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The Lyapunov exponent (LyE) is a trending measure for characterizing gait
stability. Previous studies have shown that data length has an effect on the
resultant LyE, but the origin of why it changes is unknown. This study inves-
tigates if data length affects the choice of time delay and embedding dimension
when reconstructing the phase space, which is a requirement for calculating the
LyE. The effect of three different preprocessing methods on reconstructing the
gait attractor was also investigated. Lumbar accelerometer data were collected
from 10 healthy subjects walking on a treadmill at their preferred walking
speed for 30 min. Our results show that time delay was not sensitive to the
amount of data used during calculation. However, the embedding dimension
had a minimum data requirement of 200 or 300 gait cycles, depending on the
preprocessing method used, to determine the steady-state value of the embed-
ding dimension. This study also found that preprocessing the data using a fixed
number of strides or a fixed number of data points had significantly different
values for time delay compared to a time series that used a fixed number of nor-
malized gait cycles, which have a fixed number of data points per stride. Thus,
comparing LyE values should match the method of calculation using either a
fixed number of strides or a fixed number of data points.

1. Introduction

The Lyapunov exponent (LyE) is a nonlinear dynamical calculation that quantifies
the rate of divergence or convergence of trajectories in an m-dimensional phase
space. A phase space is a finite-dimensional vector space R" that contains all the
possible states of a system. Each possible state corresponds to one unique point
in the phase space and is used to identify the attractors in the system. The phase
space shows all of the possible trajectories for a dynamical system and is used to
identify all of the possible attractors of the system. An attractor draws (repels)
nearby trajectories towards (away) from itself, where multiple attractors can com-
bine these properties, repelling in one direction and attracting in another [1-3], also
known as saddle points. In classic examples of chaos theory, the phase space is
usually a plot of position and momentum as a function of time. However, a
phase space can also be reconstructed from a single continuously recorded vari-
able, given that the sampling frequency and the number of cycles of the system
are sufficient. Nonlinear dynamics and chaos theory attempt to describe and
extract features of these systems to understand their behaviour and sensitivity to
initial conditions. For more details and mathematical description of the phase
space, readers can refer to [2,4,5]. LyE, or local dynamic stability, is a popular
approach to assess and enumerate an individual’s ability to withstand minute per-
turbations during gait. For instance, in walking, we take very similar steps from
right to left in terms of step size, walking velocity, etc., but these similar steps
are not identical. These small changes are owing to slightly different initial con-
ditions before each step is taken. LyE evaluates these changes (divergences)
between initial conditions and is used to measure the stability of gait as a dynami-
cal system. This nonlinear measure has been used to differentiate between healthy
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and fall prone elderly [6,7], as well as used to identify differ-
ences between healthy controls and patients with Parkinson’s
disease [8], and developmental disorders [9].

Multiple studies have found that the amount of gait data
used when calculating the LyE affects the final outcome
[10-12]. Previous studies on the reliability of LyE have found
different data minimum requirements; some required 54 and
150 strides [13,14], while others state a time duration minimum
of 2-3 min of walking data [15,16] is sufficient. However, no
studies have investigated if data length plays a role in selecting
the reconstruction parameters required for calculating LyE.

The first step in calculating the LyE is reconstructing the
collected time series into the phase space so the gait attractor
can be analysed. The phase space is reconstructed using the
method of delays [17]:

ym) = [x(n), xn + 1), ..., x(n+ dg — D7)], (1.1)

which requires a time delay, 7, and an embedding dimension,
dg. The time delay is most commonly [18] determined using
the first minimum of average mutual information (AMI) func-
tion, which evaluates the amount of information that is shared
between datasets over a range of time delays. With time delay
established, the embedding dimension is then determined
using global false nearest neighbours (FNN). FNN compares
the distances between neighbouring trajectories at increasing
dimensions. False neighbours occur when trajectories overlap
in a lower dimension but do not overlap in a larger dimension
[19]. The total percentage of false neighbours declines as
embedding dimensions increase until the proper embedding
dimension is reached. This is usually determined by the FNN
percentage as it either approaches zero or plateaus out.

