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Abstract: Although Support Vector Machines (SVM) are widely used for classifying human motion
patterns, their application in the automatic recognition of dynamic and static activities of daily life
in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit
(IMU), this paper explores the use of SVM approach for classifying dynamic (walking) and static
(sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature
extraction methods associated with IMU signals are discussed. To evaluate the performance of the
SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant
C and the kernel function parameter γ—are investigated. The changes associated with adding
white-noise and pink-noise on these two parameters along with adding different sources of movement
variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results
indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two
parameters for dynamic as well as static activities, and may be applied as a tool for automatically
identifying dynamic and static activities of daily life in the older adults.

Keywords: locomotion; machine learning; support vector machines; activity classification;
activity of daily life (ADL)

1. Introduction

Fall accidents are a significant problem for the older adults [1–3], and several studies have shown
that fall risks in this population can be identified with motion patterns associated with the activities of
daily life [4,5]. While the classification of dynamic and static activities of daily life is a key point for fall
prevention research efforts, the greater variability of motion patterns associated with aging [6–10] and
its effect on classification performance are not well understood. In this study, we investigate the use of
support vector machine (SVM) classifier to identify dynamic as well as static activities of daily life in
the older adults.

Numerous classification algorithms exist to provide human motion classification patterns, such as
the wavelet method, the linear discriminant analysis (LDA) method, the ambient assisted living (AAL)
systems, the Multi-Classifier Adaptive-Training (MCAT) algorithm, the pervasive neural network
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algorithm, ambient intelligence, and the SVM algorithm. Specifically, gyroscope data and the wavelet
method was used to analyze the “sit-to-stand” transition in relation to fall risk by Najafi et al. [11].
A linear discriminant analysis method was adopted to classify external load conditions during
walking by Lee et al. [12]. An Evaluating Assisted Ambient Living (EvAAL) workshop aimed to
address the problem of localization and tracking issues for AAL, and provided a novel approach to
evaluate and assess AAL systems and services [13]. A Multi-Classifier Adaptive-Training algorithm
(MCAT) was proposed to improve the classifier for activity recognition by Cvetković et al. [14].
A pervasive neural network algorithm was utilized by Kerdegari et al. on smart phones to monitor
older individuals’ activities, and identified the occurrence of falls [15]. Ambient intelligence was used
to gather information from an environment to assess patients’ vital signs and locations in the waiting
area of a hospital emergency department by Curtis et al. [16]. In addition, the SVM classifier was used
to analyze the minimum foot clearance owing to aging by Begg et al. [17]. The SVM is considered
a powerful technique for general data classification, and has been widely used to classify human
motion patterns with good results [18–21]. The advantage of the SVM algorithm is that it can generate
a classification result with limited data sets by minimizing both structural and empirical risks [22].

Although numerous studies have been devoted to improving the SVM algorithms, little work
has been performed on assessing the robustness of SVM algorithms associated with movement
variations (i.e., mixed activities of daily life) of the older adults [23]. In this study, we investigate
variations of the optimal parameters involved in the SVM algorithm by taking a closer look into
the performance of SVM classifier for detecting dynamic and static motions of the older adults.
Furthermore, step-by-step procedures associated with the SVM classification are elaborated to provide
a better understanding of the classification method utilizing an ambulatory inertial measurement unit
system for biomedical applications.

2. Methods and Materials

2.1. SVM

Here, some basic concepts applied in SVMs are elaborated in light of the classification schemes.
The SVM is a statistical method introduced by Guyon and Vapnik [24,25] which has been widely
applied to different classification needs [26–28]. The idea of the SVM algorithm is to map the original
data to a high-dimensional space using nonlinear mapping by finding an optimum linear separating
hyperplane with the maximal margin in this higher dimensional space [24,25].

The SVM is a principled approach to machine learning utilizing concepts from classical statistical
learning theory [24,29,30]; it exhibits good generalization of new data with a readily interpretable
model. Additionally, learning involves the optimization of a convex function (i.e., one solution).
From the perspective of statistical learning theory, the motivation for considering binary classifier
SVM comes from the theoretical bounds on the generalization error. These generalization bounds
have two important features: the upper bound is independent of the size of the input space, and the
bound is minimized by maximizing the margin between the hyperplane separating the two classes and
the closest data point to each class—called support vectors. Closest points are called support vectors
because they support where the hyperplane should be located, that is, moving the nonsupport vectors
will not shift the hyperplane, whereas moving the support vectors will shift the hyperplane (Figure 1).
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The basis of the SVM algorithm can be stated as follows: training data set Θ is given, containing
data feature vectors xi and the corresponding data labels di, in the form of

Θ =
{
(x1, d1), (x2, d2), (x3, d3), . . . , (xn, dn)

}
(1)

where xi ∈ <
m, m is dimension of the feature (real) vector, di ∈ {0, 1}, and n is the number of samples.

