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Abstract: Parkinson’s disease (PD) can be divided into two subtypes based on clinical
features—namely tremor dominant (TD) and postural instability and gait difficulty (PIGD). This
categorization is important at the early stage of PD, since identifying the subtypes can help to predict
the clinical progression of the disease. Accordingly, correctly diagnosing subtypes is critical in
initiating appropriate early interventions and tracking the progression of the disease. However, as the
disease progresses, it becomes increasingly difficult to further distinguish those attributes that are
relevant to the subtypes. In this study, we investigated whether a method using the standing center
of pressure (COP) time series data can separate two subtypes of PD by looking at the frequency
component of COP (i.e., COP position and speed). Thirty-six participants diagnosed with PD were
evaluated, with their bare feet on the force platform, and were instructed to stand upright with
their arms by their sides for 20 s (with their eyes open and closed), which is consistent with the
traditional COP measures. Fast Fourier transform (FFT) and wavelet transform (WT) were performed
to distinguish between the motor subtypes using the COP measures. The TD group exhibited
larger amplitudes at the frequency range of 3-7 Hz when compared to the PIGD group. Both the
FFT and WT methods were able to differentiate the subtypes. COP time series information can be
used to differentiate between the two motor subtypes of PD, using the frequency component of
postural stability.

Keywords: Parkinson’s disease (PD); tremor dominant (TD); postural instability and gait difficulty
(PIGD); center of pressure (COP); fast Fourier transform (FFT); wavelet transform (WT)

1. Introduction

In 2010, approximately 630,000 people in the U.S. were diagnosed with Parkinson’s disease
(PD)—a number that is estimated to double by 2040 [1]. PD is a progressive neurodegenerative
disorder that includes motor and non-motor features [2]. PD can be further divided into two subtypes
based on clinical features—namely tremor dominant (TD) and postural instability and gait difficulty
(PIGD) [2-5]. This categorization is important at the early stage of PD, since identifying the PD
subtypes can help to predict the clinical progression of the disease. Several studies have confirmed that
the PIGD subtype has a faster disease progression and greater motor function impairment [6], and is
less responsive to levodopa and deep brain stimulation when compared to the TD subtype [3,5,7,8].
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It has also been reported that there is a correlation between the freezing of gait (FOG) score and the
PIGD score [7]. Additionally, the PIGD subtype can place PD patients at a higher risk of falling when
compared to TD patients [9]. It has been shown that PIGD patients have worse postural control when
compared to TD patients [9,10]. Accordingly, correctly diagnosing subtypes can help caregivers to
initiate early amenable interventions and track the progression of the disease. It should be noted that
the diagnosis would not lead to a different medical treatment. However, another treatment needs to be
taken alongside the medical treatment for PIGD patients in order to reduce the loss of balance and
falling, since dopaminergic medications may result in limited improvement in postural instability
and gait [11,12]. Thus, the diagnosis leads to the specific path that should be taken for the patient to
manage the symptoms.

The differentiation of TD from PIGD is currently based on sub-scores of the Unified Parkinson’s
Disease Rating Scale (UPDRS) [3,11]. The UPDRS is scored by clinicians, and thus is subjective and
prone to error [12]. Subtype-specific biomarkers may improve the accuracy of the diagnoses that are
relevant to the PD subtypes and progression.

The center of pressure (COP) measure is widely employed in assessing postural control, and has
been utilized for analyzing the disease-related features in PD patients [13-16]. The results of
different studies have indicated that COP was more variable for PD patients, relative to the control
participants [14,15], and that COP-derived velocities were abnormally large for PD patients with FOG
when compared to the patients without FOG [13]. Thus, COP is considered as a good measure for
representing PD disease-related postural characteristics.

PD tremor is present while resting, and is typically dampened with kinetic movement. Therefore,
in order to distinguish between the two subtypes, proposing a static test appears to be more appropriate
than a dynamic task [17]. Several studies have reported a frequency range of 3-7 Hz for PD
tremor [17-19]. It has also been demonstrated that the whole-body COP signal has a frequency
lower than 2 Hz [20-22]. Subtype-specific postural instability in PD may be better identified by the
frequencies that make up the COP signal. We hypothesized that the whole-body COP frequency may
be a better and more objective means of identifying the PD subtypes. The most common method to
investigate the tremor in PD is fast Fourier transformation (FFT) [5,6]. FFT transfers a signal from
the time domain to the frequency domain. In this method, the time information is lost after the
transformation. Therefore, a method such as wavelet transformation (WT)—which includes both the
time and frequency information of the signal [7]—might help to diagnose the subtypes better than
FFT. Based on the importance of correct PD subtype diagnosis and the lack of an objective method
among the current diagnosis techniques, this study aims to develop an objective method to diagnose
PD motor subtypes by employing COP data and using the FFT and WT methods.

