, our Lagrangian chaos results require strong Feller
in order to use the version of the Furstenberg criterion in [16].

� SHARPER REGULARITY ESTIMATES AND STRUCTURE FUNCTION RENORMAL-
IZATION. Even just concerning basic questions related to Batchelor’s law (1.6),
there are still remaining questions.
– There are three basic levels of precision when discussing the power spectrum.

After the cumulative spectrum, the next most difficult is a dyadic shell-by-
shell estimate, which so far remains unaddressed by the results in this paper.
The next most difficult after that is the pointwise estimate

E�� jyg.k/j2 � jkj�d ; N0 < jkj < ��1=2:
In fact, one can even try to search for an estimate of the type (see the discus-
sion in the physics literature, e.g., [40]), where of course we mean that the
error is uniformly controlled in �: A colon was added here.

E�� jyg.k/j2 D CB jkj�d C ok!1.jkj�d /; N0 < jkj < ��1=2:
These three basic levels are not equivalent. Pulsed-diffusion models based on
discrete-time random dynamical systems might be able to shed some light on
the subtle differences between these spectral characterizations.

– It is an interesting and subtle question to determine if the limiting solutions
we obtain in Theorem 1.3 are exactly in the Onsager critical spaceL2tB

0
2;1 or,

more to the point, whether the � > 0 approximations are uniformly bounded
in this space, that is,

E�� sup
N22N

k�Ngk2L2 . 1:

Please reword to avoid
line overrun.– Batchelor’s law should concern the second-order structure function E��k�`gk2L2 .

However, as the scalar does not even remain a locally integrable function as
� ! 0, it is hard to make sense of exactly how the second-order structure
function will behave in and at the limit � ! 0; instead, this may require a
suitable renormalization. Similarly, Yaglom’s law on the L2 flux (1.11) is
hard to make sense of rigorously at the � D 0 limit.

2 Preliminaries
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2.1 Fluid models
Let d D 2 or 3. We fix a real Fourier basis of of L2 D fu 2 L2.Td ;Rd / WR
u dx D 0; divu D 0g as follows: for m D .k; i/ 2 K WD Zd0 � f1; : : : ; d � 1g,

we set

em.x/ D
(
cd


i
k

sin.k � x/; k 2 ZdC;
cd


i
k

cos.k � x/; k 2 Zd�:

Here, Zd0 WD Zd n f0g, and Zd0 D ZdC [ Zd� is the partition defined by ZdC D
fk D .k.1/; : : : ; k.d// 2 Zd0 W k.d/ > 0g [ fk 2 Zd0 W k.1/ > 0; k.d/ D 0g and
Zd� D �ZdC. For each k 2 Zd0 , we have fixed a set f
 i

k
gd�1iD1 of orthonormal vectors

spanning the complement of the line spanned by k 2 Rd ; these are assumed to
satisfy 
 i

�k
D �
 i

k
. The coefficients cd > 0 are normalization constants. Note

that if d D 2, 
k D 
1
k

spans the perpendicular to k, and may therefore be taken
to be 
k D k?=jkj, k? WD .k.2/;�k.1//.

In terms of this Fourier basis, we consider the white-in-time, spatially Sobolev
stochastic forcing term

(2.1) QWt WD
X
m2K

qmem.x/W
m
t ;

where W m
t , m 2 K, are a family of independent standard one-dimensional Wiener

processes with respect to the cannonical stochastic basis .�W ;F
W ; .FW

t /;PW /.
The following decay and nondegeneracy assumption is made throughout this

and our previous works [16–18].

ASSUMPTION 1. There exists � > 5d
2

such that for all m D .k; i/ 2 K, we have

qm � 1

jkj� :

The state space for our fluid velocity fields is

H WD
�
u 2 H� .Td ;Rd / W

Z
u dx D 0; divu D 0

�
;

where

� 2
�
� � 2.d � 1/; � � d

2

�
:

Note that by our choice of �, we have � > d
2
C 3, so H ,! C 3. We will write the

Navier-Stokes system as an abstract evolution equation on H by

(2.2) @tuC B.u; u/C Au D Q PW D
X
m2K

qmem PW m;

where

B.u; v/ D �
Id � r.��/�1r��r � .u
 v/
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Au D
(
���u if d D 2;

��0�uC ��2u if d D 3:

The .ut / process with initial data u is defined as the solution to (2.2) in the mild
sense [34, 74]:

ut D e�tAu �
Z t

0

e�.t�s/AB.us; us/ds C
Z t

0

e�.t�s/AQ dW.s/;(2.3)

where the above identity holds PW almost surely for all t > 0. We have the
following well-posedness theorem:

PROPOSITION 2.1 ([34, 74]). Let d D 2 or 3. Under Assumption 1, for all initial
u 2 H\H� 0 with � 0 < �� d

2
and all T > 0, p � 1, there exists a PW -a.s. unique

solution .ut / to (2.3) that is FW
t -adapted, and belongs to

Lp.�W IC.�0; T �IH \H� 0// \ L2.�W IL2.0; T IH� 0C.d�1///:

Additionally, for all p � 1 and 0 � � 0 < � 00 < � � d
2

,

EW sup
t2�0;T �

kutkpH�0
.T;p;� 0 1C kukp

H\H�0

EW

Z T

0

kusk2H�0C.d�1/ds .T;� 1C kuk2H�0

EW sup
t2�0;T �

�
t
�00��0

2.d�1/ kutkH�00

�p
.p;T;� 0;� 00 1C kukp

H�0
:

PROPOSITION 2.2. Under Assumption 1, the process .ut / solving 2.2 admits a
unique stationary measure �.

Proposition 2.2 was first proved for d D 2 in [53] under Assumption 1; the
generalization to d D 3 is a straightforward extension.

Remark 2.3. Uniqueness of stationary measures is known for Navier-Stokes under
much weaker nondegeneracy conditions than Assumption 1, e.g., the truly hypoel-
liptic setting of [60] with d D 2 that only requires to force modes jmj1 � 1.
However, Assumption 1 is necessary for the Lagrangian chaos and scalar mixing
results in [16–18] because our methods require, for now, strong Feller regularity of
the semigroup t 7! ut . See remark 2.6 in [16] and remark 2.19 in [17] for more
discussion.

Because we require Assumption 1, we do not know how to extend our results
to fluid models solving the Navier-Stokes equations that are spatially C1 or dif-
ferentiable in time. However, we are able to apply our results to a class of finite-
dimensional fluid models for which solutions are C k

t C
1
x . This is the subject of the

following short section.
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2.2 C k
t C
1

x fluid models governed by finite-dimensional SDE
If the fluid evolves according to a finite-dimensional SDE, then the methods in-

volved are significantly simpler at a technical level and the strength of Hörmander’s
theorem [63] allows us to impose much weaker conditions on the noise models we
consider. Consequently, we can produce fluid models which have better spatial and
time regularity.

Below, for QWt given by (2.1), we define K0 D fm 2 K W qm ¤ 0g. For
m D .k; i/ 2 K D Zd0 � f1; : : : ; d � 1g, we define jmj1 D maxj jk.j /j.

For the following finite-dimensional stochastic fluids models we will make the
following less restrictive assumption to Assumption 1.

ASSUMPTION 2. Assume m 2 K0 if jmj1 � 2.

For K � K we define HK to be the linear span of the Fourier modes femgm2K.
One model we consider is the Stokes system on Td , d D 2; 3, prescribing the time
evolution .ut / on the state space HK0

for fixed initial u0 2 HK0
by

(2.4)
@tut D �rpt C�ut CQ PWt

divut D 0:

When K0 is finite, (2.4) is a finite-dimensional SDE on HK0
� RjK0j; indeed, it is

essentially a product of independent Ornstein-Uhlenbeck processes on RjK0j, and
in particular an elliptic diffusion on RjK0j.

For N � 1 we define HN � H to be the linear span of the em with jmj1 � N .
Define ��N W H ! HN to be the orthogonal projection. Another model we
consider for .ut / is the Galerkin-Navier-Stokes system, defined for fixed u0 2 HN

by

(2.5)
@tut D ���N .rpt C ut � rut /C ��ut CQ PWt

divut D 0;

where implicitly we assume that qm ¤ 0 only if jmj1 � N . As with the Stokes
system, Galerkin-Navier-Stokes is an SDE on the finite-dimensional space HN ;
under Assumption 2, equation (2.5) is known to satisfy the parabolic Hörmander
condition [43, 95], and so results in a hypoelliptic diffusion.

