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Abstract

This paper studies the decentralized optimization and learning problem where multiple
interconnected agents aim to learn an optimal decision function defined over a reproducing
kernel Hilbert space by jointly minimizing a global objective function, with access to their
own locally observed dataset. As a non-parametric approach, kernel learning faces a major
challenge in distributed implementation: the decision variables of local objective functions
are data-dependent and thus cannot be optimized under the decentralized consensus frame-
work without any raw data exchange among agents. To circumvent this major challenge,
we leverage the random feature (RF) approximation approach to enable consensus on the
function modeled in the RF space by data-independent parameters across di↵erent agents.
We then design an iterative algorithm, termed DKLA, for fast-convergent implementation
via ADMM. Based on DKLA, we further develop a communication-censored kernel learn-
ing (COKE) algorithm that reduces the communication load of DKLA by preventing an
agent from transmitting at every iteration unless its local updates are deemed informative.
Theoretical results in terms of linear convergence guarantee and generalization performance
analysis of DKLA and COKE are provided. Comprehensive tests on both synthetic and real
datasets are conducted to verify the communication e�ciency and learning e↵ectiveness of
COKE.1

Keywords: Decentralized nonparametric learning, reproducing kernel Hilbert space,
random features, ADMM, communication censoring.

1. Introduction

Decentralized learning has attracted extensive interest in recent years, largely due to the
explosion of data generated everyday from mobile sensors, social media services, and other
networked multi-agent applications (Worden and Manson, 2006; Ilyas et al., 2013; Facchinei
et al., 2015; Demarie and Sabia, 2019). In many of these applications, the observed data
are usually kept private at local sites without being aggregated to a fusion center, either
due to the prohibitively high cost of raw data transmission or privacy concerns. Meanwhile,

1. Preliminary results in this paper were presented in part at the 2019 IEEE Data Science Workshop (Xu
et al., 2019).
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each agent in the network only communicates with its one-hop neighbors within its local
area to save transmission power. Such localized data processing and transmission obviate
the implementation of any centralized learning techniques. Under this circumstance, this
article focuses on the decentralized learning problem where a network of distributed agents
aim to collaboratively learn a functional model describing the global data with only access
to their own locally observed datasets.

To learn the functional model that is often nonlinear and complex, nonparametric kernel
methods are widely appreciated thanks to the “kernel trick” that makes some well-behaved
linear learning algorithms applicable in a high-dimensional implicit feature space, without
explicit mapping from data to that feature space (Shawe-Taylor et al., 2004; Hofmann
et al., 2008; Pérez-Cruz and Bousquet, 2004). However, in the absence of any raw data
sharing or aggregation, it is challenging to directly apply them to a decentralized multi-
agent setting and solve them under the consensus optimization framework using algorithms
such as decentralized alternating direction method of multipliers (ADMM) (Shi et al., 2014).
This is because decentralized learning relies on solving local optimization problems and then
aggregating the updates on the local decision variables over the network through one-hop
communications in an iterative manner (Nedić et al., 2016). Unfortunately, these decision
variables of local objective functions resulted from the kernel trick are data-dependent and
thus cannot be optimized in the absence of raw data exchange under the decentralized
consensus framework.

There are several works applying kernel methods in decentralized learning for vari-
ous applications under di↵erent settings (Predd et al., 2006; Mitra and Bhatia, 2014; Gao
et al., 2015; Chouvardas and Draief, 2016; Shin et al., 2016, 2018; Koppel et al., 2018).
These works, however, either assume that agents have access to their neighbors’ observed
raw data (Predd et al., 2006) or require agents to transmit their raw data to their neigh-
bors (Koppel et al., 2018) to ensure consensus through collaborative learning. These as-
sumptions may not be valid in many practical applications that involve users’ private data.
Moreover, standard kernel learning for big data faces the curse of dimensionality when the
number of training examples increases (Shawe-Taylor et al., 2004). For example, in (Mitra
and Bhatia, 2014; Chouvardas and Draief, 2016), the nonlinear function learned at each
node is represented as a weighted combination of kernel functions centered on its local ob-
served data. As a result, each agent needs to transmit both the weights of kernel functions
and its local data to its neighbors at every iterative step to guarantee consensus of the
common prediction function. Thus, both the computation and communication resources
are demanding in the distributed implementation. To alleviate the curse of dimensionality
problem, Gao et al. (2015) and Koppel et al. (2018) have developed compression techniques
such as data selection and sparse subspace projection, respectively, but these techniques
typically incur considerable extra computation, and still involve raw data exchange with
no alleviation to the data privacy concern. Furthermore, when computation cost is more
a↵ordable than the communication in the big data scenario, communication cost of the itera-
tive learning algorithms becomes the bottleneck for e�cient distributed learning (McMahan
et al., 2016). Therefore, it is crucial to design communication-e�cient distributed kernel
learning algorithms with data privacy protection.
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1.1 Related work

This work lies at the intersection of non-parametric kernel methods, decentralized learning
with batch-form data, and communication-e�cient iterative implementation. Related work
to these three subjects is reviewed below.

Centralized kernel learning. Centralized kernel methods assume data are collected and
processed by a single server and are known to su↵er from the curse of dimensionality for
large-scale learning tasks. To mitigate their computational complexity, various dimension-
ality reduction techniques are developed for both batch-form or online streaming learning,
including stochastic approximation (Bucak et al., 2010; Gu et al., 2018), restricting the num-
ber of function parameters (Gomes and Krause, 2010; Wang et al., 2012; Zhang et al., 2013;
Le et al., 2016; Koppel et al., 2017), and approximating the kernel during training (Honeine,
2015; Engel et al., 2004; Richard et al., 2008; Drineas and Mahoney, 2005; Dai et al., 2014;
Lu et al., 2016; Sheikholeslami et al., 2018; Rahimi and Recht, 2008; Băzăvan et al., 2012;
Nguyen et al., 2017). Among them, random feature (RF) mapping methods have gained
popularity thanks to their ability to map the large-scale data into a RF space of much
reduced dimension by approximating the kernel with a fixed (small) number of random
features, which thus circumvents the curse of dimensionality problem (Rahimi and Recht,
2008; Dai et al., 2014; Băzăvan et al., 2012; Nguyen et al., 2017). Enforcing orthogonality
on random features can greatly reduce the error in kernel approximation (Yu et al., 2016;
Shen et al., 2018), and the learning performance of RF-based methods is evaluated in (Bach,
2017; Rudi and Rosasco, 2017; Li et al., 2018).

