Predicting Fall Risk Through Automatic Wearable Monitoring:
A Systematic Review

Markey C. Olson'? and Thurmon E. Lockhart!

1School of Biological and Health Systems Engineering, Arizona State University

mcolsond@asu.edu
Thurmon.Lockhart@asu.edu

2Muhammad Ali Parkinson’s Disease Clinic, Barrow Neurological Institute

ABSTRACT

Falls represent a major burden on elderly individuals and
society as a whole. Technologies that are able to detect
individuals at risk of fall before occurrence could help reduce
this burden by targeting those individuals for rehabilitation to
reduce risk of falls. Wearable technologies especially, which
can continuously monitor aspects of gait, balance, vital signs,
and other aspects of health known to be related to falls, may
be useful and are in need of study. A systematic review was
conducted in accordance with the Preferred Reporting Items
for Systematics Reviews and Meta-Analysis (PRISMA) 2009
guidelines to identify articles related to the use of wearable
sensors to predict fall risk. Fifty four studies were analyzed.
The majority of studies (98.0%) utilized inertial measurement
units (IMUs) located at the lower back (58.0%), sternum
(28.0%), and shins (28.0%). Most assessments were
conducted in a structured setting (67.3%) instead of with free-
living data. Fall risk was calculated based on retrospective
falls history (48.9%), prospective falls reporting (36.2%), or
clinical scales (19.1%). Measures of the duration spent
walking and standing during free-living monitoring, linear
measures such as gait speed and step length, and nonlinear
measures such as entropy correlate with fall risk, and
machine learning methods can distinguish between falls.
However, because many studies generating machine learning
models did not list the exact factors being considered, it is
difficult to compare these models directly. Few studies to
date have utilized results to give feedback about fall risk to
the patient or to supply treatment or lifestyle suggestions to
prevent fall, though these are considered important by end
users. Wearable technology demonstrates considerable
promise in detecting subtle changes in biomarkers of gait and
balance related to an increase in fall risk. However, more
large-scale studies measuring increasing fall risk before first
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fall are needed, and exact biomarkers and machine learning
methods used need to be shared to compare results and pursue
the most promising fall risk measurements. There is a great
need for devices measuring fall risk also to supply patients
with information about their fall risk and strategies and
treatments for prevention.

1. INTRODUCTION

Fall incidents and the resultant injuries, fear of falling, and
decreased activity levels present a large issue for the rapidly
growing population of older adults. Falls are the leading
cause of injuries and death among older Americans, with 1 in
4 seniors falling each year. The total cost of fall injuries in
the US was estimated to be $50 billion in 2015 and is
expected to rise to $67.7 billion by 2020 (National Council
on Aging, 2018). Globally, the cost of falls is expected to
exceed $240 billion a year by 2040 (World Health
Organization, 2007).

Given the staggering effect of falls on individuals and
society, it is not surprising that a number of technologies have
been developed in recent years to detect and respond to falls
(Aziz, Musngi, Park, Mori & Robinovitch, 2016, Chaudhuri,
Thompson & Demiris, 2014, Santo el al, 2019, Bourke et al,
2016, Secerquia, Lopez & Vargas-Bonilla, 2018, Cheffena,
2016, Ejupi, Galang, Aziz, Park, & Robinovitch, 2017,
Ozdemir, 2016, Hsieh, Liu, Huang, Chu & Chan, 2017, Yu,
Chen & Brown, 2018, and Dubois & Charpillet, 2014). Many
of these devices have been designed to be wearable, so that
falls can be detected and assistance summoned no matter
where the individual is at the time. Home- or location-based
technologies such as cameras, motion sensors, and
impact/noise detectors have also been utilized. These sensors
may help to reduce rates of severe injury and death from falls
by ensuring fast response and tracking the circumstances
surrounding the fall to allow for lifestyle changes and
rehabilitation to circumvent further future falls.
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While falls detection is valuable, it still requires that a fall
may occur before it can provide aid, meaning injuries are still
likely. A better alternative would be to stop falls before they
ever occur by monitoring features that often lead to falls and
suggesting further action such as rehabilitation, assistive
technology, or temporary reduction or change in activities to
alleviate this fall risk. It has been shown that assessing and
responding to clinical gait and balance metrics associated
with falls can lower fall risk (RAND, 2003, Gillespie et al.,
and Khanuja, Joki, Bachmann & Cuccurullo, 2018), and it is
recommended by the American and British Geriatrics
Societies that all adults over 65 be assessed for fall risk at
clinical visits (Khanuja et al., 2018, American Geriatrics
Society, 2011). Assessments at clinical visits are helpful, but
the length of time between regular visits and inter-rater
differences and inability to document small changes using the
clinician-rated tests employed may allow some individuals at
fall risk to be missed. More frequent assessment in real-world
environments is more likely to detect small changes in gait,
balance, activity, and other parameters that indicate
degradation in health that might lead to falls.

One method that has been used to monitor and assist elderly
individuals both in terms of measuring fall risk and many
other features of daily life (Philips et al., 2016, Rantz et al.,
2013, Alwan, 2009, Manton et al., 2016, Rantz et al., 2014,
Villacorta, Jimenez, Val, & Izquierdo, 2011) is the “smart
home” concept. A number of ambient sensors such as
cameras, motion/depth  detectors, pressure  mats,
microphones, and latch sensors keep track of daily activity,
gait parameters, medication, food, and water intake, and the
like to ensure that individuals remain healthy and active.
Such a strategy shows promise in allowing elderly
individuals to “age-in-place” for longer outside of a care
home setting and reduce the rates of falls and other incidents
leading to injury.

However, smart home sensors can only provide information
about events and warning signs that occur in the home or
community care setting. The installation of equipment
throughout the house may be costly and time-intensive, may
not be approved in certain setting such as rental properties or
care homes, may have difficulty identifying and tracking
multiple people within the home, and may not be accepted by
older individuals unused to technology or those worried
about surveillance. Because of these considerations, smart
home technology may not be readily available for all
individuals or in all situations where they may be needed.