Standard finite-dimensional stochastic analysis [75] applies to both (2.4) and
(2.5), yielding velocity field processes .ut / that are C 1=2� in time and spatially
C1. In addition to these, our methods also apply to a class of models including
those that vary C k in time for any fixed k � 1. These models are effectively driven
by the projection of a coupled system of Ornstein-Uhlenbeck processes. More
precisely: fix 2 � N � M and let A W HM � HM be diagonalizable with strictly
positive spectrum. Let

�Wt D
X

jmj1�M

�memW
m
t ;
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and let X W HN � HN ! HN be a bilinear mapping with u � X.u; u/ D 0

and X.em; em/ D 0 for all jmj1 � N . We consider the following generalized
Galerkin-Navier-Stokes system with OU tower noise, defined by

(2.6)
@tut D �X.ut ; ut /C ��ut CQZt

@tZt D �AZt C �Wt :

Here, the noise term applied to the .ut / process is

QZt WD
X

jmj1�N

qmZ
m
t em.x/;

where t 7! Zm
t 2 R are the Fourier coefficients of Zt , i.e.,

Zt .x/ D
X
m

Zm
t em.x/:

Note that .ut / is not a Markov process, but .Zt / alone and .ut ; Zt / are. The
appropriate nondegeneracy assumption in this setting is as follows:

ASSUMPTION 3. Assume that the coefficients fqmg satisfy Assumption 2, and ad-
ditionally that the parabolic Hörmander condition holds for the .ut ; Zt / process
on HN �HM .

THEOREM 2.4. All of the main results in Section 1.3 hold whenever .ut / evolves
according to (2.4) or (2.5) under Assumption 2, or (2.6) under Assumption 3.

Remark 2.5 (see remark 1.10 in [17]). Consider the following example of a system
in the setting of (2.6). Fix n � 1 and consider the model

ut .x/ D
X

jmj1�2

umt em.x/;(2.7)

where the coefficients umt evolve according to

@tu
m
t D �umt CZ

m;0
t ;

@tZ
m;` D �Zm;`

t CZ
m;`C1
t 1 � ` � n � 1

@tZ
m;n D �Zm;n

t C PW m
t :

Up to re-indexing, this fits into the framework of (2.6) with X � 0. The parabolic
Hörmander condition for .ut ; Zt / is satisfied, and so Theorem 2.4 holds for .ut / as
above. Notably, solutions .ut / to (2.7) are C nC1-differentiable in time and smooth
(indeed, analytic) in space. The authors hope this serves as an indication that al-
though the methods in this paper rely strongly on the stochastic framework, they
are not inherently restricted to the rough time regularity of white-in-time noise.

Going forward, we will assume .ut / solves (2.2) with Assumption 1 for the re-
mainder of the paper. The application of these arguments to the finite-dimensional
models (2.4), (2.5), and (2.6) is straightforward and omitted for brevity.
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2.3 Lyapunov functions and exponential estimates
The results in our previous series of papers [17,18] require the use of the family

of Lyapunov functions

(2.8) V.u/ D V�;�.u/ WD
�
1C kuk2H

��
e�kuk

2
W

where � � 0, � > 0. Here, for velocity fields u we define

kukW WD
(
kcurlukL2 ; d D 2;

kukL2 ; d D 3:

Below, we formulate a drift condition for the family V D V�;�, ensuring that
trajectories of the .ut / process frequently visit the sublevel sets of V . Define �� D
�=Q, where

Q D 64

(
supm2Kjkjjqmj; d D 2;

supm2Kjqmj; d D 3:

LEMMA 2.6 (Lemma 3.7 in [17]). Let .ut / be a solution to the stochastic Navier-
Stokes equations (2.2) with initial data u 2 H. For all 0 � 
 < �=8, r 2 .0; 3/,
C0 � 0, and V.u/ D V�;� where � � 0 and 0 < e
T � < ��, there exist constants
c D c.
; r; C0; �; �/ > 0, C D C.
; r; C0; �; �/ � 1, such that the following
estimate holds for any T > 0:

(2.9) EW exp
�
C0

Z T

0

kuskHrds
�

sup
0�t�T

V e
t .ut / � CecT V.u/:

Remark 2.7. To connect (2.9) with more standard drift conditions given in, e.g.,
[82], write P1 for the Markov semigroup for the Navier-Stokes process .ut / and
apply Jensen’s inequality to (2.9) to deduce that 9CL > 0 such that P1V �
.eCLV /e

�


. In particular, we have the following drift condition:

8� > 0; 9C� > 0 such that P1V � �V C C� :

Note that the contraction constant � > 0 above can be made arbitrarily small.
Iterating this bound, it is straightforward to show that 8� > 0, 9K� such that for
all t > 0 there holds

PtV � e��tV CK�:(2.10)

We will also need the following basic stability estimate for solutions to the
Navier-Stokes equations.

LEMMA 2.8. For all u; u0 2 H, let .ut / and .u0t / be the corresponding solutions
with the same noise path !. Then 8p 2 �1;1/, there exists a deterministic K > 0

such that the following stability estimate holds for V.u/ as in (2.8),

Ekut � u0tkpH .p epKt
�
V.u/p C V.u0/p

�ku � u0kpH:
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PROOF. Define wt D ut � u0t ,
@twt C B.ut ; wt /C B.wt ; u

0
t /C Awt D 0:

The proof proceeds as a variation of, e.g., [17, lemma 3.10]. Analogous to the
calculations therein we have for some C > 0 and some r 2 .d

2
C 1; 3/

kwtkW � exp
�
C

Z t

0

ku�kH r C ku0�kH rd�
�
ku � u0kW

and for some q; C > 0 (possibly a different C ),

kwtk2H . exp
�
C

Z t

0

ku�kH r C ku0�kH r d�
�

�
�

sup
0<s<t

�ku�kqH C ku0�kqH
��ku � u0k2H:

The result then follows from Lemma 2.6. �

2.4 Uniform mixing and enhanced dissipation
In this section we will summarize the results of [16–18], which are used to prove

Batchelor’s law (Theorem 1.3) and the other results of this paper. Throughout,
assume .ut / solves (2.2) and that Assumption 1 holds. Consider the advection-
diffusion equation with diffusivity 0 � � � 1,

@t xgt C ut � rxgt D ��xgt(2.11)

for fixed initial xg0 D g 2 L2,
R
g dx D 0. This defines the following (random)

two-parameter semigroup of linear operators on L2: for 0 � s � t , ! 2 �W ,
and initial u D u0 2 H, define S�t;s.!; u/ W L2 ! L2, the two-time solution
operator satisfying xgt D S�t;s.!; u/xgs . When starting from s D 0 we will write
S�t .!; u/ D S�t;0.!; u/. Note that S�0 .!; u/ D I , the identity on L2. Note as well
the following cocycle property: for any s; t > 0, we have

S�tCs.!; u/ D S�s .�t!; ut /S
�
t .!; u/;

where �t W �W ! �W is the standard time-shift on Wiener space defined for each
! 2 �W by

�t!. �/ WD !. � C t / � !.t/:
This implies that we can write the two-parameter semigroup St;s.!; u/ as

(2.12) S�t;s.!; u/ D S�t .�s!; us/:

Note that for any p � 1, S�t extends in a natural way to a defined mapping on Lp,
with range contained in Lp. The same is true of Sobolev spaces H s , s > 0.

Several of the important results in this section involve random constants of the
form D W �W � H ! R�1, the P-law of which are controlled in terms of V.u/.
Since random constants of this type appear many times in this paper, we introduce
the following definition.
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DEFINITION 2.9. Let D W �W � H ! R�1 be measurable. We say that D has V
bounded pth moment if 9� � 0 such that 80 < � < �� we have for V D V�;�.u/

EDp. � ; u/ .� V.u/:
The following lemma is very important since it provides us some control on the

fluctuations of the mixing time in terms of the Lyapunov function V.u/.

LEMMA 2.10. Let D W �W � H ! �1;1/ have V -bounded pth moment. Then,
8� > 0, 9K� > 0 such that

EDp.�t!; ut / .p;� e
��tV.u/CK�:(2.13)

PROOF. Using, in sequence, the tower property of conditional expectation, the
fact that ut is FW

t -measurable and the increment �t! is independent of FW
t and

equations (2.13) and (2.10), we have:

EDp.�t!; ut / D E
�
E
�
Dp.�t!; ut /jFW

t

��
. EV.ut / . e��tV.u/CK�:�

The following lemma is a useful corollary of (2.9).

LEMMA 2.11. For all p 2 �1;1/, there exists a (deterministic) C0 > 0 and a
random constant D0 W H ��W ! R�1 with V -bounded pth moment such that

exp
�Z t

0

kru�kL1 d�
�
� D0.!; u/e

C0t :

PROOF. We provide the proof when p D 1; other values of p require straight-
forward adjustments.

Set V D V0;�, where � 2 .0; ��/ is arbitrary. To start, note that by Lemma 2.6
and Chebyshev’s inequality, 9c D c.�/ > 0 such that

P
�

exp
�
2

Z t

0

kruskL1 ds
�
> V.u/e4ct

�
� E exp

�
2
R t
0 kruskL1 ds

�
V.u/e4ct

.� e
�3ct :

By Borel-Cantelli, there exists N.!; u/ � 1 with P.N. �; u/ � n/ .� e�3cn such
that

exp
�Z n

0

kruskL1 ds
�
� V.u/e4cn for n � N.!; u/.