Decentralized kernel learning. For the decentralized kernel learning problem relevant
to our work (Mitra and Bhatia, 2014; Gao et al., 2015; Chouvardas and Draief, 2016; Koppel
et al., 2018), gradient descent is conducted locally at each agent to update its learning model,
followed by di↵usion-based information exchange among agents. However, these methods
either assume that agents have access to their neighbors’ observed raw data or require
agents to transmit their raw data to their neighbors to ensure convergence on the prediction
function. For the problem studied in this article where the observed data are only locally
available, these methods are not applicable since there are no common decision parameters
for consensus without any raw data exchange. Moreover, these methods operate in the
kernel space parameterized by training data, and still encounter the curse of dimensionality
when the local dataset goes large. Though data selection (Gao et al., 2015) and subspace
projection (Koppel et al., 2018) are adopted to alleviate the curse of dimensionality problem,
they typically require significant extra computational resources. RF mapping (Rahimi and
Recht, 2008) o↵ers a viable approach to overcome these issues, by having all agents map
their datasets of various sizes onto the same RF space. For instance, Bouboulis et al. (2018)
proposes a di↵usion-based combine-then-adapt (CTA) method that achieves consensus on
the model parameters in the RF space for the online learning problem, without the exchange
of raw data. Though the batch-form counterpart of online CTA can be developed for o↵-line
learning, the convergence speed of the di↵usion-based method is relatively slow compared
with higher-order methods such as ADMM (Liu et al., 2019).

Communication-e�cient optimization. Communication-e�cient algorithms for decen-
tralized optimization and learning problems have attracted attention when data movement
among computing nodes becomes a bottleneck due to the high latency and limited band-
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width of decentralized networks. To reduce the communication cost, one way is to transmit
the compressed information by quantization (Zhu et al., 2016; Alistarh et al., 2017; Zhang
et al., 2019) or sparsification (Stich et al., 2018; Alistarh et al., 2018; Wangni et al., 2018;
Harrane et al., 2018). However, these methods only reduce the required bandwidth at each
communication round, not the number of rounds or the number of transmissions. Alterna-
tively, some works randomly select a number of nodes for broadcasting/communication and
operate asynchronous updating to reduce the number of transmissions per iteration (Mota
et al., 2013; Li et al., 2014; Jaggi et al., 2014; Arablouei et al., 2015; McMahan et al., 2016;
Yin et al., 2018; Yu et al., 2019). In contrast to random node selection, a more intuitive
way is to evaluate the importance of a message in order to avoid unnecessary transmis-
sions (Chen et al., 2018; Liu et al., 2019; Li et al., 2019b). This is usually implemented
by adopting a censoring scheme to adaptively decide if a message is informative enough
to be transmitted during the iterative optimization process. Other e↵orts to improve the
communication e�ciency are made by accelerating the convergence speed of the iterative
algorithm implementation (Shamir et al., 2014; Reddi et al., 2016; Li et al., 2019a).

1.2 Contributions

This paper develops communication-e�cient decentralized kernel learning algorithms un-
der the consensus optimization framework without any central coordination or raw data
exchange among agents for built-in privacy protection. Relative to prior art, our contribu-
tions are summarized as follows.

• We first formulate the decentralized multi-agent kernel learning problem as a decen-
tralized consensus optimization problem in the RF space. Since most machine learning
scenarios can a↵ord plenty computational capability but limited communication re-
sources, we solve this problem with ADMM, which has shown fast convergence at the
expense of relatively high computation cost per iteration (Shi et al., 2014). To the
best of our knowledge, this is the first work to solve decentralized kernel learning in
the RF space by ADMM without any raw data exchange. The key of our proposed
Decentralized Kernel Learning via ADMM (DKLA) algorithm is to apply RF map-
ping, which not only reduces the computational complexity but also enables consensus
on a set of model parameters of fixed size in the RF space. In addition, since no raw
data is exchanged among agents and the mapping from the original data space to the
RF space is not one-to-one mapping, data privacy is protected to a certain level.

• To increase the communication e�ciency, we further develop a COmmunication-
censored KErnel learning (COKE) algorithm, which achieves desired learning per-
formance given limited communication resources and energy supply. Specifically, we
devise a simple yet powerful censoring strategy to allow each user to autonomously
skip unnecessary communications when its local update is not informative enough for
transmission, without aid of a central coordinator. In this way, the communication
e�ciency can be boosted at almost no sacrifice of the learning performance. When
the censoring strategy is absent, COKE degenerates to DKLA.

• In addition, we conduct theoretical analysis in terms of both functional convergence
and generalization performance to provide guidelines for practical implementations of
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our proposed algorithms. We show that the individually learned functional at each
agent through DKLA and COKE both converges to the optimal one at a linear rate un-
der mild conditions. For the generalization performance, we show that O(

p
T log d�K)

features are su�cient to ensure O(1/
p
T ) learning risk for the decentralized kernel

ridge regression problem, where d�K is the number of e↵ective degrees of freedom that
will be defined in Section 4.2 and T is the total number of samples.

• Finally, we test the performance of our proposed DKLA and COKE algorithms on
both synthetic and real datasets. The results corroborate that both DKLA and COKE
exhibit attractive learning performance and COKE is highly communication-e�cient.

1.3 Organization and notation of the paper

Organization. Section 2 formulates the problem of non-parametric learning and highlights
the challenges in applying traditional kernel methods in the decentralized setting. Section
3 develops the decentralized kernel learning algorithms, including both DKLA and COKE.
Section 4 presents the theoretical results and Section 5 reports the numerical tests using
both synthetic data and real datasets. Concluding remarks are provided in Section 6.
Notation. R denotes the set of real numbers. k · k2 denotes the Euclidean norm of vectors
and k · kF denotes the Frobenius norm of matrices. | · | denotes the cardinality of a set. A,
a, and a denotes a matrix, a vector, and a scalar, respectively.

2. Problem Statement

This section reviews basics of kernel-based learning and decentralized optimization, intro-
duces notation, and provides background needed for our novel DKLA and COKE schemes.

