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ABSTRACT 

Acute injury to aged individuals represents a significant 
challenge to the global healthcare community as these 
injuries are frequently treated in a reactive method due to the 
infeasibility of frequent visits to the hospital for biometric 
monitoring. However, there is potential to prevent a large 
number of these cases through passive, at-home monitoring 
of multiple physiological parameters related to various 
causes that are common to aged adults in general. This 
research strives to implement wearable devices, ambient 
“smart home” devices, and minimally invasive blood and 
urine analysis to test the feasibility of implementation of a 
multitude of research-level (i.e. not yet clinically validated) 
methods simultaneously in a “smart system”. The system 
comprises measures of balance, breathing, heart rate, 
metabolic rate, joint flexibility, hydration, and physical 
performance functions in addition to lab testing related to 
biological aging and mechanical cell strength. A proof-of-
concept test is illustrated for two adult males of different 
ages: a 22-year-old and a 73-year-old matched in body mass 
index (BMI). The integrated system is test in this work, a pilot 
study, demonstrating functionality and age-related clinical 
relevance. The two subjects had physiological measurements 
taken in several settings during the pilot study: seated, biking, 
and lying down. Balance measurements indicated changes in 
sway area of 45.45% and 25.44%, respectively for 
before/after biking. The 22-year-old and the 73-year-old saw 
heart rate variabilities of 0.11 and 0.02 seconds at resting 
conditions, and metabolic rate changes of 277.38% and 
222.23%, respectively, in comparison between the biking and 
seated conditions. A smart camera was used to assess biking 
speed and the 22- and 73-year-old subjects biked at 60 rpm 
and 28.5 rpm, respectively. The 22-year-old subject saw a 7 
times greater electrical resistance change using a joint 
flexibility sensor inside of their index finger in comparison 
with the 73-year-old male. The 22 and 73-year-old males saw 
respective 28% and 48% increases in their urine ammonium 
concentration before/after the experiment. The average 
lengths of the telomere DNA from the two subjects were 
measured to be 12.1 kb (22-year-old) and 6.9 kb (73-year-
old), consistent with their biological ages. The study probed 
feasibility of 1) multi-metric assessment under free living 
conditions, and 2) tracking of the various metrics over time. 

1. INTRODUCTION 

By 2030, the number of U.S. older adults is projected to 
increase from 35 million to 72 million (from 12% to 20% of 
the population). 

By 2035, there will be more Americans over 65 than under 
18 (U.S. Census Bureau "Older People Projected to 
Outnumber Children for First Time in U.S. History" 2018). 
The majority of older adults prefer to remain in their home 
for as long as possible preventing a need to relocate to a 
supportive living setting (e.g., assisted living) as long as their 

safety, independence, and comfort are not compromised 
(Binette & Vasold, 2018). Given that aging adults are 
generally at higher risk for a variety of safety and health 
issues (Perdue, Watts Dd Fau - Kaufmann, Kaufmann Cr Fau 
- Trask, & Trask, 1998), the primary challenge for successful, 
independent “aging in place” is an understanding of risk 
factors in the home that can be minimized to promote safety, 
well-being, and everyday functioning. In this context, 
mobility and physiological functioning represent intertwined 
foundational functions that most impact older adults’ daily 
lives. Mobility impairment increases fall risk, loss in 
functional capacity, isolation, and mortality.(Boulgarides, 
McGinty, Willet, & Barnes, 2003; Daubney & Culham, 1999; 
Musich, Wang, Ruiz, Hawkins, & Wicker, 2018; Shumway-
Cook, Brauer, & Woollacott, 2000). Even though human 
physiologies are characterized by multiple, interacting 
physiological systems, current medical technologies are 
largely lacking in cross-modal ability. Multi parametric 
sensor systems are now a true possibility with the recent 
technological advancements in IoT technology, cloud 
computing, and machine learning algorithms for 
development of predictive disease models.  

At the fundamental level, the scientific community must 
address the challenge of acquiring high-fidelity 
measurements of biosignals that generally decay in amplitude 
as individuals age. Over time biosignals often become more 
difficult to detect, noisy, and complex in our target population 
(Charlton et al., 2017). For example, it is well established that 
extracting accurate breath rate from photoplethysmogram 
signals in older populations (> 70 years of age) is more 
difficult than with younger groups (Charlton et al., 2017). 
Similarly, sweat analysis in older populations is more 
challenging because of reduced water storage due to reduced 
urge to drink fluids among older individuals as well as 
physiological changes in water storage (Popkin, D'Anci Ke 
Fau - Rosenberg, & Rosenberg, 2010). Monitoring key 
physiological and biomechanical parameters with sufficient 
signal-to-noise ratio as well as with the unique capability of 
assessing physiologically-related data using multiple, 
integrated sensors provides us with the ability to obtain a 
truly comprehensive personal health assessment without 
eschewing valuable physiological data that is often lost when 
only a single medical device is used. Key physiological 
parameters employed in monitoring the health of aging adults 
include longitudinal cardiovascular, respiratory, postural 
stability, hydration, hormone balance, metabolic rate, 
mobility, and motor function indicators. Dehydration is 
specifically a significant challenge for aging adults as it is 
often asymptomatic and approximately 40-60% are 
chronically dehydrated (Bennett, Thomas, & Riegel, 2004; 
Picetti et al., 2017). In some age-associated chronic diseases, 
the level of dehydration may become severe enough to lower 
blood pressure and result in falls (Picetti et al., 2017) as well 
as increased mortality rates among hospitalized patients 
(Lavizzo-Mourey, 1987). Additionally, dehydration is a 
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major cause of general fatigue (Riebl & Davy, 2013), that 
may also be interrelated to metabolic rate (Woods, Garvican-
Lewis, Lundy, Rice, & Thompson, 2017). 