In our case, di as 1 for dynamic activities and 0 is employed for static activities. We assume g(x) is
some unknown function to classify the feature vector xi.

g(x) :<m
→ {0, 1} (2)

In the SVM method, optimal margin classification for linearly separable patterns is achieved by
finding a hyperplane in m dimensional space. The linear classifier is based on a linear discriminant
function of the form

f (x) =
∑

i

wixi + b (3)

where the vector wi is the weight vector and b is the hyperplane bias. We try to find the maximum
margin hyperplane dividing the points having di = 1 from those having di = 0. In our case, two classes
from the samples are labeled by f (x) ≥ 0 for dynamic motion class (di = 1) and f (x) < 0 for static
motion class (di = 0), while f (x) = 0 is called the hyperplane which separates the sampled data
linearly.

In many cases, a linear classifier cannot satisfy the demand of accuracy due to its simplicity;
thus, a more sensitive classifier is needed for real-world applications. Correspondingly, kernel theory
was introduced by implicitly mapping data from the input space into higher dimensional space,
in order to achieve nonlinear transformation and avoid the problem of dimensionality [31]. The kernel
function K(x, y) can be expressed as and is related to ϕ (x) by

K(x, y) = ϕ(x)Tϕ(x) (4)

where ϕ(x) represents the nonlinear feature mapping function, x ∈ <m, ϕ(x) ∈ <n.
The evaluation of a hyperplane in feature space is usually determined by the distance between

the hyperplane and the training points lying closest to it, which are named support vectors (Figure 1).
Therefore, it is necessary to search for an optimal separating hyperplane to maximize the distance
between the support vectors and the hyperplane [31]. The distance from the hyperplane to a support
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vector is 1
‖w‖ ; thus, we can get the distance between the support vectors of one class to the other class

simply by using geometry: 2
‖w‖ .

As real-life datasets may contain noise, and SVM can fit this noise leading to poor generalization,
the effects of outliers and noise can be reduced by introducing a soft margin. The soft-margin
minimization problem relaxes the strict discriminant by introducing slack variables, ξi, and is
formulated as

minimize = (w) =
1
2

∑l

i=1
w2

i + C
∑l

i=1
ξi subject to

{
di(

∑l
i=1 wiφ(xi) + b) ≥ 1 + ξi

∀i = 1 . . . l
(5)

The Lagrange theory is applied to solve Equation (5), and we can get the solved dual Lagrangian
form of minimize

= (w) = −
1
2

∑l

i=1
αi +

1
2

∑l

i, j=1
αiα jyiy jK

(
xiy j

)
subject to

{
0 ≤ αi ≤ C∑l
i=1 αiyi = 0

(6)

where α1, α2 , . . . ,αl are the non-negative Lagrangian multipliers, and C is a constant parameter,
called the regularization parameter, which determines the tradeoff between the maximum margin and
minimum classification error.

Once we have found the Lagrangian multipliers αi, then the optimal w∗ can be obtained:

w∗ =
n∑

i=1

αiyixi (7)

Correspondingly, the value of optimal b∗ can be derived from the constraints

(〈w, xi〉+ b) ≥ 1 (8)

Thus, we can obtain the optimal b∗ value:

b∗ = −
maxyi=−1(〈w, xi〉) + minyi=1(〈w, xi〉)

2
(9)

At this point, we have all of the necessary parameters to write down the decision function needed
to predict the classification of a new data point xnew:

f (xnew) = sgn( 〈w∗, xnew〉+ b∗) = sgn

 n∑
i=1

αiyi〈xi, xnew〉+ b∗
 (10)

In essence, finding αi and b∗ and applying the choice of kernel to the decision function will classify
new data points as either dynamic or static activities. In general, if αi is nonzero, it is a support
vector, while if αi is zero, it is not a support vector. Intuitively, as illustrated in Figure 1, moving the
nonsupport vector will result in no shift of the hyperplane (i.e., αi is zero).