Wearable sensors, on the other hand, can be kept with an at-
risk individual at all times, providing constant real-time
information. Even within a home or community care setting,
wearables may increase the value of smart home features by
allowing for improved discrimination of which individuals
are being monitored and where they are located. This review
aims to present previous work in wearables designed to
measure fall risk, evaluate the current state-of-the-art, and

discuss the research needed to allow this work to be
transferred from the clinical and community-care settings
where it has been most-often implemented thus far to allow
for easy use by elderly individuals in their daily life both in
their home and out in the community.

2. METHODS

This systematic review was conducted in accordance with the
Preferred Reporting Items for Systematics Reviews and
Meta-Analysis (PRISMA) 2009 guidelines (Moher, Liberati,
Tetzlaff, & Altman, 2009). Keyword search was performed
in PubMed in August 2019. The search algorithm utilized
was (fall* AND ("predict*" OR "prevent*" OR "risk") AND
("app*" OR "wear*" OR "phone" OR “sensor”)). Title and
abstract review were performed on all search results.

Those articles meeting the following criteria were included in
the review: 1) peer-reviewed journal articles with full-text
available in English (conference proceedings were not
included) and published within the last decade to reflect
recent advances in technological capabilities (2009-2019); 2)
prospective studies examining the use of a wearable
technology to measure fall risk, directly or indirectly through
known and stated correlate; 3) the use of a fully portable
system (papers with tethered components such as pressure
mats, cameras, and radio antennas were only reviewed if
wearable components were able to be used separately and
data was given separately); 4) paper investigated assessment
of fall risk before the fall occurred, not just fall detection; 5)
assessments could be conducted without a physician,
therapist, or other expert to allow monitoring outside of
clinical settings (or could be modified to do so).

Additional articles were located through a citation search of
the articles located in the initial search and through
suggestion by peers. Review articles found during the initial
search and meeting all eligibility requirements but 2) were
also included in the review process and utilized to locate any
additional relevant articles not appearing in the PubMed
search, but were screened out before the writing of this
systematic review to avoid overlapping data.

Articles making it through the review process were screened
according to the types of information included: 1) consumer
preferences, 2) fall risk standard used for comparison
(retrospective history, falls diary, etc.), 3) tasks utilized to
determine fall risk, 4) whether assessment was triggered for
a set period or using continuous or free-living data, 5)
biomarkers analyzed, 6) software algorithm wused to
determine fall risk, 7) hardware/sensor type, 8) location of
sensors on the body, 9) type of feedback given about fall risk,
and 10) whether patients were given any advice or treatment
to reduce fall risk.
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3. RESULTS

3.1. Study Selection

A total of 1529 results resulted from the initial search terms,
of which 112 made it through title/abstract review. Most
papers were removed because they did not describe wearable
methods of ascertaining fall risk, instead using ambient
sensors and/or measuring only fall detection. A further 17
articles that met the other search criteria were removed
because they were conference proceedings, not peer-
reviewed journal articles. 22 of the papers selected were
reviews, not controlled studies, and were thus removed from
the systematic review, but were still reviewed in the literature
search to identify further articles. The literature search
revealed 14 additional articles for a total of 104 articles which
underwent full-text review. A further 50 articles were
excluded because, while fall risk or related measurement was
stated as the main aim, it was not classified in the study (most
of these studies focused on proof-of-concept showing that
free-living or gait activity could be accurately determined by
wearable methods), resulting in 54 articles in the systematic
review (Aicha, Englebienne, Schooten, Pijnappels & Krose,
2018, Antos, Danilovich, Eisenstein, Gordon & Kording,
2019, Barrois et al., 2017, Bergamini et al., 2017, Brodie,
Lord, Coppens, Annegarn & Delbaere, 2015, Brodie et al.,
2015b, Brodie et al., 2017, Caby, Kieffer, Hubert, Cremer &
Macq, 2011, Cui et al., 2014, Di Rosa et al., 2017, Doheny et
al., 2013, Doi et al., 2013, Drover, Howcraft, Kofman &
Lemaire, 2017, Ejupi et al., 2017, Ganea, Paraschiv-lonescu,
Bula, Rochat & Aminian, 2011, Gietzalt et al., 2009,
Govercin et al., 2010, Greene et al., 2010, Greene et al., 2012,
Greene, Doheny, Ohalloran & Kenny, 2013, Greene Doheny,
Kenny & Caulfield, 2014, Greene, Redmond & Caulfield,
2017, Greene et al., 2018, Howcroft, Lemaire & Kofman,
2016, Howcroft, Kofman & Lemaire, 2017, Howccroft,
Kofman & Lemaire, 2017b, Hsieh, Roach, Wajda & Sosnoff,
2019, Hua et al., 2018, Ihlen, Weiss, Bourke, Helbostad &
Hausdorff, 2016, Ihlen et al., 2018, Tluz et al., 2014, Iluz et
al., 2015, Latt, Menz, Fung & Lord, 2009, Marschollek et al.,
2011, Marschollek, 2011b, Martinez-Ramirez et al., 2011,
Mikos et al., 2019, Mohler, Wendel, Taylor-Piliae,
Toosizadeh & Najafi, 2016, Najafi, Armstrong & Mohler,
2013, Pazaic, Lindemann, Grebe & Stork, 2016, Rasche et
al., 2017, Rasche et al.,, 2018, Razjouyan et al., 2017,
Rezvanian & Lockhart, 2016, Rispens et al., 2014, Riva,
Toebes, Rijnappels, Stagni & Dieen, 2013, Schwenk et al.,
2014, Simila, Immonen & Ermes, 2017, Soangra & Lockhart,
2018, Stack et al., 2018, Van Schooten et al., 2015, Van
Schooten et al., 2016, Weiss et al., 2013, Weiss, Herman,
Giladi & Hausdorff, 2014). Figure 1 details the systematic
review process.
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datal
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Figure 1: Systematic review process, documenting records
perused, excluded, and included at each step.

