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ABSTRACT 

Falls represent a major burden on elderly individuals and 
society as a whole. Technologies that are able to detect 
individuals at risk of fall before occurrence could help reduce 
this burden by targeting those individuals for rehabilitation to 
reduce risk of falls. Wearable technologies especially, which 
can continuously monitor aspects of gait, balance, vital signs, 
and other aspects of health known to be related to falls, may 
be useful and are in need of study. A systematic review was 
conducted in accordance with the Preferred Reporting Items 
for Systematics Reviews and Meta-Analysis (PRISMA) 2009 
guidelines to identify articles related to the use of wearable 
sensors to predict fall risk. Fifty four studies were analyzed. 
The majority of studies (98.0%) utilized inertial measurement 
units (IMUs) located at the lower back (58.0%), sternum 
(28.0%), and shins (28.0%). Most assessments were 
conducted in a structured setting (67.3%) instead of with free-
living data. Fall risk was calculated based on retrospective 
falls history (48.9%), prospective falls reporting (36.2%), or 
clinical scales (19.1%). Measures of the duration spent 
walking and standing during free-living monitoring, linear 
measures such as gait speed and step length, and nonlinear 
measures such as entropy correlate with fall risk, and 
machine learning methods can distinguish between falls. 
However, because many studies generating machine learning 
models did not list the exact factors being considered, it is 
difficult to compare these models directly. Few studies to 
date have utilized results to give feedback about fall risk to 
the patient or to supply treatment or lifestyle suggestions to 
prevent fall, though these are considered important by end 
users. Wearable technology demonstrates considerable 
promise in detecting subtle changes in biomarkers of gait and 
balance related to an increase in fall risk. However, more 
large-scale studies measuring increasing fall risk before first 

fall are needed, and exact biomarkers and machine learning 
methods used need to be shared to compare results and pursue 
the most promising fall risk measurements. There is a great 
need for devices measuring fall risk also to supply patients 
with information about their fall risk and strategies and 
treatments for prevention.  

1. INTRODUCTION 

Fall incidents and the resultant injuries, fear of falling, and 
decreased activity levels present a large issue for the rapidly 
growing population of older adults. Falls are the leading 
cause of injuries and death among older Americans, with 1 in 
4 seniors falling each year. The total cost of fall injuries in 
the US was estimated to be $50 billion in 2015 and is 
expected to rise to $67.7 billion by 2020 (National Council 
on Aging, 2018). Globally, the cost of falls is expected to 
exceed $240 billion a year by 2040 (World Health 
Organization, 2007). 

Given the staggering effect of falls on individuals and 
society, it is not surprising that a number of technologies have 
been developed in recent years to detect and respond to falls 
(Aziz, Musngi, Park, Mori & Robinovitch, 2016, Chaudhuri, 
Thompson & Demiris, 2014, Santo el al, 2019, Bourke et al, 
2016, Secerquia, Lopez & Vargas-Bonilla, 2018, Cheffena, 
2016, Ejupi, Galang, Aziz, Park, & Robinovitch, 2017, 
Ozdemir, 2016, Hsieh, Liu, Huang, Chu & Chan, 2017, Yu, 
Chen & Brown, 2018, and Dubois & Charpillet, 2014). Many 
of these devices have been designed to be wearable, so that 
falls can be detected and assistance summoned no matter 
where the individual is at the time. Home- or location-based 
technologies such as cameras, motion sensors, and 
impact/noise detectors have also been utilized. These sensors 
may help to reduce rates of severe injury and death from falls 
by ensuring fast response and tracking the circumstances 
surrounding the fall to allow for lifestyle changes and 
rehabilitation to circumvent further future falls.  
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While falls detection is valuable, it still requires that a fall 
may occur before it can provide aid, meaning injuries are still 
likely. A better alternative would be to stop falls before they 
ever occur by monitoring features that often lead to falls and 
suggesting further action such as rehabilitation, assistive 
technology, or temporary reduction or change in activities to 
alleviate this fall risk. It has been shown that assessing and 
responding to clinical gait and balance metrics associated 
with falls can lower fall risk (RAND, 2003, Gillespie et al., 
and Khanuja, Joki, Bachmann & Cuccurullo, 2018), and it is 
recommended by the American and British Geriatrics 
Societies that all adults over 65 be assessed for fall risk at 
clinical visits (Khanuja et al., 2018, American Geriatrics 
Society, 2011). Assessments at clinical visits are helpful, but 
the length of time between regular visits and inter-rater 
differences and inability to document small changes using the 
clinician-rated tests employed may allow some individuals at 
fall risk to be missed. More frequent assessment in real-world 
environments is more likely to detect small changes in gait, 
balance, activity, and other parameters that indicate 
degradation in health that might lead to falls.  

One method that has been used to monitor and assist elderly 
individuals both in terms of measuring fall risk and many 
other features of daily life (Philips et al., 2016, Rantz et al., 
2013, Alwan, 2009, Manton et al., 2016, Rantz et al., 2014, 
Villacorta, Jimenez, Val, & Izquierdo, 2011) is the “smart 
home” concept. A number of ambient sensors such as 
cameras, motion/depth detectors, pressure mats, 
microphones, and latch sensors keep track of daily activity, 
gait parameters, medication, food, and water intake, and the 
like to ensure that individuals remain healthy and active. 
Such a strategy shows promise in allowing elderly 
individuals to “age-in-place” for longer outside of a care 
home setting and reduce the rates of falls and other incidents 
leading to injury.  

However, smart home sensors can only provide information 
about events and warning signs that occur in the home or 
community care setting. The installation of equipment 
throughout the house may be costly and time-intensive, may 
not be approved in certain setting such as rental properties or 
care homes, may have difficulty identifying and tracking 
multiple people within the home, and may not be accepted by 
older individuals unused to technology or those worried 
about surveillance. Because of these considerations, smart 
home technology may not be readily available for all 
individuals or in all situations where they may be needed.  

Wearable sensors, on the other hand, can be kept with an at-
risk individual at all times, providing constant real-time 
information. Even within a home or community care setting, 
wearables may increase the value of smart home features by 
allowing for improved discrimination of which individuals 
are being monitored and where they are located. This review 
aims to present previous work in wearables designed to 
measure fall risk, evaluate the current state-of-the-art, and 

discuss the research needed to allow this work to be 
transferred from the clinical and community-care settings 
where it has been most-often implemented thus far to allow 
for easy use by elderly individuals in their daily life both in 
their home and out in the community. 