To bound when n < N.!; u/, we find

exp
�Z n

0

kruskL1 ds
�
� D0.!; u/ WD exp

�Z N.!;u/

0

kruskL1 ds
�

and note that by Cauchy-Schwarz,

ED0. �; u/ �
X
n

.P.N D n//1=2
�

E exp
�
2

Z n

0

kruskL1 ds
��1=2

�
X
n

.e�3cn/1=2.V .u/ecn/1=2 � V.u/
X
n

e�cn . V.u/: �
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With these preparations in place, we now state the main results of [16–18].

THEOREM 2.12 (Theorem 1.2 in [18]). There exists �0 > 0 for which the following
holds for all � 2 �0; �0�. Let .ut / solve (2.2) for an arbitrary initial condition
u0 D u 2 H. For all s > 0, p � 1, there exists a deterministic 
 D 
.s; p/ > 0

(depending only on s, p, and the parameters Q, �, etc.) and a random constant
D�.!; u/ W � � H ! �1;1/ (also depending on p, s, as well as �) such that for
all g 2 H s ,

kS�t .!; u/gkH�s � D�.!; u/e
�
tkgkH s :

The random constant D� has V -bounded pth moment with implicit constant inde-
pendent of �.

Theorem 2.12 is proved in [17] for � D 0 and [18] for � 2 �0; �0�. Both papers
rely heavily on Lagrangian chaos as proved in [16]. From Theorem 2.12, it is
relatively straightforward to prove the following enhanced dissipation result.

THEOREM 2.13 (Theorem 1.3 in [18]). Let �0 > 0 and 
 D 
.1; p/ be as in
Theorem 2.12, where p � 2 is arbitrary. Let .ut / solve (2.2) for an arbitrary
initial condition u0 D u 2 H. Then, there is a random constant D0

�.!; u/ such
that for all g 2 L2

kS�t .!; u/gkL2 � minf1;D0
�.!; u/�

�1e�
tgkgkL2 :

The random constant D0
� has V -bounded pth moment with implicit constant inde-

pendent of �.

THEOREM 2.14 (Theorem 1.5 in [18]). In the setting of Theorem 2.12, let

�� D ��.!; u; g/ D infft W kgtkL2 < 1
2
kgkL2g:

Then, there exists a �0 > 0, a sufficiently small universal constant such that for all
� 2 .0; �0�, one has

��.!; u; g/ � �.g; u; !/jlog �j with probability 1;

where �.g; u; !/ 2 .0; 1/ is a �-independent random constant with the property
that there exists a � � 1 such that for all p � 1 and � > 0 with V.u/ D V�;�.u/

we have

E��p. � ; u/ .p;�;�
kgkp

H1

kgkp
L2

V.u/p:

2.5 Unique stationary measure for .ut; g�t /
We provide here an argument proving uniqueness of the stationary measure for

the passive scalar process .ut ; g�t / on H � L2. The following argument is quite
general and applies in a variety of cases outside the scope of the main results; see
Remark 2.16 below.
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PROPOSITION 2.15. For any � > 0, the Markov process .ut ; g�t / admits a unique
stationary measure �� on H � L2.

PROOF. It suffices to show that any two ergodic stationary measures ��1; �
�
2 for

.ut ; g
�
t / coincide. By standard ergodic theory for random dynamical systems [70]

and the ergodic decomposition theorem (see, e.g., [44]), uniqueness of ergodic
stationary measures for .ut ; g�t / implies uniqueness of stationary measures.

Assume now that ��i are two ergodic stationary measures, i D 1; 2. To prove
��1 D ��2, it suffices to show that for each bounded, globally Lipschitz  W H �
L2 ! R, we have that

R
 d��1 D

R
 d��2. Without loss of generality, we can

assume k kLip D 1.
By ergodicity of ��i and the Birkhoff ergodic theorem, we have the following

for i D 1; 2: there is a set yGi D yGi . / � H � L2 of full ��i -measure such that for
all initial .u; g/ 2 yGi , we have

lim
n!1

1

n

n�1X
tD0

 .ut ; g
�
t / D

Z
 d��i

with probability 1. Next, observe that ��i projects to the unique stationary measure
� for the .ut / process (Proposition 2.2). It follows from Fubini’s theorem that
for i D 1; 2, we have �.Gi / D 1, where Gi is the projection of yGi to H, i.e.,
Gi D fu 2 H W 9g 2 L2 such that .u; g/ 2 yGig. Since �.Gi / D 1, i D 1; 2, we
conclude that G1\G2 is nonempty. Fix u 2 G1\G2 and let g; h 2 L2 be such that
.u; g/ 2 yG1, .u; h/ 2 yG2. Observe that

gt � ht D S�t .!; u/.g � h/;
i.e., gt � ht solves (2.11). Theorem 2.13 implies kgt � htkL2 ! 0 as t ! 1.
Given � > 0, let N0 D N0.�

0/ be such that kgt � htkL2 < � for all t � N0.
With these preparations in place, fix u 2 G1 \ G2 and g; h 2 L2 such that

.u; g/ 2 yG1; .u; h/ 2 yG2. With � > 0 as above, let N0 D N0.�/. We have����Z  d��1 �
Z
 d��2

���� � lim
n!1

1

n

n�1X
tD0

j .ut ; g�t / �  .ut ; h�t /j

D lim
n!1

1

n

n�1X
tDN0

j .ut ; g�t / �  .ut ; h�t /j:

Each summand on the RHS is � �, and so the whole limit is � �. Since � > 0 was
arbitrary, this completes the proof. �

Remark 2.16. The proof given above has two main ingredients: (1) uniqueness
for the stationary measure � on H, and (2) L2 dissipation estimates for S�t .!; u/
for � > 0. Item (1) is known to hold for 2D Navier-Stokes under a very weak
nondegeneracy condition on the noise [60], while item (2) holds for a wide variety
of fluid models by standard estimates. Thus, the proof given above is applicable at
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a much higher level of generality than that of Assumption 1, including the setting
of 2D Navier-Stokes with “truly hypoelliptic” forcing as in [60].

3 Proof of Batchelor’s Law
In this section we prove the main result of this paper, Theorem 1.3. To summa-

rize the main approach, observe that by uniqueness of the stationary measure ��

for (1.3) (Proposition 2.15), the Birkhoff ergodic theorem implies

E��k��Ngk2L2 D lim
T!1

1

T

Z T

0

k��Ng
�
t k2L2 dt

for ��-generic initial u D u0 2 H, g D g�0 2 L2. On the other hand, the mild
formulation for (1.3) reads as

(3.1) g�t D S�t .!; u/g C
Z t

0

S�t;s.!; u/b d�s:

Using the fact that

E�

�
S�t .!; u/g;

Z t

0

��NS
�
t;s.!; u/b d�s

�
L2

D 0

results in the identity

Ek��Ng
�
t k2L2 D Ek��NS

�
t .!; u/gk2L2

C E
Z t

0

k��NS
�
t;s.!; u/bk2L2 ds

(3.2)

after taking anL2 norm in Td , then an expectation, and finally the Itô isometry. By
Theorem 2.13, the first such term vanishes exponentially fast in L2 as t !1, and
so it is the second term that dominates the long-time behavior of Ekg�t k2L2 , hence
the value of E��k��Ngk2L2 . While the above is stated for p D 1, the case p > 1
is handled similarly using the Burkholder-Davis-Gundy inequality.

The upper bound for (1.6) in the inertial range is carried out in Section 3.1,
and the lower bound in Section 3.2. The dissipative-range upper bound is done in
Section 3.3.

3.1 Upper bound in the inertial range
In this section we prove the . direction of (1.6), that is:

LEMMA 3.1. Under the conditions of Theorem 1.3, there holds for all p 2 �1;1/
and for all 2 � N <1,�

E��k��Ngk2pL2

�1=p
.p logN:(3.3)

We begin with the following lemma.
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LEMMA 3.2. For all p 2 �1;1/ and 2 � N <1,

lim sup
t!1

Z t

0

�
Ek��NS

�
t;� .!; u/bk2pL2

�1=p d� .p logN:

PROOF. Recall that k��NhkL2 . N k��NhkH�1 for h 2 L2. By (2.12) and
Theorem 2.12 followed by Lemma 2.10,Z t

0

�
Ek��NS

�
t;� .!; u/bk2pL2

�1=p d�

D
Z t

0

�
Ek��NS

�
t�� .��!; u� /bk2pL2

�1=p d�

.

Z t

0

�
ED2p.��!; u� /

�1=p
min.1;N 2e�2�.t��//d�

.