Consider a network of N agents interconnected over a fixed topology G = (N , C,A),
where N = {1, 2 . . . , N}, C ✓ N ⇥ N , and A 2 RN⇥N denote the agent set, the edge
set and the adjacency matrix, respectively. The elements of A are ain = ani = 1 when the
unordered pair of distinct agents (i, n) 2 C, and ain = ani = 0 otherwise. For agent i, its one-
hop neighbors are in the set Ni = {n|(n, i) 2 C}. The term agent used here can be a single
computational system (e.g. a smart phone, a database, etc.) or a collection of co-located
computational systems (e.g. data centers, computer clusters, etc.). Each agent only has
access to its locally observed data composed of independently and identically distributed
(i.i.d) input-label pairs {xi,t, yi,t}

Ti
t=1 obeying an unknown probability distribution p on

X ⇥Y , with xi,t 2 Rd and yi,t 2 R. The kernel learning task is to find a prediction function
f that best describes the ensemble of all data from all agents. Suppose that f belongs to
the reproducing kernel Hilbert space (RKHS) H := {f |f(x) =

P
1

t=1 ↵t(x,xt)} induced by
a positive semidefinite kernel (x,xt) : Rd

⇥ Rd
! R that measures the similarity between

x and xt, for all x,xt 2 X . In a decentralized setting with privacy concern, this means that
each agent has to be able to learn the global function f 2 H such that yi,t = f(xi,t)+ei,t for

{{xi,t, yi,t}
Ti
t=1}

N
i=1, without exchange of any raw data and in the absence of a fusion center,

where the error terms ei,t are minimized according to certain optimality metric.
To evaluate the learning performance, a nonnegative loss function `(y, ŷ) is utilized to

measure the di↵erence between the true label value y and the predicted value ŷ = f(x).
Some common loss functions include the quadratic loss `(y, ŷ) = (y � ŷ)2 for regression
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tasks, the hinge loss `(y, ŷ) = max(0, 1� yŷ) and the logistic loss `(y, ŷ) = log(1+ e�yŷ) for
binary classification tasks. The above mentioned loss functions are all convex with respect
to ŷ. The learning problem is then to minimize the expected risk of the prediction function:

R(f) =

Z

X⇥Y

`(f(x), y)dp(x, y), (1)

which indicates the generalization ability of f to new data.
However, the distribution p is unknown in most learning tasks. Therefore, minimizing

R(f) is not applicable. Instead, given the finite number of training examples, the problem
turns to minimizing the empirical risk:

min
f2H

R̂(f) :=
NX

i=1

R̂i(f), (2)

where R̂i(f) is the local empirical risk for agent i given by

R̂i(f) =
1

Ti

TiX

t=1

`(f(xi,t), yi,t) + �ikfk
2
H, (3)

with k · kH being the norm associated with H, and �i > 0 being a regularization parameter
that controls over-fitting.

The representer theorem states that the minimizer of a regularized empirical risk func-
tional defined over a RKHS can be represented as a finite linear combination of kernel
functions evaluated on the data pairs from the training dataset (Schölkopf et al., 2001). If
{{xi,t, yi,t}

Ti
t=1}

N
i=1 are centrally available at a fusion center, the minimizer of (2) admits

f?(x) =
NX

i=1

TiX

t=1

↵i,t(x,xi,t) := ↵>(x), (4)

where ↵ = [↵1,1, . . . ,↵N,TN ]
>
2 RT is the coe�cient vector to be learned, T =

PN
i=1 Ti is

the total number of samples, and (x) = [(x,x1,1), . . . ,(x,xN,TN )]
>
2 RT is the kernel

function parameterized by the global data XT := {{xi,t}
Ti
t=1}

N
i=1 from all agents, for any x.

In RKHS, since h(xt,x),(x⌧ ,x)iH = (xt,x⌧ ), it yields kfk2H = ↵>
K↵, where K is the

T ⇥ T kernel matrix that measures the similarity between any two data points in XT . In
this way, the local empirical risk (3) can be reformulated as a function of ↵:

R̂i(↵) : =
1

Ti

TiX

t=1

`(f?(xi,t), yi,t) + �ikf
?
k
2
H =

1

Ti

TiX

t=1

`(↵>(xi,t), yi,t) + �i↵
>
K↵. (5)

Accordingly, (2) becomes

min
↵2RT

NX

i=1

R̂i(↵). (6)
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Relating the decentralized kernel learning problem with the decentralized consensus
optimization problem, solving (6) is equivalent to solving

min
{↵i2RT }

N
i=1

NX

i=1

R̂i(↵i)

s.t. ↵i = ↵n, 8i, 8n 2 Ni,

(7)

where ↵i and ↵n are the local copies of the global decision variable ↵ at agent i and agent
n, respectively. The problem can then be solved by ADMM (Shi et al., 2014) or other
primal dual methods (Terelius et al., 2011). However, it is worth noting that (7) reveals a
subtle yet profound di↵erence from a general optimization problem for parametric learning.
That is, each local function R̂i depends on not only the global decision variable ↵, but also
the global data XT because of the kernel terms (xi,t) and K. As a result, solving the local
objective for agent i requires raw data from all other agents to obtain (xi,t) and K, which
contradicts the situation that private raw data are only locally available. Moreover, notice
that ↵i is of the same size T as that of the ensemble dataset, which incurs the curse of
dimensionality and insurmountable computational cost when T becomes large, even when
the obstacle of making all the data available to all agents is not of concern.

To resolve this issue, an alternative formulation is to associate a local prediction model
f̄i 2 H with each agent i, with f̄?

i =
PTi

t=1 ↵̄i,t(x,xi,t) = ↵̄>

i i(x) being the local

optimal solution that only involves local data {xi,t}
Ti
t=1 (Ji et al., 2016). Specifically,

↵̄i = [↵̄i,1, . . . , ↵̄i,Ti ] 2 RTi , and i(x) = [(x,xi,1), . . . ,(x,xi,Ti)]
>

2 RTi is parameter-

ized by the local data {xi,t}
Ti
t=1 only. In this way, the local cost function becomes

R̂i(↵̄i) : =
1

Ti

TiX

t=1

`(f̄?
i (xi,t), yi,t) + �ikf̄

?
i k

2
H =

1

Ti

TiX

t=1

`(↵̄>

i i(xi,t), yi,t) + �i↵̄
>

i Ki↵̄i, (8)

where Ki is of size Ti ⇥ Ti and depends on local data only. With (8), the optimization
problem (7) is then modified to

min
{↵̄i2RTi}Ni=1

NX

i=1

R̂i(↵̄i)

s.t. f̄n(xi,t) = f̄i(xi,t), 8i, 8n 2 Ni, t = 1, . . . , Ti,

(9)

and can be solved distributedly by ADMM. Note that the consensus constraint is the learned
prediction values f̄i(x), not the parameters ↵̄i. This is because ↵̄i are data-dependent and
may have di↵erent sizes at di↵erent agents (the dimension of ↵̄i equals to the number of
training samples at agent i), and cannot be directly optimized through consensus.

Still, this method has four drawbacks. Firstly, it is necessary to associate a local learning
model f̄i to each agent i for the decentralized implementation. However, the local learning
model f̄i and the global optimal model f in (2) may not be the same because di↵erent local
training data are used. Therefore, the optimization problem (9) is only an approximation
of (2). Even with the equality constraint to minimize the gap between the decentralized
learning output and the optimal centralized one, the approximation performance is not
guaranteed. Besides, the functional consensus constraint still requires raw data exchange
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among agents in order for agent n 2 Ni to be able to compute the values f̄n(xi,t) from
agent i’s data xi,t, for i 6= n. Apparently, this violates the privacy-protection requirement
for practical applications. In addition, when Ti is large, both the storage and computa-
tional costs are high for each agent due to the curse of dimensionality problem at the local
sites. Lastly, the frequent local communication is resource-consuming under communication
constraints. To circumvent all these obstacles, the goal of this paper is to develop e�cient
decentralized algorithms that protect privacy and conserve communication resources.