3.2. Consumer Preferences

Only two studies considered the consumer preferences of
fallers and older individuals at risk of future falls. Govercin,
et al. (2010) asked focus groups of older adults (at fall risk
and not based on clinical scores) and the caregivers of fall-
prone individuals to identify features that they would prefer
in a fall preventions device. Participants stated that fall
prediction was as important as falls detection and that they
preferred wearable devices to those that were optical or
home-based because they could be used be more widely used.
A non-stigmatizing sensor on the wrist, such as a smartwatch-
based app, with an emergency button in case of undetected
fall was generally preferred.

Rasche, et al. (2018) found that the features most asked for in
a fall prevention smartphone app by the 96 older adults in the
study were (1) a checklist of typical tripping hazards, (2) an
emergency guideline in case of a fall, (3) description of
exercises and integrated workout plans that decrease the risk
of falling, (4) inclusion of a continuous workout program, and
(5) cost coverage by health insurer.

Based on these studies, it is apparent that individuals want a
portable device that is not easily noticed as medical
equipment and, in addition to detecting and alerting in the
case of a fall incident, can give feedback about fall risk on a
regular basis and use this information to prescribe potential
risk-alleviating measures such as home modifications or
exercises.

3.3. Population Characteristics

With the exception of the two consumer preference studies
listed above, all of the studied reviewed here implemented a
wearable sensor to measure variables that might be correlated
with fall incidence or risk, or with a condition known to be
linked to falls such as frailty or freezing of gait in Parkinson’s
disease (PD). The size and characteristics of the populations
studied varied widely, as shown in Tables 1 and 2.
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Population Studies (%)

Size

5-24 15.4% [26, 29, 32, 47, 63, 68, 73, 74]

25-49 19.2% [27, 28, 34, 35, 51, 55, 58, 59, 67, 72]

50-99 32.7% [30, 31, 33, 36, 37, 39, 50, 52, 53, 56, 57,
60, 61, 62, 65,71, 77]

100-149 13.5% [38, 45, 48, 49, 69, 70, 78]

150-199 3.8% [64, 75]

200-299 9.6% [25, 40, 43, 46, 76]

300+ 5.8% [42, 44, 54]

Table 1: Number of Individuals Included Categorized by
Study. Bracketed numbers indicate reference number for
each paper.

While studies varied greatly by size, the vast majority studied
less than 200 individuals. Given the size of data sets generally
utilized to train predictive algorithms, the small effect size
expected, and the high rate of non-compliance or study
withdrawal during home-based recording and fall diary
follow-up (Shany, Liu, Redmond, Wang & Lovell, 2015), it
is expected that much larger trials are needed including up to
several thousand volunteers.

Population/Control Studies (%)

Group

Older Adult Fallers/Non- | 71.2% [25, 29-43, 45, 46, 48-54,
fallers 56, 58-59, 62, 64-67, 69, 70, 74-77]
Older Adult Balance | 1.9% [72]

Decline/None

Older Adults Frail/Non- | 3.8% [44, 60]

frail

Older Adults 1.9% [26]
Assisted/Unassisted

PD Fallers/Non-fallers
PD with FOG/without

9.6% [47, 55, 57, 74, 78]
3.8% [61, 68]

FOG

Demented  Fallers/Non- 1.9% [71]
fallers

Stroke Fallers/Non-fallers 1.9% [27, 28]
Diabetes Fallers/Non- 1.9% [63]
fallers

Cardiac patients 1.9% [73]

Frail/Non-frail

Table 2: Breakdown of the experimental population and the
control group for each paper.

The majority of studies (71.2%) analyzed potential
differences between older adults without other impairment
based on whether they were prone to falling. A further 17.3%
of studies analyzed fall risk similarly in populations with
neurological or other impairment leading to an increased rate
of falls. The remaining studies measured the correlation of
other variables known to be related to falls such as frailty, PD

freezing of gait (FOG), and the use of a prescribed assistive
device while walking to determine how they affected
measures of gait that could be detected by wearables.

In 20 of 52 (38%) of studies, subjects were excluded if unable
to ambulate without an assistive device during testing
(Barrois et al., 2017, Bergamini et al., 2017, Brodie et al.,
2015, Caby et al., 2011, Di Rosa et al., 2017, Doi et al., 2013,
Drover et al., 2017, Ganea et al., 2011, Greene et al., 2014,
Greene et al., 2017, Greene et al., 2018, Howcroft et al., 2016,
Howcroft et al., 2017, Howcroft et al., 2017b, Hua et al.,
2018, Iluz et al., 2014, Rezvanian & Lockhart, 2016, Riva et
al., 2013, Stack et al., 2018). This exclusion is often utilized
in studies of gait, as the use of a device changes movement
patterns. However, the use of assistive devices is common at
home in fall-prone individuals and fall risk measurement
tools that can account for aids will be important in the future
to allow wide-spread use.

3.4. Gold Standard Used to Determine Fall Risk

While most studies analyzed compared wearable features
directly to fall incidence/risk, they did not all distinguish
fallers from non-fallers in the same way. There were three
main ways that fall status was determined: retrospective fall
history, prospective fall diary, and clinical measures of fall
risk. However, the time period for which falls were monitored
(both retrospectively and prospectively) and the clinical
measures used varied widely (see Table 3).

48.9% of studies utilized retrospective falls (asking falls
history for anywhere from 6 months to 5 years), 36.2% used
prospective falls (with follow-up recording of one month to
two years), and 19.1% used clinical scales (most commonly
the Tinetti scale, with many studies using a combination of
several scales). 4.3% of studies analyzed both retrospective
and prospective falls and 4.3% analyzed falls and clinical
scales. One study intending to measure the beginning of
balance decline, which increases fall risk, measured the
change in Berg Balance scale scores over one year following
wearable assessment (Simila et al., 2017). It is important to
note that, though wearables have been tested for use in
objective fall detection, no studies were found that have
combined measurement of falls and of fall risk. Fall history
and diaries were all based on self-report measures.

