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Abstract: Although Support Vector Machines (SVM) are widely used for classifying human motion
patterns, their application in the automatic recognition of dynamic and static activities of daily life
in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit
(IMU), this paper explores the use of SVM approach for classifying dynamic (walking) and static
(sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature
extraction methods associated with IMU signals are discussed. To evaluate the performance of the
SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant
C and the kernel function parameter y—are investigated. The changes associated with adding
white-noise and pink-noise on these two parameters along with adding different sources of movement
variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results
indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two
parameters for dynamic as well as static activities, and may be applied as a tool for automatically
identifying dynamic and static activities of daily life in the older adults.

Keywords: locomotion; machine learning; support vector machines; activity classification;
activity of daily life (ADL)

1. Introduction

Fall accidents are a significant problem for the older adults [1-3], and several studies have shown
that fall risks in this population can be identified with motion patterns associated with the activities of
daily life [4,5]. While the classification of dynamic and static activities of daily life is a key point for fall
prevention research efforts, the greater variability of motion patterns associated with aging [6-10] and
its effect on classification performance are not well understood. In this study, we investigate the use of
support vector machine (SVM) classifier to identify dynamic as well as static activities of daily life in
the older adults.

Numerous classification algorithms exist to provide human motion classification patterns, such as
the wavelet method, the linear discriminant analysis (LDA) method, the ambient assisted living (AAL)
systems, the Multi-Classifier Adaptive-Training (MCAT) algorithm, the pervasive neural network
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algorithm, ambient intelligence, and the SVM algorithm. Specifically, gyroscope data and the wavelet
method was used to analyze the “sit-to-stand” transition in relation to fall risk by Najafi et al. [11].
A linear discriminant analysis method was adopted to classify external load conditions during
walking by Lee et al. [12]. An Evaluating Assisted Ambient Living (EvAAL) workshop aimed to
address the problem of localization and tracking issues for AAL, and provided a novel approach to
evaluate and assess AAL systems and services [13]. A Multi-Classifier Adaptive-Training algorithm
(MCAT) was proposed to improve the classifier for activity recognition by Cvetkovi¢ et al. [14].
A pervasive neural network algorithm was utilized by Kerdegari et al. on smart phones to monitor
older individuals” activities, and identified the occurrence of falls [15]. Ambient intelligence was used
to gather information from an environment to assess patients’ vital signs and locations in the waiting
area of a hospital emergency department by Curtis et al. [16]. In addition, the SVM classifier was used
to analyze the minimum foot clearance owing to aging by Begg et al. [17]. The SVM is considered
a powerful technique for general data classification, and has been widely used to classify human
motion patterns with good results [18-21]. The advantage of the SVM algorithm is that it can generate
a classification result with limited data sets by minimizing both structural and empirical risks [22].

Although numerous studies have been devoted to improving the SVM algorithms, little work
has been performed on assessing the robustness of SVM algorithms associated with movement
variations (i.e., mixed activities of daily life) of the older adults [23]. In this study, we investigate
variations of the optimal parameters involved in the SVM algorithm by taking a closer look into
the performance of SVM classifier for detecting dynamic and static motions of the older adults.
Furthermore, step-by-step procedures associated with the SVM classification are elaborated to provide
a better understanding of the classification method utilizing an ambulatory inertial measurement unit
system for biomedical applications.

2. Methods and Materials

2.1. SVM

Here, some basic concepts applied in SVMs are elaborated in light of the classification schemes.
The SVM is a statistical method introduced by Guyon and Vapnik [24,25] which has been widely
applied to different classification needs [26-28]. The idea of the SVM algorithm is to map the original
data to a high-dimensional space using nonlinear mapping by finding an optimum linear separating
hyperplane with the maximal margin in this higher dimensional space [24,25].

The SVM is a principled approach to machine learning utilizing concepts from classical statistical
learning theory [24,29,30]; it exhibits good generalization of new data with a readily interpretable
model. Additionally, learning involves the optimization of a convex function (i.e., one solution).
From the perspective of statistical learning theory, the motivation for considering binary classifier
SVM comes from the theoretical bounds on the generalization error. These generalization bounds
have two important features: the upper bound is independent of the size of the input space, and the
bound is minimized by maximizing the margin between the hyperplane separating the two classes and
the closest data point to each class—called support vectors. Closest points are called support vectors
because they support where the hyperplane should be located, that is, moving the nonsupport vectors
will not shift the hyperplane, whereas moving the support vectors will shift the hyperplane (Figure 1).
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vector is ”17” ; thus, we can get the distance between the support vectors of one class to the other class
simply by using geometry: ﬁ

As real-life datasets may contain noise, and SVM can fit this noise leading to poor generalization,
the effects of outliers and noise can be reduced by introducing a soft margin. The soft-margin
minimization problem relaxes the strict discriminant by introducing slack variables, &;, and is
formulated as

! ! (vl b (x: .
minimize J (w) = %Zﬂ w?+ CZi:1 £, subject to { di(Xiq w\;(?(f)1+ l) >1+¢ 5)

The Lagrange theory is applied to solve Equation (5), and we can get the solved dual Lagrangian
form of minimize

1 1

15! . 0<a;<C
I (w) = =5 Laic a; + 5 Zi,]’:l Oéi()(]'yiyjK(x,'y]') subject to { !