3. Algorithm Development

In this section, we leverage the RF approximation and ADMM to develop our algorithms.
We first introduce the RF mapping method. Then, we devise the DKLA algorithm that
globally optimizes a shared learning model for the multi-agent system. Finally, we take into
consideration of the limited communication resources in large-scale decentralized networks
and develop the COKE algorithm. Both DKLA and COKE are computationally e�cient
and protect data privacy at the same time. Further, COKE is communication e�cient.

3.1 RF-based kernel learning

As stated in previous sections, standard kernel methods incur the curse of dimensionality
issue when the data size grows large. To make kernel methods scalable for a large dataset,
RF mapping is adopted for approximation by using the shift-invariance property of kernel
functions (Rahimi and Recht, 2008).

For a shift-invariant kernel that satisfies (xt,x⌧ ) = (xt � x⌧ ), 8t, 8⌧ , if (xt � x⌧ )
is absolutely integrable, then its Fourier transform p(!) is guaranteed to be nonnegative
(p(!) � 0), and hence can be viewed as its probability density function (pdf) when  is
scaled to satisfy (0) = 1 (Bochner, 2005). Therefore, we have

(xt,x⌧ ) =

Z
p(!)ej!

>(xt�x⌧ )d! := E![e
j!>(xt�x⌧ )] = E![�(xt,!)�⇤(x⌧ ,!)], (10)

where E denotes the expectation operator, �(x,!) := ej!
>x with ! 2 Rd, and ⇤ is the

complex conjugate operator. In (10), the first equality is the result of the Fourier inversion
theorem, and the second equality arises by viewing p(!) as the pdf of !. In this paper,
we adopt a Gaussian kernel (xt,x⌧ ) = exp(�kxt � x⌧k

2
2/(2�

2)), whose pdf is a normal
distribution with p(!) ⇠ N(0,��2

I).

The main idea of RF mapping is to randomly generate {!l}
L
l=1 from the distribution

p(!) and approximate the kernel function (xt,x⌧ ) by the sample average

̂L(xt,x⌧ ) :=
1

L

LX

l=1

�(xt,!l)�
⇤(x⌧ ,!l) := �†

L(x⌧ )�L(xt), (11)

where �L(x) :=
q

1
L [�(x,!1), . . . ,�(x,!L)]> and † is the conjugate transpose operator.
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The following real-valued mappings can be adopted to approximate (xt,x⌧ ), both
satisfying the condition E![�r(xt,!)>�r(x⌧ ,!)] = (xt,x⌧ ) (Rahimi and Recht, 2008):

�r(x,!) = [cos(!>
x), sin(!>

x)]>, (12)

�r(x,!) =
p

2 cos(!>
x+ b), (13)

where b is drawn uniformly from [0, 2⇡].
With the real-valued RF mapping, the minimizer of (2) then admits the following form:

f̂?(x) =
NX

i=1

TiX

t=1

↵i,t�
>

L (xi,t)�L(x) = ✓>�L(x), (14)

where ✓> :=
PN

i=1

PTi
t=1 ↵i,t�>

L (xi,t) denotes the new decision vector to be learned in the

RF space and �L(x) =
q

1
L [�r(x,!1), . . . ,�r(x,!L)]>. If (12) is adopted, then �L(x) and

✓ are of size 2L. Otherwise, if (13) is adopted, then �L(x) and ✓ are of size L. In either
case, the size of ✓ is fixed and does not increase with the number of data samples.

3.2 DKLA: Decentralized kernel learning via ADMM

Consider the decentralized kernel learning problem described in Section 2 and adopt the
RF mapping described in Section 3.1. Let all agents in the network have the same set of
random features, i.e., {!l}

L
l=1. Plugging (14) into the local cost function R̂i(f) in (3) gives

R̂i(✓) : =
1

Ti

TiX

t=1

`(f̂?(xi,t), yi,t) + �ikf̂
?
k
2
H =

1

Ti

TiX

t=1

`(✓>�L(xi,t), yi,t) + �ik✓k
2
2. (15)

In (15), we have

k✓k22 : = (
NX

i=1

TiX

t=1

↵i,t�
>

L (xi,t))(
NX

n=1

TiX

⌧=1

↵n,⌧�L(xn,⌧ ))

=
NX

i=1

TiX

t=1

NX

n=1

TiX

⌧=1

↵i,t↵n,⌧(xi,t,xn,⌧ ) := kf̂?
k
2
H.

Therefore, with RF mapping, the centralized benchmark (2) becomes

min
✓2RL

NX

i=1

R̂i(✓). (16)

Here for notation simplicity, we denote the size of ✓ by L ⇥ 1, which can be achieved by
adopting the real-valued mapping in (13). Adopting an alternative mapping such as (12)
only changes the size of ✓ while the algorithm development is the same. RF mapping is
essential because it results in a common optimization parameter ✓ of fixed size for all agents.

To solve (16) in a decentralized manner, we associate a model parameter ✓i with each
agent i and enforce the consensus constraint on neighboring agents i and n using an auxiliary
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variable #in. Specifically, the RF-based decentralized kernel learning problem is formulated
to jointly minimize the following objective function:

min
{✓i2RL},{#in2RL}

NX

i=1

R̂i(✓i)

s.t. ✓i = #in, ✓n = #in, 8(i, n) 2 C.

(17)

Note that the new decision variables ✓i to be optimized are local copies of the global
optimization parameter ✓ and are of the same size for all agents. On the contrary, the
decision variables ↵̄i in (9) are data-dependent and may have di↵erent sizes. In addition,
the size of ✓ is L, which can be much smaller than that of ↵ (whose size equals to T )
in (6). For big data scenarios where L ⌧ T , RF mapping greatly reduces the computational
complexity. Moreover, as shown in the following, the updating of ✓ does not involve any raw
data exchange and the RF mapping from x to �L(x) is not one-to-one mapping, therefore
provides raw data privacy protection. Further, it is easy to set the regularization parameters
�i to control over-fitting. Specifically, since the parameters ✓i are of the same length among
agents, we can set them to be �i = 1

N �, 8i, where � is the corresponding over-fitting
control parameter assuming all data are collected at a center. In contrast, the regularization
parameters �i in (5) depend on local data and need to satisfy � =

PN
i=1 �i, which is relatively

di�cult to tune in a large-scale network.
In the constraint, ✓i are separable when #in are fixed, and vice versa. Therefore, (17)

can be solved by ADMM. Following (Shi et al., 2014), we develop the DKLA algorithm
where each agent updates its local primal variable ✓i and local dual variable �i by

✓k
i := argmin

✓i

8
<

:R̂i(✓i) + ⇢|Ni|k✓ik
2
2 + ✓>

i

2

4�k�1
i � ⇢

X

n2Ni

⇣
✓k�1
i + ✓k�1

n

⌘
3

5

9
=

; , (18a)

�k
i = �k�1

i + ⇢
X

n2Ni

⇣
✓k
i � ✓k

n

⌘
, (18b)

where |Ni| is the cardinality of Ni. The auxiliary variable #in can be written as a function
of ✓i and then canceled out. Interested readers are referred to (Shi et al., 2014) for detailed
derivation. The learning algorithm DKLA is outlined in Algorithm 1. Note that the random
features need to be common to all agents, hence, in step 1, we restrict them to be drawn
according to a common random seed. Algorithm 1 is fully decentralized since the updates
of ✓i and �i depend only on local and neighboring information.