Z t

0

�
e���V.u/CK�

�
min.1;N 2e�2�.t��//d�

.
�
e��tV.u/C 1

�
logN:

The proof then follows by sending t !1. �

We are now ready to complete the proof of Lemma 3.1.

PROOF OF LEMMA 3.1. First observe that, for all .u; g/ 2 H � L2 there holds
by (3.1)

k��Ngtk2pL2 .p


��NS

�
t .!; u/g



2p
L2 C





Z t

0

��NS
�
t;� .!; u/b d��





2p
L2

:

From the initial data term, by Theorem 2.13, 9� (depending on p) such that for a
suitable V as in (2.8),�

Ek��NS
�
t .!; u/gk2pL2

�1=p
. ��1V.u/e��tkgk2

L2 :

By Burkholder-Davis-Gundy (e.g., [34, theorem 5.2.4]) followed by Minkowski’s
inequality,

E




Z t

0

��NS
�
t;� .!; u/b d��





2p
L2

.p E
�Z t

0

k��NS
�
t;� .!; u/k2L2 d�

�p
.

�Z t

0

�
Ek��NS

�
t;� .!; u/bk2pL2

�1=p
d�
�p
:

Hence, Lemma 3.2 implies

lim sup
t!1

�
Ek��Ngtk2pL2

�1=p
. logN:
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By standard moment estimates (see, e.g., [74]), for all p; � > 0, E��kgkpL2 <1.
Hence, by the Birkhoff ergodic theorem, for ��-a.e. .u; g/ 2 H � L2 we have�

E��k��Ngk2pL2

�1=p D lim
T!1

1

T

Z T

0

�
E.u;g/k��Ngtk2pL2

�1=pdt . logN:

This completes the proof of Lemma 3.1. �

3.2 Lower bound in the inertial range
In this section we prove the & direction of (1.6).

LEMMA 3.3. Under the conditions of Theorem 1.3, there exists an N0 � 2 chosen
sufficiently large (depending on b and the fluid parameters only) such that for all
� 2 .0; �0� the following holds for all p 2 �1;1/ and all N 2 �N0; �

�1=2�:�
E��k��Ngk2pL2

�1=p
&p logN:

We begin with the following, which follows from an H 1 energy estimate and
Lemma 2.11.

LEMMA 3.4. There holds (with C0 and D0 as in Lemma 2.11)

kS�t .!; u/gkH1 � D0.!; u/e
C0tkgkH1 :

The next lemma provides the lower bound on the stochastic integral contribu-
tion.

LEMMA 3.5. There exists anN0 � 2 chosen sufficiently large (depending on b and
the fluid parameters only) such that for all � 2 .0; �0� the following limit holds for
all N 2 �N0; �

�1=2�:

lim inf
t!1

Z t

0

Ek��NS
�
t�� .!; u/bk2L2 d� & logN:

PROOF. Fix u 2 H and let 
 2 .0; 1/ to be chosen later. Write for t � 
 logN
and N � 2, Z t

0

k��NS
�
t�r.�r!; ur/bk2L2 dr

�
Z t

t�
 logN
kS�t�r.�r!; ur/bk2L2 dr

�
Z t

t�
 logN
k�>NS

�
t�r.�r!; ur/bk2L2 dr:

The first term is controlled by the H 1 norm growth bound in Lemma 3.4:

E
Z t

t�
 logN
k�>NS

�
t�r.�r!; ur/bk2L2 dr

.

Z t

t�
 logN
N�2ED2

0.�r!; ur/e
�.t�r/dr:
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By Lemma 2.10

ED2
0.�r!; ur/ . e

��rV.u/CK�;

and hence, choosing 
 < ��1, we have

lim sup
t!1

E
Z t

t�
 logN
k�>NS

�
t�r.�r!; ur/bk2L2 dr

. 
N 
��2 logN lim sup
t!1

.e��tV.u/CK�/ � C0N�1
 logN

for some constant C0 universal independent of 
; �; t; u. This completes the second
term in (3.2).

For the first term in (3.2), we use the stopping time defined in Theorem 2.14
with initial data b:

EkS�t�r.�r!; ur/bk2L2 �
1

2
kbk2

L2P.��.�r!; ur/ > t � r/;
where (analogously to Theorem 2.14) ��.!; u/ is defined by

��.!; u/ D inf

(
t > 0 W kS�t .!; u/bk2L2 �

kbk2
L2

2

)
:

Theorem 2.14 then implies that 9 C1 > 0 (independent of t; r; �; u) and �.!; u/ W
� � H ! R>0 with E��1. � ; u/ � C1V.u/ such that �� � �j log �j. Using
Chebyshev’s inequality and an argument similar to that used to prove Lemma 2.10

P.��.�r!; ur/ > t � r/ � 1 � P
�
��1.�r!; ur/ > jlog �j=.t � r/�

� 1 � t � r
jlog �jE

�
E.��1.�r!; ur/jFr/

�
� 1 � C1 t � rjlog �j.e

��rV.u/CK�/:

It follows that for 2 � N � ��1=2,

lim inf
t!1

E
Z t

t�
 logN
kS�t�r.�r!; ur/bk2L2 dr

� lim inf
t!1

1

2
kbk2

L2
 logN
�
1 � C1


2

logN
j log �j.e

��tV.u/CK�/

�
� 1

2
kbk2

L2
 logN
�
1 � C1K�


4

�
:

Therefore, for K�C1
 < 1=8 and N > N0 WD 8C0,

lim inf
t!1

E
Z t

0

k��NS
�
t�r.�r!; ur/bk2L2 dr &

�
1 � 


4
C1K� � 2C0N�1

�
logN

& logN:

�
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PROOF OF LEMMA 3.3. By Jensen’s inequality,

E��k��Ngk2pL2 � .E��k��Ngk2L2/
p for p � 1;

and so in the following argument it suffices to consider the p D 1 case. For
arbitrary initial data g 2 L2, we have by (3.2) that

Ek��Ngtk2L2 � E
Z t

0

k��NS
�
t�r.�r!; ur/bk2L2 dr;

hence lim inft!1 Ek��Ngtk2L2 & logN by Lemma 3.5 for N0 < N < ��1=2.
By the Birkhoff ergodic theorem (as in Lemma 3.1 above),

E��k��Ngtk2L2 D lim
T!1

1

T

Z T

0

Ek��Ngtk2L2 dt & logN:

This completes the proof of Lemma 3.3. �

3.3 Upper bound in the dissipative range
First, we derive the upper bound on the L2 norm stated in (1.7). If we were not

also interested in higher moments we could use the following simple observation
using the L2 balance (1.4) and the upper bound in Batchelor’s law, (3.3)

E��kgk2L2 . E��k����1=2gk2L2 C �E��k�>��1=2rgk2L2 . 1C jlog �j:
The following argument also provides estimates on moments p > 2.

LEMMA 3.6. Under the conditions of Theorem 1.3, there holds for all p 2 �1;1/
and for all � 2 .0; �0� �

E��k��Ngk2pL2

�1=p
.p jlog �j:

PROOF. The proof proceeds similarly to that for Lemma 3.3 with the enhanced
dissipation estimate (Theorem 2.13) in place of the uniform mixing estimate (The-
orem 2.12). As in Lemma 3.3, by Burkholder-Davis-Gundy and Minkowski’s in-
equality,�

Ekgtk2pL2

�1=p
.
�
EkS�t .!; u/gk2pL2

�1=p C Z t

0

�
EkS�t;� .!; u/bk2pL2

�1=p d�:

By Theorem 2.13, 9� > 0 and D0
�.!; u/ with V -bounded 2pth moments, we have

for any .u; g/ 2 H � L2,�
Ekgtk2pL2

�1=p
.
�
EkS�t .!; u/gk2pL2

�1=p C Z t

0

�
EkS�t;� .!; u/bk2pL2

�1=p d�

.
�
E.D0

�.!; u//
2p
�1=p

��1e��tkgk2
L2

C
Z t

0

�
E.D0

�.��!; u� //
2p
�1=p

min.1; ��1e��.t��//d�:
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By Lemma 2.10, we therefore have�
Ekgtk2pL2

�1=p
.p V.u/�

�1e��tkgk2
L2

C
Z t

0

.e���V.u/C 1/min.1; ��1e��.t��//d�

.p V.u/�
�1e��t .1C kgk2

L2/C jlog �j:
Hence for all .u; g/ 2 H � L2,

lim sup
t!1

Ekgtk2pL2 . jlog �j:

Finally, by the Birkhoff ergodic theorem, for �� a.e. .u; g/ 2 H � L2,

E��kgk2pL2 D lim
T!1

1

T

Z T

0

E.u;g/kgtk2pL2 dt . jlog �jp: �

We now turn to the proof of (1.7) for q > 0, which is a relatively straightforward
consequence of parabolic regularity and the L2 a priori estimate in Lemma 3.6.
First we prove the following quantitative H s regularization estimate. Below we
use the Fourier multiplier notation: for m W Cd ! R measurable, we define the
operator

m.r/f D �
m.ik/ yf .k/�_:

LEMMA 3.7. For all initial data .u; g/ 2 H � L2, for all 
 2 .0; � � d � 1/,
9� � 0, such that 8p 2 �1;1/ and 8� > 0 there holds for V D V�;�

Ek�1Cp
�hri�
S�1 .!; u/gkpL2 .p;
 V

p.u/kgkp
L2 :

PROOF. We first deduce a pathwise a priori estimate assuming g is sufficiently
smooth. To this end, by Plancherel’s identity we have for t 2 �0; 1�,

1

2

d
dt
k�1Cp

�hri�
tg�t k2L2

D
X
k2Zd�

�

 log

�
1Cp

�hki� � �jkj2��1Cp
�hki�2
t jyg�t .k/j2

C
D�
1Cp

�hri�
tg�t ; �1Cp
�hri�
tr � .utg�t /

E
L2

DW I1 C I2:

For I1, by 
 log.1C x/ � x2 C C.
/,

I1 .