In an effort to overcome the above-mentioned challenges, our 
team has integrated, multimodal physiological functioning 
measurements that can capture multiple sensitive responses 
with precision, speed, reliability, and security that cannot be 
achieved using a single modality sensor. Specifically, we 
introduce a single integrated sensing system, which is 
comprised of wearables and ambient sensors for assessment 
of an individual’s physiological parameters in addition to 
environmental parameters. The system includes a diverse 
source of sensing transduction mechanisms as summarized in 
Table 1 and it was tested in a simulated, free-living space. 
The integrated system is primarily envisioned NOT as a tool 
for clinical diagnoses. On the contrary, the integrated system 
provides a tool for daily monitoring, early diagnosis of 
physiological data that is outside the expected healthy 
baseline and stimulus for the user to follow up with a clinician 
for further diagnosis. These types of multiparametric 
regressions for prediction of the occurrence of various 
diseases has not yet been completed to date, primarily due to 
the lack of an integrated sensing system for this purpose. As 
such, the proposed work strives to provide pilot data to 
illustrate the capability of such a system.  

The integrated system was tested in this work, a pilot study, 
demonstrating functionality and age-related clinical 
relevance. The study probed feasibility of: 1) multi-metric 
assessment under conditions simulating free living 
conditions, and 2) tracking of various metrics over time. 
Additionally, the study enabled an initial quantitative 
understanding of health baseline for various biometrics as it 
relates to subject age for males with the given BMI 
characteristics. In the future, further studies on a broad 
population of age, sex, and ethnicities will warrantee to 
provide more conclusive data on baseline biometrics for 
healthy subjects.  

Many of the devices and techniques used in this study are 
novel and are already undergoing study for accuracy among 
various other metrics common to medical devices (see each 
experimental section for more detail). For that reason, the 
goal of this study was not to validate each device with any 
type of reference instrument. Rather, the true value of this 
study is that is shows how multiple, integrated devices that 
are approaching clinical application can be simultaneously 
utilized to paint a broad picture of a person’s health in a non-
invasive manner. Many technical challenges require 
innovative engineering approaches to provide an accurate 
analytical result for the proposed autonomous integrated 
sensing system for health monitoring of older adults (e.g. 
discrimination of various individuals within in the 
environment), and, these will undoubtedly be the focus of 
future works.  

2. EXPERIMENTAL SECTION 

2.1. Human subjects 

The integrative sensor system described in Table 1 was 
assembled in a single location to simultaneously collect raw 
sensor data in a time-stamped fashion. After data collection, 
the data was synchronized for further analysis. Study 
participants of different ages (ranging from 22–75-year-old) 
were recruited via ASU’s IRB number STUDY00006547 and 
provided with sensors (shown in Fig 1A) for simultaneous 
assessment of physical and chemical parameters while 
performing a sequence of predetermined tasks under three 
conditions (shown in Fig 1B): 1. Resting (sitting in a chair), 
2. Activity (fixed biking), 3. Supine (lying down). In addition, 
participants’ biological samples (urine/blood) were collected 
before and after the tests and analyzed for osmolarity and 
relevant biomarkers indicative of cardiac function. One 
subject was aged 73 years old, 74.84 kg, 167.64 cm, and a 
BMI of 26.6. The other subject was aged 22 years, 81.65 kg, 
177.8 cm, and had a BMI of 25.8. Neither subject had any 
serious health concerns at the time of the assessment, other 
than the older male who suffered from mild arthritis.  

2.2. Sensors of the integrated sensing system  

The research team integrated a set of different wearables, off-
body sensors embedded in the room environments, and blood 
based complementary sensors. All of these sensors are briefly 
described in Table 1, but enumerated in more detail below. 

2.2.1. Balance Sensor (Wearable) 

The balance sensor is comprised of an iPhone-based 3-axis 
accelerometer, acting as inertial measurement unit (IMU) that 
provides real-time and continuous data acquisition. The 
iPhone is equipped with an app called Lockhart Monitor 
developed by the co-authors (Fig. 2).  