3.3 COKE: Communication-censored decentralized kernel learning

From Sections 3.1 and 3.2, we can see that decentralized kernel learning in the RF space
under the consensus optimization framework has much reduced computational complexity,
thanks to the RF mapping technique that transforms the learning model into a smaller
RF space. In this subsection, we consider the case when the communication resource is
limited and we aim to further reduce the communication cost of DKLA. To start, we notice
that in Algorithm 1, each agent i (i 2 N ) maintains 2 + |Ni| local variables at iteration k,

10
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Algorithm 1 DKLA Run at Agent i
Require: Kernel , the number of random features L, and � to control over-fitting; ini-

tialize local variables to ✓0
i = 0, �0

i = 0; set step size ⇢ > 0;
1: Draw L i.i.d. samples {!l}

L
l=1 from p(!) according to a common random seed.

2: Construct {�L(xi,t)}
Ti
t=1 using the random features {!l}

L
l=1 via (12) or (13).

3: for iterations k = 1, 2, · · · do

4: Update local variable ✓k
i by (18a);

5: Transmit ✓k
i to all neighbor n (n 2 Ni) and receive ✓k

n from all neighbor n;
6: Update local dual variable �k

i by (18b).
7: end for

i.e., its local primal variable ✓k
i , local dual variable �k

i and |Ni| state variables ✓k
n received

from its neighbors. While the dual variable �k
i is kept locally for agent i, the transmission

of its updated local variable ✓k
i to its one-hop neighbors happens in every iteration, which

consumes a large amount of communication bandwidth and energy along iterations for large-
scale networks. In order to improve the communication e�ciency, we develop the COKE
algorithm by employing a censoring function at each agent to decide if a local update is
informative enough to be transmitted.

To evaluate the importance of a local update at iteration k for agent i (i 2 N ), we
introduce a new state variable ✓̂k�1

i to record agent i’s latest broadcast primal variable up
to time k� 1. Then, at iteration k, we define the di↵erence between agent i’s current state
✓k
i and its previously transmitted state ✓̂k�1

i as

⇠ki = ✓̂k�1
i � ✓k

i , (19)

and choose a censoring function as

Hi(k, ⇠
k
i ) = k⇠ki k2 � hi(k), (20)

where {hi(k)} is a non-increasing non-negative sequence. A typical choice for the censoring
function is Hi(k, ⇠ki ) = k⇠ki k2 � vµk, where µ 2 (0, 1) and v > 0 are constants. When
Hi(k, ⇠ki ) < 0, ✓k

i is deemed not informative enough, hence will be censored and will not be
transmitted to its neighbors.

When executing the COKE algorithm, each agent i maintains 3+ |Ni| local variables at
each iteration k. Comparing with the DKLA update in (18), the additional local variable
is the state variable ✓̂k

i that records its latest broadcast primal variable up to time k.
Moreover, the |Ni| state variables from its neighbors are ✓̂k

n that record the latest received
primal variables from its neighbors, instead of the timely updated and broadcast variables
✓k
n of its neighbors n 2 Ni. Though each agent still computes local updates at every step,

its transmission to neighbors does not always occur, but is determined by the censoring
criterion (20). To be specific, at each iteration k, if Hi(k, ⇠ki ) � 0, then ✓̂k

i = ✓k
i , and

agent i is allowed to transmit its local primal variable ✓k
i to its neighbors. Otherwise,

✓̂k
i = ✓̂k�1

i and no information is transmitted. If agent i receives ✓k
n from any neighbor n,

then that neighbor’s state variable kept by agent i becomes ✓̂k
n = ✓k

n, otherwise, ✓̂
k
n = ✓̂k�1

n .

11
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Algorithm 2 COKE Run at Agent i

Require: Kernel , the number of random features L, the censoring thresholds {hi(k)},
and � to control over-fitting; initialize local variables to ✓0

i = 0, ✓̂0
i = 0, �0

i = 0; set
step size ⇢ > 0;

1: Draw L i.i.d. samples {!l}
L
l=1 from p(!) according to a common random seed.

2: Construct {�L(xi,t)}
Ti
t=1 using the random features {!l}

L
l=1 via (12) or (13).

3: for iterations k = 1, 2, · · · do

4: Update local variable ✓k
i by (21a);

5: Compute ⇠ki = ✓̂k�1
i � ✓k

i ;

6: If Hi(k, ⇠ki ) = k⇠ki k2 � hi(k) � 0, transmit ✓k
i to neighbors and let ✓̂k

i = ✓k
i ; else do

not transmit and let ✓̂k
i = ✓̂k�1

i ;

7: If receives ✓k
n from neighbor n, let ✓̂k

n = ✓k
n; else let ✓̂k

n = ✓̂k�1
n ;

8: Update local dual variable �k
i by (21b).

9: end for

Consequently, agent i’s local parameters are updated as follows:

✓k
i := argmin

✓i

8
<

:R̂i(✓i) + ⇢|Ni|k✓ik
2
2 + ✓>

i

2

4�k�1
i � ⇢

X

n2Ni

⇣
✓̂k�1
i + ✓̂k�1

n

⌘
3

5

9
=

; , (21a)

�k
i = �k�1

i + ⇢
X

n2Ni

⇣
✓̂k
i � ✓̂k

n

⌘
, (21b)

with a censoring step conducted between (21a) and (21b). We outline the COKE algorithm
in Algorithm 2.

The key feature of COKE is that agent i’s local variables ✓k
i and �k

i are updated all
the time, but the transmission of ✓k

i occurs only when the censoring condition is met. By
skipping unnecessary transmissions, the communication e�ciency of COKE is improved. It
is obvious that large {hi(k)} saves more communication but may lead to divergence from the
optimal solution ✓⇤ of (16), while small {hi(k)} does not contribute much to communication
saving. Noticeably, DKLA is a special case of COKE when the communication censoring
strategy is absent by setting hi(k) = 0, 8i, k.