Studies intending to measure frailty used the Fried Frailty
Index (Greene et al., 2013, Martinez-Ramirez et al., 2011) or
the STS Frailty Criteria (Razjouyan et al., 2017). PD FOG
was measured using video assessment of gait by trained
interpreters, with periods with and without FOG used to build
classification models for use in wearables (Mikos et al., 2019,
Rezvanian & Lockhart, 2016). The use of an assistive device
was consistent between users, with each user completing the
same number of trials with and without an assistive device
(Antos et al., 2019).
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Gold Standard Studies (%)

Retrospective falls history 48.9%

Previous 6 months 8.5% [48, 49, 55, 75]

Previous year 38.3% [25, 29, 30-33, 35, 38, 45,

52, 53, 56, 57, 65, 66, 69, 70, 78]

Previous 5 years 4.3% [42, 46]

Prospective falls occurrence 36.2%

Following month 2.1% [64]

Following 3 months 4.3% [47,71]

Following 6 months 17.0% [27, 37, 50, 54, 62, 75-77]

Following year 12.8% [30, 36, 58, 59, 76, 78]

Following 2 years 2.1% [43]
Clinical Assessment 19.1%
Aachen Falls Prevention | 2.1% [66]
Scale

Berg Balance Scale 2.1% [28]

Barthel Index 4.3% [28, 41]

Dynamic Gait Index 2.1% [34]

Functional Ambulation | 2.1% [28]
Categories

Heinrich II 2.1% [67]

Physiological Profile | 2.1% [51]
Assessment
Short Physical | 2.1% [52]

Performance Battery

Tinetti Falls Efficacy Scale 10.6% [28, 34, 39, 63, 66]

Timed Up and Go 4.3% [34, 41]
STRATIFY  Falls Risk | 2.1% [40]
Assessment

Table 3: Methods Used to Determine Fall Risk for
Comparison with Biomarkers

There are strengths and weaknesses associated with any
measure of fall risk. The most accurate measure of future fall
risk, especially if we hope to catch biomarker preceding first
fall, is prospective falls occurrence. However, it also requires
a follow-up period to the study, which increases study cost
and patient withdrawal from data collection. Retrospective
fall history also gives an accurate, though less sensitive,
measure of fall status and does not require follow-up. Clinical
scales provide a correlate measure of fall risk (scales may
have been initially compared to either prospective or
retrospective falls) and may be collected at the same time as
biomarkers, negating the need for follow-up period.
However, they do not give a fully accurate picture of whether
the individual is or will be a faller. Many of these tests are
also subjective and may not be sensitive to early, invisible
changes in gait indicative of change in fall risk.

3.5. Wearable Sensors

The majority of studies utilized an accelerometer or inertial
measurement unit (IMU) containing an accelerometer in
addition to other instruments such as a gyroscope,

magnetometer, or barometer. Other sensors used included
pressure insoles and electrocardiogram (ECG) and
respiratory monitors, as displayed in Table 4. Only one study
(Di Rosa et al., 2017) did not utilize an accelerometer, instead
relying on pressure insoles alone.

Sensor Used Studies (%)
IMU 98.0%
Accelerometer 98.0% [25-33, 35-40, 42-64, 67-78]
Gyroscope 33.3% [27, 28, 39, 42-47, 55, 60-62,
64, 71,73, 74]
Magnetometer 5.9% [27, 60, 64]
Barometer 5.9% [29-31, 38]
Pressure Insoles 5.9% [34, 48-50]
ECG 2.0% [67]
Respiratory 2.0% [67]
Monitor

Table 4: Types of Sensors Used to Measure Fall Risk

In three studies, no wearable sensor was described. Two
studies (Govercin et al., 2010, Rasche et al., 2018) measured
only consumer preferences for a potential sensor. Rasche, et
al. (2017) used questionnaires and a test of compensatory
movement during standing balance, but it was not stated
whether the balance test utilized a sensor such as the phone’s
accelerometer or was measured by self-assessment.

Most studies (58.8%) used a single IMU or other sensor. The
remaining used 2 (21.6%), 3 (5.9%), 5 (7.8%), 6 (5.9%), or
10 (2.0%) sensors. This data is broken down by study in
Table 5. In most cases, all sensors were of the same type.
However, three studies by Howcroft et al. (2016, 2017,
2017b), or 7.8%, utilized four accelerometers in addition to
pressure insoles in both shoes.

Number of | Studies (%)

Sensors

1 58.8% [25, 29-31, 33, 38-40, 51-56, 58-61, 63,
64, 67, 69-73, 75-78]

2 21.6% [26, 34-36, 42-44, 46, 47, 57]

3 5.9% [27, 37, 68]

5 7.8% [28, 45, 62, 74]

6 5.9% [48-50]

10 2.0% [32]

Table 5: Number of Sensors Used on Each Individual
During Testing by Study

The position of sensors varied, but the most common location
was the lower back (58.0%), followed by the sternum and
shins (26% of studies each). Other positions included the
upper back, the thigh, the feet, the wrist, the head, and the
elbows (see Table 6). One study (Hua et al., 2018) using a
single accelerometer did not state where the sensor was
located during testing.
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Sensor Location

Lower Back 58.0% [25,27, 28, 33, 36, 37, 40, 45,
48-50, 53-60, 62, 68-70, 72, 74-78]

Belt Clip/Pocket 4.0% [26, 73]

Upper Back 4.0% [32, 36]

Sternum 26.0% [28-31, 35, 38, 39, 45, 51, 62,
63,67, 71]

Thigh(s)/Knees(s) | 10.0% [32, 35, 45, 62, 68]

Shin(s) 26.0% [28, 37, 42-50, 62, 68]

Feet/Ankle(s) 14.0% [32. 34, 48-50, 61, 74]

Elbow(s) 2.0% [32]

Wrist(s) 8.0% [26, 32, 64, 74]