In addition to the varying data lengths being used, pre-
vious studies have also applied different preprocessing
methods for gait time-series normalization. This has also
been found to have an effect on the calculation of LyE [20].
We have identified three major methods in the gait literature:

(1) fixed number of strides with a variable number of total
data points [21]—the time series will start and end on a
heel contact, but each stride will contain a variable
number of data points. This method maintains the
distance between points on the attractor;

(2) fixed number of strides and data points per stride
[10,11,22]—the time series is time normalized to 100
samples per stride. This method alters the distance
between data points within the phase space, but the
number of points in each stride cycle is constant across
subjects irrespective of gait speed; and

(3) fixed number of data points with a variable number of
strides [23,24]—the time series starts at the same as
methods 1 and 2 at a heel contact; however, the endpoint
is a fixed number of points regardless of the number of
gait cycles it contains. This method also maintains the
distance between points on the attractor but does not
guarantee ending on a full cycle.

The aim of this study was to determine the effect of data length
on the reconstruction parameters of the LyE, specifically the 7
and dg determined by AMI and FNN, respectively. We hypo-
thesize that 7z and dp will not change with respect to data
length given sufficient data are provided. Additionally, we
investigated the effects of three data preprocessing methods
on determining time delay and embedding dimension.

2. Material and methods
2.1. Participants

Ten young healthy subjects (five males and five females) with a
mean + standard deviation age of 24.5 + 4.1 years, body height of
1.67 £ 0.10 m and body mass of 69.4 + 11.6 kg were included in this
study. All subjects were physically active and familiar with walking
on a treadmill. Subjects reported no cardiovascular issues, neurologi-
cal diseases, nor lower extremity surgeries in the last three months.
Subjects provided written informed consent before participating in
this study. This study was approved by the Institutional Review
Board of Arizona State University (ASU FWA 00009102).

2.2. Experimental procedure
After subjects became familiar with the treadmill, each subject’s
preferred walking speed (PWS) was determined using a standar-
dized protocol [23,25]. The mean and standard deviation of PWS
was 1.13+0.1ms™'. After a short rest period, each subject
walked on the treadmill for 30 min at their PWS. Participants
wore three tri-axial acceleration sensors sampling at 128 Hz
(APDM (Ambulatory Parkinson's Disease Monitoring); Mobility
Lab, APDM, Inc., Portland, OR) fitted with elastic bands and
Velcro straps and were placed at each ankle and the lower
lumbar around vertebrae L4 and L5. For this study, the ankle sen-
sors were used to define heel contacts for truncating the gait data
as necessary. A custom algorithm based on previously published
algorithms [26,27] was used to define heel contacts. The lumbar
sensor was used for reconstructing the phase space and calculat-
ing the LyE. The treadmill used in this experiment is a split-belt
treadmill and is a part of the GRAIL system (Motekforce Link,
Amsterdam, The Netherlands). Measurements were started
after the treadmill and the subject was at a constant speed.
Three-dimensional acceleration data of the lumbar sensor were
used for all of the calculations in this paper. The heel contacts for
each step were determined and indexed, and the time series was trun-
cated to start and end on a heel contact [11,28]. To investigate how
different methods of preprocessing affect the calculation of time
delay and embedding dimension, three different methods that are
used in nonlinear dynamical calculations for gait were implemented:

1. fixed number of strides with a variable number of points per
stride;

2. fixed number of strides with 100 data points per stride; and

3. fixed number of data points.

These methods were applied to the vertical (VT), anteroposterior
(AP) and mediolateral (ML) acceleration time series and no other
filtering /normalization methods were used. After the data were
preprocessed, different sample lengths ranging from 30 to 500
strides were extracted from the same first heel contact of the time
series. This was repeated for each acceleration direction. The data
lengths selected for method 3 were based on 15, 30 and 60 s and
2, 3, 5 and 10 min of gait data. This range includes smaller and
larger data collection times as well as very common data collection
times of 1-3 min of data. All calculations were done using custom
made MATLAB (v. 2018b, Mathworks Inc., Natwick) programs.