The process of obtaining the quadratic program solution is known as training, and the process of
using the trained SVM model to classify new data sets is known as testing. In this paper, two types of
human activities are separately presented as input for the training of the SVM model, labeled with the
dynamic and static types [1 for dynamic, 0 for static]. Data processing of the raw data and feature
extraction methods are discussed next within the empirical paradigm.

The motion patterns associated with activities of daily life (walking, standing, sitting and lying)
were captured by the wearable inertial measurement unit (IMU—accelerometer and gyroscope) system.
Afterwards, we employed the SVM method to classify dynamic and static activities. The selection of
features and formatting of the data into the SVM input file is further elaborated in light of analyzing
human movements utilizing IMU signals. Subsequently, we investigated the effects of two parameters
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pertinent to SVM classifiers: soft margin constant C and the kernel function parameter γ. The motion
associated with dynamic (normal walking is assumed here to be dynamic) and static activities (e.g., lying,
sitting, standing still with eyes open and closed) of the older adults were investigated.

2.2. Participants and Data Collection

Thirty community dwelling healthy older individuals consisting of 21 females and 9 males (Height
1.68 ± 0.09 m, Weight 162.09 ± 22.33 lb, Age 76 ± 7 years) from Loudoun County, Virginia participated
in this study. The data was collected from the local senior center. Written consent was provided by
the participants who agreed to volunteer in the study. Participants wore three Inertial Measurement
Unit (IMU) nodes [32]: one at the sternum level and another two on the lateral sides of the shank.
In this manuscript, only the data from the sternum level node is analyzed (Figure 2). Participants were
instructed to sit comfortably using a backrest for one minute on a 40 cm popliteal height chair. They were
then instructed to stand up using the arm-rests. Postural sway data was collected while standing still
with eyes open and eyes closed for 90 s. Next, the participants were instructed to lie down on their
back (i.e., in supine posture) on a massage bench for a minute, and data were recorded for lying down.
Afterwards, participants were asked to walk a distance of 10 m. Participants willingly volunteered for
this experiment, and no compensation was provided. All participants signed an informed consent form
approved by the Institutional Review Board at Virginia Tech (IRB Number 11-1088 [33]).
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2.3. Instrumentation

The IMU node consisted of MMA7261QT tri-axial accelerometers (NXP Semiconductor,
Netherlands) and IDG-300 (x and y plane gyroscope) (InvenSense, Santa Clara, CA, USA) and
an ADXRS300 (Analog Devices, Norwood, MA, USA) z-plane uniaxial gyroscope aggregated in the
TEMPO [32] platform (Technology-Enabled Medical Precision Observation which was manufactured in
collaboration with the research team of the University of Virginia). Data acquisition was carried out
using a Bluetooth adapter and laptop through a custom-built LabView VI(National Instruments, Austin,
TX, USA). Data were acquired with a sampling frequency of 128 Hz. This frequency is largely sufficient
for human movement analysis in daily activities which occur at low bandwidth [0.8–5 Hz] [34]. The data
was processed using custom software written in MATLAB (MathWorks, Natick, MA, USA) and libSVM
toolbox [35].

2.4. Data Analysis

Thirty sets of data were used for training, and thirty sets of data were used for testing. Both training
data and testing data contained ten dynamic activities and twenty static activities. First, the original IMU
data were scaled to conveniently solve large datasets; then, Principle Component Analysis (PCA) [36,37]
was employed to decrease the dimensions. Subsequently, the SVM algorithm was utilized to classify the
human motion patterns (Figure 3).
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Step 1 Input of the Original Data

The original data is represented by an IMU at the sternum. The IMU provided three directional
accelerations and angular velocities. The format of the original data is 9920 × 6 matrix with the row
representing the time and the column representing 6 channel signals from tri-axial accelerometers
and gyroscopes.

A total of 60 datasets (30 participants and 2 trials) containing 20 dynamic physical activities
(walking) and 40 static activities were selected for movement classification. Each activity was represented
by one two-second data segment. All of the datasets were split into training datasets and test datasets
equally. In the first comparison (walking vs. lying), 20 normal walking segments were chosen as the
dynamic activity, and 40 lying segments were chosen as the static activity. The datasets were then
divided into training and testing sets, each containing 10 dynamic activities and 20 static activities.
In the second comparison (walking vs. standing with eyes closed), 20 normal walking segments were
chosen as the dynamic activity, and 40 standing still with eyes closed segments were chosen as the
static activity. In the third comparison (walking vs. lying, sitting, standing still with eyes open and
closed), 20 normal walking segments were chosen as the dynamic activity, and four different activities,
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i.e., lying, sitting, standing still with eyes open and closed, were selected as the static activity; each of
them was assigned 10 segments, and thus, in total, there were 40 static activities.