2. Materials and Methods

2.1. Participants

Thirty-six participants that were diagnosed with PD by specialists at the Muhammad Ali
Parkinson Center at the Barrow Neurological Institute (Phoenix, AZ, USA) were recruited for this
study. The participants’ demographic information is presented in Table 1. The Movement Disorder
Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) was employed to identify the TD
and PIGD groups [23]. The designated items for TD (kinetic and postural tremor in both the right and
left hand; tremor—while at rest—of either the face and lips or the chain, arms, and legs) and PIGD
(freezing, walking, posture, gait, and postural stability) were used to calculate the mean TD and PIGD
scores. The ratio of the mean TD score to the mean PIGD score was used to identify the TD group.
The patients with a ratio greater than or equal to 1.5 were classified as TD, while those with a ratio
less than or equal to 1.0 were classified as PIGD. The patients with ratios ranging from 1.0 to 1.5 were
classified as mixed-type, and were considered as an exclusionary criterion for this study [5,11,24].
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Table 1. Demographics of the tremor dominant (TD) and postural instability and gait difficulty
(PIGD) groups (mean = standard deviation—SD). MDS-UPDRS: Movement Disorder Society Unified
Parkinson’s Disease Rating Scale.

TD (n =13) PIGD (n = 23)
Gender (F:M) 0:13 9:14
Age (years) 59.92 4+ 9.63 (34-71) 70.43 + 6.18 (59-81)
Disease duration (months) 20.23 + 19.14 (4-60) 37.78 + 54.69 (1-216)
MDS-UPDRS III (ON) 14.85 +9.85 15.08 + 8.48

The study was approved by the Institutional Review Board at the Barrow Neurological Institute
and Arizona State University, Tempe, AZ, USA. The participants provided informed consent prior to
their inclusion in the study. All of the assessments were performed while subjects were in the “on”
medication status—approximately 1 to 1.5 h after taking the PD medication.

2.2. Experimental Procedure

The participants were placed with their bare feet on the force platform and were instructed to
stand upright with their feet shoulder width apart and their arms by their sides for 20 s, and look
straight ahead during the experiment. They were instructed not to talk or bend their knees throughout
the experimental trials. Harnesses were fitted onto the participants to avoid falls. This task was
performed under two conditions—namely eyes open and eyes closed. For the eyes closed condition,
the subjects were asked to close their eyes during the experiment. Each participant performed the
experiment under both conditions. Each condition had three trials.

2.3. Data Analysis

COP data were derived using force plate data sampled at 100 Hz. Both anterior-posterior (AP)
and medial-lateral (ML) COP data were low-pass-filtered using a fourth-order, zero lag Butterworth
filter with a cut-off frequency of 10 Hz. Five traditional COP measures were calculated to assess
whether or not the two subtypes of PD can be distinguished by using the time domain information.
The measures included the following: COP range (the range of COP displacement), resultant COP
path length (the total COP trajectory length), resultant mean velocity (the resultant path length divided
by the total duration), and a 95% confidence ellipse area (the smallest ellipse that will cover 95% of
the points of the COP diagram). Based on previous studies, these traditional parameters are good
indicators of postural instability [14,25,26] and were considered as variables that might help us to
distinguish PIGD from TD. All of the analyses were performed in MATLAB version 2015a.

2.4. TD vs. PIGD Detection Method

In order to distinguish between the TD and PIGD subtypes, the following two methods were
utilized: fast Fourier transform (FFT) and wavelet transform (WT). In the FFT method, the PD subtypes
were identified by the frequency spectra of COP signals. Two frequency bands were introduced [27-29]:
the COP band and the tremor band. The COP and tremor bands were defined as the frequency
components from 0-3 Hz to 3-7 Hz, respectively. The detection method was defined as the ratio of
the area under the power spectra of the tremor band to the summation of the areas under the power
spectra of the COP band and the tremor band.