Head 8.0% [48-50, 57]

Table 6: Positioning of Sensors on the Body by Study

3.6. Biomarkers of Fall Risk

In order to ensure timely updates to fall risk information and
remove the burden or remembering and making time to check
their status, it would be most helpful for a fall risk device to
continuously monitor biomarkers of fall risk and be able to
update risk scores without the need for specific guided
movements. However, as of this writing, few of the articles
identifying biomarkers of fall risk have done so based on
continuous, unstructured data (32.7%). All other studies
involved structured or semi-structured movements and were
generally conducted in a lab-based setting, which is known to
affect fall risk results (Rispens et al., 2016, Van Schooten,
Rispens, Elders, Dieen & Pijnappels, 2014). Even among the
17 studies that examined continuous locomotor data, the
duration over which training data was collected varied
widely, which may drastically affect results and accuracy of
the resultant models, as shown in Table 7.

Data Studies (%)

Duration

1 day 11.8% [67, 71]

3 days 29.4% [53, 55, 56, 77, 78]

1 week 35.3% [25, 31, 54, 64, 75, 76]
2 weeks 17.6% [34, 62, 69]

8 weeks 5.9% [29]

Table 7: Duration of Monitoring for Studies Using
Continuous Measurement

The continuous studies primarily looked at biomarkers
obtained during periods of locomotion (82.4%), though two
studies (11.8%) focused on transitions from sitting to
standing or walking and vice versa (Cui et al., 2014, Govercin
et al., 2010), and one study focused on classifying activity
and heart rate variability (Greene et al., 2013).

All but one (94.1%) of the studies examining biomarkers of
fall risk from continuous data analyzed individual biomarkers
related to fall risk separately, allowing for direct comparison

of those factors that independently influenced fall risk. Table
8 shows the parameters of gait/activity that demonstrated
significant differences between fallers and non-fallers in at
least one study analyzing continuous data. Those parameters
that were also found not to be significantly affected by
classification in other studies were noted; however, those
factors found to be insignificant in all studies were not
included for the sake of brevity.

Walking duration, entropy, amplitude of the dominant
frequency (DF) in the vertical direction, and the harmonic
ratio in the vertical and anterior-posterior directions were
most commonly found to be significant determinants of fall
risk. It is important to note that, though nonlinear measures
were more often found to show significant differences
between fallers and non-fallers, these measures vary
considerably based on the number of steps utilized in
processing, so a standard processing method breaking walks
into smaller segments is needed. Currently, this process
differs between groups, making results difficult to compare.

One study analyzing wearable data based both on
retrospective and prospective falls (Weiss et al., 2014) found
that retrospective fallers demonstrated decreased VT
amplitude and increased width of the dominant frequency (all
directions), decreased regularity, and decreased harmonic
ratio (all components), while prospective falls were
correlated with only increased AP dynamic frequency width.
Another (Van Schooten et al., 2015) found retrospective falls
to be influenced by steps per day, walk duration, and
dominant frequency power and prospective falls to be
influenced by gait speed, frequency, step length, variability,
harmonic ratio, index of harmonicity, and logarithmic
divergence, illustrating the need for more studies based on
prospective falls to elucidate early signs of increased fall risk.

Only two studies focused on predictive biomarkers in sit-to-
stand transitions, making consensus difficult to measure to
date. Parameters analyzed in these papers are shown in Table
9. The single study analyzing continuous heart rate variability
data (Razjouyan et al., 2017) found that fallers had lower
average R-R intervals (time between R waves of the ECQG),
lower variability in R-R duration, and increased power in the
low frequency component of the heart wave during
continuous monitoring.

Studies conducted in-lab were generally much more
structured and focused than those involving continuous
assessment. The Timed Up and Go (TUG) test was the most
commonly performed task (45.9%), but measured walks of
various lengths/durations, postural stability tests, sit-to-stand,
and activities of daily living (ADLs) were also common (see
Table 10).
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Table 8: Parameters Measured During Continuous. The first
column lists parameters measured, the second documents
studies finding significant differences between groups, and
the third indicates studies in which the parameter was
measured but not significant. AP=Anterior-Posterior,
ML=Medio-Lateral, VT=Vertical, RMS=Root Mean Square

Gait Parameters Significant Not Sit-to-stand Parameters Significant | Not

Significant Significant
Steps per day [29, 75] [31, 62] Amplitude arm swing [64]
Walks per day [29] [31, 62] Smoothness VT [56]
Average steps per walk [29, 31, 77] [62] Smoothness AP [56]
Variability walk duration | [71] Jerk [64] [56]
Longest walk [71] [29, 31] Oscillation ML [64]
Walking Duration [62,67,71,75] Entropy VT [64]
Standing Duration [71] Energy VT [64]
Sitting Duration [62] Energy ML [64]
Lying Duration [62] Index of Harmonicity VT [64]
Sld.e Lying [67] Table 9: Parameters Demonstrating Significant Differences
Gait speed [75,76] B . .