All measurements were performed in quiet standing with 
standardized feet placement, looking in the forward direction. 
Participants were tasked with standing in two visual 
conditions: eyes-open (EO) and eyes-closed (EC). 
Measurements were taken on both subjects prior to the biking 
assessment and compared to the same set of measurements 
performed immediately following the biking activity. Each 
measurement lasted for 60 seconds and was repeated twice. 
The sampling rate was 100 Hz. A rest of two minutes was 
afforded between each measurement. For the analysis, the 
center of pressure (COP) trajectory was separated into its 
mediolateral (ML) and anteroposterior (AP) components. 
The recorded COP signals were filtered using a third-order 
low-pass Butterworth filter, with a cutoff frequency of 5 Hz 
to eliminate measurement noise. Given the limited data 
length, measurements began a few seconds after the informed 
start of the trial and ended a few seconds before the informed 
termination of the trial. All analysis was performed using 
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custom Matlab routines (The Mathworks, Version 2018a) as 
well as the Lockhart Monitor App. More details can be found 
in additional publications by the co-authors: (Frames et al., 
2018); (Lockhart, Soangra, & Frames, 2014). 

2.2.2. SmartPad Sensor (Environmental) 

This system provides metabolic rate [kcal/day] assessment 
through measurements of CO2 concentration within the room 
while the subject is present. Though measurements of 

ambient CO2 production rate (kgen [ppm/hour]), CO2 
production rate in volumetric terms (VCO2 [mL/min]) can be 
estimated, and finally this term can then be used for metabolic 
rate [kcal/day] estimates. More details on this system have 
been described previously by the authors (Ruiz et al., 2018). 
The system is fully environmentally based (i.e., no 
wearables) and uses the seat pad with integrated strain 
sensors optionally to provide additional postural data if the 
subject is present.  

 

Table 1. Components of Integrated Sensing System  

Sensor Type Sensor Measured Parameters 
Wearable Balance Sensor Sway Path (cm) 

Sway Velocity (cm/s) 
Sway Area (cm2) 

Wearable Capacitive Pressure Sensor Systolic Blood Pressure (mm Hg) 
Diastolic Blood Pressure (mm Hg) 

Wearable Electrocardiography (Bioelectrical Signal 
Sensor) 

Heart Rate Variability (s) 

Wearable Strain-based Respiratory sensor End Tidal Volume (mL) 

Wearable Joint Flexibility Sensor Resistance (k) 

Environmental SmartPad System (on a chair) Metabolic Rate (kcal/day) 
Temperature (oC) 
Relative Humidity (%) 

Environmental Smart Camera (on a table) Video (body joint position) 

Environmental Smart Toilet Ammonium and Potassium Concentration (mM) 

In Vitro (Blood) Telomere Length Test Telomere Length (kb) 
In Vitro (Tissue) Cellular Mechanical Strength Test Young’s Modulus (Pa) 

Fig. 1A. Schematic representation of integrated sensing system and pilot study design. Fig 1B. Sequence of events followed 
by subject during experiment. 

A B 
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During the metabolic assessment, the system controls the 
ventilation through a fan system within the room, which turns 
ON/OFF after fixed intervals of time. The fan system consists 
of an inlet and outlet fan that cycles fresh air into the room 
when the system is turned on (as observed in the data shown 
in Fig 7A in the form of dropping CO2 concentrations 
following data assessments) to reduce any effects of 
cognitive poisoning due to high CO2 concentration (or other 
bio effluents). The fan system is turned OFF prior to each 
metabolic assessment to allow CO2 levels within the room to 
increase, since increasing CO2 concentration with time is the 
signal that allows the SmartPad system to assess metabolic 
rate. Other than the fan system, the room was specially sealed 
to ensure no effect of other uncontrolled ventilation variables. 
This sealing includes a specially made door to prevent air 
leakage. All data were assessed using OriginPro 2017 
(OriginLabTM).  

Still in development, this passive sensing system is 
eventually envisioned to see deployment in any person’s 
home office or bedroom (or alternatively, a clinician’s 
attending room). In the home environment, the system would 
require integration in the house’s HVAC system. Future work 
on the SmartPad will largely be focused on development of 
AI algorithms for necessary corrections of various 
environmental occurrences, including periodic AC actuation 
within an individual’s home. In the final target application, 
the SmartPad itself will not consist of an actuation/fan 
system.  

2.2.3. Ribcage/Abdomen Respiratory Sensors, 
Electrocardiography Sensor & Wrist Blood 
Pressure Sensor (Wearables) 

Wearable health sensors with skin-like form factors have 
been developed to continuously monitor physiological vitals 
such as respiration and blood pressure (Chu et al., 2019; Kim 
et al., 2019). The respiration monitor consists of a system of 
piezoresistive strain sensors attached to the torso that 
generates a signal from detected diaphragm and abdomen 
expansion and contraction. We previously demonstrated that 
this system can be used to calculate respiration rate and 
volume (Chu et al., 2019). The blood pressure monitor is a 
skin-mounted, capacitive-based pressure sensor that picks up 
superficial arterial pulsatile waveforms. The calibrated 
waveforms are used to calculate continuous heart rate, blood 
pressure, and subsidiary parameters. 