4. Theoretical Guarantees

In this section, we perform theoretical analyses to address two questions related to the
convergence properties of DKLA and COKE algorithms. First, do they converge to the
globally optimal point, and if so, at what rate? Second, what is their achieved generalization
performance in learning? Since DKLA is a special case of COKE, the analytic results
of COKE, especially the second one, extend to DKLA straightforwardly. For theoretical
analysis, we make the following assumptions.

Assumption 1 The network with topology G = (N , C,A) is undirected and connected.

12
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Assumption 2 The local cost functions R̂i are strongly convex with constants mR̂i
> 0

such that 8i 2 N , hrR̂i(✓̃a)�rR̂i(✓̃b), ✓̃a� ✓̃bi � mR̂i
k✓̃a� ✓̃bk22, for any ✓̃a, ✓̃b 2 RL. The

minimum convexity constant is mR̂ := minimR̂i
. The gradients of the local cost functions

are Lipschitz continuous with constants MR̂i
> 0, 8 i. That is, krR̂i(✓̃a) � rR̂i(✓̃b)k2 

MR̂i
k✓̃a � ✓̃bk2 for any agent i given any ✓̃a, ✓̃b 2 RL. The maximum Lipschitz constant is

MR̂ := maxiMR̂i
.

Assumption 3 The number of training samples of di↵erent agents is of the same order of
magnitude, that is, maxi Ti�mini Ti

mini Ti
< 10, 8i 2 N .

Assumption 4 There exists fH 2 H, such that for all estimators f 2 H, E(fH)  E(f),
where E(f) := Ep [`(f(x), y)] is the expected risk to measure the generalization ability of the
estimator f .

Assumption 1 and 2 are standard for decentralized optimization over decentralized net-
works (Shi et al., 2014), Assumption 4 is standard in generalization performance analysis
of kernel learning (Li et al., 2018), and Assumption 3 is enforced to exclude the case of
extremely unbalanced data distributed over the network.

4.1 Linear convergence of DKLA and COKE

We first establish that DKLA enables agents in the decentralized network to reach consensus
on the prediction function at a linear rate. We then show that when the censoring func-
tion is properly chosen and the penalty parameter satisfies certain conditions, COKE also
guarantees that the individually learned functional on the same sample linearly converges
to the optimal solution.
Theorem 1 [Linear convergence of DKLA] Initialize the dual variables as �0

i = 0, 8i,
with Assumptions 1 - 3, the learned functional at each agent through DKLA is R-linearly
convergent to the optimal functional f̂✓⇤(x) := (✓⇤)>�L(x) for any x 2 X , where ✓⇤ denotes
the optimal solution to (16) obtained in the centralized case. That is,

lim
k!1

f̂✓k
i
(x) = f̂✓⇤(x), 8i. (22)

Proof. See Appendix A.
Theorem 2 [Linear convergence of COKE] Initialize the dual variables as �0

i = 0, 8i,
set the censoring thresholds to be h(k) = vµk, with v > 0 and µ 2 (0, 1), and choose the
penalty parameter ⇢ such that

0 < ⇢ < min

(
4mR̂

⌘1
,
(⌫ � 1)�̃2

min(S�)

⌫⌘3�̃2
max(S+)

,

✓
⌘1
4

+
⌘2�̃2

max(S+)

8

◆�1
 
mR̂ �

⌘3⌫M2
R̂

�̃2
min(S�)

!)
, (23)

where ⌘1 > 0, ⌘2 > 0, ⌘3 > 0 and ⌫ > 1 are arbitrary constants, mR̂ and MR̂ are the
minimum strong convexity constant of the local cost functions and the maximum Lipschitz
constant of the local gradients, respectively. �̃max(S+) and �̃min(S�) are the maximum
singular value of the unsigned incidence matrix S+ and the minimum non-zero singular value
of the signed incidence matrix S� of the network, respectively. Then, with Assumptions 1
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- 3, the learned functional at each agent through COKE is R-linearly convergent to the
optimal one f̂✓⇤(x) := (✓⇤)>�L(x) for any x 2 X , where ✓⇤ denotes the optimal solution
to (16) obtained in the centralized case. That is,

lim
k!1

f̂✓k
i
(x) = f̂✓⇤(x), 8i. (24)

Proof. See Appendix A.
Remark 1. It should be noted that the kernel transformation with RF mapping is essential
in enabling convex consensus formulation with convergence guarantee. For example, in a
regular optimization problem with a local cost function (y � f(x))2, even if it is quadratic,
the nonlinear function f(x) inside destroys the convexity. In contrast, with RF mapping,
f(x) of any form is expressed as a linear function of ✓, and hence the local cost function
is guaranteed to be convex. For decentralized kernel learning, many widely-adopted loss
functions result in (strongly) convex local objective functions in the RF space, such as the
quadratic loss in a regression problem and logistic loss in a classification problem.
Remark 2. For Theorem 2, notice that choosing larger v and µ in the design of the
censoring thresholds in COKE leads to less communication per iteration at the expense of
possible performance degradation, whereas smaller v and µ may not contribute much to
communication saving. However, it is challenging to acquire an explicit tradeo↵ between
communication cost and steady-state accuracy, since the designed censoring thresholds do
not have an explicit relationship with the update of the model parameter.

The above theorems establish the exact convergence of the functional learned in the
multi-agent system for the decentralized kernel regression problem via DKLA and COKE.
Di↵erent from previous works (Koppel et al., 2018; Shin et al., 2018), our analytic results are
obtained by converting the non-parametric data-dependent learning model into a parametric
data-independent model in the RF space and solved under the consensus optimization
framework. In this way, we not only reduce the computational complexity of the standard
kernel methods and make the RF-based kernel methods scalable to large-size datasets, but
also protect data privacy since no raw data exchange among agents is required and the
RF mapping is not one-to-one mapping. RF mapping is crucial in our algorithms, with
which we are able to show the linear convergence of the functional by showing the linear
convergence of the iteratively updated decision variables in the RF space; see Appendix A
for more details.