Step 2 Feature Extraction

Generally speaking, the features can be extracted from the time domain, frequency domain,
and other data processing techniques, such as wavelet [38] and empirical mode decomposition [39,40].
Based on the criterion of minimizing computational complexity and maximizing the class discrimination,
several key features are proposed for SVM classification [41].

(1) Mean Absolute Value—the mean absolute value of the original signal, x, in order to estimate
signal information in time domain:

x =
1
N

N∑
k=1

|xk| (11)

where xk is the kth sampled point and N represents the total sampled number over the entire signal.
(2) Zero Crossings—the number of times the waveform crosses zero, in order to reflect signal

information in the frequency domain.
(3) Slope Sign Changes—the number of times the slope of the waveform changes sign, in order to

measure the frequency content of signal.
(4) Waveform Length—the cumulative curve length over the entire signal, in order to provide

information on the waveform complexity.

All of these feature values will give a measure of waveform amplitude, frequency, and duration
within a single parameter. And they were extracted from raw signals to create the total feature sets for
representing the dynamic or static motion patterns. After feature extraction, the original data were
transformed to the feature data with a 60 × 24 matrix. The row number 60 means 60 total data sets
to test as described above, and the column number of 24 is obtained from 4 features in each of the
6 channels. Thirty data sets were selected for the training data; thus, the size of the training data was
30 × 24.

Step 3 Normalization

The above data were then normalized by each column to a range between 0 and 1.

Step 4 Principle Component Analysis (PCA)

The objective of PCA is to perform dimensionality reduction while preserving as much of the
randomness in the high-dimensional space as possible. The PCA algorithm can be described as:

(1) Assume X is an m × n matrix, and choose a normalized direction in m-dimensional space along
which the variance in X is maximized, saving this vector as p1.

(2) Find another direction along which variance is maximized; however, the search is restricted to
all directions orthogonal to all previous selected directions due to the orthonormality condition,
saving this vector as pi. The procedure is repeated until m vectors are selected. The resulting
ordered set of p is called principal components.

The dimension reduction can be described as:

(1) For the m eigenvectors, we reduce from m dimensions to k dimensions by choosing k eigenvectors
related to k largest eigenvalues λ;

(2) Proportion of Variance (PoV) can be explained as:

PoV =
λ1 + λ2 + . . .+ λk

λ1 + λ2 + . . .+ λk + . . .+ λm
(12)

where λi are sorted in descending order, and the threshold of PoV is typically set as 0.9.
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In our case, the m value should be 24. From the figure below (Figure 4), it can be found that when
k reaches 7, the PoV will be above 0.9. Therefore, the PCA approach reduces the dimension of the
original data from 24 to 7. Figure 4 illustrates the principal components based on the variance values.
Additionally, Figure 5 illustrates three principal components from the model, and it can be readily seen
that although “standing” and “walking” can be distinguished easily, other activities may not. After the
dimension reduction by PCA, the dataset is reduced as a matrix of 30 × 7.
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Step 5 SVM Classifier Testing

Three criteria were used to assess the performance of the SVM classifier.

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (13)

Sensitivity =
TP

TP + FN
× 100% (14)

Specificity =
TN

TN + FP
× 100% (15)

where TP represents the number of true positive; here, it refers to dynamic activities. TN is the
number of true negatives, and it labels as static activities. FP is the number of false dynamic activity
identification, and FN is the number of false static activity identification. While accuracy indicates the
overall detection accuracy for all the activities, sensitivity is defined as the ability of the SVM classifier
to accurately recognize the dynamic activities. Specificity indicates the SVM classifier’s ability to avoid
false detection.

Furthermore, a receiver operating characteristic (ROC) curve was also used to evaluate the SVM
classifier’s performance. ROC analysis is generally utilized to select optimal models and to qualify the
accuracy of diagnostic tests. The area under the ROC curve (AUC) which is a representation of the
classification performance was utilized to assess the effectiveness of the SVM classifier.

3. Results

In this section, we first introduce the effects of the Gaussian kernel function on minimizing the
upper bound on the expected test error. Afterwards, a selection of the optimal hyperparameters is
discussed. The results from the three classification tests are discussed in light of the three criteria
discussed earlier (accuracy, sensitivity, selectivity).