COP data were transformed into the wavelet domain using daubechies mother wavelet (db6).
It was chosen because it has been widely employed in different human posture and movement
studies [27,30]. Various mother wavelets were also applied to ensure that the optimal selection was
made appropriately. The results supported the notion that daubechies mother wavelet was the best
choice. In the WT method, the COP and tremor bands were defined as the scales that corresponded
to the frequency ranges of 0-3 Hz and 3-7 Hz, respectively. The detection method was defined in
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a similar manner to the way it was defined in the FFT method: the ratio of the averaged WT coefficients
of the tremor band to the summation of the averaged WT coefficients of the COP band and the tremor
band. This ratio was unitless because it was a ratio of values with the same unit. In both methods,
the defined ratio was multiplied by 100 in order to obtain a value between 0 and 100. Values that were
closer to 100 indicated a higher possibility of the TD subtype, while the possibility of the PIGD subtype
increased as the values approached 0. The first time derivative of COP time series was defined as
COP velocity (V-COP). The ratio that was defined above was applied to COP (Rcop) and COP velocity
(Rycop) in both the AP and ML directions.

2.5. Statistical Analysis

Analysis of variance (ANOVA) with repeated measures on the traditional COP measures and
the proposed detection ratio (using both the FFT and WT methods) were performed. Different
factors—such as condition (two levels: eyes open (EO) and eyes closed (EC)) and group (or subtype)
of PD (two levels: TD and PIGD)—were considered as within-subject and between-subject factors,
respectively. Comparisons of interest exhibiting statistically significant differences (p < 0.05) were
further analyzed using post hoc tests with Bonferroni corrections. In all analyses, sphericity
assumptions were tested (Greenhouse—Geisser analysis). The diagnostic performance of the proposed
method—or the accuracy of a test to discriminate between the subtypes—was further evaluated
using receiver operating characteristic (ROC) curve analysis [31] for the directions and factors of both
methods. In a ROC curve, the true positive rate (sensitivity) is plotted as a function of the false positive
rate (100—specificity) at different cut-off points. Therefore, each point on the ROC curve corresponds
to a sensitivity /specificity pair for a particular decision threshold. Therefore, the upper-left corner
denotes a test with perfect discrimination (no overlap in the two distributions) in a ROC curve analysis.
Accordingly, the closer the ROC curve is to the upper-left corner, the higher the overall accuracy of
the test [31]. In this study, PD subtypes were diagnosed by utilizing UPDRS and were considered as
a correct diagnosis. All of the statistical analyses were performed based on this assumption. In all tests,
p < 0.05 was considered as a significant level. Statistical analyses were performed using IBM SPSS
Statistics 22.

3. Results

The results of the traditional COP measures—under both the eyes open and eyes closed
conditions—are provided in Table 2. All of the variables had larger values in the eyes closed condition
compared to the eyes open condition. Because these parameters did not have a normal distribution,
a Box-Cox transformation was applied and parametric methods were performed. There was no
significant difference between the two groups for all the variables. However, there was a significant
difference between the conditions for all of the parameters (range AP: F(y 34) = 4.252, p = 0.047; range
ML: F1 34y = 60.34, p = 0.001; path length: F(; 34y = 29.797, p = 0.001; mean velocity: F34) = 29.795,
p = 0.001; area: F(j 34y = 11.847, p = 0.002).

Table 2. Selected postural stability parameters. Range anterior—posterior (AP): center of pressure (COP)
range in the AP direction, range medial-lateral (ML): COP range in the ML direction, path length:
resultant COP path length, mean velocity: resultant COP mean velocity, and area: 95% ellipse area. The
symbols * or ** denote which of the two variables were significantly different at each parameter (p < 0.05).

Mean Velocity Path Length

Range AP (cm)  Range ML (cm) Area (cm?)