Respiration rate is commonly expressed as the number of 
breaths per minute and is inversely proportional to the time 
difference between consecutive peaks of the sinusoidal 
signal. Tidal volume is the amount of air displaced during 
exhalation and inhalation and is calculated by integrating the 
respiration airflow with respect to time. Heart rate is 
expressed as the number of heart beats per minute and is 
calculated from the continuous pulsatile waveform or 
electrocardiogram (ECG). Heart rate variability (HRV) is the 

time variance of consecutive heartbeats. Pulse transit time 
(PTT) measures the pulse wave traversal time from one 
arterial site to another.  

Respiration, blood pressure, heart rate, and ECG were 
simultaneously monitored during various activities. 
Respiration was monitored using two strain sensors and a 
spirometer (BIOPAC, Inc.). The strain sensors were adhered 
onto the ribcage and abdomen regions using skin-safe 
adhesives. The spirometer was fitted with a disposable 
breathing filter and used in conjunction with a nose clip. The 
spirometer only serves to calibrate the respiration sensors and 
is not included in the final assessment of either subject’s 
health. Blood pressure was monitored using a capacitive 
sensor mounted over the radial artery and a brachial arm cuff 
(OMRON Corp.). The capacitive sensor was secured in place 
using a wrist strap and the wrist was immobilized in a flexed 
position using an arterial line splint; an accelerometer and 
gyroscope (MC10, Inc.) was placed near the sensor to detect 
motion artifacts. The brachial arm cuff was placed on the 
opposite arm. ECG with conventional Ag/AgCl electrodes 
(BIOPAC, Inc.) was monitored in a Lead I configuration with 
the positive and negative leads placed over the clavicles and 
the ground lead placed over the ribcage opposite the strain 
sensor. Figure 3A summarizes the locations where sensors 
were placed during the measurements. 

Subjects were tested in three positions for various activities: 
relaxed sitting for the cognitive stress test, upright exercise 
biking for the physical stress test, and supine on a 45 deg 
recline for post-stress recovery. Each position was recorded 
for approximately 10 minutes. At the beginning of the relaxed 
sitting position, subjects were instructed to breathe into the 
spirometer at slow, normal, and fast paces for 1 minute each. 
This data was used to calibrate the strain sensors to the 
spirometer. After this period, the spirometer and nose clip 
were removed for the rest of the testing period.  

Data analysis was performed using MATLAB (MathWorks). 
Three blood pressure measurements were taken by the 
brachial arm cuff before the beginning of the testing. The 
averaged systolic and diastolic values from three 
measurements were used as calibration for the first 
waveform.  

2.2.4. Smart Camera (Environmental) 

We used a stereo camera (https://www.stereolabs.com/zed) 
set up to collect data. The stereo camera setup comes with 
two monocular cameras arranged parallel to each other. The 
baseline distance between the monocular cameras is 120 mm. 
The camera collects video data with a resolution of 
1920x1080 at 20 frames per second (fps). Along with the 
camera, we use Human Mesh Recovery (Kanazawa, Black, 
Jacobs, & Malik, 2018) for reconstructing a full 3D mesh of 
a human body from a single RGB image. For each frame from 
the video, we obtain a human mesh according to SMPL 
model (Loper, Mahmood, Romero, Pons-Moll, & Black, 
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2015). The obtained 3D joint angles consist of roll, pitch, and 
yaw values for every joint. In this study, we recorded the 
pitch of the knee joint at every frame and obtained the 
frequency of biking. This sensor is not attached to the subject 
but rather placed on a table in the environment to capture the 
subject motion. The camera is set up in such a way that it can 
capture the part of the human body performing an activity. 
For example, when the subjects are performing biking 
exercises, the camera is positioned in such a way that it can 
observe the lower body of the subject. The camera was 
positioned in a single location on a wall during the entire 
experiment and did not require repositioning. From that 
location on the wall, the camera could capture nearly a full 
view of all objects within the room and its boundaries.  

2.2.5. Joint Flexibility Sensors (Wearable) 

Information related to sensor fabrication can be found in 
(Oren, Ceylan, Schnable, & Dong, 2017). This graphene 
sensor’s electrical resistance changes significantly upon 
deflection. Results are shown for the young and aged subject 
during the study, with the sensor placed inside the finger of 
the subject. Each subject was instructed to bend their index 
finger maximally. The finger flexibility assessment was 
performed immediately prior to any activity described in 2.1 
(before the resting assessment). 

2.2.6. Smart Toilet Sensors (Environmental) 

Graphene-based, solid-state ion selective sensors were 
created via laser induction of polyimide following our 
previously delineated protocols. Two parallel electrodes were 
lased on the polyimide with a UV laser. Multiple replicates 
of the parallel electrodes to obtain statistically significant 
results and to create distinct ion sensors, one for potassium 
(K+) ion sensing and one for ammonium (NH4

+). For 
example, one replicate was functionalized with a drop cast of 
polyvinyl chloride (PVC)-based K+ selective membrane on 
one electrode and with a screen-printed Ag/AgCl paste on the 
parallel electrode to create a solid-state ion selective sensor 
for K+ with a corresponding Ag/AgCl reference electrode. In 
a similar fashion another replicate was functionalized with 
NH4