etween Fallers and Non-fallers During Continuous

Cadence [75.76] [29.31, 62] Analysis of Sit-to-Stand Transitions
Step length [75,76]
RMS VT [76] [29, 31] Only seventeen studies (45.9%) of structured movement
RMS AP [76] assessments of fall risk provided information about specific
Step duration [77] biomarkers that were significantly different between fallers
Stride duration [77] and non-fallers. The biomarkers analyzed are shown in Table
Step time variability [29,31] 11 and 12. The .remaining smflies utili.zed machine learning
Single support time [34] anq other algorithms to predict fall risk but did not detail
Double support time [34] Wth.h .results were collected anq subse.quen.tly foqnd to be
Heel contact force slope | [34] predictive, by themselves or in conjunction with other
Average Acceleration | [34] factors.
ML Gait speed was most often found to be significantly different
Index of Harmonicity VT | [69] between fallers and non-fallers in structured walking tasks.
Entropy [53, 54,76] Step duration, RMS, total time needed to complete the TUG
LF% [69] test, and harmonic ratio were also commonly utilized. All of
Range AP [76,77] these measures were also found to be useful during
Range ML [77] [76] continuous testing, suggesting that some of the work that has
Local Dynamic Stability | [69] been used to develop predictive models during structured
VT testing may be usable for continuous testing if an algorithm
LDS per stride VT [69] is able to correctly screen for similar actions during
Amplitude DF VT [69,75-78] spogtgneous activity. Eor stair cl.imbing, it was found that
Amplitude DF ML [76,77] [69] stability was r§duced in prospectlve fallers, but numbe}r of
Slope DF VT [69,77] steps and duration to climb stairs were not altered (Brodie et
Slope DF ML [77] [69] al,, 2015b).
Width DF VT [78] Studies of biomarkers of fall risk during postural stability
Width DF AP [76,78] tasks demonstrated conflicting results. Two of the four
Width DF ML [78] studies examining postural stability found that there were
Harmonic ratio VT [75,76,78] differences between fallers and non-fallers during normal
Harmonic ratio AP [75,76,78] standing with eyes open or closed in terms of COP radius,
Harmonic ratio ML [75,78] area, path length and velocity eyes open (Soangra &
Index of harmonicity [75,76] Lockhart, 2018) and in total sway (Mohler et al., 2016).
Logarithmic divergence | [75,76] However, another study found that path length was not
Missteps (calculation not | [55] changed in either normal or tandem stance with eyes open or
given) closed and that sway area increased only with eyes closed

(Martinez-Ramirez et al., 2011). A final study found that
RMS was only significantly predictive in harder conditions
(tandem stance and dual-task) and maximum acceleration
was not predictive (Hsieh et al., 2019). Further studies are
needed to determine what measures are significantly different
in normal stance (and may be able to be collected from
unstructured data during standing periods) or in stances that
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can be easily explained and completed safely in a home
environment if structured assessment is needed.

Task
TUG 45.9% [25, 26, 27, 32, 40, 42-
47,58, 59, 61, 63,72, 74]
Locomotion 59.5%
3-meter walk 2.7% [74]
4-meter walk 2.7% [72]
15-foot (4.57-meter) walk | 16.2% [35, 38, 39, 45,73, 74]
5-meter walk 2.7% [73]
25-foot (7.62-meter) walk 8.1% [48-50]

10-meter walk
20-meter walk
25-meter walk
400-meter walk
1-minute walk
3-minute walk
6-minute walk

10.8% [26, 28, 36, 38]
8.1%][57-59]
2.7% [32]

[

2 7% [77]

2.7% [70]

10.8% [26, 27, 48, 50]
[
[
[

Random Walk 8.1% [33, 61, 68]

Tandem Walk 2.7% [74]
Sit-to-Stand 16.2% [35, 38, 39, 45, 73, 74]
Postural Stability 18.9%

Eyes Open 18.9% [32, 45, 51, 60, 62, 65,

73]

Eyes Closed 8.1% [51, 60, 62]
Dual-Task Eyes Open 2.7% [51]
Dual-Task Eyes Closed 2.7% [51]

Tandem Stance
One-Legged Stance

[

[
5.4% [51, 60]
5.4% [32, 51]

ADLs 13.5%
Stair Climbing 2.7% [30]
Turning 2.7% [74]
Reaching 2.7% [74]
Walking with Obstacles 2.7% [33]
Not Otherwise Specified 5.4% [38, 68]
Clinical Assessments 5.4%
Berg Balance Scale 2.7% [72]
Falls Questionnaire 2.7% [65]

Table 10: Activities Used for Structured Assessment

As in continuous testing, measures of turning ability were
only focused on by a few studies, and consensus on useful
parameters was not reached. Interestingly, the parameters
found to be significant by structured studies differed for the
most part from the results in the continuous studies. It is
difficult to tell whether this is due to inherent differences
between the way people turn in a naturalized setting,
difference in the calculation of parameters between studies,
or due to small effect size and population creating conflicting
results given the relatively small number of studies using
these parameters to date. Further research is needed to isolate
the most beneficial parameters to measure sit-to-stand
transitions, both in structured and daily life environments.

Gait Parameter Significant Not
Significant

Gait speed [28,36, [62]
38,57,73,77]

Stride length [28] [62]

Step duration [40,77]

Gait variability [57] [40,62]

RMS [28,40]

Attenuation [28]

coefficients

Symmetry [28]

TUG time [27,63]

Steps to turn 180 [27]

Step Stability Index [33]

Harmonic ratio [36,57]

Energy expenditure [40]

Pelvis sway [40]

Entropy [73]

Table 11: Parameters Demonstrating Significant Differences
Between Fallers and Non-fallers During Structured Gait

Analysis
Sit-to-stand Parameter | Significant | Not
Significant

Duration [35,63] [39]
Variability [35]
RMS ML [35]

Spectral Edge Frequency | [35]

AP

Maximum acceleration [38]

Maximum velocity [38]

Peak power [38]

Fractal dimension [39]

Table 12: Parameters Demonstrating Significant Differences
Between Fallers and Non-fallers During Structured Analysis
of Sit-to-Stand Transitions

3.7. Software/Algorithms

Thirty-seven (71.2%) articles utilized machine learning or
regression to classify fallers vs non-fallers. Most of these
studies listed the types of classification algorithms that best
fit their data but did not list the features that were fed into
these algorithms, making even similar algorithms by different
groups difficult to compare. Many of these studies (24.3%)
also failed to list accuracy values, merely stating that
algorithms using measures obtained from wearables were as
accurate or more accurate that those obtained by clinical
means or were more accurate than other classification
methods tried. Machine learning algorithms used to classify
fallers vs non-fallers, along with the average accuracy of each
of these methods and the accuracy noted in each study, are
shown in Table 13.
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Method Used Average | Accuracy by Study
Accuracy