(cm/s) (cm)
Eves open TD 0.81 £0.15*% 1494+0.10* 1.46 £0.27* 29.28 +5.49* 092 +022*
yes op PIGD 1.06 +0.13 ** 1.81+0.16 ** 1.48 £0.23 ** 29.62 + 4.57 ** 1.53 +£0.32 **
TD 1154+0.24* 2.81 +£0.39* 2.56 £ 0.66 * 5123 +13.16* 2954+ 1.05*
Eyes closed

PIGD 1.14 +£0.14 ** 2.75 £ 0.36 ** 2.01 £0.20 ** 40.23 £ 4.01 ** 251 £045*
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A power spectral analysis of the COP and COP velocity of a TD patient and a PIGD patient are
plotted in Figure 1, revealing that both patients had frequency components ranging from 0 to 2 Hz in
their COP and COP velocity signals. However, only the TD patient had an increase in power spectrum
in the frequency band of 3-7 Hz. This increase was larger in the ML direction.
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Figure 1. Power spectrum of COP and COP velocity of a tremor dominant (TD) patient and a postural
instability and gait difficulty (PIGD) patient for both the medial-lateral (ML) and anterior-posterior
(AP) directions. The graphs on the left and right sides of the page present the power spectrum signal
of a TD patient and a PIGD patient, respectively. COP)y : COP in the ML direction, COPpp: COP in
the AP direction, V-COPy.: COP velocity in the ML direction, and V-COPap: COP velocity in the
AP direction.

The WT of COP and COP velocity of a TD patient and a PIGD patient in both the ML and AP
directions are plotted in Figure 2. The horizontal white lines in each figure indicate the PD tremor
scale range corresponding to the frequency range of 3-7 Hz. The WT coefficients in Figure 2 display
relatively larger values in the PD tremor scale range (i.e., lighter blue values appeared in between two
horizontal white lines) for the TD patient when compared to the PIGD patient. Similar to the power
spectral analysis (Figure 1), these increases were larger in the ML direction.

The results of the proposed detection ratio for COP and its velocity in both directions using FFT
are presented in Figure 3. Neither the ratio of COP (Rcop mr) nor its velocity (Rycop mr) in the ML
direction were significantly different across the different conditions (Rcop_mr: F1,34) = 2.006, p = 0.112;
Rycop_mr: F(1,34) = 2.67, p = 0.112). However, a statistically significant difference in Rycop_wmr across
the groups (F(; 34y = 7.978, p = 0.008) was observed, although no significant difference was found in
Reopr ML (F1,34) = 3.449, p = 0.072). In both Rcop_mr and Rycop_wmi, there was no significant interaction
between the condition and the group (Rcop_mr: F1,34) = 1.181, p = 0.285; Rvcop mr: F1,34) = 2.037,
p = 0.163). Rycop_ M1 was larger for the TD group than for the PIGD group (Figure 3A,B). This indicated
that there were larger amplitudes in the frequency range of 3-7 Hz in this group. In the AP direction,
there was no significant difference across the groups (Rcop_ap: F1,34) = 0.498, p = 0.485; Rycop_ap:
F(1,34) = 0.628, p = 0.433) and the conditions (Rcop_ap: F1,34) = 1.306, p = 0.201; Rycop_ap: F1,34) = 3.45,
p= 0.08) in both Rcopr_ap and Rycopr_ap-

The explained WT method was applied to COP and its velocity in both directions. The results
are presented in Figure 4. We found a significant difference between the groups for Rcop ymr. and
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Rvcor_mr (Reop_mr: F 34y = 7.589, p = 0.009; Rycop_mr: F 34y = 10.066, p = 0.003), but no significant
difference between the conditions (Rcop_mr: F1,34) = 0.373, p = 0.814; Rycop_mr: F(1,34) = 2.5, p = 0.123).
There was no significant interaction between the conditions and the groups (Rcop_mr: F1,34) = 3.044,
p = 0.09; Rycor_mr: F(1,34) =2.828, p = 0.102). Both Rcop_mr and Rycop_mr had larger values for the TD
group than for the PIGD group (Figure 3A,B). These increases occurred because of the larger amplitude
values in the scales corresponding to the frequency range of 3-7 Hz. In the AP direction, there were no
significant differences across the groups (Rcop_ap: F(1,34) = 0.004, p = 0.952; Rycop_ap: F1,34) = 0.854,
p = 0.362) or conditions (Rcop_ap: F(1,34) = 0.011, p = 0.916; Rycop_ap: F(134) = 3.047, p = 0.091) in both
Rcop_ap and Rycop_ap-