+-based ion selective sensor and an Ag/AgCl reference 
electrode. It is important to note these sensors are flexible and 
multiple bending cycles have been performed to demonstrate 
that the electrodes show negligible loss in electrical 
conductivity after bending. Thus, these electrodes could be 
placed on the curvilinear surface of a toilet for example. The 
sensors are operated with an electrochemical potentiometric 
sensing modality and hence quantify the concentrations of 
both K+ and NH4

+ in solutions by being wired to a portable 
potentiostat chip that is powered by a battery. The Smart 
Toilet measurements were taken by simply collecting urine 
samples from subjects and analyzing in a laboratory setting. 
The measurement is currently in the form of a laboratory test, 
but, future work will strive to integrate this measurement in a 
toilet to perform effortless measurements on subject urine. 

Smart toilet measurements were taken immediately before 
and after each subject’s biking assessment.  

2.3. In-vitro methods 

2.3.1. Telomere Length 

Genomic DNA was isolated from peripheral blood 
mononuclear cells (PBMC) and used for average telomere 
length measurement using the terminal restriction fragment 
(TRF) analysis (Mender & Shay, 2015). Briefly, the PBMC 
were isolated from 7 mL of whole blood using the LeucoSep 
Tube following manufacturer’s instructions. Genomic DNA 
was extracted from 4x106 of PBMC cells with Wizard 
genomic DNA purification kit (Promega). Five µg of 
genomic DNA was digested with 10 units of Alu-I and Rsa-I 
each at 37˚C for 3 h. The digested genomic DNA samples 
were resolved on a 0.8% agarose gel, followed by in-gel 
hybridization using telomere probe (TTAGGG)3 (Mender & 
Shay, 2015). The gel was then scanned using Typhoon IP 
(GE Healthcare) scanner. The scanned gel image was 
analyzed using the TeloTool program (Gohring, Fulcher N 
Fau - Jacak, Jacak J Fau - Riha, & Riha, 2014) to determine 
the mean telomere lengths. This assay could be automated so 
that the method could be implemented as a home-based 
instrument to perform the analysis from finger picked whole 
blood samples. Not only is mean telomerase length expected 
to increase with age (which is interesting from a research 
perspective) but may have clinical significance for a variety 
of age-related disease such as atherosclerosis (Benetos et al., 
2004), myocardial infarction (Brouilette, Singh, Thompson, 
Goodall, & Samani, 2003), and Alzheimer’s disease 
(Panossian et al., 2003).  

2.3.2. Atomic force microscopy (AFM) stiffness 
measurement of fruit fly heart tissue 

Since the heart is a vital part of any living organism and its 
mechanical properties certainly affect its performance, this 
study also explored the feasibility of using a new research 
diagnostic tool for the stiffness of different region of the heart 
tissue. Several fruit fly hearts were studied to determine if 
there was a significant difference between the mechanical 
properties of aged and young fruit fly hearts. The findings 
from this study provided some insight onto hypothesized 
differences in mechanical properties of human hearts and 
these properties’ dependence on age. We are also exploring 
the mechanical properties of white blood cells with the idea 
that this in-vitro method could be also automated and 
implemented as a test in a home-based instrument to perform 
the analysis from finger picked whole blood samples. AFM 
measurements were performed in phosphate-buffered saline 
(PBS) at room temperature using Bruker BioScope Resolve 
AFM system (Santa Barbara, CA). Glass sphere bead probe 
(Novascan, IA, USA) with the radius of 2.5 μm was used. A 
cantilever spring constant of 0.03 N/m was acquired using the 
thermal tune approach. To minimize the effect of the fruit fly 
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heart thickness and substrate, the target indentation depth was 
selected as 1300 nm, which was less than a quarter of the 
heart height at 0.5 ± 0.1 mm (Chan, Hu, Johnson, Suo, & 
Stafford, 2012; Dimitriadis, Horkay, Maresca, Kachar, & 
Chadwick, 2002). The measurements were performed on four 
segments of the heart (i.e., A1-A4) on at least sixteen 
different flies for each age group of six days, and seven weeks 
(i.e., young and aged flies, respectively). The stiffness (i.e., 
Young’s modulus) was quantified using the approach 
reported in (Mollaeian et al., 2018). Although usage of AFM 
for measure of cellular stiffness of heart tissue is admittedly 
far from an at home system for measurement physiological 
metrics, the authors envision the basic scientific principles of 
such a technique as a real possibility for at home monitoring 
instrument. Cellular stiffness has been previously shown in 
red blood cells (RBC) (Barns et al., 2017). A cellular stiffness 
test from RBC, which can be obtained from a finger prick, 
using an AFM-based bench top instrument is a certainty 
possible future instrument. As such, the inclusion of these 
AFM measurements poses an interesting, yet admittedly far 
from physical realization, potential development in 
minimally invasive point of care technologies.  