3.1. Effect of SVM Key Parameters on Classification

The SVM algorithm has two important parameters called hyperparameters: soft margin constant
C, and the other parameter reflecting the kernel function. In this paper, a Gaussian kernel was applied
to the SVM classifier; correspondingly, the other parameter, γ, refers to the width of the Gaussian
kernel. Parameter C reflects the tradeoff between the margin of error. When C is large, the margin of
error is small; however, the margin becomes narrow as a penalty. When C is small, those points close
to the boundary become the margin of error, but the hyperplane’s orientation will change, providing a
much larger margin for the rest of the data.

As for γ, let’s first take a look at the Gaussian kernel:

k(x, x′) = exp
(
−γ‖x− x′‖2

)
(16)

The Gaussian basis function with center
→
xi and variance σ2

i can be constructed as

G

(
→
x
)
=

1

(2π)d/2σd
i

exp

−‖→x −→xi‖
2

2σ2
i

 (17)

where d is the dimensional number of Gaussian RBF.
If we construct SVM Gaussian RBF classifier as

f (x) = sgn(
l∑

i=1

yiαi · exp

−‖x−→xi‖
2

c

+ b) (18)
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where yi = fw, b(xi); w is known as the weight vector, b is a bias term, αi is Lagrangian multipliers
and c is the constant. To optimally choose the centers of

→
xi, the center points which are critical to the

classification task are selected. In other words, if unknown sample x goes away from the known sample
centers of

→
xi, there will be a decay, and we can use this kernel to assign weights (i.e., decision weights).

The Support Vector Machine (SVM) algorithm implements this idea. The algorithm automatically
computes the number and location of the above centers, and provides weights wi and the bias b in
virtue of the Gaussian kernel function. Therefore, in the RBF kernel case, the SVM classifier utilizes
the Gaussian kernel function to select centers, weights and apply a threshold in order to minimize
an upper bound on the expected test error. The advantage of the RBF approach is that it utilizes
local approximators to map input to output, so that the system computes rapidly and requires fewer
training samples.

In essence, γ reflects the flexibility of the decision boundary. When γ is small, it generates a
smooth decision boundary, i.e., one that is nearly linear. When γ is large, it generates a great curvature
of the decision boundary. When γ is too large, it will cause overfitting, as shown in Figure 6d. Figures 6
and 7 illustrate the effect of these two parameters, γ and C, on the decision boundary.
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Figure 6. The effect of the parameter γ, on the decision boundary. (a) When γ = 0.1, the decision
boundary is nearly linear. (b) When γ = 1, the curvature of decision boundary increases. (c) When γ = 10,
the curvature of decision boundary continues increasing, and causes a little overfitting. (d) When γ = 100,
overfitting becomes serious in the classification.
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Figure 7. The effect of the soft-margin constant, C, on the decision boundary. (a) When C = 2, it increases
the margin and ignores the data points close to the decision boundary. (b) When C = 200, it decreases
the margin and margin error.

3.2. Optimization on SVM Key Parameters

To find the optimal values for the two parameters, cross-validation and a grid-search were utilized.
In v-fold cross-validation, v means the number of input data splits. The training data is divided into
v subsets equally. Any v-1 subset is selected for training the model, and then the remaining subset
is predicted based on the constructed model. The same procedure is rotated in all the subsets while
keeping the equal chance being predicted for each subset. Therefore, each subset of the input data will
be predicted once, so the cross-validation accuracy is the percentage of data which is correctly classified.

An approach combining the grid-search method and cross-validation was proposed for searching
for the optimal C and γ. Different pairs of (C, γ) values were used for predicting data, and only the
best cross-validation accuracy was selected. There were only two parameters for the search, and thus,
it did not require too much computational time, satisfying the demand of SVM classification.

Here is a case of the SVM classification result comparison between the random parameters
and optimal parameters. Firstly, 60 sets of data were split into training data and test data evenly,
and then LibSVM with random SVM parameters was used to obtain a classification accuracy of 60%.
Next, the grid-search and cross validation methods were applied to find the optimal C and γ values
(the effects of selecting the optimal C and γ value, as compared to selecting the parameters at random,
are illustrated in Figure 8).
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Figure 8. Searching the optimal C and γ value in three-dimension coordinates.
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It can be easily seen that the validation accuracy increases from 60% to 100%; however, there were
several solution-sets of C and γ achieving the 100% accuracy. Here, the minimum C value was chosen
as the optimal C, and the corresponding γ was chosen as the optimal value, since a high C value can
improve the validation accuracy; however, it would also cause over-learning, and would affect the final
classification prediction accuracy. Therefore, the optimal C was chosen as 0.2500 and γ was chosen as
0.0313 in this case.