2. METHODS 

This systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematics Reviews and 
Meta-Analysis (PRISMA) 2009 guidelines (Moher, Liberati, 
Tetzlaff, & Altman, 2009). Keyword search was performed 
in PubMed in August 2019. The search algorithm utilized 
was (fall* AND ("predict*" OR "prevent*" OR "risk") AND 
("app*" OR "wear*" OR "phone" OR “sensor”)). Title and 
abstract review were performed on all search results.  

Those articles meeting the following criteria were included in 
the review: 1) peer-reviewed journal articles with full-text 
available in English (conference proceedings were not 
included) and published within the last decade to reflect 
recent advances in technological capabilities (2009-2019); 2) 
prospective studies examining the use of a wearable 
technology to measure fall risk, directly or indirectly through 
known and stated correlate; 3) the use of a fully portable 
system (papers with tethered components such as pressure 
mats, cameras, and radio antennas were only reviewed if 
wearable components were able to be used separately and 
data was given separately); 4) paper investigated assessment 
of fall risk before the fall occurred, not just fall detection; 5) 
assessments could be conducted without a physician, 
therapist, or other expert to allow monitoring outside of 
clinical settings (or could be modified to do so).  

Additional articles were located through a citation search of 
the articles located in the initial search and through 
suggestion by peers. Review articles found during the initial 
search and meeting all eligibility requirements but 2) were 
also included in the review process and utilized to locate any 
additional relevant articles not appearing in the PubMed 
search, but were screened out before the writing of this 
systematic review to avoid overlapping data.  

Articles making it through the review process were screened 
according to the types of information included: 1) consumer 
preferences, 2) fall risk standard used for comparison 
(retrospective history, falls diary, etc.), 3) tasks utilized to 
determine fall risk, 4) whether assessment was triggered for 
a set period or using continuous or free-living data, 5) 
biomarkers analyzed, 6) software algorithm used to 
determine fall risk, 7) hardware/sensor type, 8) location of 
sensors on the body, 9) type of feedback given about fall risk, 
and 10) whether patients were given any advice or treatment 
to reduce fall risk.  
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3. RESULTS 

3.1. Study Selection 

A total of 1529 results resulted from the initial search terms, 
of which 112 made it through title/abstract review. Most 
papers were removed because they did not describe wearable 
methods of ascertaining fall risk, instead using ambient 
sensors and/or measuring only fall detection. A further 17 
articles that met the other search criteria were removed 
because they were conference proceedings, not peer-
reviewed journal articles. 22 of the papers selected were 
reviews, not controlled studies, and were thus removed from 
the systematic review, but were still reviewed in the literature 
search to identify further articles. The literature search 
revealed 14 additional articles for a total of 104 articles which 
underwent full-text review. A further 50 articles were 
excluded because, while fall risk or related measurement was 
stated as the main aim, it was not classified in the study (most 
of these studies focused on proof-of-concept showing that 
free-living or gait activity could be accurately determined by 
wearable methods), resulting in 54 articles in the systematic 
review (Aicha, Englebienne, Schooten, Pijnappels & Krose, 
2018, Antos, Danilovich, Eisenstein, Gordon & Kording, 
2019, Barrois et al., 2017, Bergamini et al., 2017, Brodie, 
Lord, Coppens, Annegarn & Delbaere, 2015, Brodie et al., 
2015b, Brodie et al., 2017, Caby, Kieffer, Hubert, Cremer & 
Macq, 2011, Cui et al., 2014, Di Rosa et al., 2017, Doheny et 
al., 2013, Doi et al., 2013, Drover, Howcraft, Kofman &  
Lemaire, 2017, Ejupi et al., 2017, Ganea, Paraschiv-Ionescu, 
Bula, Rochat & Aminian, 2011, Gietzalt et al., 2009, 
Govercin et al., 2010, Greene et al., 2010, Greene et al., 2012, 
Greene, Doheny, Ohalloran & Kenny, 2013, Greene Doheny, 
Kenny & Caulfield, 2014, Greene, Redmond & Caulfield, 
2017, Greene et al., 2018, Howcroft, Lemaire & Kofman, 
2016, Howcroft, Kofman & Lemaire, 2017, Howccroft, 
Kofman & Lemaire, 2017b, Hsieh, Roach, Wajda & Sosnoff, 
2019, Hua et al., 2018, Ihlen, Weiss, Bourke, Helbostad & 
Hausdorff, 2016, Ihlen et al., 2018, Iluz et al., 2014, Iluz et 
al., 2015, Latt, Menz, Fung & Lord, 2009, Marschollek et al., 
2011, Marschollek, 2011b, Martinez-Ramirez et al., 2011, 
Mikos et al., 2019, Mohler, Wendel, Taylor-Piliae, 
Toosizadeh & Najafi, 2016, Najafi, Armstrong & Mohler, 
2013, Pazaic, Lindemann, Grebe & Stork, 2016, Rasche et 
al., 2017, Rasche et al., 2018, Razjouyan et al., 2017, 
Rezvanian & Lockhart, 2016, Rispens et al., 2014, Riva, 
Toebes, Rijnappels, Stagni & Dieen, 2013, Schwenk et al., 
2014, Simila, Immonen & Ermes, 2017, Soangra & Lockhart, 
2018, Stack et al., 2018, Van Schooten et al., 2015, Van 
Schooten et al., 2016, Weiss et al., 2013, Weiss, Herman, 
Giladi & Hausdorff, 2014). Figure 1 details the systematic 
review process. 

  
Figure 1: Systematic review process, documenting records 

perused, excluded, and included at each step. 

3.2. Consumer Preferences 

Only two studies considered the consumer preferences of 
fallers and older individuals at risk of future falls. Govercin, 
et al. (2010) asked focus groups of older adults (at fall risk 
and not based on clinical scores) and the caregivers of fall-
prone individuals to identify features that they would prefer 
in a fall preventions device. Participants stated that fall 
prediction was as important as falls detection and that they 
preferred wearable devices to those that were optical or 
home-based because they could be used be more widely used. 
A non-stigmatizing sensor on the wrist, such as a smartwatch-
based app, with an emergency button in case of undetected 
fall was generally preferred.  