�1Cp

�hri�
tg�t 

2:
By incompressibility and Plancherel’s identity,

I2 D

�
1Cp

�hri�
tg�t ;�
1Cp

�hri�
tr � .utg�t / � r � .ut
�
1Cp

�hri�
tg�t /�L2 D
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D
X

k;`2Zd�

.1Cp
�hki/
t yg�t .k/

�
.1Cp

�hki/
t � .1Cp
�hk � `i/
t�

� ik � yut .`/yg�t .k � `/

D
X

k;`2Zd�

�
1jk�`j� 1

2
j`j C 1jk�`j< 1

2
j`j

�
.1Cp

�hki/
t yg�t .k/

� �.1Cp
�hki/
t � .1Cp

�h`i/
t�ik � yut .k � `/yg�t .`/
D I2IHL C I2ILH:

On the support of the I2IHL (here HL stands for “high-low”), we use that jkjCj`j .
jk � `j, together with Cauchy-Schwarz, Young’s inequality, and H r ,! cL1 for
r > d

2
to deduce that for any r 2 .d

2
C 1; 3/,

jI2IHLj . k�1Cp
�hri�
tg�t kL2kg�t kL2k�1Cp

�hri�
tutkH r :

On the support of the I2ILH , we use the mean value theorem and jkj . j`j to
deduce�

1Cp
�hki�
t � �1Cp

�hk � `i�
t . p
�
 t

�
1Cp

�hk � `i�
t�1j`j:
Therefore, by Cauchy-Schwarz, Young’s inequality, and H r ,! cL1 for r > d

2
, for

any r 2 .d
2
C 1; 3/ we have

jI2ILHj . kutkH r



.1Cp
�hri/
tg�t



2
L2 :

By Grönwall’s inequality, there is some C > 0 (independent of g; �; u; t/ such that
the following holds:

.1Cp

�hri/
tg�t


2
L2

� exp
�
Ct C

Z t

0

ku�kH r d�
�
kgk2

L2

C exp
�
Ct C

Z t

0

ku�kH rd�
�Z t

0



�1Cp
�hri�
�u�

2H rkg�k2L2 d�:

Taking expectations and applying Lemma 2.6 completes the a priori estimate (3.7).
For an arbitrary g 2 L2, the desired result follows by density. �

LEMMA 3.8. Under the assumptions of Theorem 1.3, (1.7) holds.
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PROOF. By standard moment estimates (see, e.g., [74]), E��kgk2pH s < 1 for
s 2 �0; � � 3d

2
� 1/ and p <1. By stationarity,

E��kgk2pH s D
Z

E.u;g/kg�1k2pH s d��.u; g/

.p

Z
EkS�1 .!; u/gk2pH s d��.u; g/

C
Z

Ek
Z 1

0

S�1�� .��!; u� /b d��k2pH s d��.u; g/:

By Lemma 3.7, 9� � 0 such that for 8� > 0, V D V�;�, and all .u; g/ 2 H � L2,

EkS�1 .!; u/gk2pH s . �
�spV p.u/kgk2p

L2 :

Because b 2 C1, it follows from Burkholder-Davis-Gundy, Minkowski’s inequal-
ity, and classical H s estimates for the transport equation (together with Lemma
2.10) that 9� � 0 such that 8� > 0, there holds for suitable V D V�;�,

E




Z 1

0

S�1�� .��!; u� /b d��





2p
H s

.

Z 1

0

EkS�1�� .��!; u� /bk2pH s d� . V p.u/:

Therefore by Lemmas 3.6 and 3.7, and Hölder’s inequality,

E��kgk2pH s . E��
�
V p.u/

�
1C ��spkgk2p

L2

��
.p �

�spjlog �jp:
This completes the proof of (1.7). �

4 Vanishing Diffusivity Limit
This section is devoted to the proof of Theorem 1.12 describing weak limits of

the stationary measures �� for the passive scalar process .ut ; g�t /. In Section 4.1
we show that such weak limits exist in the weak topology of measures on H�H�s

and satisfy Batchelor’s law (1.13) over an infinite inertial range.
Once these are established, it remains to show that �0 is a stationary measure

for the passive scalar process .ut ; g0t /. As we check in Section 4.2, the latter can be
extended to a Markov process defined by a random dynamical system on H�H�1,
the trajectories of which are weak solutions to the passive scalar advection equation
at � D 0. However, to check that weak limits �0 are stationary is a nontrivial task
due to poor continuity properties of .ut ; g0t / in H�1 with respect to perturbations
of the initial data u 2 H for the velocity field .ut /, and so stationarity of�0 requires
careful justification; see Section 4.3 for more discussion. The proof is completed
in Section 4.4.

Finally, we complete this section with a proof of the L2 nonvanishing flux rela-
tion (1.14).
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4.1 Existence of weak limits of f��g

Corollary 1.5 of Batchelor’s law in Theorem 1.12 is that for each s 2 .0; 1� we
have the uniform in � estimate

sup
�>0

E��kgk2pH�s .s;p 1:(4.1)

SinceH�s=2 is compactly embedded inH�s for all s > 0, we can use this to show
tightness of f��g, which permits us to take weak limits by Prokhorov’s theorem.
Precisely, we have the following.

LEMMA 4.1. There exists a sequence f�ng, �n ! 0 as n!1, and a measure �0

on H � L2 such that for each s 2 .0; 1�, the following holds: �� ! �0 weakly as
a measure on H �H�s; i.e., for each � 2 Cb.H �H�s/ we haveZ

� d��n !
Z
� d�0:

PROOF. Fix s; � > 0 and define

K D �
h 2 H�s W khk2

H�s=2 � ��2E��kgk2H�s=2

	
:

In light of the compact embedding H�s=2 ,! H�s , K is a compact subset of
H�s; by (4.1) and Chebyshev’s inequality, we have

sup
�2.0;�0�

��.H � .H�snK// � �:

It follows by Prokhorov’s theorem that .��/�>0 has a subsequence that converges
weakly as a measure on H � H�s . Choosing s D sj D 2�j we can extract a
diagonal subsequence �n and a limit measure �0 such that ��n ! �0 weakly as a
measure on H�H�sj for every j > 0, hence on H�H�s for every s 2 .0; 1�. �

It is now straightforward to verify the infinite-inertial range version of Batch-
elor’s law as in (1.13). With �0 D limn �

�n fixed as above, observe that g 7!
k��NgkL2 varies continuously in H�s . Therefore, one may use a straightfor-
ward truncation argument along with the fact

sup
�2�0;1�

E��k��Ngk2pL2 <1

to conclude that

E�0k��Ngk2pL2 D lim
n!1

E��nk��Ngk2pL2 �p .logN/p

for all N � N0, using the fact that the inertial range N0 � N . ��1=2 grows to
all of fN � N0g as � ! 0.
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4.2 The scalar process .ut; g0t / at � D 0

In this section we study the properties of the passive scalar process .ut ; g0t / that
solves the advection equation

(4.2) @tg
0
t C ut � rg0t D b P�t

in the absence of any diffusion term. Since the limiting measure �0 assigns full
measure to H�1, it is natural to consider t 7! g0t as a process in the negative
Sobolev space H�1, for which it will be necessary to show that weak solutions to
(4.2) are well-posed for H�1 initial data.