3.3. Robustness of SVM Algorithm

As the assessment of human motion characteristics are linked to understanding the unwanted
(i.e., noises) as well as wanted signals, it is important to understand the capability of the SVM classifier to
effectively address noisy data. Therefore, the change of the parameters involved in the SVM algorithm,
along with the added white and pink noise, was be investigated.

To systematically evaluate the robustness of the SVM algorithm, the signals that mimic realistic
dynamic and static signals were considered. For static signals (lying, or sitting, or standing still),
the ideal signal remains at zero for the accelerometer and gyroscope for the dynamic signals (normal
walking), a nonstationary test signal x(t) was constructed, as shown in Figure 9.

Sci 2020, 3, x FOR PEER REVIEW 12 of 20 

 

It can be easily seen that the validation accuracy increases from 60% to 100%; however, there 
were several solution-sets of C and 𝛾𝛾 achieving the 100% accuracy. Here, the minimum C value was 
chosen as the optimal C, and the corresponding 𝛾𝛾 was chosen as the optimal value, since a high C 
value can improve the validation accuracy; however, it would also cause over-learning, and would 
affect the final classification prediction accuracy. Therefore, the optimal C was chosen as 0.2500 and 
𝛾𝛾 was chosen as 0.0313 in this case. 

3.3. Robustness of SVM Algorithm 

As the assessment of human motion characteristics are linked to understanding the unwanted 
(i.e., noises) as well as wanted signals, it is important to understand the capability of the SVM 
classifier to effectively address noisy data. Therefore, the change of the parameters involved in the 
SVM algorithm, along with the added white and pink noise, was be investigated. 

To systematically evaluate the robustness of the SVM algorithm, the signals that mimic realistic 
dynamic and static signals were considered. For static signals (lying, or sitting, or standing still), the 
ideal signal remains at zero for the accelerometer and gyroscope for the dynamic signals (normal 
walking), a nonstationary test signal 𝑥𝑥(𝑡𝑡) was constructed, as shown in Figure 9. 

 
Figure 9. Test signal generated based on normal walking. (a) Waveform of the test signal 𝑥𝑥(𝑡𝑡); (b) 
Periodic component 𝑥𝑥1(𝑡𝑡); (c) Transient component 𝑥𝑥2(𝑡𝑡). 

The test signal consists of two components: 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) + 𝑥𝑥2(𝑡𝑡) (19) 

where 𝑥𝑥1(𝑡𝑡) represents the periodic component in the signal, given by: 

𝑥𝑥1(𝑡𝑡) = �𝐴𝐴1(𝑖𝑖) ∙ 𝑠𝑠𝑠𝑠𝑠𝑠[2𝜋𝜋 ∙ 𝑓𝑓1(𝑖𝑖) + 𝜃𝜃1(𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

 (20) 

where 𝐴𝐴1(𝑖𝑖) ,  𝜃𝜃1(𝑖𝑖)  and 𝑓𝑓1(𝑖𝑖)  represent the amplitude, initial phase and frequency  𝑖𝑖𝑡𝑡ℎ  of the 
sinusoidal element, respectively. Two frequency components, 2.5 and 4 Hz, were chosen to construct 
the fundamental periodicity of the test signal. In Table 1, the specific values of the used parameter 
are shown. 
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(b) Periodic component x1(t); (c) Transient component x2(t).

The test signal consists of two components:

x(t) = x1(t) + x2(t) (19)

where x1(t) represents the periodic component in the signal, given by:

x1(t) =
N∑

i=1

A1(i)·sin[2π· f1(i) + θ1(i)] (20)
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where A1(i), θ1(i) and f1(i) represent the amplitude, initial phase and frequency ith of the sinusoidal
element, respectively. Two frequency components, 2.5 and 4 Hz, were chosen to construct the
fundamental periodicity of the test signal. In Table 1, the specific values of the used parameter
are shown.

Table 1. Parameters related to x1(t) in the test signal.