3. RESULTS AND DISCUSSION 

3.1. Balance Sensor 

Balance (cell phone IMU-based) sensors were applied to 
evaluate the balance of the subjects before and after the 
physical challenge of biking for 10 min. A summary of the 
results from two subjects paired in Body Mass Index (BMI) 
and gender but of different ages (22 and 73 year-old) is shown 
in Table 2. Overall, both subjects had normal fall risk indexes 
(shown in final row of Table 2). However, a closer look at the 
sway area as shown in Figure 2, indicated that the postural 
stability was about twice lower in the aged adult than the 
younger adult (11.4 cm2 vs 6.7 cm2). The older adult neared 
the cut-off value of high risk for fall occurrence shown in 
previous works, but, did not exceed it (14.3 cm2 vs cutoff 
value: >15.7 – references for expected fall risk values shown 
in final row of table 2). All other (i.e., non-balance related) 
wearable sensors were used simultaneously by the subjects 
while performing different activities (see below), whereas the 
balance sensor was only used before/after the biking activity. 

  
Figure 2A. Stabilogram was built by using the mobile App with IMU sensor. Figure 2B. Postural stability was evaluated after 

biking with open eyes for the subjects matched in BMI and sex 

Table 2. Summary of balance measurements for two subjects with similar physiological characteristics (i.e., BMI) 

ID Age Sway Path (cm) Sway Velocity (cm/s) Sway Area (cm2) 

Young - pre 22 181.4 3.0 6.6 
Young - post 22 217.7 3.6 9.6 
Aged - pre 73 255.1 4.2 11.4 

Aged - post 73 162.4 2.7 14.3 

Expected values for Non-fall risk 
cases (Doheny et al., 2012; Gago 
et al., 2014; Melzer, Benjuya, & 
Kaplanski, 2004) 

 
<355.5 <7.15 <15.7 

A B 
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3.2. Ribcage/Abdomen Respiratory Sensor, 
Electrocardiogram Sensor and Wrist Blood 
Pressure Sensors 

Figure 3, 4 and 5 summarizes all the measurements from the 
wrist blood pressure, wearable breathing sensors, and heart 
rate sensors. Simultaneous data synchronization for all 
wearable sensors was demonstrated.  

 

 
Figure 3. Physiological wearable sensors based on 

capacitance, strain, and a contact patch monitoring heart 
function of electrocardiography. Strain sensor data for 

ribcage and abdomen, which is related to breathing rate and 
volume expired (ETV) in shown in bottom box. 

The breathing sensors enabled the assessment of ETV for the 
subjects while seated and lying. The assessed values were 
compared with a another device (FDA approved) also 
designed to measure ETV (BreezingTM, (Mora, Bridgeman, 
Xian, Tao, & Forzani, 2020)). The comparison rendered 
differences of 7.1% for the lying position in the younger 
individual and of 21.1% for the sitting position in the older 
individual. The results suggest some agreement between the 
two devices, although additional comparative measurements 
will be necessary in the future. ETV was not able to be 
measured during the biking period for either subject due to 
significant motion artifacts which could not be eliminated.  

Figure 4 shows a snapshot of the results for the capacitance 
sensor, which was used for measurement of wrist blood 
pressure, for the young and aged individual respectively. 
Figure 4A shows representative waveform for a young male 
subject in comparison to an aged male subject (shown in 
Figure 4B). The capacitance sensor was previously calibrated 
with FDA cleared blood pressure meter (OmromTM) and was 
able to provide real time blood pressure information. 

 
Figure 4. Physiological wearable sensors’ signals and results 

for the young (Fig 4A) and the aged individuals (Fig 4B)  

In addition, heart rate variability (HRV) was evaluated from 
R-R peak intervals (e.g., time in between beats) calculations 
from ECG data taken during the relaxed sitting portion of the 
testing. Poincaré plots were used to visualize variance 
between the young subject (left) and the aged subject (right). 
Figure 5 shows a summary of results for the matched younger 
and aged subjects in the study. Based on the analysis of the 
standard deviation of the heart rate values, it can be observed 
that a lower heart rate variability of 0.02 s was detected in the 
aged subject as compared with the younger subject (0.11). 
The 5-fold lower heart rate variability for the aged adult is 
indicative of greater arterial stiffness (Zhang, Zheng, Ma, & 
Sun, 2011), which bears relevance to a person’s 
cardiovascular performance. 

Figure 5. Heart rate patch sensor, and heart rate variability 
(Poincaré plots) results for the BMI and sex matched young 

(left) and aged (right) males of the study. 

3.3. Joint Flexibility Sensor 

Wearable sensors were also used to analyze the state of the 
subjects’ joint flexibility. For this task, we utilized flexibility 

B 

A 
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sensors, which are built of graphene films, whose resistance 
is sensitive to stretch. Figure 6 shows percentage change in 
the resistance of the flexibility sensor located in the hand joint 
of the BMI and gender-matched aged and younger 
individuals in our study. It can be observed that the maximum 
resistance changes of the young male upon bending his hand 
were over 7 times larger than the corresponding value for the 
aged male. These changes matched physical observations of 
the joint angle changes, which were significantly larger for 
the young male in comparison with the aged male, who 
suffered from arthritis. 