Rasche, et al. (2018) found that the features most asked for in 
a fall prevention smartphone app by the 96 older adults in the 
study were (1) a checklist of typical tripping hazards, (2) an 
emergency guideline in case of a fall, (3) description of 
exercises and integrated workout plans that decrease the risk 
of falling, (4) inclusion of a continuous workout program, and 
(5) cost coverage by health insurer.  

Based on these studies, it is apparent that individuals want a 
portable device that is not easily noticed as medical 
equipment and, in addition to detecting and alerting in the 
case of a fall incident, can give feedback about fall risk on a 
regular basis and use this information to prescribe potential 
risk-alleviating measures such as home modifications or 
exercises. 

3.3. Population Characteristics 

With the exception of the two consumer preference studies 
listed above, all of the studied reviewed here implemented a 
wearable sensor to measure variables that might be correlated 
with fall incidence or risk, or with a condition known to be 
linked to falls such as frailty or freezing of gait in Parkinson’s 
disease (PD). The size and characteristics of the populations 
studied varied widely, as shown in Tables 1 and 2. 
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Population 
Size 

 Studies (%) 

5-24 15.4% [26, 29, 32, 47, 63, 68, 73, 74] 
25-49  19.2% [27, 28, 34, 35, 51, 55, 58, 59, 67, 72] 
50-99  32.7% [30, 31, 33, 36, 37, 39, 50, 52, 53, 56, 57, 

60, 61, 62, 65, 71, 77] 
100-149  13.5% [38, 45, 48, 49, 69, 70, 78] 
150-199    3.8% [64, 75] 
200-299    9.6% [25, 40, 43, 46, 76] 
300+     5.8% [42, 44, 54] 

Table 1: Number of Individuals Included Categorized by 
Study. Bracketed numbers indicate reference number for 

each paper. 

 
While studies varied greatly by size, the vast majority studied 
less than 200 individuals. Given the size of data sets generally 
utilized to train predictive algorithms, the small effect size 
expected, and the high rate of non-compliance or study 
withdrawal during home-based recording and fall diary 
follow-up (Shany, Liu, Redmond, Wang & Lovell, 2015), it 
is expected that much larger trials are needed including up to 
several thousand volunteers.  

 
Population/Control 
Group 

Studies (%) 

Older Adult Fallers/Non-
fallers 

71.2% [25, 29-43, 45, 46, 48-54, 
56, 58-59, 62, 64-67, 69, 70, 74-77] 

Older Adult Balance 
Decline/None 

  1.9% [72] 

Older Adults Frail/Non-
frail  

  3.8% [44, 60] 

Older Adults 
Assisted/Unassisted 

  1.9% [26] 

PD Fallers/Non-fallers   9.6% [47, 55, 57, 74, 78] 
PD with FOG/without 
FOG 

  3.8% [61, 68] 

Demented Fallers/Non-
fallers 

  1.9% [71] 

Stroke Fallers/Non-fallers   1.9% [27, 28] 
Diabetes Fallers/Non-
fallers 

  1.9% [63] 

Cardiac patients 
Frail/Non-frail 

  1.9% [73] 

Table 2: Breakdown of the experimental population and the 
control group for each paper. 

 
The majority of studies (71.2%) analyzed potential 
differences between older adults without other impairment 
based on whether they were prone to falling. A further 17.3% 
of studies analyzed fall risk similarly in populations with 
neurological or other impairment leading to an increased rate 
of falls. The remaining studies measured the correlation of 
other variables known to be related to falls such as frailty, PD 

freezing of gait (FOG), and the use of a prescribed assistive 
device while walking to determine how they affected 
measures of gait that could be detected by wearables.  

In 20 of 52 (38%) of studies, subjects were excluded if unable 
to ambulate without an assistive device during testing 
(Barrois et al., 2017, Bergamini et al., 2017, Brodie et al., 
2015, Caby et al., 2011, Di Rosa et al., 2017, Doi et al., 2013, 
Drover et al., 2017, Ganea et al., 2011, Greene et al., 2014, 
Greene et al., 2017, Greene et al., 2018, Howcroft et al., 2016, 
Howcroft et al., 2017, Howcroft et al., 2017b, Hua et al., 
2018, Iluz et al., 2014, Rezvanian & Lockhart, 2016, Riva et 
al., 2013, Stack et al., 2018). This exclusion is often utilized 
in studies of gait, as the use of a device changes movement 
patterns. However, the use of assistive devices is common at 
home in fall-prone individuals and fall risk measurement 
tools that can account for aids will be important in the future 
to allow wide-spread use.  

3.4. Gold Standard Used to Determine Fall Risk 

While most studies analyzed compared wearable features 
directly to fall incidence/risk, they did not all distinguish 
fallers from non-fallers in the same way. There were three 
main ways that fall status was determined: retrospective fall 
history, prospective fall diary, and clinical measures of fall 
risk. However, the time period for which falls were monitored 
(both retrospectively and prospectively) and the clinical 
measures used varied widely (see Table 3). 

48.9% of studies utilized retrospective falls (asking falls 
history for anywhere from 6 months to 5 years), 36.2% used 
prospective falls (with follow-up recording of one month to 
two years), and 19.1% used clinical scales (most commonly 
the Tinetti scale, with many studies using a combination of 
several scales). 4.3% of studies analyzed both retrospective 
and prospective falls and 4.3% analyzed falls and clinical 
scales. One study intending to measure the beginning of 
balance decline, which increases fall risk, measured the 
change in Berg Balance scale scores over one year following 
wearable assessment (Simila et al., 2017). It is important to 
note that, though wearables have been tested for use in 
objective fall detection, no studies were found that have 
combined measurement of falls and of fall risk. Fall history 
and diaries were all based on self-report measures. 