2.3. Simulated data

We simulated the Lorenz and Rossler attractors because they are
well-known dynamical systems and they are similar to human
posture and gait data, respectively. The Lorenz system has a pro-
nounced non-periodic behaviour which may be considered
representative for postural sway, while the Rossler system has a
periodic behaviour which is more comparable to gait [29]. The
systems, based on the differential equations and initial conditions
outlined in table 1, were simulated using MATLAB. Each nonlinear
attractor was generated with 1 x 10° samples, where the first 8000

LLE00Z0T L dwpaauf 0§ Y Jisi/jeulnol/b10°buiysijgndianosiefos H



Downloaded from https://royalsocietypublishing.org/ on 03 February 2022

Table 1. Reference table for known chaotic dynamical systems. (Values
from [30].)

expected
system  equations parameters At A,
Lorenz X = oly —x) c=16.0 001 150
y=xR—2—y R=4592
7=xy—bz b=40
e 7yiz O
y=x+uay b=10.20
7=b+zx—¢ ¢=100
*Wolf et al. [31].

®Rossler [32].

samples were discarded to avoid transient confounders with each
time series. Each time series was then segmented into non-overlap-
ping windows that each contained 5 x 10* samples. Ten of these
windows were used in the subsequent analyses for both the
Lorenz and Réssler attractors. To investigate the effect of data
length, various data lengths were extracted from each window ran-
ging from 500 to 5.0 x 10* samples all starting with the first point of
the window. This range was used to mimic the data lengths
extracted from the gait data using method 3 (data truncated
based on a specific number of samples).

2.4. Data analysis

Time delay, 7, was determined as the first local minimum of the
AMI function [18]. A time delay was determined for each direc-
tional acceleration as data length was varied for the simulated
and collected data. The 7 determined from AMI at 1x 10*
samples for known systems and 300 gait cycles or 1.5x 10*
data points for gait data. FNN [19,33] was then used to deter-
mine the appropriate embedding dimension, dg, using values
of Ry =15 and Ay =4. These threshold values within the FNN
algorithm are within the suggested ranges set by Kennel et al.
[19]. The final selection of the d is generally up to the discretion
of the researcher where the FNN starts plateauing out. Therefore,
to objectively select the d, we added the following criteria: (i) the
difference between subsequent dimensions must be less than
0.05, and (ii) the actual percentage of FINN at that dimension
must also be less than 10%. This method is depicted in figure 1.
These decision criteria were used for both the Lorenz system and
all gait data collected. However, the second criterion had to be
increased to 20% for the Rossler system because some subjects
in the z-axis, at certain time epochs, never dropped below a
10% FNN rate. This was most likely owing to the fact that less
information about the Rossler system lies in the z-axis as most
of its’ trajectories live in the xy-plane of the phase space.

2.5. Statistical analysis

To explore the effect of data length and preprocessing methods
effects on 7 and dg, a repeated measures mixed model ANOVA
(analysis of variance) was performed for each signal direction
(AP ML and VT) for the gait data. Data length and preprocessing
methods were considered within-subject factors because each sub-
ject participated in every data length and all three preprocessing
methods. For the simulated nonlinear system data, a one-way
repeated measures ANOVA was used to determine the effect of
data length on 7and d, for each signal direction (x, y and z). Subjects
were treated as a random factor. Tukey honest significant difference
test was used for all post hoc comparisons. For all statistical tests, a

(@) 100 \ . ' v
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embedding dimension
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Figure 1. Methodology used to objectively select the embedding dimension.
(a) The output of FNN. (b) The figure was created by finding the difference
between neighbouring dimensions, each named for the transition they rep-
resent. The first criterion is found when the difference between dimensions is
less than 0.05, displayed as the dash-dot line in (b). For example, this point
would be the 5-6 dimension transition. The second criterion then checks that
dimension 5 has less than 10% FNN rate.

p-value <0.05 was considered significant. All statistical analysis
was performed in JMP Pro (v. 14, SAS, Cary, NC).