Y ayi=0 (©)

where a1, az,...,a; are the non-negative Lagrangian multipliers, and C is a constant parameter,
called the regularization parameter, which determines the tradeoff between the maximum margin and
minimum classification error.

Once we have found the Lagrangian multipliers «a;, then the optimal w* can be obtained:

n
wt = Z a;Yix; @)
i=1
Correspondingly, the value of optimal b* can be derived from the constraints
((w,x) +b) > 1 ®)

Thus, we can obtain the optimal b value:

| maxy— ((w, x;)) + miny,—1 (w, x;))

b= 5

©)

At this point, we have all of the necessary parameters to write down the decision function needed
to predict the classification of a new data point X!

f(xnew) = Sgn( (W", Xpew) + b*) = Sgr{z aiyi(-xir Xnew) + b*] (10)

i=1

In essence, finding «; and b* and applying the choice of kernel to the decision function will classify
new data points as either dynamic or static activities. In general, if @; is nonzero, it is a support
vector, while if a; is zero, it is not a support vector. Intuitively, as illustrated in Figure 1, moving the
nonsupport vector will result in no shift of the hyperplane (i.e., a; is zero).

The process of obtaining the quadratic program solution is known as training, and the process of
using the trained SVM model to classify new data sets is known as testing. In this paper, two types of
human activities are separately presented as input for the training of the SVM model, labeled with the
dynamic and static types [1 for dynamic, 0 for static]. Data processing of the raw data and feature
extraction methods are discussed next within the empirical paradigm.

The motion patterns associated with activities of daily life (walking, standing, sitting and lying)
were captured by the wearable inertial measurement unit (IMU—accelerometer and gyroscope) system.
Afterwards, we employed the SVM method to classify dynamic and static activities. The selection of
features and formatting of the data into the SVM input file is further elaborated in light of analyzing
human movements utilizing IMU signals. Subsequently, we investigated the effects of two parameters
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pertinent to SVM classifiers: soft margin constant C and the kernel function parameter y. The motion
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i.e, lying, sitting, standing still with eyes open and closed, were selected as the static activity; each of
them was assigned 10 segments, and thus, in total, there were 40 static activities.

Step 2 Feature Extraction

Generally speaking, the features can be extracted from the time domain, frequency domain,
and other data processing techniques, such as wavelet [38] and empirical mode decomposition [39,40].
Based on the criterion of minimizing computational complexity and maximizing the class discrimination,
several key features are proposed for SVM classification [41].

(1) Mean Absolute Value—the mean absolute value of the original signal, ¥, in order to estimate
signal information in time domain:

1 N
X= kZl|xk| )

where xy is the kth sampled point and N represents the total sampled number over the entire signal.

(2) Zero Crossings—the number of times the waveform crosses zero, in order to reflect signal
information in the frequency domain.

(3) Slope Sign Changes—the number of times the slope of the waveform changes sign, in order to
measure the frequency content of signal.

(4) Waveform Length—the cumulative curve length over the entire signal, in order to provide
information on the waveform complexity.

All of these feature values will give a measure of waveform amplitude, frequency, and duration
within a single parameter. And they were extracted from raw signals to create the total feature sets for
representing the dynamic or static motion patterns. After feature extraction, the original data were
transformed to the feature data with a 60 X 24 matrix. The row number 60 means 60 total data sets
to test as described above, and the column number of 24 is obtained from 4 features in each of the
6 channels. Thirty data sets were selected for the training data; thus, the size of the training data was
30 x 24.

Step 3 Normalization
The above data were then normalized by each column to a range between 0 and 1.
Step 4 Principle Component Analysis (PCA)

The objective of PCA is to perform dimensionality reduction while preserving as much of the
randomness in the high-dimensional space as possible. The PCA algorithm can be described as:

(1) Assume X is an m X n matrix, and choose a normalized direction in m-dimensional space along
which the variance in X is maximized, saving this vector as p;.

(2) Find another direction along which variance is maximized; however, the search is restricted to
all directions orthogonal to all previous selected directions due to the orthonormality condition,
saving this vector as p;. The procedure is repeated until m vectors are selected. The resulting
ordered set of p is called principal components.

The dimension reduction can be described as:

(1) For the m eigenvectors, we reduce from m dimensions to k dimensions by choosing k eigenvectors
related to k largest eigenvalues A;
(2) Proportion of Variance (PoV) can be explained as:

MAAg+ .+ Ak

PoV =
© A1+/\2+...—|—/\k+...+ﬁm

(12)

where A; are sorted in descending order, and the threshold of PoV is typically set as 0.9.
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Step 5 SVM Classifier Testing

Three criteria were used to assess the performance of the SVM classifier.