Studies intending to measure frailty used the Fried Frailty 
Index (Greene et al., 2013, Martinez-Ramirez et al., 2011) or 
the STS Frailty Criteria (Razjouyan et al., 2017). PD FOG 
was measured using video assessment of gait by trained 
interpreters, with periods with and without FOG used to build 
classification models for use in wearables (Mikos et al., 2019, 
Rezvanian & Lockhart, 2016). The use of an assistive device 
was consistent between users, with each user completing the 
same number of trials with and without an assistive device 
(Antos et al., 2019). 
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Gold Standard Studies (%) 
Retrospective falls history 48.9% 
   Previous 6 months   8.5% [48, 49, 55, 75] 
   Previous year 38.3% [25, 29, 30-33, 35, 38, 45, 

52, 53, 56, 57, 65, 66, 69, 70, 78] 
   Previous 5 years   4.3% [42, 46] 
Prospective falls occurrence 36.2%  
   Following month   2.1% [64] 
   Following 3 months   4.3% [47, 71] 
   Following 6 months 17.0% [27, 37, 50, 54, 62, 75-77] 
   Following year 12.8% [30, 36, 58, 59, 76, 78] 
   Following 2 years   2.1% [43] 
Clinical Assessment 19.1% 
Aachen Falls Prevention 
Scale 

  2.1% [66] 

   Berg Balance Scale   2.1% [28] 
   Barthel Index   4.3% [28, 41] 
   Dynamic Gait Index   2.1% [34] 
   Functional Ambulation 
Categories 

  2.1% [28] 

   Heinrich II   2.1% [67] 
   Physiological Profile 
Assessment 

  2.1% [51] 

Short Physical         
Performance Battery 

  2.1% [52] 

Tinetti Falls Efficacy Scale 10.6% [28, 34, 39, 63, 66] 
   Timed Up and Go   4.3% [34, 41] 
STRATIFY Falls Risk 
Assessment 

  2.1% [40] 

Table 3: Methods Used to Determine Fall Risk for 
Comparison with Biomarkers 

 
There are strengths and weaknesses associated with any 
measure of fall risk. The most accurate measure of future fall 
risk, especially if we hope to catch biomarker preceding first 
fall, is prospective falls occurrence. However, it also requires 
a follow-up period to the study, which increases study cost 
and patient withdrawal from data collection. Retrospective 
fall history also gives an accurate, though less sensitive, 
measure of fall status and does not require follow-up. Clinical 
scales provide a correlate measure of fall risk (scales may 
have been initially compared to either prospective or 
retrospective falls) and may be collected at the same time as 
biomarkers, negating the need for follow-up period. 
However, they do not give a fully accurate picture of whether 
the individual is or will be a faller. Many of these tests are 
also subjective and may not be sensitive to early, invisible 
changes in gait indicative of change in fall risk.  

3.5. Wearable Sensors 

The majority of studies utilized an accelerometer or inertial 
measurement unit (IMU) containing an accelerometer in 
addition to other instruments such as a gyroscope, 

magnetometer, or barometer. Other sensors used included 
pressure insoles and electrocardiogram (ECG) and 
respiratory monitors, as displayed in Table 4. Only one study 
(Di Rosa et al., 2017) did not utilize an accelerometer, instead 
relying on pressure insoles alone. 

Sensor Used Studies (%) 
IMU 98.0% 
   Accelerometer 98.0% [25-33, 35-40, 42-64, 67-78]  
   Gyroscope 33.3% [27, 28, 39, 42-47, 55, 60-62, 

64, 71, 73, 74] 
   Magnetometer   5.9% [27, 60, 64] 
   Barometer   5.9% [29-31, 38] 
Pressure Insoles   5.9% [34, 48-50] 
ECG   2.0% [67] 
Respiratory 
Monitor 

  2.0% [67] 

Table 4: Types of Sensors Used to Measure Fall Risk 

 
In three studies, no wearable sensor was described. Two 
studies (Govercin et al., 2010, Rasche et al., 2018) measured 
only consumer preferences for a potential sensor. Rasche, et 
al. (2017) used questionnaires and a test of compensatory 
movement during standing balance, but it was not stated 
whether the balance test utilized a sensor such as the phone’s 
accelerometer or was measured by self-assessment.  

Most studies (58.8%) used a single IMU or other sensor. The 
remaining used 2 (21.6%), 3 (5.9%), 5 (7.8%), 6 (5.9%), or 
10 (2.0%) sensors. This data is broken down by study in 
Table 5. In most cases, all sensors were of the same type. 
However, three studies by Howcroft et al. (2016, 2017, 
2017b), or 7.8%, utilized four accelerometers in addition to 
pressure insoles in both shoes.  

 
Number of 
Sensors 

Studies (%) 

1 58.8% [25, 29-31, 33, 38-40, 51-56, 58-61, 63, 
64, 67, 69-73, 75-78]  

2 21.6% [26, 34-36, 42-44, 46, 47, 57] 
3   5.9% [27, 37, 68] 
5   7.8% [28, 45, 62, 74]  
6   5.9% [48-50] 
10   2.0% [32] 

Table 5: Number of Sensors Used on Each Individual 
During Testing by Study 

 
The position of sensors varied, but the most common location 
was the lower back (58.0%), followed by the sternum and 
shins (26% of studies each). Other positions included the 
upper back, the thigh, the feet, the wrist, the head, and the 
elbows (see Table 6). One study (Hua et al., 2018) using a 
single accelerometer did not state where the sensor was 
located during testing.  
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Sensor Location  
Lower Back 58.0% [25, 27, 28, 33, 36, 37, 40, 45, 

48-50, 53-60, 62, 68-70, 72, 74-78] 
Belt Clip/Pocket    4.0% [26, 73] 
Upper Back   4.0% [32, 36] 
Sternum 26.0% [28-31, 35, 38, 39, 45, 51, 62, 

63, 67, 71] 
Thigh(s)/Knees(s) 10.0% [32, 35, 45, 62, 68] 
Shin(s) 26.0% [28, 37, 42-50, 62, 68] 
Feet/Ankle(s) 14.0% [32. 34, 48-50, 61, 74] 
Elbow(s)   2.0% [32] 
Wrist(s)   8.0% [26, 32, 64, 74] 
Head   8.0% [48-50, 57] 

Table 6: Positioning of Sensors on the Body by Study 

3.6. Biomarkers of Fall Risk 

In order to ensure timely updates to fall risk information and 
remove the burden or remembering and making time to check 
their status, it would be most helpful for a fall risk device to 
continuously monitor biomarkers of fall risk and be able to 
update risk scores without the need for specific guided 
movements. However, as of this writing, few of the articles 
identifying biomarkers of fall risk have done so based on 
continuous, unstructured data (32.7%). All other studies 
involved structured or semi-structured movements and were 
generally conducted in a lab-based setting, which is known to 
affect fall risk results (Rispens et al., 2016, Van Schooten, 
Rispens, Elders, Dieen & Pijnappels, 2014). Even among the 
17 studies that examined continuous locomotor data, the 
duration over which training data was collected varied 
widely, which may drastically affect results and accuracy of 
the resultant models, as shown in Table 7.  