Linear 76.7% 53.9% [35], 81.0% [36],

Regression 75.0% [42], 89.7% [56],
70.0% [58], 88.2% [62],
72.5% [70], 77.1% [71],
78.0% [72], 82.0% [75],
NL [26]

Wavelet 82.1% 82.1% [68], 93.1%
missteps  [55], NL
[30,31,38,60,63]

Support  vector | 72.9% 67.6% [37], 80.6% [45],

machine 84% [48], 78% [49],
54.5% [50], NL [32]

Neural Network | 66.2% 74% [25], 84.0% [48],
75.3% [49], 57.0% [50],
92.9% [61]

Naive Bayesian 66.2% 80% [48], 68.3% [49],
50.2% [50], NL [32]

Random Forest 75.6% 77.5% [37], 73.7% [52]

K-Nearest 71.8% 71.8% [37], NL [32]

Neighbor

Classification 80% 80% [59]

Regression Tree

Partial Least | 83% 83% [54]

Squares

Long Short-Term | 91% 91% [25]

Memory

Principal NA NL [60,76]

Component

Analysis

Empirical mode | NA NL [33]

decomposition

Radial basis | NA NL [32]

function network

Multiple NA 90% [25], 99.2% use of

Together assisted device [26]

Machine NA 69% [34], 90.5% [40],

Learning/Feature 79.6% [43], 73.6% [46],

Selection NOS 73.3% [47]

Table 13: Machine Learning Classification Accuracies. The
first column documents different methods used, the second
lists the average accuracy given by all studies using that
method, accounting for all studies that gave accuracy
information. NA was used when no study utilizing that
method gave accuracy information and for the bottom two
columns, in which studies used multiple algorithms together
or failed to specify the type of machine learning used to
allow for comparison to similar techniques. The third
column lists individual accuracies for each study. NL = no
accuracy information given, NOS = Not Otherwise
Specified.

Several studies gave more in-depth information comparing
linear regression models using clinical and wearable
biomarkers of fall risk. In general, these studies found that
wearable features were more accurate at determining fall risk
than clinical metrics, but that models combining both sets of
features were the most accurate. Iluz, et al. (2015) found that
data collected by a monitor worn for three days of
unstructured activity was 88% accurate at classification,
clinical data was 71% accurate, and 89.7% accuracy was
achieved when information was combined. Marshollek, et al.
(2011) found STRATIFY to have an accuracy of 48%, TUG
50%, clinical assessment 55%, an algorithm taking all three
conventional measures into account 72%, and sensor data
70% and in another study (2011b) that clinical regression
trees were 80% accurate using accelerometer data alone and
78% combining accelerometer data with clinical, but linear
regression was 65% accurate using accelerometer data and
70% combined. Van Schooten, et al. (2015) obtained 68%
accuracy using clinical data, 71% using wearable data, and
82% with both.

To allow for clearer comparison and analysis of potentially
promising fall risk algorithms in the future, it is urgent that
more information be provided about specific parameters
supplied to described models and the resultant accuracy.
Without knowledge of specific parameters and descriptions
of the types of machine learning used to generate discerning
algorithms, it is nearly impossible for scientists to work
together to maximize accuracy of future iterations. It is also
highly important that more information be given about
accuracy, including information about both sensitivity and
specificity. The accuracy numbers given by the majority of
studies listed failed to document these numbers separately,
which makes it difficult to determine the relative
contributions of Type I and Type II error. While both types
of error present concerns, they should be handled differently.
Type 1 error, or false positives, can quickly lead to over-
diagnosis and treatment, which is costly both in terms of
health-care expenditure and aggravated anxiety and fear of
falling in those patients falsely identified as fall risks.
However, such systems can still be used well as a first line of
defense in conjunction with further testing. For example, an
automatic home-based fall risk screening wearable with high
sensitivity but low specificity might indicate to the patient
that they should schedule an appointment with their physician
for a more in-depth fall risk assessment. If the physician finds
reason for concern about fall risk, further treatment can then
be suggested. Alternatively, the same device may suggest
targeted home-based exercise to reduce fall risk that will
provide low-cost benefit to the patient even in the case of a
false positive. In contrast, devices with high specificity but
low sensitivity to fall risk may still be useful for tracking
patients already known to be at risk to measure sudden
changes indicative of need for immediate action.
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3.8. Feedback About Fall Risk

Only two studies measuring fall risk with wearables provided
feedback to their users about fall risk in real time. Mikos, et
al. (2019) used vibration feedback supplied to the ankle to
alert PD patients in the case of FOG. Rasche, et al. (2017)
gave users visual feedback of their fall risk upon completion
of a fall risk assessment including questionnaires and
standing balance.

3.9. Fall Risk Intervention/Treatment

Two studies delivered treatment to ease fall risk. Mikos, et al.
(2019) delivered vibration biofeedback during FOG episodes
to alert patients to the incorrect stepping pattern and
encourage correct stepping. Simila, et al. (2017) randomized
patients at fall risk to receive computer-based exercise plans
and activity/falls monitoring, paper-based exercise plans and
activity diary, or no exercise/monitoring, though the effects
of these interventions were not considered.

4. ARTICLES IN PERIODICALS

Falls present a devastating and rapidly growing problem for
our aging society. Currently, fall risk assessment may be
conducted using short, subjective, clinical measures during
regular physician appointments, but guidance to prevent falls
is very general and targeted treatments such as physical
therapy are often reserved for individuals who have already
fallen and are in need of rehabilitation. Technology may help
to improve fall risk assessment and response in multiple
ways, including allowing for more regular fall risk screening
at home, isolating more objective parameters that may be
indicative of more subtle changes related to fall risk, and
providing more targeted treatments and lifestyle changes
based on the exact types of degradation noted. The same
sensors used to assess fall risk may be usable to measure
suggested at-home therapy routines. Both home-based
systems such as the Kinect (Hondori & Khademi, 2014, Su,
Chiang & Huang, 2014) and wearables (Dobkin & Dorsch,
2011, Yurtman & Barshan, 2013) have been shown to be
effective at tracking and guiding therapy-related exercise.