TP 4+ TN
A = 100% 1
CoUracy =I5 T EP R TN+ BN < 00 (13)
e TP o
Sensitivity = T EN X 100% (14)
e .. IN o
Specificity = TN £ FP % 100% (15)

where TP represents the number of true positive; here, it refers to dynamic activities. TN is the
number of true negatives, and it labels as static activities. FP is the number of false dynamic activity
identification, and FN is the number of false static activity identification. While accuracy indicates the
overall detection accuracy for all the activities, sensitivity is defined as the ability of the SVM classifier
to accurately recognize the dynamic activities. Specificity indicates the SVM classifier’s ability to avoid
false detection.

Furthermore, a receiver operating characteristic (ROC) curve was also used to evaluate the SVM
classifier’s performance. ROC analysis is generally utilized to select optimal models and to qualify the
accuracy of diagnostic tests. The area under the ROC curve (AUC) which is a representation of the
classification performance was utilized to assess the effectiveness of the SVM classifier.

3. Results

In this section, we first introduce the effects of the Gaussian kernel function on minimizing the
upper bound on the expected test error. Afterwards, a selection of the optimal hyperparameters is
discussed. The results from the three classification tests are discussed in light of the three criteria
discussed earlier (accuracy, sensitivity, selectivity).

3.1. Effect of SVM Key Parameters on Classification

The SVM algorithm has two important parameters called hyperparameters: soft margin constant
C, and the other parameter reflecting the kernel function. In this paper, a Gaussian kernel was applied
to the SVM classifier; correspondingly, the other parameter, y, refers to the width of the Gaussian
kernel. Parameter C reflects the tradeoff between the margin of error. When C is large, the margin of
error is small; however, the margin becomes narrow as a penalty. When C is small, those points close
to the boundary become the margin of error, but the hyperplane’s orientation will change, providing a
much larger margin for the rest of the data.

As for y, let’s first take a look at the Gaussian kernel:

k(x, x') = exp(—)/llx - x’llz) (16)
The Gaussian basis function with center 37: and variance o? can be constructed as
1 1% -
— X — X
x)= exp| — 17
6(%) (2r) 7201 P( 207 ] (17)

where d is the dimensional number of Gaussian RBF.
If we construct SVM Gaussian RBF classifier as

B 2
[l2x — x|

I
flx) = sgn(z yia; - exp(— +b) (18)
=1

1




Sci 2020, 2, 62 10 of 21

where y; = f,, ,(x;); w is known as the weight vector, b is a bias term, a; is Lagrangian multipliers
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Sci 2020p3sifrOR@EEsREVBWected. In other words, if unknown sample x goes away from the known sampig of 20

centers of x;, there will be a decay, and we can use this kernel to assign weights (i.e., decision weights).
autorhh¢i Salpy coinvpatteshaeinenBaMdn el gocittionioftleenabes theendeas, Tdrechfgaritidesawiglatically and
the biespuitesiheneivbehend dossiion kbthehfaye tioreFherdfpreyidetleeRBE kennel thadejasheisVM
classi¥igie i ithes theseiauksinel KepsErpuhbarsiors beldia RER i aheshihard Mpsisispifietitbidizstd in
ordet8 ﬁﬁﬂ%ﬂﬁ%ﬁf{‘ﬁ or iR irsseledheepigractieiabls apbaPPhea VS halsh BVt RBIMUPIRFch is
that 1% LHRDES Poca A BProKimRTTS oter%ta(?]i%r 111}‘l goagﬁ’ pas 1588 }’[113% glgl%FS aE!%rr‘r’FEBrlr?ﬁH ésl trzla1 1% g 7 and

locala rox1mat to map input to ou put so that th system computes rapldly and requires ew T

reqmres ewer trafnmg sampliles.
rammg samp

In e%ﬁggsén%ef%ﬂr%ﬁ scthenfloxibilitn of the. desision baundary wWhen, 1 issmall i genetates a
smoath darisieni RO Ry, i ARenthal ﬁéaﬁ9qﬁtxa}1%ﬂ£n¥\’§mgx ﬁsgfﬁ edby gﬁéﬁr&fﬁﬁa@rgreat
curvajurg abtheodesdsiambowndary iV Yhenrge i tonlarge dvuvitliaauise onskittingg asshewipinekigure
6d. Figiudresifuandte filbusieate thikestecbafafaasetévep patameserthe)d @disldn, latliagecision boundary.