 
Data 
Duration 

Studies (%) 

1 day 11.8% [67, 71] 
3 days 29.4% [53, 55, 56, 77, 78] 
1 week 35.3% [25, 31, 54, 64, 75, 76] 
2 weeks 17.6% [34, 62, 69] 
8 weeks   5.9% [29] 

Table 7: Duration of Monitoring for Studies Using 
Continuous Measurement 

 
The continuous studies primarily looked at biomarkers 
obtained during periods of locomotion (82.4%), though two 
studies (11.8%) focused on transitions from sitting to 
standing or walking and vice versa (Cui et al., 2014, Govercin 
et al., 2010), and one study focused on classifying activity 
and heart rate variability (Greene et al., 2013).  

All but one (94.1%) of the studies examining biomarkers of 
fall risk from continuous data analyzed individual biomarkers 
related to fall risk separately, allowing for direct comparison 

of those factors that independently influenced fall risk. Table 
8 shows the parameters of gait/activity that demonstrated 
significant differences between fallers and non-fallers in at 
least one study analyzing continuous data. Those parameters 
that were also found not to be significantly affected by 
classification in other studies were noted; however, those 
factors found to be insignificant in all studies were not 
included for the sake of brevity.  

Walking duration, entropy, amplitude of the dominant 
frequency (DF) in the vertical direction, and the harmonic 
ratio in the vertical and anterior-posterior directions were 
most commonly found to be significant determinants of fall 
risk. It is important to note that, though nonlinear measures 
were more often found to show significant differences 
between fallers and non-fallers, these measures vary 
considerably based on the number of steps utilized in 
processing, so a standard processing method breaking walks 
into smaller segments is needed. Currently, this process 
differs between groups, making results difficult to compare.  

One study analyzing wearable data based both on 
retrospective and prospective falls (Weiss et al., 2014) found 
that retrospective fallers demonstrated decreased VT 
amplitude and increased width of the dominant frequency (all 
directions), decreased regularity, and decreased harmonic 
ratio (all components), while prospective falls were 
correlated with only increased AP dynamic frequency  width. 
Another (Van Schooten et al., 2015) found retrospective falls 
to be influenced by steps per day, walk duration, and 
dominant frequency power and prospective falls to be 
influenced by gait speed, frequency, step length, variability, 
harmonic ratio, index of harmonicity, and logarithmic 
divergence, illustrating the need for more studies based on 
prospective falls to elucidate early signs of increased fall risk. 

Only two studies focused on predictive biomarkers in sit-to-
stand transitions, making consensus difficult to measure to 
date. Parameters analyzed in these papers are shown in Table 
9. The single study analyzing continuous heart rate variability 
data (Razjouyan et al., 2017) found that fallers had lower 
average R-R intervals (time between R waves of the ECG), 
lower variability in R-R duration, and increased power in the 
low frequency component of the heart wave during 
continuous monitoring.  

Studies conducted in-lab were generally much more 
structured and focused than those involving continuous 
assessment. The Timed Up and Go (TUG) test was the most 
commonly performed task (45.9%), but measured walks of 
various lengths/durations, postural stability tests, sit-to-stand, 
and activities of daily living (ADLs) were also common (see 
Table 10). 
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Gait Parameters Significant Not 
Significant 

Steps per day [29, 75] [31, 62] 
Walks per day [29] [31, 62] 
Average steps per walk [29, 31, 77] [62] 
Variability walk duration [71]  
Longest walk [71] [29, 31] 
Walking Duration [62,67,71,75]  
Standing Duration [71]  
Sitting Duration [62]  
Lying Duration [62]  
Side Lying [67]  
Gait speed [75,76]  
Cadence [75,76] [29,31, 62] 
Step length [75,76]  
RMS VT [76] [29, 31] 
RMS AP [76]  
Step duration [77]  
Stride duration [77]  
Step time variability [29,31]  
Single support time [34]  
Double support time [34]  
Heel contact force slope [34]  
Average Acceleration 
ML 

[34]  

Index of Harmonicity VT [69]  
Entropy [53, 54,76]  
LF% [69]  
Range AP [76,77]  
Range ML [77] [76] 
Local Dynamic Stability 
VT 

[69]  

LDS per stride VT [69]  
Amplitude DF VT [69,75-78]  
Amplitude DF ML [76,77] [69] 
Slope DF VT [69,77]  
Slope DF ML [77] [69] 
Width DF VT [78]  
Width DF AP [76,78]  
Width DF ML [78]  
Harmonic ratio VT [75,76,78]  
Harmonic ratio AP [75,76,78]  
Harmonic ratio ML [75,78]  
Index of harmonicity [75,76]  
Logarithmic divergence [75,76]  
Missteps (calculation not 
given) 

[55]  

Table 8: Parameters Measured During Continuous. The first 
column lists parameters measured, the second documents 

studies finding significant differences between groups, and 
the third indicates studies in which the parameter was 
measured but not significant. AP=Anterior-Posterior, 

ML=Medio-Lateral, VT=Vertical, RMS=Root Mean Square  

Sit-to-stand Parameters Significant Not 
Significant 

Amplitude arm swing [64]  
Smoothness VT [56]  
Smoothness AP [56]  
Jerk [64] [56] 
Oscillation ML [64]  
Entropy VT [64]  
Energy VT [64]  
Energy ML [64]  
Index of Harmonicity VT [64]  

Table 9: Parameters Demonstrating Significant Differences 
Between Fallers and Non-fallers During Continuous 

Analysis of Sit-to-Stand Transitions 

Only seventeen studies (45.9%) of structured movement 
assessments of fall risk provided information about specific 
biomarkers that were significantly different between fallers 
and non-fallers. The biomarkers analyzed are shown in Table 
11 and 12. The remaining studies utilized machine learning 
and other algorithms to predict fall risk but did not detail 
which results were collected and subsequently found to be 
predictive, by themselves or in conjunction with other 
factors.  

