
On the Number of Tests Needed for the

Pooled Testing Halving Scheme

Sheldon M. Ross

Department of Industrial and Systems Engineering

University of Southern California

Los Angeles, CA 90089

smross@usc.edu

This material is based on work supported by, or in part, by the National

Science Foundation under contract/grant CMMI1662442.

Abstract

We develop recursions for computing the mean and variance of

the number of pooled tests needed by the halving scheme to deter-

mine the disease positive members of a population. It is assumed

that each population member is independently positive with prob-

ability p, that the individual blood samples can be pooled to test

whether or not at least one member of that pooled group is positive,

and that a positive tested group is then split in half and the process

continued.

1 Introduction

Suppose that we want to determine which members of a population have

a certain disease, and that whether or not any of the members of a group

has the disease can be ascertained by a single pooled test. Assuming that

each member of the population independently has the disease with known

probability p, the objective is to find a pooling scheme that minimizes the

expected number of tests to classify all members of the population as being

disease positive or negative.

The halving scheme for pooled testing was introduced in [1]. Say that

a group is positive if it is known that at least one of its pooled members

has the disease. In the halving scheme one breaks up the population into

sets of size n and does a pooled test on a set. If it comes up positive,

then the set is randomly split into two new groups of equal size (or as

near as possible) and each of these groups is given a pooled test. This

continues until the disease state of all members of the population has been

determined. (Actually, if a positive group is broken in two subgroups,

and the first one of its subgroups tests negative, then the other subgroup

must be positive and so need not be tested as a whole but should just be

randomly split.) Let Xn denote the number of tests needed to classify a

group of size n when you start by testing all n as a pooled group and then

use the halving procedure afterwards. Recursions for the probability mass

function of Xn when n = 15 were given in [1] by an approach that does

not appear to scale up for larger values of n. In the recent paper [2],

1

the halving scheme was proposed as a possibility for use in the Covid-19

pandemic in places where test kits are limited. It is suggested in [2] that

to minimize E[Xn]/n, the average number of tests per individual, n be

chosen as close as possible to n0 ≡ − log(2)/ log(1− p), which would make

(1− p)n0 , the probability of a positive result, approximately equal .5. The

mean number of tests required per person was determined by a simulation

in [2], and an analytic approximation was provided. Whereas [1] and [2]

assume that p is know, the paper [3] deals with the problem of estimating

p when a pooled scheme is used.

In this paper, we show how to derive E[Xn] and Var(Xn) by easily com-

puted recursions. In doing so, we also indicate that the initial choice of

pooling n0, while not optimal is quite close. Indeed, letting n(opt) be

the value of n that minimizes E[X(n)]
n

; if p = .05 then n0 = 13.5 whereas

n(opt) = 13; if p = .01 then n0 = 68.9 whereas n(opt) = 75; if p = .001

then n0 = 692.8 whereas n(opt) = 683; and if p = .0001 then n0 = 6931.13

whereas n(opt) = 6827.

In our analysis we will suppose that if the pooled test of an odd number of

people comes up positive, then the first of its two subgroups to be tested

is the smaller one. In Section 2 we derive a recursion for E[Xn]. In Section

3 we give the R code for obtaining argminnE[X(n)]/n and minE[Xn]/n,

and comment on what can be done when p is initially unknown. Along

the way, we obtain counterexamples showing that (a) the halving scheme

of splitting a positive group into two equal subgroups need not be optimal,

2

and (b) −E[Xn]/n is not necessarily a unimodal function of n (e.g., it is not

necessarily true that E[Xn]/n first decreases and then increases). Finally,

in Section 4 we derive a recursion for computing Var(Xn).

2 Recursive Formula for E[Xn]

Let q = 1− p. Let I be the indicator of the event that the group of size n

tests positive. That is, I = 1 if the group tests positive, and 0 otherwise.