3. Results
3.1. Simulated systems

There was no statistical effect of data length on 7 for the Lorenz
attractor in any direction. The Rossler attractor had significant
differences in the y-direction (Fy 63 =5.94, p = 0.0001) and the z-
direction (F7 ¢3 = 2.81, p = 0.0451). A post hoc Tukey test revealed
significant differences between data lengths of 500 points and
2.0x10° (p=0.0001), 50x10° (p=0.0007) and 3.0x10*
samples (p =0.0007) points, respectively, in the y-direction. In
the z-direction, there was only a significant difference between
5.0 x 10° and 1.0 x 10* data points (p = 0.0451).

In the Lorenz (F;43=29.22, p< 0.0001; F;¢=281.00,
p<0.0001; and F743=21.00, p<0.0001 for x, y and z, res-
pectively) and Rdassler attractor (F;¢3=39.86, p<0.0001;
F763=40.35, p <0.0001; and F;¢3=2.81, p=0.0130 for x, y and
z, respectively), data length did have an effect on the dg. A
post hoc Tukey test was used as a pairwise comparison across
all data lengths to determine where data length affected d.
Significant differences (p = 0.0001, for all) between data lengths
of 500 and any other data length were seen in all directions for
the Lorenz system. Additionally, significant differences were
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Table 2. The effect of data length when calculating the embedding dimension. (A post hoc Tukey test was used to determine the significant differences [}

between matched data lengths pairwise comparisons. Data length is in gait cycles (gc). Significant differences are in bold.)

data length (gc)

data length (gc)

e
b S
b
e
g S
100 03117
et
g

seen in the x-direction when 2.0 x 10° data points were com-
pared against any other data length (p=0.0405 at 5.0 x 10°
data points and p=0.0001 for all other data lengths) in the
Lorenz system. In the Rossler system, significant differences
(p=0.0001) were seen in the x-direction when 500 and 2.0 x
10° data points were compared against any other data length.
In the y-direction, only significant differences (p=0.0001)
when 500 data points were compared against any other data
length, and no significant differences were found between
data lengths in the z-direction. All statistical analysis tables are
shown in the electronic supplementary material.

3.2. Gait

Data length did not have an effect on 7 in any direction when
using gait data. Data length did have an effect on the dg in
all directions (AP: F545=>53.34, p <0.0001; ML: F545=45.73,
p<0.0001; and VT: F5,45=15.62, p<0.0001). The post hoc
Tukey test revealed that embedding dimension calculations
that used very low (30 and 50 gait cycles) or very large
(300 and 500 gait cycles) data lengths were, in general, not
significantly different from each other in any direction.
Table 2 shows all the data length pairwise comparisons.

We found significant differences between the values of 7
derived from different preprocessing methods in the AP
(F218=19.61, p=0.001) and VT directions (F;5=5.05, p=
0.0182). The post hoc Tukey test showed that in these directions,
method 1 (fixed number of strides) and method 2 (fixed number
of strides with 100 points per stride) were significantly different
(AP: p=0.0001 and VT: p=0.0413). Method 2 was also signi-
ficantly different (AP: p=0.0002 and VT: p=0.0275) from
method 3 (fixed number of data points) in the AP and VT

i
B S T T
B S S i
i T i

B B T T
<0.0001  <0.0001  0.0094 0885

e
A B T T
D 1 1

directions. These differences are further broken down by data
length and are presented in table 3. In the AP direction, all
matching data lengths are significantly different when compar-
ing method 1 and method 2. This is also seen when comparing
method 2 against method 3, except for when data length is 200
gait cycles. In the VT direction, however, the only significant
difference was between method 2 and method 3 when data
length was 500 gait cycles. There were significant differences
between different methods at different data lengths, but they
are not reported in this manuscript as they do not hold relevant
information for this analysis.

There were also significant differences between dp values
when calculated with different preprocessing methods, but
only in the ML direction (F 15 =4.71, p = 0.0227) and specifically
only when comparing method 1 to method 2 (p=0.0257).
Method differences were further broken down by data length
for each signal direction (table 3); there was only a significant
difference between method 1 and method 2 when 200 gait
cycles were used. We also performed another post hoc Tukey
test from a one-way repeated measures ANOVA when data
length was a within-subject factor and each preprocessing
method was fitted separately. This was done to compare the
effect of data length on dg with respect to each preprocessing
method. The results of these analyses can be found in
tables 4-6 where bolded values indicate significant differences.