Gait speed was most often found to be significantly different 
between fallers and non-fallers in structured walking tasks. 
Step duration, RMS, total time needed to complete the TUG 
test, and harmonic ratio were also commonly utilized. All of 
these measures were also found to be useful during 
continuous testing, suggesting that some of the work that has 
been used to develop predictive models during structured 
testing may be usable for continuous testing if an algorithm 
is able to correctly screen for similar actions during 
spontaneous activity. For stair climbing, it was found that 
stability was reduced in prospective fallers, but number of 
steps and duration to climb stairs were not altered (Brodie et 
al., 2015b).  

Studies of biomarkers of fall risk during postural stability 
tasks demonstrated conflicting results. Two of the four 
studies examining postural stability found that there were 
differences between fallers and non-fallers during normal 
standing with eyes open or closed in terms of COP radius, 
area, path length and velocity eyes open (Soangra & 
Lockhart, 2018) and in total sway (Mohler et al., 2016). 
However, another study found that path length was not 
changed in either normal or tandem stance with eyes open or 
closed and that sway area increased only with eyes closed 
(Martinez-Ramirez et al., 2011). A final study found that 
RMS was only significantly predictive in harder conditions 
(tandem stance and dual-task) and maximum acceleration 
was not predictive (Hsieh et al., 2019). Further studies are 
needed to determine what measures are significantly different 
in normal stance (and may be able to be collected from 
unstructured data during standing periods) or in stances that 
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can be easily explained and completed safely in a home 
environment if structured assessment is needed. 

Task  
TUG 45.9% [25, 26, 27, 32, 40, 42-

47, 58, 59, 61, 63, 72, 74] 
Locomotion 59.5% 
   3-meter walk   2.7% [74] 
   4-meter walk   2.7% [72] 
   15-foot (4.57-meter) walk 16.2% [35, 38, 39, 45,73, 74] 
   5-meter walk   2.7% [73] 
25-foot (7.62-meter) walk   8.1% [48-50] 
   10-meter walk 10.8% [26, 28, 36, 38] 
   20-meter walk   8.1%[57-59] 
   25-meter walk   2.7% [32] 
   400-meter walk   2.7% [52] 
   1-minute walk   2.7% [77] 
   3-minute walk   2.7% [70] 
   6-minute walk 10.8% [26, 27, 48, 50] 
   Random Walk   8.1% [33, 61, 68] 
   Tandem Walk   2.7% [74] 
Sit-to-Stand 16.2% [35, 38, 39, 45, 73, 74] 
Postural Stability 18.9% 
   Eyes Open 18.9% [32, 45, 51, 60, 62, 65, 

73] 
   Eyes Closed   8.1% [51, 60, 62] 
Dual-Task Eyes Open   2.7% [51] 
Dual-Task Eyes Closed   2.7% [51] 
   Tandem Stance   5.4% [51, 60] 
   One-Legged Stance   5.4% [32, 51] 
ADLs 13.5% 
   Stair Climbing   2.7% [30] 
   Turning   2.7% [74] 
   Reaching   2.7% [74] 
Walking with Obstacles   2.7% [33] 
Not Otherwise Specified   5.4% [38, 68] 
Clinical Assessments 5.4% 
   Berg Balance Scale   2.7% [72] 
   Falls Questionnaire   2.7% [65] 

Table 10: Activities Used for Structured Assessment 

As in continuous testing, measures of turning ability were 
only focused on by a few studies, and consensus on useful 
parameters was not reached. Interestingly, the parameters 
found to be significant by structured studies differed for the 
most part from the results in the continuous studies. It is 
difficult to tell whether this is due to inherent differences 
between the way people turn in a naturalized setting, 
difference in the calculation of parameters between studies, 
or due to small effect size and population creating conflicting 
results given the relatively small number of studies using 
these parameters to date. Further research is needed to isolate 
the most beneficial parameters to measure sit-to-stand 
transitions, both in structured and daily life environments.  

Gait Parameter Significant Not 
Significant 

Gait speed [28,36, 
38,57,73,77] 

[62] 

Stride length [28] [62] 
Step duration [40,77]  
Gait variability [57] [40,62] 
RMS [28,40]  
Attenuation 
coefficients 

[28]  

Symmetry  [28]  
TUG time [27,63]  
Steps to turn 180 [27]  
Step Stability Index [33]  
Harmonic ratio [36,57]  
Energy expenditure [40]  
Pelvis sway [40]  
Entropy [73]  

Table 11: Parameters Demonstrating Significant Differences 
Between Fallers and Non-fallers During Structured Gait 

Analysis 

 
Sit-to-stand Parameter Significant Not 

Significant 
Duration [35,63] [39] 
Variability  [35] 
RMS ML [35]  
Spectral Edge Frequency 
AP 

[35]  

Maximum acceleration [38]  
Maximum velocity [38]  
Peak power [38]  
Fractal dimension [39]  

Table 12: Parameters Demonstrating Significant Differences 
Between Fallers and Non-fallers During Structured Analysis 

of Sit-to-Stand Transitions 

3.7. Software/Algorithms 

Thirty-seven (71.2%) articles utilized machine learning or 
regression to classify fallers vs non-fallers. Most of these 
studies listed the types of classification algorithms that best 
fit their data but did not list the features that were fed into 
these algorithms, making even similar algorithms by different 
groups difficult to compare. Many of these studies (24.3%) 
also failed to list accuracy values, merely stating that 
algorithms using measures obtained from wearables were as 
accurate or more accurate that those obtained by clinical 
means or were more accurate than other classification 
methods tried.  Machine learning algorithms used to classify 
fallers vs non-fallers, along with the average accuracy of each 
of these methods and the accuracy noted in each study, are 
shown in Table 13. 
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Method Used Average 
Accuracy 

Accuracy by Study 

Linear 
Regression 

76.7%  53.9% [35], 81.0% [36], 
75.0% [42], 89.7% [56], 
70.0% [58], 88.2% [62], 
72.5% [70], 77.1% [71], 
78.0% [72], 82.0% [75], 
NL [26] 