To formulate this, recall that the solution operator S0t .!; u/ W L2 ! L2, defined
by

S0t .!; u/g D g � .�t!;u/�1;
solves (4.2) in the absence of the noise term b P�t , where �t!;u W Td ! Td is the
Lagrangian flow associated to .ut /. By incompressibility, for f 2 H 1; g 2 L2,
we have Z

fS0t .!; u/g dx D
Z
.f � �t!;u/g dx:(4.3)

LEMMA 4.2. The following holds:
(a) For each t > 0 the operator S0t .!; u/ defined by (4.2) admits a unique

extension to a bounded linear operator on H�1 satisfying (4.3) for all
g 2 L2; f 2 H�1, and for all g 2 H�1, t 7! St .!; u/g is strongly
continuous in H�1.

(b) For initial data g 2 H�1 the unique weak solution g0t to equation (4.2) is
given by

g0t D S0t .!; u/g C
Z t

0

S0t�s.�s!; us/b d�s:

PROOF. Part (b) follows from (a), which in turn follows from a density argument
and the following estimate for g 2 L2

kS0t .!; u/gkH�1 � xD.!; u/ectkgkH�1 ;(4.4)

where c > 0, and for each p 2 �1;1/ we can take xD.!; u/ W � � H ! R�1 to
have a V -bounded pth moment. To see this, fix f 2 H 1; g 2 L2, and observe that
by Grönwall’s inequality and Lemma 2.11

jr.f � �!;ut /.x/j � exp
�Z t

0

kruskL1 ds
�
jrf .�t!;u.x//j

� D0.!; u/e
ct jrf .�t!;u.x//j;

where c > 0 andD0.!; u/ has a V -bounded pth moment. Using incompressibility
of �t!;u, we obtain

kf � �t!;ukH1 � D0.!; u/e
ctkf kH1 ;
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hence ����Z S0t .!; u/gf dx
���� D ����Z g.f � �t!;u/dx

���� � kgkH�1kf � �t!;ukH1

� D0.!; u/e
ctkgkH�1kf kH1 :

We conclude kS0t .!; u/gkH�1 � D0.!; u/e
ctkgkH�1 , as desired. Strong conti-

nuity of t 7! S0t follows by density of C1.Td / in H�1. �

4.3 Stationarity of �0: restricted Feller property of .ut; g0t /
With the evolution t 7! g0t defined, let P 0

t denote its corresponding Markov
semigroup:

P 0
t �.u; g/ WD E.u;g/�.ut ; g

0
t /

for each bounded measurable � W H �H�1 ! R. We seek to show that if �0 is
a weak limit of ��n , �n ! 0, then �0 is stationary for .ut ; g0t /; equivalently, it
suffices to show that for all globally Lipschitz, bounded � W H � H�1 ! R, we
have Z

P 0
1 � d�0 D

Z
� d�0:

By the weak convergence ��n ! �0 and stationarity of ��n , it suffices to show
that

lim
n!1

Z
P
�n
1 � d��n D

Z
P 0
1 � d�0;

where P �
t is the Markov semigroup on H � L2 for the process .ut ; g�t /. To this

end the strategy is to write

(4.5)

����Z P
�n
1 � d��n �

Z
P 0
1 � d�0

����
�
����Z �P �n

1 � � P 0
1 �
�
d��n

����C ����Z P 0
1 � .d�

�n � d�0/
����

and show that each term vanishes as n ! 1. The first term is relatively straight-
forward to bound, having to do with the nearness of g�nt ; g

0
t when initiated at the

same initial condition g 2 L2 and subjected to the same noise sample b�t . This is
dealt with by Lemma 4.4 below.

The second term in (4.5) is more challenging. One would like to use weak
convergence to justify passing the limit using weak convergence ��n ! �0, but
this will not work: to the best of our knowledge, the semigroup P 0

t for .ut ; g0t /
does not send continuous functions on H � H�1 to continuous functions H �
H�1, namely, P 0

t is not Feller on H �H�1. When � > 0 it is a straightforward
consequence of parabolic regularity that the semigroup P �

t is Feller on H � L2.
However, when � D 0 this mechanism is not available and consequently P 0

t is not
necessarily Feller on H �H�1 due to a lack of stability of the transport equation
in H�1 under perturbations of the velocity field.
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Instead, we will show the following restricted Feller property: namely, P 0
t has

the Feller property in H �H�1 when restricted to initial g in a bounded subset of
L2. We state this property below for Lipschitz observables.

LEMMA 4.3 (Restricted Feller). Let � 2 Lip.H � H�1/; then for all u; u0 2 H
and g; g0 2 L2 we have��P 0

1 �.u; g/ � P 0
1 �.u

0; g0/
�� . k�kLipW.u; g; u

0; g0/.ku � u0kH C kg � g0kH�1/;

where

W.u; g; u0; g0/ D .V .u/C V.u0//.1C kgkL2/.1C kg0kL2/;

and V D V�;� for a sufficiently large universal � > 0 and all � > 0.

PROOF. To prove this, it suffices to consider two cases: (i) u D u0 and g ¤ g0

and (ii) u ¤ u0 and g0 D g.
Case (i) is straightforward since the difference between any two solutions gt

and g0t to (4.2) with different initial data and the same noise and same velocity
field .ut / immediately satisfy

gt � g0t D S0t .!; u/.g � g0/I
hence by (4.4),

jP 0
1 �.u; g/ � P 0

1 .u; g
0/j � k�kLipE xD.u; �/kg � g0kH�1

. k�kLipV.u/kg � g0kH�1 :

For case (ii) let ut and u0t be two solutions to (1) with initial data u and u0,
respectively, and gt and g0t the solutions to (4.2) with velocity fields .ut / and .u0t /,
respectively, and the same initial data g 2 H 1. Then the difference zgt D gt � g0t
satisfies

@t zgt C ut � r zgt C .ut � u0t / � rg0t D 0; zg0 D 0;

and therefore can be written as

zgt D
Z t

0

S0t�s.�s!; us/
�
.us � u0s/ � rg0s

�
ds:

It follows from (4.4) (choosing xD to have a V -bounded fourth moment) that for
0 � s < t � 1

S0t�s.�s!; us/�.us � u0s/ � rg0s�

H�1 � xD.�s!; us/k.us � u0s/ � rg0skH�1

� xD.�s!; us/kus � u0skW 1;1kg0skL2 ;

where in the last inequality we used that if f 2 W 1;1 and h 2 H�1, then
kf hkH�1 � kf kW 1;1khkH�1 , which can be seen by duality between H 1 and
H�1. Consequently, we have

Ekzg1kH�1 �
Z 1

0

E
� xD.�s!; us/kus � u0skHkg0skL2

�
ds:
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We use Hölder’s inequality under E. The fourth moment E xD.!; u/4 is bounded
. V.u/ by construction, while by Lemma 2.8 we have Ekus � u0sk4H . .V .u/C
V.u0//ku � u0kH. To bound Ekg0sk2L2 , we estimate as follows: by Itô’s formula,

kg0sk2L2 D kgk2
L2 C 2�s C

Z s

0

hg0r ; biL2 d�r :

By taking E of both sides, the stochastic integral vanishes, hence Ekg0sk2L2 D
kgk2

L2 C 2�s. Putting this together, we conclude for suitable V.u/

jP1�.u; g/ � P1�.u0; g/j � k�kLipEkzg1kH�1

.p k�kLip.V .u/C V.u0//.1C kgkL2/ku � u0kH:�

4.4 Stationarity of �0: Completing the proof
It suffices to show that the right-hand side of (4.5) vanishes. The first term

j R .P �n
1 � � P 0

1 �/d�
�n j in (4.5) will be estimated using the following.

LEMMA 4.4. Let g�t and g0t have the same initial data g 2 L2, the same velocity
field .ut /, and the same source path b�t . Then,

E


g�1 � g01kH�1 . V.u/

Z 1

0

�Ekg�s



H1 ds:

PROOF. Note that zg�t D g�t � g0t satisfies

@t zg�t C ut � r zg�t � ��g�t D 0:

with zg�0 D 0. This implies that

zg1� D �

Z 1

0

S0t�s.�s!; us/�g
�
s ds;

and therefore using the H�1 bound (4.4) on S0t�s.�s!; us/, we find

kzg�1kH�1 . �

Z 1

0

xD.�s!; us/kg�s kH1 ds;

where xD.!; u/ has V -bounded first moment. Taking an expectation w.r.t. ! and
applying Lemma 2.6 completes the proof. �

From here, to prove convergence
R
.P

�n
1 � � P 0

1 �/d�
�n ! 0, we have from

Lemma 4.4 and the Lipschitz property of � that���P �
1 � � P 0

1 �
�
.u; g/

�� � k�kLipE


g�1 � g01

H�1 . V.u/

Z 1

0

�E


g�s 

H1 ds;

hence upon integrating in �� and using Cauchy-Schwarz,Z ��P �
1 � � P 0

1 �
��d�� . � Z 1

0

�
E��kgk2H1

�1=2
ds .

p
�

by the energy balance relation �E��kgtk2H1 D � (see (1.4)).
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It remains to show that j R P 0
1 �.d�

�n � d�0/j ! 0 in (4.5). As observed
already, this does not follow immediately from weak convergence since P 0

1 � need
not be continuous. Instead, we will use the restricted Feller property from Lemma
4.3, which guarantees continuity of P 0

1 � along g 2 L2. To bridge the gap from L2

toH�1, we use the following mollification argument: for � 2 .0; 1/ and g 2 H�s ,
s 2 .0; 1�, define T�g to be the mollification10 of g, and define the regularized
semigroup �

P 0
1 �
�
�
.u; g/ WD P 0

1 �.u; T�g/:

Note that a straightforward duality argument shows that

kT�g � gkH�1 . �1�skgkH�s :

This, in turn, gives rise to the following approximation property for .P 0
1 �/� .