End-user studies of the preferences of elderly individuals
(some of whom are known fallers) and their care-givers
demonstrate the need for a device that can subtly track fall
risk and then supply feedback about both risk and treatment
and lifestyle changes that can actually help to reduce this risk.
Patients do not wish to receive a fall risk assessment if they
feel helpless to change the results. However, while all of the
studies reviewed here were specifically designed to measure
fall risk, only two articles each made a point to present fall
risk results directly to subjects or to provide treatment to try
to improve fall risk or a related factor. One of these studies,
which provided feedback about FOG in PD in real-time, is
incredibly helpful but can only be targeted to a fraction of the
individuals who fall each year. Clearly, interventions and
suggestions specifically targeted to fall risk profile and

readily accessible following assessment is an area in which
research, development, and innovation are gravely needed.

The available research has demonstrated that wearable
sensors are a viable way of determining biomarkers of fall
risk, that data may be collected by sensors in a number of
locations (many of which allow the sensor to be easily hidden
against the body, beneath clothing, or disguised as a watch or
other traditional accessory to encourage frequent wear), and
that data from simple tasks such as walking and standing may
be useful in collecting these biomarkers. Based on these facts,
the need for such tasks as practiced in many clinical scales of
fall risk such as the Tinetti or the Berg Balance Scale, which
must be attended by a trained practitioner, can be
significantly alleviated. However, further research is still
needed before home-based fall risk assessment using
wearables is feasible. There is still a need for studies of both
continuous and structured assessments conducted in home
and community environments over the period of several
weeks or months to note variations in parameters that might
be more indicative of change in scenery or task than decline
in gait or balance function. For example, individuals may
walk differently in tight spaces, when carrying something or
conducting another task, or when wishing to look at
something along their path. Longer assessment times,
combined with prospective falls monitoring, may also help
pick up subtle changes leading up to a fall, both over the term
of several weeks to allow for treatments to be recommended
and in the preceding few minutes to warn the patient and ask
them to sit or otherwise reduce their immediate risk of fall.

If structured assessments are to be used, several factors will
need to be taken into account to design a user-friendly
system. Any tasks to be completed should be simple, easily
explained, and safely and readily completed within a small
space, and minimal if any outside equipment should be
required. It should be considered that many elderly
individuals at risk for falls suffer from comorbidities such as
cognitive or sensory impairment, which could drastically
reduce the ability of individuals to understand and carry out
instructions requiring more than a few sequential steps.
Simple walks or standing are likely feasible, but dual tasks or
complicated stances would be difficult to implement. Safety
is also paramount, so exercises such as single-leg balance
should not be requirements for assessment. If used in therapy,
precautions such as advising someone else be present to assist
and a mat or other padding be placed on the floor, should be
made clear. Finally, all assessments should be easily
completed in a small space, which may restrict the length of
walking tasks, and should not require the use of outside tools
such as tape lines to mark off a set distance, as this would
likely drastically reduce compliance.

In other words, while studies to date have laid important
groundwork in establishing the feasibility of using IMUs and
other wearables to track features of gait and balance related
to fall risk, they have still suffered from important limitations.

10
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Very few studies have considered user feedback or risk
reduction. Most research thus far has been completed in
controlled environments, and data may not easily transfer to
daily life. Longer trial durations are needed to account for
normal variability in sensor placement and movement
patterns and to allow for closer temporal comparison with fall
events. Trials using measures other than IMUs, especially
those tracking vital signs such as ECG, respiration, blood
pressure, or production of metabolic factors such as insulin,
which have all been linked to falls in some cases, are also
needed. Given the nearly infinite number of models that
could possibly be tested, it is important that there be large
scale (>1000-1500 individual) trials of those parameters
deemed most viable based on current research. To facilitate
this process and subsequent endeavors, greater transparency
in research methodology is urgently needed so all parameters
of interest may be known.

These longer, large-scale trials and the eventual release of fall
risk assessment and treatment tools into the population will
create several technical challenges to overcome. First, battery
life must be considered. Most wearables currently marketed
for consumer use last a maximum of 12-18 hours, meaning
most charge these devices overnight. While this may be
feasible, removal of the sensor during sleep may lose
important information, such as transitions from lying to
standing or a degradation in vital signs overnight. It may also
be difficult for some seniors to remember to reapply the
sensor the following morning. Thus, batteries lasting longer
periods (such as that of the Dynaport, a research IMU which
lasts a week) while still retaining consumer features, and
possibly alerting the patient once the charge cycle is
complete, would be greatly helpful. Another technical
challenge, which is currently being experienced in may
arenas due to the boom in big data and artificial intelligence,
is the need to store, sort through, and analyze very large
amounts of information, and to do as much of this analysis as
possible in real-time and on the user’s devices to prevent
delays in areas without wireless signal.

As with any systematic review, there are limitations to this
study. It is impossible to review every paper, even within
specific fields such as wearables or fall risk, necessitating the
use of search terms to limit and filter results. As such, it is
likely that some papers that would helpfully contribute to this
discussion were left out of the literature search and analysis.
This paper also did not conduct a meta-analysis regarding the
comparative efficacy of different parameters or algorithms in
determining fall risk, largely due to the wide and different
designs used in the cited studies and the lack of needed
information given about these variables by a sizable minority
of them. In the future, continued research may make such an
analysis possible.

5. CONCLUSIONS

Falls represent a huge and expanding threat to our aging
population, and the measurement of fall risk (with subsequent
action) shows promise in reducing the number of fall
incidents. Technology such as wearable monitors can
measure biomarkers related to fall risk (thus far, identified
markers have mainly been features of gait). However, further
research is still needed to reach a consensus on the best
parameters to measure, the best positioning for sensors (both
in terms of accuracy and user acceptance), types of interface
consumers prefer and best understand, and what treatment
options or lifestyle changes best improve rates of falls
subsequent to an increase in measured fall risk.
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