Parameter
Sinusoidal Element (N)

1 2

A1(i) (V) 0.16 0.04
f1(i) (Hz) 2.5 4
θ1(i) (rad) 0 0.32π

The term x2(t) represents the transient component in the signal, given by:

x2(t) =
M∑

i=1

A2(i)·Θ(t− ti)·e−Ci·(t−ti)·sin[2π· f2(i)·(t− ti) + θ2(i)] (21)

where M is the number of motion cycles, and A2(i), Ci, ti, θ2(i), and f2(i) are the amplitude, attenuation
factor, time-delay, initial phase and frequency of the ith human activity cycle, respectively. A total of
eight elements were used to construct the transient component of the test signal. The specific values of
the parameters were determined through the least square error-based curve fitting method, as listed in
Table 2.

Table 2. Parameters related to x2(t) in the test signal.

Transient Component (M)

Group 1 Group 2 Group 3 Group 4

Parameter 1 2 3 4 5 6 7 8
A2(i) (V) 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05

Ci 1.73 1.8 1.73 1.8 1.73 1.5 1.73 1.5
ti (s) 1.25 1.25 2.5 2.5 3.75 3.75 5.0 5.0

f2(i) (rad) 0 0.33
π

0 0.33π 0 0.33
π

0 0.33
π

θ2(i) (Hz) 15 12 15 12 15 10 15 10

The function item Θ(t− ti) specified in Equation (22) identifies the point in time at which a
transient element occurs, and is defined as:

Θ(t− ti) =

{
1 t− ti ≥ 0
0 t− ti < 0

(22)

Firstly, the constructed signal was assumed to mimic dynamic activity, and the static activity was
represented by zero value from acceleration and angular velocity of all directions. Then, the SVM
classifier was utilized to classify the pure simulated dynamic and static activity without any extra noise.
We determined that the optimal C value was 0.125 and the optimal G value was 0.5. Subsequently,
two different kinds of noise, white and pink noise, were added into the numerically simulated signal
with different signal-to-noise ratios (SNRs). The SNR measure in the study was defined as:

SNR = 10 log10

(
p1/p2

)
(23)

where p1 is the power of the signal and p2 is the power of the noise.
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The change of the optimal C and G varied with the change of the SNR level of added white and
pink noise, as shown in Figures 10 and 11, respectively. From Figure 10, it can be seen that both C and
G change among three different values as the power of added white noise varies. As for the pink noise,
Figure 11 shows that C and G almost remain constant, i.e., only a few scattered points are not in the
constant line for the optimal G value. The classification accuracy can be maintained at 100% for all
these cases, and thus, it shows that the SVM classifier has a good level of capability of processing noisy
data due to the adjustment of the optimal parameters.Sci 2020, 3, x FOR PEER REVIEW 14 of 20
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Figure 10. (a) Optimal C value for adding white noise; (b) Optimal G value for adding white noise.
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Figure 11. (a) Optimal C value for adding pink noise; (b) Optimal G value for adding pink noise.

4. Experimental Results

Classification on Dynamic and Static Activities

As described in the Methodology section, a total of 60 datasets containing 20 dynamic activities
and 40 static activities were selected for movement classification; each activity was represented by one
two-second data segment. All the datasets were split into training datasets and test datasets equally.
Three different trials were performed in the experiment.

(Walking vs. Lying): 20 normal walking segments were chosen as dynamic activities, and 40 lying
segments were chosen as static activities. The datasets were then divided into a training and testing set,
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each containing 10 dynamic activities and 20 static activities. The 5-fold cross validation scheme [34]
was utilized, and 100% (30/30) overall accuracy was observed (classification results are illustrated in
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Figure 12. Classification of normal walking and lying activities.

(Walking vs. Standing with Eyes Closed): 20 normal walking segments were chosen as dynamic
activities, and 40 standing still with eyes closed segments were chosen as static activities. The same
procedure was conducted as the first trial, and 90% (27/30) overall accuracy was observed (the results
are illustrated in Figure 13).
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Figure 13. Classification of normal walking and standing still with eyes closed activities.

(Walking vs. Lying, Sitting, Standing with Eyes Open and Closed): 20 normal walking segments
were chosen as dynamic activities, and four different activities, i.e., lying, sitting, standing still with eyes
open and closed, were selected as static activities. Each of them was assigned 10 segments; thus, in total,
there were 40 static activities. In this case, we obtained an overall accuracy of 80% (24/30), as shown
in Figure 14. Additionally, the corresponding optimal C and γ values, and the overall classification
accuracy associated with sensitivity and specificity, are listed in Table 3.
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Figure 14. Classification of normal walking and mixed static activities. (Note: Mixed activity in static
activities represented by lying, sitting, standing still with eyes open and closed.)