SVM Classification (Gamma=0.1) SVM Classification (Gamma=1)

+  class1
class2

+  class1
class2

+++ K

(&)
T
0

s
/ |

1 5 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1
4 45 5 55 6 6.5 7 75 8 35 4 45 5 5.5 6 65 7 75 8
s SVM Classification (Gamma=10) SVM Classification (Gamma=100)
O 45 -
*  class? +  class1
(C) class2 (d) class?
4 T o
54 ar . +4
O t e
2 + 0o ¢
35} 35¢
- S 6y £
Tt aLx 7 2w
(=Y A
3t 3 + y| , & 2
0 S ¥ ¢
! 7
2.5F 25¢
! ! ! ! ! ! ! | 2 . A . L L L L 1
24 45 5 55 6 6.5 7 7.5 8 4 4.5 5 5.5 6 6.5 7 7.5 8

Figure . 11t oflect of the %‘S RS ) o M HSS SIOR, DAY 3) e 7 % 1o e ﬁecﬁé%?smn

b oundary is nearly linear, § Wheny =1 (1 the curvaturt% of decision botin ary mcreases (c) When g
oungiry s HEAr BESHE BLIVRSD &L SRR TR By v o5 Vg v

=10, gb‘éﬁ‘ﬂﬁﬁ%@&@oﬁf&%@ﬁbﬁf@ gqﬂggﬁgg/lﬁgégéﬂues increasing, and causes a httle overﬁttmg (d) When

y =100, overfitting becomes serious in the classification.



Sci 2020, 3, x FOR PEER REVIEW 11 of 20

Sci5202028, % FOR PEER REVIEW 11 9fi23f 20

SVM Classification (C=2) SVM Classification (C=200)

+  class1 - * classt
(a) (b) class2
class2 4.5 + 5
45r 4f L 4
+
+ +
SN

31
i A ;|
413.5F + 4 5
i H ++
+ ++ + 3.5 st
35} 3f St +
S

451

+ o+ 4+
3. + o+
3t +HE S A
3_2.5 /
#t 28
25F | o ya
15 — .
2k 74" a5 5 55 6 6.5 7 75 8 25

Flgure"75 Thé effeet ofﬁthe @é)ft niarg1h5 conétant C o -
mcreases the margin and ignores the data points close to the dec151on boundary (b) When C= 200 it
@9'3%%@%%@%%%?%“%@ﬁ‘stanPrﬁh%‘rileﬁllsm&ec‘fé’i%%a%&ﬂgv g &T\%ﬂ‘{éﬁ‘cﬁeasef it
mcrea%‘gg%h%%d dgnores the data ppints close to the deision boyndary, () When C 7 300t deereasg
‘ﬁ%%%%ﬁ%@ﬁ%%ﬁ

3.2. Gﬁtzﬁmdtﬂteoapﬁmmvylﬂwﬁmahe two parameters, cross-validation and a grid-search were
> %Qﬂ?’@%ﬁ%{ SR A eane, %stel}gns%sfs.%% mogatﬁdsxhﬁfa E&% SR
et m&(ﬁwa% tiim%me‘érfeﬁ?%%' t i

is

the e 1 rotate

u mm}ﬂ t1 2 ba
il
i &R?t%%% Sddrh D ased e oéﬁf?e “Oiwu%‘sga %@f%gﬁlﬁ%%%eo
f%‘%se@%ﬁe (?@‘fb‘é D oA b of
]%Q gggﬁé}lﬁere airs o Eé 5&%@% 12 1n c[ea : gg?ng%%
best -validation accu w s ect . ere on e
@ggﬁférs SRy a%ny}utaﬂ aﬁ r'ggf’%é“ fé g%%?&&% ity dfy o

ﬁf&t%sseeﬁfé«%f LR, ﬁ% &3& Ui
.4, ].I&) 1 1

am ers ets
Ii{b &/v arameters as use ass 1ca ona r ¢
ran

aran} S was u e o obtain a as 1 C t1 accura
r1 -s syva o me sw Te a }g neg)t eot ggnd Vau
ctsS of selecty. e ect met Ts at ran

are g r A;am gﬁ}élg(%s %ﬁa'te%alam apéb mmsg aﬂmgrt et ateven}r m’men

fertacal %LBV -parameters was used to obtain a classification accuracy of 60%. Next, the
grld -search and cross validation methods were applied to fmd the optimal C and y values (the

Result of Parame ers Slectlo (3D

effects of selecting the optimal C and y va r(1:1 to selecting the parameters at random,

are illustrated in Figure 8).

e
cl
e

Accuracy(%)

Accuracy(%)

log2g T log2c

Figure 8. Searching the optimal C and y value in three-dimension coordinates.



Sci 2020, 3, x FOR PEER REVIEW 12 of 20

It can 2132% easﬂy seen that the validation accuracy increases from 60% to 100%; howexzzler there
Cl
were several solution-sets of C and y achieving the 100% accuracy. Here, the minimum C value was

chosen as the optimal C, and the corresponding y was chosen as the optimal value, since a high C
It can be s11¥ sFe tpat the validation accurac 1nc eases f{(am 0% to 100%; howaver, there were

value can im ro et a fd‘g urac TWould aiso’ cause Over eafning, and would
utlon—sets 0 1ev1n§t e 100 o accuracy. Here, t emlmmum value was chosen

sever
affect theagltﬂglofiﬁ%%]lf{c%HQ%@S%%BQHH%%CVW%’&%}Q&{S Aheofisrapiimal s%eerg%%uw%aé (4500 and
y was Chﬁﬁﬁﬁv%&&%ﬁédﬁbﬂh’&@?&%@ however, it would also cause over-learning, and would affect the final
classification prediction accuracy. Therefore, the optimal C was chosen as 0.2500 and y was chosen as