4, Discussion

The time delay and embedding dimension are critical inputs
for reconstructing the phase space [34] which is the first step
in calculating the LyE. A previous study [14] found that LyE
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Table 3. Post hoc Tukey test results for comparing preprocessing methods at each data length for time delay (7) and embedding dimension (). (Data length [}

is in gait cycles (gc). Significant differences are in bold. Method 1: fixed number of gait cycles. Method 2: fixed number of normalized gait cycles. Method 3:

fixed number of data points.)

time delay

data length (gc) 1 versus 2 1 versus 3
AP 30 0.0060 1.0000
00003 09487
e v e
o e e
300 05015 10000
u B
y s e
........ s ot

increases as data length increases. The specific aspect of the
LyE calculation that is sensitive to data length is still unknown.
Therefore, this paper investigated the role of data length in the
calculation of 7 and dg. Time delay and embedding dimension
were calculated using AMI and FNN, respectively. We found
that 7 is not affected by data length, while dg is underestimated
without sufficient data for its calculation. Additionally, this
paper found that stride normalization (method 2) has statisti-
cally different 7 values compared to gait data that has not
been normalized (method 1 and 3). Method 2 generally had
smaller 7 values in VT and ML directions but had larger
values in the AP direction.

As hypothesized, the 7 from the Lorenz and walking data
does not change as data length increases, regardless of the
directional vector. The Rdssler system, however, was affected,
but only in the y-directional time series. Of the simulated sys-
tems used in this study, the Lorenz attractor converged on a
time delay of 11 points as reported in a previous study [30].
The time delay of the Rossler attractor was highly variable
subject to subject in the x-, y- and z-direction. However,
once a data length of 7.5 x 10° points or greater was used, a
stable 7 (electronic supplementary material, figure S1) was
able to be established in all directions.

In gait, no significant differences were found between
method 1 (fixed number of strides) and method 3 (fixed
number of points) regardless of data length and signal

,0.0413 0.9784,. B

embedding dimension

2 versus 3 1 versus 2 1 versus 3 2 versus 3
0.0060 1.0000 1.0000 1.0000
00113 0900 10000 09600
i
01019 10000 04912 04912

ot S Ot
1
e Sty Sy

S b e

Tt o

1 St et s
Lt 11t
05015 10000 10000 10000
e 1 S
01042 00257 0809 00733
1ty Ot
05383 10000 10000 10000

Tty S
T L et s
i
i

1

direction. This was expected as the same data were essentially
used but truncated differently. Method 2 (fixed number of
strides with 100 points per stride) was significantly different
from method 1 and method 3, specifically in the AP direction.
We found that regardless of data length method 1 and method
3 had significantly larger r values compared to method 2. It is
not surprising that method 2 would have different 7 values
since every stride is normalized to 100 points per stride.
Stride time normalization alters the time and distance relation-
ships within the phase space. It is possible that because the
largest movement in walking is moving forward, that the AP
direction shows this difference the most. Additionally, the sig-
nificant differences between these methods in the AP direction
may result from position changes, i.e. from the centre to the top
of the treadmill or vice versa. Overall, preprocessing methods
mainly affected the time delay when calculated from AP
data, as shown in figure 2.

Time delay in gait is not as uniform as in the known dyna-
mical systems. The known systems had a single point range
about the mean 7, once a sufficient amount of data was used.
In gait, the 7 ranged from 4 to 16 across all subjects, while the
Lorenz and Rossler simulated subjects’ time delay ranged
from 10 to 12 and 11 to 16, respectively. This larger range is
expected owing to the individual gait differences. However,
this does beg the question, can the same time delay be used
for every subject as well as for each acceleration direction?
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Table 4. Post hoc Tukey test results comparing embedding dimensions at all data lengths for the gait data processed using method 1 (fixed number of strides).
data length comparison for method 1

data length (gc)