4.2 Generalization property of COKE

The ultimate goal of decentralized learning is to find a function that generalizes well for
the ensemble of all data from all agents. To evaluate the generalization property of the
predictive function learned by COKE, we are then interested in bounding the di↵erence
between the expected risk of the predictive function learned by COKE at the k-th iteration,
defined as E(f̂k) :=

PN
i=1 Ei(f̂✓k

i
) :=

PN
i=1 Ep[(y � (✓k

i )
>�L(x))2], and the expected risk

E(fH) in the RKHS. This is di↵erent from bounding the approximation error between the
kernel  and the approximated ̂L by L random features as in the literature (Rahimi and
Recht, 2008; Sutherland and Schneider, 2015; Sriperumbudur and Szabó, 2015). As DKLA
is a special case of COKE, the generalization performance of COKE can be extended to
DKLA straightforwardly.
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To illustrate our finding, we focus on the kernel regression problem whose loss function
is least squares, i.e., `(y, f(x)) = (y � f(x))2. With RF mapping, the objective function
(16) of the regression problem can be formulated as

R̂(✓) =
NX

i=1

R̂i(✓) =
NX

i=1

✓
1

Ti
kyi � (�i

L)
>✓k22 +

�

N
k✓k22

◆
, (25)

where yi = [yi,1, . . . , yi,Ti ]
>
2 RTi⇥1, �i

L = [�L(xi,1), . . . ,�L(xi,Ti)] 2 RL⇥Ti , and �L(xi,t)
is the data mapped to the RF space.

The optimal solution of (25) is given in closed form by

✓⇤ = (�̃>
�̃+ �I)�1

�̃
>
ỹ, (26)

where �̃ = [�̃1
L, . . . , �̃

N
L ]> 2 RT⇥L with �̃

i
L = 1

p
Ti
�

i
L, 8i 2 N , and ỹ = [ỹ1; . . . ; ỹN ] 2

RT⇥1 with ỹi =
1

p
Ti
yi, 8i 2 N . The optimal prediction model is then expressed by

f̂✓⇤(x) = (✓⇤)>�L(x). (27)

In the following theorem, we give a general result of the generalization performance of
the predictive function learned by COKE for the kernel regression problem, which is built
on the linear convergence result given in Theorem 3 and taking into account of the number
of random features adopted.
Theorem 3 Let �K be the largest eigenvalue of the kernel matrix K constructed by all data,
XT , and choose the regularization parameter � < �K/T so as to control overfitting. Under
the Assumptions 1 - 4, with the censoring function and other parameters given in Theorem
2, for all �p 2 (0, 1) and kfkH  1, if the number of random features L satisfies

L �
1

�
(
1

✏2
+

2

3✏
) log

16d�K
�p

,

then with probability at least 1��p, the excess risk of E(f̂k) obtained by Algorithm 2 converges
to an upper bound, i.e.,

lim
k!1

(E(f̂k)� E(fH))  3�+O(
1

p
T
), (28)

where ✏ 2 (0, 1), and d�K := Tr(K(K+�T I)�1) is the number of e↵ective degrees of freedom
that is known to be an indicator of the number of independent parameters in a learning
problem (Avron et al., 2017).
Proof. See Appendix B.

Theorem 3 states the tradeo↵ between the computational e�ciency and the statistical
e�ciency through the regularization parameter �, e↵ective dimension d�K, and the number
of random features adopted. We can see that to bound the excess risk with a higher proba-
bility, we need more random features, which results in a higher computational complexity.
The regularization parameter is usually determined by the number of training data and
one common practice is to set � = O(1/

p
T ) for the regression problem (Caponnetto and
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De Vito, 2007). Therefore, with O(
p
T log d�K) features, COKE achieves a learning risk

of O(1/
p
T ) at a linear rate. We also notice that di↵erent sampling strategies a↵ect the

number of random features required to achieve a given generalization error. For example,
importance sampling is studied for the centralized kernel learning in RF space in (Li et al.,
2018). Interested readers are referred to (Li et al., 2018) and references therein.

5. Experiments

This section evaluates the performance of our COKE algorithm in regression tasks using
both synthetic and real-world datasets. Since we consider the case that data are only locally
available and cannot be shared among agents, the following RF-based methods are used to
benchmark our COKE algorithm.

CTA. This is a form of di↵usion-based technique where all agents first construct their RF-
mapped data {�L(xi,t)}

Ti
t=1, for t = 1, . . . , Ti, 8i, using the same random features {!l}

L
l=1

as DKLA and COKE. Then at each iteration k, each agent i first combines information
from its neighbors, i.e., ✓n, 8n 2 Ni with its own parameter ✓i by aggregation. Then,
it updates its own parameter ✓i using the gradient descent method with the aggregated
information (Sayed, 2014). The cost function for agent i is given in (15). Note that this
method has not been formally proposed in existing works for RF-based decentralized kernel
learning with batch-form data, but we introduced it here only for comparison purpose. An
online version that deals with streaming data is available in (Bouboulis et al., 2018). The
batch version of CTA introduced here is expected to converge faster than the online version.

DKLA. Algorithm 1 proposed in Section 3.2 where ADMM is applied and the communi-
cation among agents happen at every iteration without being censored.

The performance of all algorithms is evaluated using both synthetic and real-world
datasets, where the entries of data samples are normalized to lie in [0, 1] and each agent uses
70% of its data for training and the rest for testing. The learning performance at each iter-
ation is evaluated using mean-squared-error (MSE) given by MSE(k) = 1

T

PN
i=1

PTi
t=1(yi,t�

(✓k
i )

>�L(xi,t))2. The decision variable ✓i for CTA is initialized as ✓0
i = 0, 8i as that in

DKLA and COKE. For COKE, it should be noted that the design of the censoring function
is crucial. For the censoring thresholds adopted in Theorem 2, choosing larger v and µ
to design the censor thresholds leads to less communication per iteration but may result
in performance degradation. For all simulations, the kernel bandwidth is fine-tuned for
each dataset individually via cross-validation. The parameters of the censoring function are
tuned to achieve the best learning performance at nearly no performance loss.

5.1 Synthetic dataset

In this setup, the connected graph is randomly generated with N = 20 nodes and 95 edges.
The probability of attachment per node equals to 0.3, that is, any pair of two nodes are
connected with a probability of 0.3. Each agent has Ti 2 (4000, 6000) data pairs generated
following the model yi,t =

P50
m=1 bm(cm,xi,t) + ei,t, where bm are uniformly drawn from

[0, 1], cm ⇠ N(0, I5), xi,t ⇠ N(0, I5), and ei,t ⇠ N(0, 0.1). The kernel  in the model is
Gaussian with a bandwidth � = 5.
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5.2 Real datasets

To further evaluate our algorithms, the following popular real-world datasets from UCI
machine learning repository are chosen (Asuncion and Newman, 2007).
Tom’s hardware. This dataset contains T = 11000 samples with xt 2 R96 whose features
include the number of created discussions and authors interacting on a topic and yt 2 R
representing the average number of displays to a visitor about that topic (Kawala et al.,
2013).
Twitter. This dataset consists of T = 13800 samples with xt 2 R77 being a feature vector
reflecting the number of new interactive authors and the length of discussions on a given
topic, etc., and yt 2 R representing the average number of active discussion on a certain
topic. The learning task is to predict the popularity of these topics. We also include a
larger Twitter dataset for testing which has T = 98704 samples (Kawala et al., 2013).
Energy. This dataset contains T = 19735 samples with xt 2 R28 describing the humidity
and temperature in di↵erent areas of the houses, pressure, wind speed and viability outside,
while yt denotes the total energy consumption in the house (Candanedo et al., 2017).
Air quality. This dataset contains dataset collects T = 9358 samples measured by a gas
multi-sensor device in an Italian city, where xt 2 R13 represents the hourly concentration
of CO, NOx, NO2, etc, while yt denotes the concentration of polluting chemicals in the
air (De Vito et al., 2008).