LEMMA 4.5. For each � 2 .0; 1/, s 2 .0; 1�, .P 0
1 �/� 2 Cb.H � H�1/, and for

each globally Lipschitz � W H �H�1 ! R and g 2 H�s , we have

j.P1�/� � P1�j.u; g/ . V.u/�1�skgkH�s ;

where V D V�;� for any � > 0 and � > 0.

PROOF. Note that Lemma 4.3 implies .P 0
1 �/� 2 Cb.H�H�1/. For g 2 H�s ,

denote g�1 and g1 solutions at time t D 1 of the transport equation (4.2) with the
same velocity path .ut / and noise b�t but with different initial data T�g and g,
respectively. We have����P 0

1 �
�
�
� P 0

1 �
�
.u; g/

�� � E
����u1; g�1� � �.u1; g1/��

� k�kLipEkS01 .u; !/.T�g � g/kH�1

. V.u/kT�g � gkH�1 . V.u/�1�skgkH�s ;

having used (4.4) and the V -boundedness of the first moment of xD. �

To complete the proof: for � > 0, we estimate����Z P 0
1 �.d�

�n � d�0/
���� � ����Z .P 0

1 �/�.d�
�n � d�0/

����
C
Z ���P 0

1 �
�
�
� P 0

1 �
��.d��n C d�0/:

The first term on the right vanishes as n ! 1 since .P1�/� 2 Cb.H �H�1/ by
Lemma 4.2 and ��n ! �0 weakly. For the second term, Lemma 4.5 and Cauchy-
Schwarz implyZ

j.P1�/� � P1�j.d��n C d�0/ . �1�s
��

E��nkgk2H�s

�1=2 C �
E�0kgk2H�s

�1=2�
;

10 Here mollification is defined by convolution with �� D ��d�. �=�/, where � is a smooth,
symmetric, compactly supported test function with

R
� D 1.
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which converges to 0 as � ! 0 uniformly in �n by (4.1). This completes the proof
of stationarity of �0 for P 0

t , the last item remaining from Theorem 1.12.

4.5 Nonvanishing flux
We conclude this section by proving the nonvanishing flux law (1.14). To do

this, we remark that ��Ng
�
t satisfies

��Ng
�
t D ��Ng

�
0 �

Z t

0

��N .us � rg�s /ds C��N b�t ;

and therefore applying Itô’s formula gives

k��Ng
0
t k2L2 D k��Ng

0
0k2L2 � 2

Z t

0

h��Ngs;��N .us � rgs/iL2 0ds

C k��N bk2L2 t C
Z t

0

2h��Ngs;��N biL2 d�s:

Taking expectation, integrating the initial data .u; g/ with respect to the stationary
measure �0, and using the stationarity of .ut ; g0t / with respect to �0, we readily
obtain the flux balance

E�� h��Ng;��N .u � rg/iL2 D 1

2
k��N bk2L2 :

Using the divergence free property and integrating by parts in the L2 inner product
gives (1.14).

5 Irregularity of the Limiting Statistically Stationary Solutions
In the previous section, we produced a � ! 0 subsequential limit of �� which

converges to a stationary measure �0 of the Markov semigroup associated with
.ut ; g

0
t /, where the scalar solves

(5.1) @tg
0
t C ut � rg0t D b P�t :

Since there is no dissipation in the equation, the input from the noise must be
“anomalously” dissipated by the mixing mechanism (that is, the formally conser-
vative transport equation must nonetheless dissipate). As discussed in Section 1.3,
this requires a degree of roughness of statistically stationary g0t . Specifically, in
this section we prove

(a) �0-generic .u; g/ 2 H � H� D H �T�>0H
�� are such that g is not

locally integrable, hence are ‘strictly’ distributions (Theorem 1.15);
(b) the Besov spaceL2tB

0
2;1 is “Onsager-type critical” in the sense that no sta-

tistically stationary solution g0t can have even a small amount of additional
regularity (Theorem 1.19).

Part (a) is carried out by applying a variant of the DiPerna-Lions theory of renor-
malized solutions for the transport equation and is carried out in Section 5.1, while
part (b) is carried out in Section 5.2.
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5.1 �0 generic functions cannot be L1

Our proof is by contradiction, based on invariance of H � L1 by solutions to
(5.1).

LEMMA 5.1. The set H�L1 is almost surely invariant for .ut ; g0t /: if u0 2 H and
g00 2 L1, then g0t 2 L1 for all t > 0.

PROOF. This follows from Lemma 4.2(b) by noting that due to the smoothness
of b, the stochastic convolutionZ t

0

S0t�s.�s!; us/b d�s

takes values in (at least) L2, and S0t propagates L1 regularity. In fact, we have

kS0t .!; u/gkL1 D kg � .�t!;u/�1kL1 D kgkL1

by the fact that �t!;u is volume preserving. �

To continue, we will find it convenient to show that any L1-valued solutions to
(5.1) can be renormalized in the sense of DiPerna and Lions [39], meaning that we
show that F.g0t / solves another transport-type equation for some suitably regular
function F W R ! R. In our setting the velocity field .ut / is not rough, which
allows for the transport part of the equation to be easily renormalized, but the pres-
ence of noise introduces Itô corrections and imposes higher regularity requirements
on F . In what follows we define

F.´/ WD
q
1C j´j2:

LEMMA 5.2. Let g0 2 L1 and g0t be a mild solution to (5.1); then the following
holds almost surely:Z

F.g0t /dx D
Z
F.g00/dx C

Z t

0

�Z
b2

2F.g0s /
3

dx
�

ds

C
Z t

0

�Z
g0s b

F.g0s /
dx
�

d�s:
(5.2)

PROOF. For a given function f 2 L1, we denote by .f /� the mollification of
f (see the proof of Lemma 4.5). It is straightforward to show that .f /� ! f both
in L1 and pointwise a.e. Since g0t is a weak solution to (5.1), we see that .g0t /�
solves the following equation almost surely:

.g0t /� D .g00/� �
Z t

0

us � r.g0s /� ds C .b/��t C
Z t

0

R�.us; g
0
s /ds;

where we write
R�.ut ; g

0
t / D ut � r.g0t /� � .ut � rg0t /�

for the commutator term, noting that convolution . �/� does not commute with ut �r.
Since the equation for .g0t /� holds pointwise as an identity on smooth functions for



BATCHELOR’S LAW FOR STOCHASTIC NSE 45

each x 2 Td , we can apply Itô’s formula to F..g0t /�.x// to deduce the pointwise
identity

(5.3)
F..g0t /�/ D F..g00/�/ �

Z t

0

us � rF..g0s /�/ds C
Z t

0

1

2
F 00..g0s /�/.b/

2
� ds

C
Z t

0

F 0..g0s /�/.b/� d�t C
Z t

0

F 0..g0s /�/R�.us; g
0
s /ds:

Here we have used the fact that .g0t /� is smooth and therefore F 0.g0t /ut �r.g0t /� D
ut � rF..g0t /�/. Itô’s formula for the unbounded function F.´/ D

p
1C j´j2 is

justified in this case because F..g0t /�/ .� 1C kg0t kL1 ; hence for each t 2 RC,

P
�

sup
s2�0;t�

kF..g0s /�/kL1 <1
�
D 1:

Next, we note that since divut D 0, it is standard that (see [39])Z
jR�.ut ; g0t /jdx � kutkW 1;1

�Z
B�

jy � r�� jdy
�

sup
jyj<�

kg0t . � C y/ � g0t . �/kL1 :

Since
R jy � r�� jdy D R jy � r�jdy and g0t belongs to L1 almost surely, we

conclude by the L1-continuity of spatial translations that for each t 2 RC

(5.4) R�.ut ; g
0
t /! 0 in L1 as � ! 0 almost surely:

Using the facts

F 0.´/ D ´

F.´/
; F 00.´/ D 1

F.´/3
; 0

we can integrate (5.3) and use the fact that ut is divergence free to obtain

(5.5)

Z
F..g0t /�/dx D

Z
F..g00/�/dx C

Z t

0

 Z
1

2

.b/2
�

F..g0s /�/
3

dx

!
ds

C
Z t

0

�Z
.b/�.g

0
t /�

F..g0s /�/
dx
�

d�t

C
Z t

0

�Z
.g0t /�

F
��
g0t
�
�

�R��us; g0s �dx�ds:

The proof will be complete if we can pass the � ! 0 limit in both sides of (5.5)
almost-surely for each fixed t . Since we have .g0t /� ! g0t in L1 and almost
everywhere on Td , as well as the convergence of the commutator (5.4) in L1 and
.b/� ! b in L2, we can use bounded convergence to pass the � ! 0 limits almost-
surely in every term of (5.5) except for the stochastic integral. To deal with the
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stochastic integral, note that by Itô’s formula

E
����Z t

0

�Z
.b/�.g

0
t /�

F..g0s /�/
� bg0t
F.g0s /

dx
�

d�t

����2
D E

Z t

0

Z ����.b/�.g0t /�F..g0s /�/
� bg0t
F.g0s /

����dx ds ! 0

as � ! 0 by the bounded convergence theorem. �

We are now ready to prove Theorem 1.15.