0
b S S S
S D e 1 e e
s o - T T T
S D D S K —

00
S it L e

Table 5. Post hoc Tukey test results comparing embedding dimensions at all data lengths for the gait data processed using method 2 (fixed number of strides
with 100 points per stride).

data length comparison for method 2

data length (gc) 50

AP 30 — — — — —
e e et eae e e

s
1 1 e
1 e e
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raw gait cycles
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gait cycle normalized
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data length (normalized strides)
data length (data points, in thousands)

Figure 2. Mean (s.d.) of time delay when calculated with different data lengths and preprocessing methods for every signal direction: vertical (VT), mediolateral
(ML) and anteroposterior (AP).

Table 6. Post hoc Tukey test results comparing embedding dimensions at all data lengths for the gait data processed using method 3 (fixed number of data
points).

data length comparison for method 3

data length (gc) 50

AP 30 — — — — —
e et i wee T
e e
e e
e e e om e
e e gt
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The majority of publications that calculate the LyE for gait usea
single time delay for every subject [35]. Although one paper
has looked at some of the differences between individualized
and a pre-selected fixed time delay, the researchers were
specifically investigating the intra-patient reliability of LyE
[12] and only in the ML direction. A more in-depth study
into how underestimating or overestimating the 7 in the LyE
calculation is needed to understand its importance and
contribution to the reliability of the LyE for gait.

We discovered that the calculated dg varies with respect to
data length. However, a steady state dr can be reached as long
as the minimum data requirement is met for the dynamical
system. If we look at the simulated systems, shown in the

electronic supplementary material, figure S2, the calculated
Lorenz quickly reaches a consistent dr after 5x 10° in the
x-direction and 2 x 10® points in the y- and z-direction. The
Rossler system required 5 x 10° points to reach a steady state
dg in the x time series, 2 x 10° points in the y, and 500 points
in the z. The z time series did not always converge on to the
same dp as the other time series, however. This could be a
sign that the z time series has insufficient information in its
signal to be used for phase space reconstruction.

The gait data also reached a steady-state embedding
dimension; however, it required at least 300 gait cycles
(figure 3). No significant differences were found between 300
and 500 gait cycles for all signal directions (table 2);
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Figure 3. Mean (s.d.) of embedding dimension when calculated with different data lengths and preprocessing methods for every signal direction: vertical (VT),

mediolateral (ML) and anteroposterior (AP).

however, this relationship changes when you independently
test changes in dg with respect to data length for each prepro-
cessing method. Preprocessing method 1 (fixed number of
gait cycles) required the least amount of data to reach a
steady state dg. Steady state was reached at 200 gait cycles in
the AP and ML directions and 100 gait cycles in the VT direc-
tion. For preprocessing method 2 (fixed number of stride
normalized gait cycles), a steady state dr is reached at 300
gait cycles in the ML direction and 200 gait cycles in the AP
and VT directions. Preprocessing method 3 (fixed number of
data points) had the highest data requirements for finding a
stable dg, requiring 300 gait cycles in the AP and ML directions,
and 200 gait cycles in the VT direction. It is important to note
that all preprocessing methods, in every acceleration direction,
did converge onto a dg of 5 after 300 gait cycles. Therefore, we
find that an embedding dimension of 5 is sufficient for proces-
sing young healthy adult gait data for LyE. Future research
should look at how much d affects the final outcome of LyE
using either algorithm for calculating local dynamic stability.

This study had some limitations with using only young
healthy adults. We cannot assume that data length will
have similar effects on 7 and dg when looking at different
population groups, e.g. healthy or frail elderly. Although a
treadmill was used for this experiment, this should not have
an impact on the reconstruction of the phase space itself.
The calculated LyE is believed to be different from treadmill
and over-ground walking owing to slightly different gait
dynamics used to adapt to each situation [28,36]. However,
this terrain difference has no influence on the method of
phase space reconstruction.

The current study provided novel information by systema-
tically investigating the effect of data length on time delay and
embedding dimension in gait data. Data length does not play a
large role in the calculation of 7 using AMI, while a minimum
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