Table 3. Optimal C and γ values and overall classification accuracy associated with sensitivity and
specificity for classifying dynamic and static activities.

Dynamic Static Optimal C Value Optimal G Value
Overall

Classification
Accuracy

Sensitivity Specificity

Normal walking Lying 0.25 0.1436 100% 100% 100%

Normal walking Standing still with
eyes closed 0.25 0.4353 90% 80% 95%

Normal walking Mixed activity 2.2974 0.25 80% 50% 95%

The sensitivity and specificity of the trials are illustrated in the ROC curves (Figures 15–17). The results
were consistent with the classification accuracy results. The first trial showed the highest sensitivity
value among these three trials, and the third trial had the least sensitivity. In these three trials, the SVM
classifier’s sensitivity values were 100.0, 90.0 and 50.0, and the specificity values were 100.0, 95.0 and
95.0. The AUC values for SVM classifier were 1.000, 0.875 and 0.725, respectively.
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5. Discussion

This paper mainly aimed to introduce a machine learning technique to biomedical engineers to
classify two different states, and to investigate variations in the optimal parameters involved in the
SVM algorithm, i.e., C and γ, as well as the applicability of SVM as a machine classifier to distinguish
dynamic and static activities of the older adults using a wearable sensor. The performance of the SVM
classifier was investigated in the environment of movement variations. As the performance of different
classifiers could be assessed by modulating the movement/noise conditions [42,43], this paper utilized
white and pink noise to create a noisy environment in order to evaluate the classification capability of
the SVM classifier. In the numerical simulation, both training and test sets were contaminated by white
and pink noise; however, the SVM classifier could still stably maintain high classification accuracy
by optimizing parameters C and G. Previous studies have reported that C and G could modulate
themselves for noisy data [43,44], which is in agreement with our analytic results.
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Moreover, this paper examined three different movement variations of static and dynamic activities
of the older adults. The results indicated that overall accuracy was optimized by modulating C and
γ for the varied motion patterns, and highest when two activities differed in movement magnitude
and direction, such as walking vs. lying still. For example, lying posture is distinguished from other
activities by considering the orientation of the accelerometer concerning the direction of gravitational
acceleration [45,46] and the intensity of movement [47]. As such, automatic classification of these two
motion patterns with a single IMU can be realized with a high level of accuracy using the SVM classifier.
Next, comparing walking with standing still, although the direction of the gravitational acceleration
remained the same, the activity level may have been different and influenced the boundaries/accuracies.
In other words, swaying the whole-body center-of-mass during standing as compared to lying down [45]
may have influenced the overall classification accuracy. A mixture of movement variants in terms
of the static activities (lying, sitting, standing with eyes open and closed) compared to walking was
the least accurate among the comparisons. Although these comparisons were somewhat elementary,
the SVM classifier’s performance compared favorably with previous results/studies. For example,
Aminian et al. utilized two kinematic sensors (attached to the chest and thigh) to achieve an overall
classification accuracy of 89.3% [48]. Busser et al. employed a similar system to achieve an overall
classification accuracy ranging between 76% and 92% [49].
Limitations: Conclusions based on this study should be considered in the context of its limitations.
First, only a small number of participants were tested, and the results may not reflect the general
population of the older adults [44,50,51]. Second, only the steady state motion patterns without
transitions were extracted and analyzed. Thus, in order to continuously classify motion patterns using
real-time data, the transitional components such as sit-to-stand-walk should be considered further
in future research. Third, only the Gaussian kernel function was applied in this work; other factors
affecting the optimization of SVM algorithm, e.g., the type and size of the data, the selection of the
kernel function, computational cost, etc., should all be considered in future research work. Only limited
features were extracted and utilized to distinguish dynamic and static activities; other potentially
representative features should be further explored. Despite all of these limitations, however, we believe
that SVM is capable of classifying dynamic and static activities of varied motion patterns of the
older adults.

6. Conclusions

The SVM algorithm was investigated for classification accuracy. Two parameters that affect the
performance of the SVM algorithm—the soft margin constant C, and the other parameter reflecting the
kernel function γ—were systematically investigated. From the simulation results, we can conclude that
SVM classifier has the power to classify noisy data. The present study demonstrates the potential of
SVM classifier to detect and classify dynamic and static motion patterns of the older adults utilizing an
IMU. Although implicated, future studies investigating the transitional aspects of movement variations
are required to fully classify dynamic and static motion patterns using SVM classifier.
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