3.3. RobultiadssivfilBiv ddsed Iqorithm

As thé EeSestmmentSyPhalgestithotion characteristics are linked to understanding the unwanted

(i.e., noises) as tmeels@snwanteBusignalsiidh ihaimpeEtR biolimdassianesthed eapabilityaafethe SVM
classifier(ite, effeeti velyelhddvesedwogoylsd i taifvetatorgyriterstnatthe copathitpoftha tdtdt slissifghted in the
SVM algeflfiﬂsﬁmlmiﬂgzﬁgﬁﬁ@%dgl&?%&e g?ﬁ&th%%a%%mﬁky@glﬂg&eaw algorithm,
t
To SYS?%,IS(%&hCaﬁa SAate e PO ?lri%se‘é\;%o " mﬁl\%%la%ﬁﬂlthrﬂe ’%1 f?%als that mlFuc realistic

system t1ca eva uate the r t mimic realistic

dynamlca%%ﬁfagﬁdsmg@ﬁrs &9&8&%&%@&0%}%&%@1& & (ying &~ ﬁ&&ﬁgmﬁﬁaﬁgl&&fﬁﬂ ), the
ideal signalizemainsiatiere dortbonaeelerameiicansd GYFosopPeof thetiighshiRamislsignas (normal
walking)walkiogstationstatiotesy sistsignad(t(f) was constivieteds s showkigudigure 9.

Analytic Signal
0.8 T T T T T T T
0.6 | (@ -
B oaf | |
c |
8 o2t 4 ” ) fin a A
@ | w A ‘u. 1 VA AN
D orh ) L ‘ \ f ln h‘ ‘ / YAVARAWAE
@ YRV ‘u | H . H“ ‘ ‘ ‘ “““\“‘
8 /o ‘J ‘\ “ " \ ‘ N /[ ]V
L o2t !I' JJ
0.4} I
0.6 1 1 1 1
0 1 2 3 4 5 6 7 8
Iig)e (s)
Sinusoidal Co mponent 0s Transient Component
0.4 . . " ‘ ‘ ‘ ‘
03} (b) . ()
RGN A I ‘ C
(| A \ A [l c
é 01{ ‘ “H \H“ “ \‘ \‘ “ H‘ “ ‘\ ‘ “ H‘ “ g ‘ | ‘ \” T
[ ‘\ P \ [ ] [ | T of u \ i M ‘\f U
S I ‘H‘ ‘H‘ \ H‘M‘”“ u\ H‘ 1 B JJ Wb “ i
Q 01} | ‘\ \\ Vi v \\ ViV ®
O Vo Q
Q ‘ | =]
< 02 4 < \
N3+
OA0 1 2 3 4 5 é 7 8 050 1 2 é 4 5 é 'JI 8
Time (s) Time (s)

Figure 9FiBuse Sigiait sigradagevkisted dasedror nrahalaMelhing(dp)VWavefonmobfith desesigsiainedl) x (t); (b)
Periodic RBOHSEFORPERE(CH Al TEARERhSGRIRENE JefH):

The test signal consists of two components:
The test signal consists of two components:

x(t) = x1(t) + x2(t) (19)
x(tg = xlé 3 + x2(t) (19)
ere x1 () represents the perigdic component in the signal, given by:
where x; 61 t) relprese%ts the per%o ic com}yonent int thélgng glven by:

oL Z;ﬁ]) mBAD S o) 0 20

where A,(i), 6;(i) and f;(i) represent the amplitude, initial phase and frequency " of the
sinusoidal element, respectively. Two frequency components, 2.5 and 4 Hz, were chosen to construct
the fundamental periodicity of the test signal. In Table 1, the specific values of the used parameter
are shown.
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where A1 (i), 01(i) and f; (i) represent the amplitude, initial phase and frequency ith of the sinusoidal
element, respectively. Two frequency components, 2.5 and 4 Hz, were chosen to construct the
fundamental periodicity of the test signal. In Table 1, the specific values of the used parameter
are shown.

Table 1. Parameters related to x1 (t) in the test signal.

Sinusoidal Element (N)

Parameter

1 2
Aq(i) (V) 0.16 0.04
f(i) Hz) 2.5 4
61(i) (rad) 0 0.327

The term x,(t) represents the transient component in the signal, given by:

M

xo(t) = Y Aa(i)-O(t - ti)-e” =1 sin[2m-fy (i)-(t — ) + O2(i)] (21)
i=1

where M is the number of motion cycles, and A; (i), Cj, t;, 02(i), and f,(i) are the amplitude, attenuation
factor, time-delay, initial phase and frequency of the i human activity cycle, respectively. A total of
eight elements were used to construct the transient component of the test signal. The specific values of
the parameters were determined through the least square error-based curve fitting method, as listed in
Table 2.

Table 2. Parameters related to x,(t) in the test signal.