Then, with Yn denoting the number of tests needed to identify all members

of a group of size n known to be positive,

E[Xn|I] = 1 + I E[Yn]

Using that P (I = 1) = 1− qn, we see that

E[Xn] = 1 + (1− qn)E[Yn] (1)

To determine a recursion for E[Yn], let J be the indicator function of the

event that the first one of the 2 splittings of the positive group of size n

(e.g., the one of size n−1
2

when n is odd) tests positive. Then

P (J = 1) =


1−qn/2

1−qn
= 1

1+qn/2 if n is even
1−q(n−1)/2

1−qn
if n is odd

3

Because the second subgroup will be known to be positive if the first tests

negative, we see that when n is an even positive integer

E[Yn|J] = 1 + E[Yn
2
] + JE[Xn

2
] (2)

= 1 + E[Yn
2
] + J(1 + (1− qn/2)E[Yn

2
]) (3)

Thus, when n is even

E[Yn] = 1 + E[Yn
2
] +

1 + (1− qn/2)E[Yn
2
]

1 + qn/2

=
2 + qn/2 + 2E[Yn

2
]

1 + qn/2
(4)

Now Y (1) = 0, and when n > 3 is odd

E[Yn|J] = 1 + J
(
E[Yn−1

2
] + E[Xn+1

2
]
)
+ (1− J)E[Yn+1

2
] (5)

= 1 + J
(
E[Yn−1

2
] + 1− q(n+1)/2E[Yn+1

2
]
)
+ E[Yn+1

2
]

Thus, when n > 3 is odd

E[Yn] = 1 + E[Yn+1
2
] +

1− q(n−1)/2

1− qn

(
E[Yn−1

2
] + 1− q(n+1)/2E[Yn+1

2
]
)

= 1 +
1− q(n−1)/2

1− qn
(E[Yn−1

2
] + 1) +

1− q(n+1)/2

1− qn
E[Yn+1

2
] (6)

Starting with E[Y1] = 0, Equations (1), (4), and (6) give the recursion for

E[Xn].

4

Remark: The Halving Scheme is not Optimal

Although dividing a positive group into two subgroups of equal size (or as

close to equal as possible when the group size is odd) seems reasonable, it

may be surprising to know that it need not be optimal. For a counterex-

ample, suppose that p is very small, so that except for n extremely large,

a positive group of sized n will, with probability extremely close to 1, have

exactly one positive member. Then, using

E[Yn] = P (J = 1)E[Yn|J = 1] + P (J = 0)E[Yn|J = 0]

we obtain that

E[Y2] ≈
1

2
2 +

1

2
1 = 3/2

E[Y3] ≈
1

3
(1 + 1) +

2

3
(1 + E[Y2]) ≈ 7/3

E[Y4] ≈
1

2
(1 + E[Y2] + 1) +

1

2
(1 + E[Y2]) ≈ 3

E[Y5] ≈
2

5
(1 + E[Y2] + 1) +

3

5
(1 + E[Y3]) ≈ 17/5

Thus, using our halving scheme

E[Y8] ≈
1

2
(1 + E[Y4] + 1) +

1

2
(1 + E[Y4]) ≈ 9/2

On the other hand, if the positive group of size 8 were broken into subgroups

of sizes 3 and 5, with the one of size 3 tested first, and the halving scheme

5

followed from then on, then

E[number] ≈ 3

8
(1 + E[Y3] + 1) +

5

8
(1 + E[Y5]) ≈ 35/8

Thus, for small p, the split (3, 5) is better than the split (4, 4).

3 R code for E[Xn]

The following R code yields, when N is an even number and q ∈

[0, 1], the value of a function m(q,N) defined to equal the vector

(argminn6N
E[Xn]

n
, minn6N

E[Xn]
n

), where N is an even number and q =

1− p. In the code M [n] = E[Yn], and F [n] = E[Xn]
n

= 1+(1−qn)E[Yn]
n

.

> m = function (q,N){

+ M = array(0, N)

+ F = array(0, N)

+ M [1] = 0

+ M [2] = (2 + q)/(1 + q)

+ F [1] = 1

+ F [2] = (1 + (1− q2) ∗M [2])/2

+ c = N/2− 1

+ for(k in 1 : c){

6

+ M [2 ∗ k + 1] = 1 + ((M [k] + 1) ∗ (1− qk) +M [k + 1] ∗ (1− q(k + 1)))/(1− q(2 ∗ k + 1))

+ M [2 ∗ k + 2] = (2 + q(k + 1) + 2 ∗M [k + 1])/(1 + q(k + 1))

+ F [2 ∗ k + 1] = (1 + (1− q(2 ∗ k + 1)) ∗M [2 ∗ k + 1])/(2 ∗ k + 1)

+ F [2 ∗ k + 2] = (1 + (1− q(2 ∗ k + 2)) ∗M [2 ∗ k + 2])/(2 ∗ k + 2)}

+ u = which.min(F)

+ v = min(F)