PROOF OF THEOREM 1.15. We assume that �0.H � L1/ > 0 in pursuit of a
contradiction. By Lemma 5.1, H � L1 is an invariant set for .ut ; g0t /, and so the
conditional measure

y�0 WD �0. � \ .H � L1//
�0.H � L1/

is another stationary measure for .ut ; g0t / that assigns full measure to H � L1.
We would like to conclude the proof by taking expectations of both sides of

(5.2) using stationarity with respect to y�0. However, we are unable to justify this,
since a priori we do not know whether F.g0t / has finite moments. To get around
this, apply Itô’s formula to �

�R
F.g0t /dx

�
, where � is a bounded C 2 function, to

deduce

�

�Z
F.g0t /dx

�
D �

�Z
F.g00/dx

�
C
Z t

0

�Z
b2

2F.g0s /
3

dx
�
�0
�Z

F.g0s /dx
�

ds

C 1

2

Z t

0

�Z
g0s b

�.g0s /
dx
�2
�00
�Z

F.g0s /dx
�

ds

C
Z t

0

�Z
g0s b

F.g0s /
dx
�
�0
�Z

F.g0s /dx
�

d�s:

Taking the expectation and integrating the initial data with respect to y�0 (crucially
using that y�0 assigns full measure to L1), we find

Ey�0

��Z
b2

F.g/3
dx
�
�0
�Z

F.g/dx
�
C
�Z

gb

F.g/
dx
�2
�00
�Z

F.g/dx
��

D 0:

For � > 0, define �.´/ D ´
1C�´ , so that

Ey�0

R
b2

F.g/3
dx�

1C �
R
F.g/dx

�2 D Ey�0

2�
�R gb

F .g/
dx
�2�

1C �
R
F.g/ dx

�3 � 2�kbk2L2 :
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Sending � ! 0 and applying monotone convergence gives

Ey�0

Z
b2

F.g/3
dx D 0;

which contradicts y�0.H�L1/ D 1. Therefore �0.H�L1/ D 0, which completes
the proof. �

5.2 Onsager-type criticality of L2
tB

0
2;1

In this section we prove Theorem 1.19. Recall Definition 1.18 of a B0
2;c-suitable

multiplier M , and the associated generalized Besov norm

kf kBM
2;1

D sup
N2f2j Wj2N�g

M.N/k�Nf kL2 :

We denote by BM
2;1 the space of tempered distributions f with kf kBM

2;1
< 1.

The following lemma shows that we can exhaust B0
2;c in terms of the spaces

fBM
2;1g.

LEMMA 5.3. The following holds:

B0
2;c D

[
M

BM
2;1;

where the union is over all B0
2;c-suitable multipliers M .

PROOF. That kf kBM
2;1

<1) f 2 B0
2;c follows from limk!1M.k/ D1.

Conversely, let g 2 B0
2;c . Let C0 be such that supj2N�k�2j gkL2 � C0. By

g 2 B0
2;c , there exists a strictly increasing sequence fNkg1kD1 � f2j W j 2 Ng

such that 8N � Nk , k�NgkL2 < 2�k . Define M.k/ W �1;1/! �1;1/ to be the
monotone increasing multiplier

M.k/ D
(
2 k < N1;

2j

NjC1�Nj
.NjC1 � k/C 2jC1

NjC1�Nj
.k �Nj / Nj � k � NjC1:

We see thatM is piecewise linear with slope� 1, and therefore satisfies conditions
(i) and (ii) of Definition 1.18. �

We introduce Littlewood-Paley decomposition for future use. Let � 2 C1
0 .RIR/

be such that �.�/ D 1 for j�j � 1 and �.�/ D 0 for j�j � 3=2, and define
 .�/ D �.�=2/� �.�/, supported in the range � 2 .1; 3/. Denote, for each N > 0,
�N .�/ WD �.N�1�/ and  N .�/ WD  .N�1�/. For f 2 L2.R/ we define the
Littlewood-Paley projections

�Nf WD  N .r/f and ��Nf WD �N .r/f:
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Note by Definition 1.18 (denoting N� D f0g [ N and analogously for Zd� D
f0g [ Zd below),

sup
N2f2j Wj2N�g

M.N/k�NgkL2

� kM.jrj/��1gkL2 C sup
N2f2j Wj2N�g

kM.jrj/�NgkL2 :

LEMMA 5.4. For any .u; g/ 2 H�H�1, if kgkBM
2;1

<1 for some B0
2;c-suitable

M , then

jh��Ng; ��Nr � .ug/ij . 1

M 2.N /
kgk2

BM
2;1

kukH:

PROOF. By the incompressibility of u and Plancherel’s identity,

h��Ng; ��Nr � .ug/i

D h��Ng; ��Nr � .ug/ � r � .u��Ng/i

D
X

k;`2Zd�

�
1j`j<2jk�`j C 1j`j�2jk�`j

�
�N .k/ygt .k/

� .�N .k/ � �N .`//ik � yut .k � `/ygt .`/
DW IHL C ILH:

Note that due to the presence of the cutoffs .�N .k/ � �N .`//, we see that one of jkj
or j`j must be larger or equal to 1

2
N for the corresponding term in the summation

to be nonzero. The “high-low” term is treated by noting that on the support of the
summation, jkj C j`j . jk � `j, and therefore for any � > 0,

jIHLj .
1

N 2

X
k;`2Zd�

1j`j<2jk�`jj�N .k/ygt .k/hk � `i3yut .k � `/ygt .`/j

.
1

N 2

X
k;`2Zd�

1j`j<2jk�`j
1

hki�h`i�
j�N .k/ygt .k/hk � `i3C2� yut .k � `/ygt .`/j:

Then, using Cauchy-Schwarz, Young’s inequality, and H r ,! cL1 for r > d=2,
(recall � > 3C d

2
),

jIHLj .�
1

N 2
kgk2

H��kukH .
1

M.N/2
kgk2

BM
2;1

kukH;

where the last inequality followed from M.N/ . N by Definition 1.18 and the
embedding H�� ,! B0

2;1.
We turn next to the “low-high” term. First, by the mean value theorem,

j�N .k/ � �N .`/j .
1

N
jk � `j:(5.6)
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Second, observe that on the support of the summation, we have N � jkj � j`j
because of the frequency cutoff and that at least one of jkj or j`j must be larger
or equal to 1

2
N , but one of jkj and j`j must also be less than 3N . Therefore, we

deduce from part (ii) of Definition 1.18 and (5.6),

jILH j .
1

M.N/2

X
k;`2Zd�

1j`j�2jk�`jj�N .k/M.jkj/yg.k/hk � `iyu.k � `/M.j`j/yg.`/j:

Again by using Cauchy-Schwarz, Young’s inequality, andH r ,! cL1 for r > d=2,

jILH j .
1

M.N/2
kgk2

BM
2;1

kukH:

This completes the proof. �

PROOF OF THEOREM 1.19. We proceed by contradiction and assume

E�0kgkpBM
2;1

<1 for some p > 2:

By repeating the proof of the flux balance (1.14) as in Section 4.5 with ��N re-
placing ��N , we have

E�0h��Ng; ��Nr � .ug/i D 1

2
k��N bk2L2 :(5.7)

However, Lemma 5.4 and the assumption that E�0kgkpBM
2;1

<1 for some p > 2

implies that

jE�0h��Ng; ��Nr � .ug/ij . 1

M.N/2
E�0

h
kgk2

BM
2;1

kukH

i
.

1

M.N/2

�
E�0kgkpBM

2;1

�2=p�
Ekuk

p
p�2

H

�p�2
p

.
1

M.N/2
:

On the other hand, limN!1
1
2
k��N bk2L2 D �, and so by choosing N sufficiently

large in (5.7) gives the desired contradiction. �
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