Transient Component (M)

Group 1 Group 2 Group 3 Group 4
Parameter 1 2 3 4 5 6 7 8
Ay (i) (V) 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.05

Ci 1.73 1.8 1.73 1.8 1.73 1.5 1.73 15

ti (s) 1.25 1.25 2.5 2.5 3.75 3.75 5.0 5.0
f2(i) (rad) 0 0':[’3 0 0.33m 0 0'7::3 0 0'733
62(i) (Hz) 15 12 15 12 15 10 15 10

The function item O(t —t;) specified in Equation (22) identifies the point in time at which a
transient element occurs, and is defined as:

1 t—t;>0

@(t_ti):{o t—t <0 (22)

Firstly, the constructed signal was assumed to mimic dynamic activity, and the static activity was
represented by zero value from acceleration and angular velocity of all directions. Then, the SVM
classifier was utilized to classify the pure simulated dynamic and static activity without any extra noise.
We determined that the optimal C value was 0.125 and the optimal G value was 0.5. Subsequently,
two different kinds of noise, white and pink noise, were added into the numerically simulated signal
with different signal-to-noise ratios (SNRs). The SNR measure in the study was defined as:

SNR = 1010g10(p1 /pz) (23)

where p, is the power of the signal and p, is the power of the noise.
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The change of the optimal C and G varied with the change of the SNR level of added white and
pink noise, as shown in Figures 10 and 11, respectively. From Figure 10, it can be seen that both C and
G change among three different values as the power of added white noise varies. As for the pink noise,
Figure 11 shows that C and G almost remain constant, i.e., only a few scattered points are not in the
constant line for the optimal G value. The classification accuracy can be maintained at 100% for all
Sci 2020, 3theperasgsERIREHSINE shows that the SVM classifier has a good level of capability of processing noisy 14 of 20
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each containing 10 dynamic activities and 20 static activities. The 5-fold cross validation scheme [34]
was utilized, and 100% (30/30) overall accuracy was observed (classification results are illustrated in

Figurg h4de, 3, x FOR PEER REVIEW 15 of 20
Sci 2020, 3, x FOR PEER rReviEwS VM Classification on Dynamic and Static Activities 15 of 20
151
+  Static (Lying)
SVM Classification on Dynamic and Stati¢ Actyitiesic
15
+  Static (Lying)
1k )
Dynamic
o
i #+
+
0.5f + N
+
+
05 + *+
or +
¥ o
o -
+
0.5 X
PR
05
4 —
-1 < 2
1 1 1 1 1 1

-
Fighirgut2 1€ I68séiatioomaf mormall wetkking andy I aotivkies.
Figure 12. Classification of normal walking and lying activities.
(Wallkivegking Staf thimdirvgithi th yFys:6 (esel)): 20 nommrd watiticig gegegen entsereeteoshiwasm psatyinamic
activitgtiyj aéiy aliagavstiielicin g il Veilpsrycotbuiad Segmuattssrlansiebroscts atattahietigitiestideridnecsame
proc&?@f@%ﬁ%@ﬁ%@@@%ﬁf@ EM%%WWEWW@W?%IESMm

are 11%@@' %rate gfggfg\)tfgb as the first trial, and 90% (27/30) overall accuracy was observed (the results

are n Figure 13).

SVM Classification on Dynamic and Static Activities

0.81 SVM Classification on D
olsr + Qtatic (Qtandi Qh].L\u.tb_E\mLClnuj)
S +  Static (Standing Still with Eyes Closed)
0.6 Dynamic
0[6

o o
N o™
N m———
T ++
+
+
+
+
)

o
[=]
+

0.2

0.4t

0861

8
039_1

21

(Wal itti in, ilﬁh g5 0 - an e q ) 0 ments ents
were %?ﬁ%ﬁi 3 anﬁéwié é;{ @é’gég ’&;Fsé‘:%ié %/9 g, 51ttmg, ta{éﬁmeyes
Open%ﬁ; &%ﬂ%&%@ﬁ%ﬁ@&%ﬁ%%@ﬁm ¢4 A total,
there m@mfsf el Atk W ol NSRRI AR @K 3359 Shown
in F1gu%@5@%§@@‘fé%ﬁﬁqt§%é Sem?&?@ﬁéﬁ@ HEafa 1R b RS0 Pidlathe19¥8 A tion

classification accuragy ‘assocjate 1t 1s d in Table 3.
accuracy assoclate Wlﬁ’Y sensitivi y an specficﬁy, are'lis e }/1 T'r% Ff




Sci 2020, 3, x FOR PEER REVIEW 16 of 20

SVM Classification on Dynamic and Static Activities

Sci 2020, 2, 62 Dynamic 16 of 21

Sci 2020, 3, x FOR PEER REV11_ 16 of 20

S +
+
+
or bl
sy
N
0.5
oF
1 1
43"-551"5 -1 E

Figure 14. Classificafion of normal walking and mixed static activitigs” (Note: Mixed activity in static
activities represented by lying, sitting, sta