+ c(u, v)}

For given values of q,N, one inputs m(q,N) and its value is given. For

instance,

m(.95, 1000) yields 13, 0.323212

m(.98, 1000) yields 37, 0.166914

m(.99, 1000) yields 75, 0.098020

m(.999, 1000) yields 683, 0.014723

m(.9999, 1000) yields 1000, 0.002479

m(.9999, 5000) yields 4949, 0.001975

m(.9999, 10, 000) yields 6827, 0.001971

When p = .0001, the preceding indicates that the optimal number to test

when the upper limit is 5, 000 is 4949, and the optimal number is 6827

when the upper limit is 10, 000. This is quite interesting because, with

7

F (n) = E[Xn]
n

, it shows that F (6827) < F (4949) < F (5000), thus contra-

dicting a seemingly reasonable hypothesis that F (n) first decreases and

then increases in n.

When p is unknown, we suggest that it be continually estimated by x+1
x+y+2

where x is the number of people known to be positive and y is the number

known to be negative, and when a new group is to be tested its size be

determined as if p were equal to its estimated value. This would mean

that initially a single individual should be tested; if negative then the next

group should be of size 2 and if positive of size 1, and so on.

4 Recursive Formula for Var(Xn)

With I and J as previously defined,

Var(Xn|I) = I Var(Yn)

Using that E[Xn|I] = 1 + I E[Yn], the conditional variance formula yields

Var(Xn) = E[Var(Xn|I)] + Var(E[Xn|I])

= (1− qn)Var(Yn) + E2[Yn]q
n(1− qn) (7)

8

Now, when n > 2 is even

Var(Yn|J) = Var(Yn
2
) + J Var(Xn

2
)

Thus, using (2) gives that for n > 2 even

Var(Yn) = Var(Yn
2
) +

Var(Xn
2
)

1 + qn/2
+

qn/2E2[Xn
2
]

(1 + qn/2)2

= Var(Yn
2
) +

(1− qn/2)Var(Yn
2
) + E2[Yn

2
]qn/2(1− qn/2)

1 + qn/2
+

qn/2E2[Xn
2
]

(1 + qn/2)2

=
2Var(Yn

2
) + E2[Yn

2
]qn/2(1− qn/2)

1 + qn/2
+

qn/2E2[Xn
2
]

(1 + qn/2)2
(8)

When n > 3 is odd

Var(Yn|J) = J
(
Var(Yn−1

2
) + Var(Xn+1

2
)
)
+ (1− J)Var(Yn+1

2
)

Hence, using (5), we obtain that when n > 3 is odd

Var(Yn) =
1− q(n−1)/2

1− qn

(
Var(Yn−1

2
) + Var(Xn+1

2
)− Var(Yn+1

2
)
)
+ Var(Yn+1

2
)

+
(
E[Yn−1

2
] + E[Xn+1

2
]− E[Yn+1

2
]
)2 (1− q(n−1)/2)(q(n−1)/2 − qn)

(1− qn)2

=
1− q(n−1)/2

1− qn

(
Var(Yn−1

2
)− q(n+1)/2Var(Yn+1

2
) + E2[Yn+1

2
]q(n+1)/2(1− q(n+1)/2)

)
+Var(Yn+1

2
) +

(
E[Yn−1

2
] + E[Xn+1

2
]− E[Yn+1

2
]
)2 (1− q(n−1)/2)(q(n−1)/2 − qn)

(1− qn)2

(9)

9

Starting with Var(Y1) = 0, Equations (7), (8), and (9), along with the

previous recursion for determining E[Yn], give the recursion for computing

Var(Xn).

References

[1] Eugene Litvak, Xin M. Tu and Marcello Pagano, “Screening for the

Presence of a Disease by Pooling Sera Samples," Journal of the Amer-

ican Statistical Association, Vol. 89, No. 426, pp. 424-434, 1994

[2] Haran Shani-Narkiss, Omri David Gilday, Nadav Yayon, Itamar

Daniel Landau, “Efficient and Practical Sample Pooling for High-

Throughput PCR Diagnosis of COVID-19," preprint , 2020

[3] Ron Brookmeyer, “Analysis of Multistage Pooling Studies of Biological

Specimens for Estimating Disease Incidence and Prevalence." Biomet-

rics, Vol. 55, No. 2, pp. 608-612, 1999

10

	Introduction
	Recursive Formula for E[Xn]
	R code for E[Xn]
	Recursive Formula for Var(Xn)