D PIGD
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80 ’ I
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Figure 2. Wavelet transform (WT) of COP and COP velocity of a TD patient and a PIGD patient for both
the ML and AP directions. The horizontal white lines in each plot indicate the PD tremor scale range
corresponding to the frequency range of 3-7 Hz. The frequencies of 3 Hz and 7 Hz correspond to the
scales of 24 and 10, respectively. COPyy.: COP in the ML direction, COPpp: COP in the AP direction,
V-COPypqp: COP velocity in the ML direction, and V-COPzp: COP velocity in the AP direction.
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Figure 3. Fast Fourier transform (FFT) results of the proposed detection ratio for COP and its velocity
in both the ML and AP directions. (A) Rcop mr: the detection ratio using COP data in the ML
direction, (B) Rycop mL: the detection ratio using COP velocity data in the ML direction, (C) Rcop ap:
the detection ratio using COP data in the AP direction, and (D) Rycop_ap: the detection ratio using
COP velocity data in the AP direction. The asterisks (*) placed over the vertical bars denote a significant
difference (p < 0.05). EC: eyes closed condition; EO: eyes open condition.
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Figure 4. WT results of the proposed detection ratio for COP and its velocity in both the ML and
AP directions. (A) Rcop mr: the detection ratio using COP data in the ML direction, (B) Rycop mr:
the detection ratio using COP velocity data in the ML direction, (C) Rcop_ap: the detection ratio using
COP data in the AP direction, and (D) Rycop_ap: the detection ratio using COP velocity data in the AP
direction. The asterisks (*) placed over the vertical bars denote a significant difference (p < 0.05).
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The ROC curves of the proposed detection ratio for COP and its velocity in both directions and
under both conditions are plotted in Figures 5 and 6 for the FFT and WT methods, respectively. In both
methods, the ROC curves were closer to the upper-left corner in the ML direction than they were in
the AP direction, which indicated a higher overall accuracy of the test in the ML direction [31].
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Figure 5. Receiver operating characteristic (ROC) curves of the proposed detection ratio using the FFT
method for COP and its velocity: (A) ML direction and (B) AP direction. EO-Rcop mr: the detection
ratio using COP data in the ML direction under the eyes open condition, EC-Rcop mr: the detection
ratio using COP data in the ML direction under the eyes closed condition, EO-Rycop my.: the detection
ratio using COP velocity data in the ML direction under the eyes open condition, EC-Rycop mr:
the detection ratio using COP velocity data in the ML direction under the eyes closed condition,
EO-Rcop_ap: the detection ratio using COP data in the AP direction under the eyes open condition,
EC-Rcop_ap: the detection ratio using COP data in the AP direction under the eyes closed condition,
EO-Rycop_ap: the detection ratio using COP velocity data in the AP direction under the eyes open
condition, and EC-Rycop_ap: the detection ratio using COP velocity data in the AP direction under the
eyes closed condition.
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Figure 6. ROC curves of the proposed detection ratio using the WT method for COP and its velocity:
(A) ML direction and (B) AP direction. EO-Rcop mr: the detection ratio using COP data in the ML
direction under the eyes open condition, EC-Rcop mr: the detection ratio using COP data in the ML
direction under the eyes closed condition, EO-Rycop wmr: the detection ratio using COP velocity data in
the ML direction under the eyes open condition, EC-Rycop mr: the detection ratio using COP velocity
data in the ML direction under the eyes closed condition, EO-Rcop_ap: the detection ratio using COP
data in the AP direction under the eyes open condition, EC-Rcop_ap: the detection ratio using COP
data in the AP direction under the eyes closed condition, EO-Rycop_ap: the detection ratio using COP
velocity data in the AP direction under the eyes open condition, and EC-Rycop_ap: the detection ratio
using COP velocity data in the AP direction under the eyes closed condition.

The ROC curves were further analyzed by calculating the areas under each curve. The results
are presented in Table 3. Only COP velocity data in the ML direction could significantly distinguish
between the two subtypes using the FFT method. The results of the area under the ROC curves also
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revealed that the WT method could significantly distinguish between the two subtypes by using either
COP or COP velocity data in the ML direction, regardless of the conditions.