Wavelet 82.1% 82.1% [68], 93.1% 
missteps [55], NL 
[30,31,38,60,63] 

Support vector 
machine 

72.9% 67.6% [37], 80.6% [45], 
84% [48], 78% [49], 
54.5% [50], NL [32] 

Neural Network 66.2% 74% [25], 84.0% [48], 
75.3% [49], 57.0% [50], 
92.9% [61] 

Naïve Bayesian 66.2% 80% [48], 68.3% [49], 
50.2% [50], NL [32] 

Random Forest 75.6% 77.5% [37], 73.7% [52] 

K-Nearest 
Neighbor 

71.8% 71.8% [37], NL [32] 

Classification 
Regression Tree 

80% 80% [59] 

Partial Least 
Squares 

83% 83% [54] 

Long Short-Term 
Memory 

91% 91% [25] 

Principal 
Component 
Analysis 

NA NL [60,76] 

Empirical mode 
decomposition 

NA NL [33] 

Radial basis 
function network 

NA NL [32] 

Multiple 
Together 

NA 90% [25], 99.2% use of 
assisted device [26] 

Machine 
Learning/Feature 
Selection NOS 

NA 69% [34], 90.5% [40], 
79.6% [43], 73.6% [46], 
73.3% [47] 

Table 13: Machine Learning Classification Accuracies. The 
first column documents different methods used, the second 

lists the average accuracy given by all studies using that 
method, accounting for all studies that gave accuracy 

information. NA was used when no study utilizing that 
method gave accuracy information and for the bottom two 

columns, in which studies used multiple algorithms together 
or failed to specify the type of machine learning used to 
allow for comparison to similar techniques.  The third 

column lists individual accuracies for each study. NL = no 
accuracy information given, NOS = Not Otherwise 

Specified. 

Several studies gave more in-depth information comparing 
linear regression models using clinical and wearable 
biomarkers of fall risk. In general, these studies found that 
wearable features were more accurate at determining fall risk 
than clinical metrics, but that models combining both sets of 
features were the most accurate. Iluz, et al. (2015) found that 
data collected by a monitor worn for three days of 
unstructured activity was 88% accurate at classification, 
clinical data was 71% accurate, and 89.7% accuracy was 
achieved when information was combined. Marshollek, et al. 
(2011) found STRATIFY to have an accuracy of 48%, TUG 
50%, clinical assessment 55%, an algorithm taking all three 
conventional measures into account 72%, and sensor data 
70% and in another study (2011b) that clinical regression 
trees were 80% accurate using accelerometer data alone and 
78% combining accelerometer data with clinical, but linear 
regression was 65% accurate using accelerometer data and 
70% combined. Van Schooten, et al. (2015) obtained 68% 
accuracy using clinical data, 71% using wearable data, and 
82% with both.  

To allow for clearer comparison and analysis of potentially 
promising fall risk algorithms in the future, it is urgent that 
more information be provided about specific parameters 
supplied to described models and the resultant accuracy. 
Without knowledge of specific parameters and descriptions 
of the types of machine learning used to generate discerning 
algorithms, it is nearly impossible for scientists to work 
together to maximize accuracy of future iterations. It is also 
highly important that more information be given about 
accuracy, including information about both sensitivity and 
specificity. The accuracy numbers given by the majority of 
studies listed failed to document these numbers separately, 
which makes it difficult to determine the relative 
contributions of Type I and Type II error. While both types 
of error present concerns, they should be handled differently. 
Type I error, or false positives, can quickly lead to over-
diagnosis and treatment, which is costly both in terms of 
health-care expenditure and aggravated anxiety and fear of 
falling in those patients falsely identified as fall risks. 
However, such systems can still be used well as a first line of 
defense in conjunction with further testing. For example, an 
automatic home-based fall risk screening wearable with high 
sensitivity but low specificity might indicate to the patient 
that they should schedule an appointment with their physician 
for a more in-depth fall risk assessment. If the physician finds 
reason for concern about fall risk, further treatment can then 
be suggested. Alternatively, the same device may suggest 
targeted home-based exercise to reduce fall risk that will 
provide low-cost benefit to the patient even in the case of a 
false positive. In contrast, devices with high specificity but 
low sensitivity to fall risk may still be useful for tracking 
patients already known to be at risk to measure sudden 
changes indicative of need for immediate action. 
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3.8. Feedback About Fall Risk 

Only two studies measuring fall risk with wearables provided 
feedback to their users about fall risk in real time. Mikos, et 
al. (2019) used vibration feedback supplied to the ankle to 
alert PD patients in the case of FOG. Rasche, et al. (2017) 
gave users visual feedback of their fall risk upon completion 
of a fall risk assessment including questionnaires and 
standing balance.  

3.9. Fall Risk Intervention/Treatment 

Two studies delivered treatment to ease fall risk. Mikos, et al. 
(2019) delivered vibration biofeedback during FOG episodes 
to alert patients to the incorrect stepping pattern and 
encourage correct stepping. Simila, et al. (2017) randomized 
patients at fall risk to receive computer-based exercise plans 
and activity/falls monitoring, paper-based exercise plans and 
activity diary, or no exercise/monitoring, though the effects 
of these interventions were not considered. 

4. ARTICLES IN PERIODICALS 

Falls present a devastating and rapidly growing problem for 
our aging society. Currently, fall risk assessment may be 
conducted using short, subjective, clinical measures during 
regular physician appointments, but guidance to prevent falls 
is very general and targeted treatments such as physical 
therapy are often reserved for individuals who have already 
fallen and are in need of rehabilitation. Technology may help 
to improve fall risk assessment and response in multiple 
ways, including allowing for more regular fall risk screening 
at home, isolating more objective parameters that may be 
indicative of more subtle changes related to fall risk, and 
providing more targeted treatments and lifestyle changes 
based on the exact types of degradation noted. The same 
sensors used to assess fall risk may be usable to measure 
suggested at-home therapy routines. Both home-based 
systems such as the Kinect (Hondori & Khademi, 2014, Su, 
Chiang & Huang, 2014) and wearables (Dobkin & Dorsch, 
2011, Yurtman & Barshan, 2013) have been shown to be 
effective at tracking and guiding therapy-related exercise.  