3.4. SmartPad sensors  

SmartPad raw measurements were used to assess metabolic 
rate data as well as environmental data related to comfort 
(temperature and relative humidity). Metabolic rate generally 
decreases with age in humans, and with all other factors held 
constant, is a primary driver of age related weight gain (Piers, 
Soares, McCormack, & O’Dea, 1998). Figure 7A-B shows 
the metabolic rate assessment from the SmartPad sensor as 
described in the experimental sections. Figure 7C shows a 
summary of the metabolic rate values for the study subjects 
at sitting, biking and lying positions. It can be observed that 
the metabolic rates were significantly different between the 
young and aged subjects with similar BMI. Sudden drops in 
metabolic rate can lead to sudden weight gain in any 
individual, if caloric intake is kept constant (due to an 
increased positive overall caloric balance). Therefore, if these 
sudden changes in metabolic rate can be detected (in the 
frame of a few weeks/months), then the subject could 
potentially be immediately alerted and better able to manage 
their caloric needs via caloric tracking. On the contrary, if 
metabolic rate increases without a change in lifestyle (e.g., 
exercise), it may be a warning of increase of catabolic 
processes such as worsening of pulmonary obstructions 
(Agha & El Wahsh, 2013; Hugli, Schutz, & Fitting, 1996), 
cancer proliferation (Nguyen, Batterham, & Edwards, 2016), 
and hormonal imbalances (Meunier et al., 2005; Mullur, Liu, 
& Brent, 2014; Salomon et al., 1992).  Figure 7D shows a 
custom-made reproduction from (McArdle, 2010) and serves 
to delineate the changes in metabolic rate due to age. In 
Figure 7D, the orange line represents metabolic rate for males 
as a function of age and the pink line represents the metabolic 
rate for females as a function of age. The differences of 
metabolic rate observed in Figure 7C are supported by the 
information provided in Figure 7D. 

Figure 6. Wearable, flexible sensor to measure finger-joint 
flexibility showing a healthy joint from the young male, and 

an arthrosis-affected finger joint in an aged male.  

3.5. Smart Camera 

Figure 8 shows the results assessed with the smart camera 
obtained for the young and aged subjects of our study within 
the smart room. The results were simultaneously assessed 
with the aforementioned sensors, including the SmartPad. 
The subjects were video recorded during their biking activity. 
The smart camera software written in Python generated a 
realistic 3D model that encoded the various position of each 
subject’s angle, knee, and hip joints among other joints. The 
positions were then mathematically transformed using 
algorithms to generate pitch (knee angle) vs. time data. These 
data sets were then analyzed using Fast Fourier Transforms 
(FFTs) to determine the frequency distribution pattern of the 
biking frequency (RPM) for each subject. Knowing the 
biking frequency and the bike resistance, the biking power 
was calculated and correlated to the SmartPad’s measured 
metabolic rate to assess each subject’s physical fitness level. 
It is worth noting that the physical fitness assessment of the 
study subjects could be exclusively performed by fusing the 
data from the smart sensors integrated in the SmartPad (chair) 
and the Smart Camera. The younger subject showed higher 
physical fitness than the older subject given that the younger 
subject was able to perform same amount of power with less 
energy expenditure and oxygen consumption rate. The lower 
weight adjusted metabolic rate to power production ratio 
should be interpreted as better physical fitness, since this ratio 
is a metric of the “energy investment of the person” (i.e. 
weight adjusted metabolic rate) to the “energy output of the 
person” (i.e. power output on the fixed bike). 
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Figure 7. SmartPad sensor raw and fitted data for the young (A) and aged (B) subjects. The sawtooth appearance of the CO2 
concentration over time is due to the nature of the system wherein an actuator system controls inlet/outlet fans leading into 

the measurement environment. After each activity, the CO2 concentration within the room is reduced by turning the 
inlet/outlet fans ON, resulting in CO2 decay (Fig 7A-B). (C) Metabolic rate results corresponding to data in (A-B). (D) Data 
reconstructed from (McArdle, 2010): The curves represent population average metabolic rate for males (orange) and female 

(pink) as a function of age. 

 

A B 

D C      
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Fig. 8. (A) Smart camera images showing the joint angle identification, as well as the measurements of the pitch angle over 
time during biking for the two study subjects. (B) Fast Fourier Transform analysis of the data shown in (A), indicating the 

most frequent biking revolution-per-minute (RPM) for each subject. (C) Physical fitness assessment based on metabolic rate 
and oxygen consumption rate normalized by the subject’s corresponding body weight and power production (from RPM and 

load measurement of bike). 