Table 3. The area under the receiver operating characteristic (ROC) curves of the proposed detection
ratio, using both the FFT and WT methods, for COP and its velocity in the ML and AP directions under
the two conditions (eyes open (EO) and eyes closed (EC)). The p-values of each parameter are presented
in parentheses. The asterisks (*) indicate that the area under the ROC curve was significantly different

from 0.5 (p < 0.05).
FFT WT
copr V_COP cop V_COP
EO 0.689 0.779 * 0.809 * 0.823 *
(p = 0.05) (p =0.001) (p =0.001) (p =0.001)
ML-Direction
EC 0.602 0.712* 0.706 * 0.726 *
(p =0.343) (p =0.023) (p =0.033) (p =0.016)
EO 0.562 0.555 0.562 0.569
(p = 0.542) (p =0.5873) (p =0.529) (p=0.482)
AP-Direction
EC 0.555 0.592 0.579 0.595
(p =0.578) (p =0.358) (0.442) (p =0.363)

4. Discussion

This study addressed subtype-specific biomarkers in order to classify the inherent heterogeneity
of PD. This categorization can help to predict the clinical progression of the disease. Thus, the correct
diagnosis of the subtypes can assist caregivers in initiating early amenable interventions and managing
symptoms. The COP time series of PD patients were analyzed to distinguish between the two subtypes
of PD. To the best of our knowledge, this study is the first to attempt to objectively diagnose the TD
and PIGD subtypes of PD. Postural stability is maintained through neuromuscular feedback loops
and open loop control processes that constantly adapt to internal and external perturbations [32,33].
Utilizing specific statistical and numerical tools, these control mechanisms can be quantified to identify
neuromuscular changes that occur with pathology. Thus, traditional linear postural measures and
Fourier transformation were applied to the COP time series and the increment of the COP time series
in both the AP and ML directions. Furthermore, in order to quantify the changes in COP dynamics
that occur at multiple timescales, a wavelet transform was employed to infer the underlying nature
and control mechanisms involved in balance maintenance and the disease state.

In the traditional measures of postural sway, the parameters that denoted the magnitude of
the postural movements were unable to discriminate between the TD and PIGD subtypes (Table 2).
However, when visual information was occluded, a coincident decrease in postural stability was
reflected in both subtypes for the linear postural measures (i.e., COP range, mean velocity, path
length, and a 95% confidence ellipse area). These results were consistent with previous investigations
regarding postural stability in PD patients [34].

Both the power spectral density and the WT of the COP time series and its velocity (Figures 1 and 2)
revealed an increase in the 3-7 Hz frequency range of the TD group, a frequency spectra that is
reportedly symptomatic of parkinsonian tremor [17-19]. In fact, the ML COP data exhibited a greater
frequency content than the AP COP data, which was consistent with previous investigations, which
reported that PD patients exhibited increased ML sway amplitude, decreased AP sway amplitude,
and possibly postural inflexibility in the AP direction [15,35-37]. In this context, the preponderance
of the ML frequency in the ML direction, coupled with the impaired movement in the AP direction,
suggested an underlying postural inflexibility in PD patients, where the tremor reflected in the ML
time domain might be a consequence of the AP direction’s inability to contain movements in a higher
frequency range [35,38,39]. Our proposed ratio was not able to show a statistically significant difference



Sensors 2018, 18, 1102 10 of 12

between the TD and PIGD patients in the AP direction using either of the methods—even accounting
for both COP and COP velocity. The reason was that the tremor frequency had a larger amplitude
in the ML direction than it did in the AP direction (as shown in Figures 1 and 2). However, both
the FFT and WT methods were able to distinguish the TD patients from the PIGD patients using
the ML-COP velocity signal, while only the WT method was able to specify the subtype with the
COP position time series. This could be explained by the fact that the FFT method used only the
frequency information from the signals, while the WT method employed both the frequency and time
components. The information from the signals that was utilized by WT enabled us to specify the
subtypes of PD using both COP and COP velocity. Additionally, FFT displayed significant results
when it employed COP velocity—as opposed to COP in itself—because the velocity of the signal
was a first time derivative of the signal, which captured more variation of the signal. Hence, FFT
could assess more information about the signals when it employed COP velocity. The results of the
proposed method were consistent across both conditions (EO and EC) in both methods (FFT and WT).
This consistency indicated the strength of the proposed diagnostic method using the proposed ratio.
Although the proposed method can distinguish the TD from the PIGD subtypes, further studies are
required to define the threshold value ranges that can classify the patients.
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