End-user studies of the preferences of elderly individuals 
(some of whom are known fallers) and their care-givers 
demonstrate the need for a device that can subtly track fall 
risk and then supply feedback about both risk and treatment 
and lifestyle changes that can actually help to reduce this risk. 
Patients do not wish to receive a fall risk assessment if they 
feel helpless to change the results. However, while all of the 
studies reviewed here were specifically designed to measure 
fall risk, only two articles each made a point to present fall 
risk results directly to subjects or to provide treatment to try 
to improve fall risk or a related factor. One of these studies, 
which provided feedback about FOG in PD in real-time, is 
incredibly helpful but can only be targeted to a fraction of the 
individuals who fall each year. Clearly, interventions and 
suggestions specifically targeted to fall risk profile and 

readily accessible following assessment is an area in which 
research, development, and innovation are gravely needed.  

The available research has demonstrated that wearable 
sensors are a viable way of determining biomarkers of fall 
risk, that data may be collected by sensors in a number of 
locations (many of which allow the sensor to be easily hidden 
against the body, beneath clothing, or disguised as a watch or 
other traditional accessory to encourage frequent wear), and 
that data from simple tasks such as walking and standing may 
be useful in collecting these biomarkers. Based on these facts, 
the need for such tasks as practiced in many clinical scales of 
fall risk such as the Tinetti or the Berg Balance Scale, which 
must be attended by a trained practitioner, can be 
significantly alleviated. However, further research is still 
needed before home-based fall risk assessment using 
wearables is feasible. There is still a need for studies of both 
continuous and structured assessments conducted in home 
and community environments over the period of several 
weeks or months to note variations in parameters that might 
be more indicative of change in scenery or task than decline 
in gait or balance function. For example, individuals may 
walk differently in tight spaces, when carrying something or 
conducting another task, or when wishing to look at 
something along their path. Longer assessment times, 
combined with prospective falls monitoring, may also help 
pick up subtle changes leading up to a fall, both over the term 
of several weeks to allow for treatments to be recommended 
and in the preceding few minutes to warn the patient and ask 
them to sit or otherwise reduce their immediate risk of fall.  

If structured assessments are to be used, several factors will 
need to be taken into account to design a user-friendly 
system. Any tasks to be completed should be simple, easily 
explained, and safely and readily completed within a small 
space, and minimal if any outside equipment should be 
required. It should be considered that many elderly 
individuals at risk for falls suffer from comorbidities such as 
cognitive or sensory impairment, which could drastically 
reduce the ability of individuals to understand and carry out 
instructions requiring more than a few sequential steps. 
Simple walks or standing are likely feasible, but dual tasks or 
complicated stances would be difficult to implement. Safety 
is also paramount, so exercises such as single-leg balance 
should not be requirements for assessment. If used in therapy, 
precautions such as advising someone else be present to assist 
and a mat or other padding be placed on the floor, should be 
made clear. Finally, all assessments should be easily 
completed in a small space, which may restrict the length of 
walking tasks, and should not require the use of outside tools 
such as tape lines to mark off a set distance, as this would 
likely drastically reduce compliance.  

In other words, while studies to date have laid important 
groundwork in establishing the feasibility of using IMUs and 
other wearables to track features of gait and balance related 
to fall risk, they have still suffered from important limitations. 
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Very few studies have considered user feedback or risk 
reduction. Most research thus far has been completed in 
controlled environments, and data may not easily transfer to 
daily life. Longer trial durations are needed to account for 
normal variability in sensor placement and movement 
patterns and to allow for closer temporal comparison with fall 
events. Trials using measures other than IMUs, especially 
those tracking vital signs such as ECG, respiration, blood 
pressure, or production of metabolic factors such as insulin, 
which have all been linked to falls in some cases, are also 
needed. Given the nearly infinite number of models that 
could possibly be tested, it is important that there be large 
scale (>1000-1500 individual) trials of those parameters 
deemed most viable based on current research. To facilitate 
this process and subsequent endeavors, greater transparency 
in research methodology is urgently needed so all parameters 
of interest may be known.  

These longer, large-scale trials and the eventual release of fall 
risk assessment and treatment tools into the population will 
create several technical challenges to overcome. First, battery 
life must be considered. Most wearables currently marketed 
for consumer use last a maximum of 12-18 hours, meaning 
most charge these devices overnight. While this may be 
feasible, removal of the sensor during sleep may lose 
important information, such as transitions from lying to 
standing or a degradation in vital signs overnight. It may also 
be difficult for some seniors to remember to reapply the 
sensor the following morning. Thus, batteries lasting longer 
periods (such as that of the Dynaport, a research IMU which 
lasts a week) while still retaining consumer features, and 
possibly alerting the patient once the charge cycle is 
complete, would be greatly helpful. Another technical 
challenge, which is currently being experienced in may 
arenas due to the boom in big data and artificial intelligence, 
is the need to store, sort through, and analyze very large 
amounts of information, and to do as much of this analysis as 
possible in real-time and on the user’s devices to prevent 
delays in areas without wireless signal.  

As with any systematic review, there are limitations to this 
study. It is impossible to review every paper, even within 
specific fields such as wearables or fall risk, necessitating the 
use of search terms to limit and filter results. As such, it is 
likely that some papers that would helpfully contribute to this 
discussion were left out of the literature search and analysis. 
This paper also did not conduct a meta-analysis regarding the 
comparative efficacy of different parameters or algorithms in 
determining fall risk, largely due to the wide and different 
designs used in the cited studies and the lack of needed 
information given about these variables by a sizable minority 
of them. In the future, continued research may make such an 
analysis possible.  

5. CONCLUSIONS 

Falls represent a huge and expanding threat to our aging 
population, and the measurement of fall risk (with subsequent 
action) shows promise in reducing the number of fall 
incidents. Technology such as wearable monitors can 
measure biomarkers related to fall risk (thus far, identified 
markers have mainly been features of gait). However, further 
research is still needed to reach a consensus on the best 
parameters to measure, the best positioning for sensors (both 
in terms of accuracy and user acceptance), types of interface 
consumers prefer and best understand, and what treatment 
options or lifestyle changes best improve rates of falls 
subsequent to an increase in measured fall risk.  
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