1

15 L L L L
Table 3. Optimal Chhd Y values aid overall classification 1accuraé'§} associated with sensitivity and

Eﬁgﬂi@c‘l@ @nmm@xg@tmmmg@mm statie aetivities. (N@t@ M‘Pk%@l activity in statie

]

Optlmal C Opt1ma1

Dyfapia. OptimSteing y e Rdowah Qagiia iﬁ%ﬂ%@%%&f%%%%@é emsiivityBpasificity

specificity for classifying dynamic and static ackvites. Accuracy
e Tyi 025 0.1436 erall 009 T009
Wa]k;iiﬂgﬁc ylnsi%atic ()n%ﬁ!l(@ V(I)lﬁh neetipral G Value d&%ﬁﬁcatmn Sensiti(‘)/ity Speciﬁcit(;
Rynamy S Abic. Classificationty  SensitivitySpecificity
“m ]iI(‘lal walkm‘% St v le dgcm_] 385 0.1436 Acggééw% 861 185%
ki Dmuuulg STl with 025 04353 90% o o
Neal g iy o038, 04436 10956 e g
a]]/"r\n Mixed-actix h 220974 025 80% 50% (81"
Tm tanding st
norma o 0.25 04353 90% 80% 95%
Wwa ﬁn Sen, i;‘.ﬂl ATl SpRkd] ity.of the tri ted Inthe-ROC cupve gures\15-17), The

FoeNEK @%W%%&gs%%aﬂsmwg & iméﬁ%t&a%ﬁﬁ éﬂswa%hégﬁ%ﬁ%s%%%ésmg

mq !'.,A;-u;-; b -4:;

%&% %ﬁé %%s%ﬁ ?@&ﬁ%ﬁ Q)Oa % %3%’?12 }slim Wfﬁa

results were con51 it t e classi 1cat10n adcuracy Tesults T showed the highest
Sensu:lvﬂ-v waliie amano thoco throo triale and i—he f‘ﬂ iwd twinl ka A ‘-L‘L" Tannt mnniticriter Tan "L""e three
ying
trials, tt % Lyng 10 10F es were
100.0, 9. - Sensitivity: 100.0 A ossi | ely.
[ | Specificity: 100.0
80 H Criterion - =0 08k
> i
= 60 06F
@ - I
T 40| 04
) |
20 - 02}
0 - 1 1 1 1 1 0.0 oy T >0
0 20 40 60 80 100 0 1 gens‘ 133%
ec: 100.
100-Specificity Diagnosis p
0 [~ (a) . 0.0 e (b) ]
Sens; 100.0
Figure 15, R@C@m’%eféél@l@l@éﬁém&ﬁ%nf&i%qmﬁlalra/lziaﬂg@dﬁyhﬂfgmgtmtf@stles) RO Q)
Ihﬂm@wd@@&g@é%Spemﬂmty Diagnosis
(a) (b)

Figure 15. ROC curve for classification of normal walking and lying activities. (a) ROC curve; (b)
Interactive dot diagram.



Sci 20202520 FIRBRIR BENETWw 170f2117 635 of 20

Standing_Still_with_Eyes_Closed Standing_Still_with_Eyes_Closed
100 F _ 10F o 0000000
80 F 08}
- | Sensitiity: 80.0
[ | Specificity: 95.0
= "E 60 Criterion - =0 06F
= i ]
=l A
c g 40r 04}
05 - !
20 02}
0 - 1 1 1 1 1 00 T i =0
0 20 40 B0 80 100 0 1 Sens.: 80.0
100-Specificity PG Spec:95.0 gp
100-Specificity Diagngsgs spec. 9.0
(a)

Figure 16. ROC curve f()r cla531f1cat10n of normal walking and stag%i)mg still with eyes closed
Figafé Vi Sr@ROR G ey b kst gt king andisipndingis it arithisyss sairdRsiKtigyes closed

b) Interactive dot di
activities. é ))1%?6 uglerx(re), &)ﬁr nteractive dot dlagram

bl Mixed
100 F 3 {0 - —
80 F 08k
£ eof 06|
Z [ [Sensitvity: 500 | I
g & 40[ | specificity: 95.0 04
% - Criterin_n 2 =0 L
o 20 | : 0zt
s i .
ol 0 i - ; ! 0.0 fF——— — =0
0 20 40 60 80 100 0 1 Sens: 500
ifici Diagnosis =ified Ha8
100-Specificity VU R L
B T e | Sens: 50.0
0 20 4@ 60 80 100 0 (b) 1 Spec: 95.0
Specifi Diagnosis B
Figure FBWROC &d& %rpﬁgssfégaftféﬁ%fq{mﬁlwﬂkiﬁgamdnim@baaét'aﬁcﬁafétiasit{eéR@?R@@turve ;
(b) InteAdAIRETBY g iR b)

5. Discussion

5Em§§1d}DC curve for classification of normal walking and mixed static activities. (a) ROC curve;
(b) %ﬁ%acgtl C% %a aml aimed to introduce a machine learning technique to biomedical engineers to