 

3.6. Smart bathroom sensors 

To evaluate the hydration state of the study subjects we used 
ion concentrations in urine as a proxy for osmolarity. It is 
well-known that the higher the ion concentrations in urine, 
the higher the osmolarity, and the higher the dehydration state 
of a subject (Armstrong et al., 1998). In this study, we 
evaluated the ammonia and potassium ion concentrations for 
urine samples obtained before and after the study challenge. 
Figure 9A-B shows the results, showing increases of 28% and 
48% for ammonium concentration in the young male and 
aged subjects, respectively. In addition, the potassium 
concentration increased by 32% and 140% in the young and 
aged subjects, respectively. Furthermore, parallel tests 
performed with the same urine samples, quantifying specific 
gravity with a urine test strip, indicated an increase of 10 units 
for both subjects. However, the specific gravity increased to 
levels indicative of severe dehydration for the 73 year-old 
subject (Armstrong et al., 1998). Finally, the assessment of 
body weight in both subjects indicated a weight loss of 

~0.25 kg in the aged male, and ~0.5 kg in the young male 
between the initial and final state of the challenge. Intuitively, 
it makes sense to expect this result (higher weight loss for 
young male) due to his higher metabolic rate and therefore 
weight loss from CO2 and vapor water exhalation. Specific 
gravity and weight changes were in coincidence with the ion 
concentration change results from the ion selective sensors of 
the smart toilet sensor, indicating the importance of these 
sensors to detect dehydration states. Dehydration was to be 
expected, as the subjects were not given any water during the 
experiment.  

3.7 In vitro methods 

3.7.1 Telomere Length 

Telomeres are protective structures located at the ends of 
chromosomes and the length of telomeric DNA correlates 
with cellular aging. Over cell divisions, the telomeric DNA 
shortens (Rizvi, Raza, & Mahdi, 2014; Shammas, 2011). As 

 

A 

B 
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expected, the mean telomere length of the aged test subject 
was 6.9 kb which is significantly shorter than the 12.1 kb for 
the younger subject.  
 

 
Figure 9. Smart toilet sensor, measurement of urine 

ammonium (A) and urine potassium (B) concentrations. 
Corresponding measurements of the urine specific gravity, 
and body weight for the young and aged male of the study. 

3.7.2 Atomic force microscopy (AFM) stiffness 
measurement of fruit fly heart tissue 

As shown in Figure 11, the stiffness of the heart of the aged 
and young flies was significantly different. Specifically, the 
heart tissues of the aged flies were significantly stiffer than 
that of the young flies:  for each measured segment, the 
Young’s modulus of the aged flies were at least three times 
higher than that of the young flies. Moreover, stiffness 
nonlinearity (i.e., stiffness changes due to measurement 
depth) of the aged fly heart tissues is much more significant. 
Particularly, the stiffness of the A1, A2, A3, and A4 of the 
aged flies increased by 44.7%, 11.2%, 14.1%, and 89.3%, 
respectively, when the indentation depth was double from 
650 nm. However, the corresponding stiffness increase of the 
young flies was less than 7% for all four measured segments. 
Note that the stiffness nonlinearity is a direct indicator of 
material homogeneity. These observations indicate that aging 
can lead to stiffening and increase the degree of heterogeneity 
of heart tissue, which are associated with many common 
heart diseases such as hypertrophic cardiomyopathy and 
ventricular arrhythmias. 

The assessment of cellular stiffness was performed in fruit fly 
heart tissue as an illustrative example. Ongoing stiffness tests 
have been performed on human blood cells with similar 
outcomes (not shown in current publication) by the authors 
of this publication. In the future, we envision this test to be 
done by automated extraction of blood red cells by a simple 
finger prick sample collection, and automated cellular 
stiffness measurement.  

 
Figure 10. The mean telomere lengths of a younger (22 

year- old) and aged (73 year-old) individual using telomere 
restriction fragment (TRF) length analysis. The TRF gel on 

the left shows the length distribution of restriction fragments 
of telomere DNA. Signal intensity traces of telomere 

fragments are shown on the right of the gel. Sizes of DNA 
markers are indicated on the left of the gel 

4. CONCLUSIONS 

The integration of multiple wearable and smart sensors into a 
single system enabled simultaneous assessment of 
physiological metrics. This capability allowed determination 
of key differences in the health status of individuals of 
different ages. Successful implementations of this type of 
system would enable assessment of baseline conditions over 
time to better understand overall wellness and to determine 
changes of health status or disease progression as well as 
understand real health problems among aged adults in 
connection with mobility, metabolic rate changes, 
dehydration, and activities of daily living. All of the sensing 
systems presented in this work require additional research in 
terms of validation and easy-to-use design but hold great 
promise for future applicability in assessing everyday 
functions of aged adults. A fully integrated, seamless system 
with all the sensors used is in progress, yet, the initial results 
presented herein show proof-of-concept for this integrated 
monitoring system of related physiological metrics. A key 
limitation of the study was the low sample size (only 2 
subjects). Future works will strive to scale up the tested 
population and utilize parallel measurements of gold standard 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 
 

13 
 

reference instruments for all collected metrics for comparison 
with the research level devices in this work.  

 

 
Figure 11. Cellular Stiffness Assessment. A: An example 

image of fruit fly heart tissue. Fig. 11B-C: A1, A2, A3 and 
A4 represents the measurement area of the fly heart Young's 
modulus different heart segments (i.e., A1, A2, A3, and A4) 
of the B) young flies and aged flies at the indentation depth 

of 1 µm. n>10. 
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