ﬁmﬁ’q@@%@mﬂt@dﬁe@@aﬁcﬁm@de&mmg epthrdlprrao divsiedotetenpiteers to
5 piassif M%aéﬁ?fé%gﬂvﬁafégnéﬂdaﬁdﬁ%{b@ﬂ*gaaﬁp#&i\mfaﬁ Y Mhasapmehinpapseifitete disipBAd in the
S}W % &a“deSt"Zflﬁn%P‘i}t‘SE %v&lTP SHAIB Tl‘é%ﬁ‘% WS?@@R/F%%S%@&P %éoéf%?‘ﬁeoxf E]o“edsy%gmsh

ass1f er wa,s i vestl ate he e on oveni nt varjations. erformance of
e T R A T e 1 T
clas@iwtﬂ%mmwmm ﬂ@g HiEHaaiamans Rwth ﬁﬁ?ﬁ%&@&sé&@ o tosaRIRRNEd ¢h the

DR
svMisigsmidamitsreraodyhassrarrad e aosirtabnsoes mmaﬁﬂﬁmﬁ@m&%&ﬂsﬁh@umh

dynamfeaﬁﬁim%%ﬁm@w%%%?%ﬁm rgﬂm%mfﬁés mﬁswtﬁh%m
?ss1f1ba’tﬁﬁ’i1@al nﬁ m@%@r@ﬁsmﬁw%w MGQPQFE%Q e

clasSi 2 %
were c}%@ﬁ?}iﬁ ‘% Er;t 1d st111 Zf
dlff%reﬂ ssitiers co e asse 1¥ modu at1 r&o ement no1sCF cqn 1 10 ]I %1; Tthls
classification accuracy by pt1m121 arameter d revious studies ave re
pap %r an éIEZcoul}ﬂYn%eduﬁnte tﬁemse VEs ?or %o%%re %fataa[llg%ﬁy welri}‘c/ﬁr?sl}%lggreel&e% J;ch 8111? Xfala te the
clasgificgtion capability of the SVM classifier. In the numerical simulation, both training and est sets

were conpminriecily papde enchiill modse; digvieremiferYM classifips couldhatilhatellynmaiptain

hioh alaecificatian -adcul r ey b vrnontimizing atamatere C.amd . Prexaoiic. citiidioc Frave- reamatried. fhat+

er ormance of



Sci 2020, 2, 62 18 of 21

Moreover, this paper examined three different movement variations of static and dynamic activities

of the older adults. The results indicated that overall accuracy was optimized by modulating C and
y for the varied motion patterns, and highest when two activities differed in movement magnitude
and direction, such as walking vs. lying still. For example, lying posture is distinguished from other
activities by considering the orientation of the accelerometer concerning the direction of gravitational
acceleration [45,46] and the intensity of movement [47]. As such, automatic classification of these two
motion patterns with a single IMU can be realized with a high level of accuracy using the SVM classifier.
Next, comparing walking with standing still, although the direction of the gravitational acceleration
remained the same, the activity level may have been different and influenced the boundaries/accuracies.
In other words, swaying the whole-body center-of-mass during standing as compared to lying down [45]
may have influenced the overall classification accuracy. A mixture of movement variants in terms
of the static activities (lying, sitting, standing with eyes open and closed) compared to walking was
the least accurate among the comparisons. Although these comparisons were somewhat elementary,
the SVM classifier’s performance compared favorably with previous results/studies. For example,
Aminian et al. utilized two kinematic sensors (attached to the chest and thigh) to achieve an overall
classification accuracy of 89.3% [48]. Busser et al. employed a similar system to achieve an overall
classification accuracy ranging between 76% and 92% [49].
Limitations: Conclusions based on this study should be considered in the context of its limitations.
First, only a small number of participants were tested, and the results may not reflect the general
population of the older adults [44,50,51]. Second, only the steady state motion patterns without
transitions were extracted and analyzed. Thus, in order to continuously classify motion patterns using
real-time data, the transitional components such as sit-to-stand-walk should be considered further
in future research. Third, only the Gaussian kernel function was applied in this work; other factors
affecting the optimization of SVM algorithm, e.g., the type and size of the data, the selection of the
kernel function, computational cost, etc., should all be considered in future research work. Only limited
features were extracted and utilized to distinguish dynamic and static activities; other potentially
representative features should be further explored. Despite all of these limitations, however, we believe
that SVM is capable of classifying dynamic and static activities of varied motion patterns of the
older adults.

6. Conclusions

The SVM algorithm was investigated for classification accuracy. Two parameters that affect the
performance of the SVM algorithm—the soft margin constant C, and the other parameter reflecting the
kernel function y—were systematically investigated. From the simulation results, we can conclude that
SVM classifier has the power to classify noisy data. The present study demonstrates the potential of
SVM classifier to detect and classify dynamic and static motion patterns of the older adults utilizing an
IMU. Although implicated, future studies investigating the transitional aspects of movement variations
are required to fully classify dynamic and static motion patterns using SVM classifier.
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