5.3 Parameter setting and performance analysis

For synthetic data, we adopt a Gaussian kernel with a bandwidth � = 1 for training and
use L = 100 random features for kernel approximation. Note that the chosen � di↵ers from
that of the actual data model. The censoring thresholds are h(k) = 0.95k, the regularization
parameter � and stepsize ⇢ of DKLA and COKE are set to be 5⇥10�5 and 10�2, respectively.
The stepsize of CTA is set to be ⌘ = 0.99, which is tuned to achieve the same level of learning
performance as COKE and DKLA at its fastest speed.

To show the performance of all algorithms on real datasets concisely and comprehen-
sively, we present the experimental results on the Twitter dataset with T = 13800 samples
by figures and record the experimental results on the remaining datasets by tables. For the
Twitter dataset with T = 13800 samples, we randomly split it into 10 mini-batches each
with Ti 2 (1200, 1400) data pairs while

P10
i=1 Ti = T . The 10 mini-batches are distributed

to 10 agents connected by a random network with 28 edges. We use 100 random features to
approximate a Gaussian kernel with a bandwidth � = 1 during the training process. The
parameters � and ⇢ are set to be 10�3 and 10�2, respectively. The censoring thresholds are
h(k) = 0.97k. The stepsize of CTA is set to be ⌘ = 0.99 to balance the learning performance
and the convergence speed.

In Fig.1, we show that the individually learned functional at each agent via COKE
reaches consensus to the optimal estimate for both synthetic and real datasets. In Fig. 2,
we compare the MSE performance of COKE, DKLA, and CTA. Both figures show that
COKE converges slower than DKLA due to the communications skipped by the censoring
step. However, the learning performance of COKE eventually is the same as DKLA. For
the di↵usion-based CTA algorithm, it converges the slowest. In Fig. 3, we show the MSE
performance versus the communication cost (in terms of the number of transmissions). As
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Figure 1: Functional convergence via COKE for synthetic data (Figure 1 (a)) and the real
dataset (Figure 1 (b)). The learned functionals of all distributed agents converge
to the optimal estimate where data are assumed to be centrally available.

Training error (MSE (10�3)) / Commun. cost Test error (MSE(10�3))
Iteration CTA DKLA COKE CTA DKLA COKE
k = 50 3.9/500 2.4/500 4.5/13 4.0 2.6 4.2
k = 100 3.3/1000 2.4/1000 2.6/100 3.4 2.6 2.8
k = 200 3.0/2000 2.3/2000 2.4/298 3.2 2.5 2.6
k = 500 2.7/5000 2.3/5000 2.3/902 2.9 2.5 2.5

k = 1000 2.5/10000 2.2/10000 2.2/4648 2.7 2.5 2.5

k = 1500 2.5/15000 2.2/15000 2.2/9648 2.7 2.5 2.5

k = 2000 2.4/20000 2.2/20000 2.2/14648 2.6 2.5 2.5

Table 1: MSE performance on the Twitter dataset (large), � = 1, L = 100, � = 10�3,
stepsize ⌘ = 0.99 for CTA, stepsize ⇢ = 10�2 for DKLA and COKE, censoring
thresholds h(k) = 0.5⇥0.98k. DKLA and COKE achieve better MSE performance
than CTA while COKE requires the least communication resource than DKLA.

CTA converges the slowest and communicates all the time, its communication cost is much
higher than that of DKLA, and thus we do not include it in Fig. 3 but rather focus on
the communication-saving of COKE over DKLA. We can see that to achieve the same level
of learning performance, COKE requires much less communication cost than DKLA. Both
the synthetic data and the real dataset show communication saving of around 50% in Fig.
3 for a given learning accuracy, which corroborate the communication-e�ciency of COKE.

The performance of all three algorithms on the rest four datasets is listed in Table 1 - 6.
All results show that COKE saves much communication (almost 50%) within a negligible
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Figure 2: MSE performance for synthetic data (Figure 2 (a)) and the real dataset (Fig-
ure 2 (b)). ADMM-based algorithms (COKE and DKLA) converge faster than
the di↵usion-based algorithm (CTA) for both synthetic data (Figure 2 (a)) and
the real dataset (Figure 2 (b)). Furthermore, DKLA and COKE achieve better
learning performance than CTA in terms of MSE on the real dataset.
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Figure 3: MSE performance versus communication cost for synthetic data (Figure 3 (a))
and the real dataset (Figure 3 (b)). Compared with DKLA, COKE achieves
around 50% communication saving on the same level of MSE performance for
both synthetic data (Figure 3 (a)) and the real dataset (Figure 3 (b)).
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Training error (MSE (10�4)) / Commun. cost Test error (MSE(10�4))
Iteration CTA DKLA COKE CTA DKLA COKE
k = 50 20.02/500 10.01/500 17.40/10 20.16 11.20 18.82
k = 100 16.6/1000 9.91/1000 10.67/112 17.09 11.10 11.86
k = 200 13.68/2000 9.90/2000 9.97/331 14.58 11.10 11.15
k = 500 11.19/5000 9.90/5000 9.90/1114 12.35 11.10 11.10

k = 1000 10.27/10000 9.90/10000 9.90/5600 11.47 11.10 11.10

k = 1500 10.01/15000 9.90/15000 9.90/10600 11.22 11.10 11.10

k = 2000 9.92/20000 9.90/20000 9.90/15600 11.13 11.10 11.10

Table 2: MSE performance on the Tom’s hardware dataset, � = 1, L = 100, � = 10�2,
stepsize ⌘ = 0.99 for CTA, stepsize ⇢ = 10�2 for DKLA and COKE, censoring
thresholds h(k) = 0.5⇥0.95k. DKLA and COKE achieve better MSE performance
than CTA while COKE requires the least communication resource than DKLA.

Twitter (large) Tom’s hardware
MSE (10�3) Commun. cost MSE (10�4) Commun. cost

CTA DKLA COKE CTA DKLA COKE
5 360 20 10 18 680 20 3

4 480 30 10 16 1020 30 22

3 1860 60 48 14 1610 60 28

2.8 3250 100 55 12 2880 110 51

2.6 6120 180 100 10 7950 250 128

2.3 - 1080 577 9.95 17620 640 361

2.2 - 5660 4428 9.90 - 1550 984

Table 3: MSE performance (training error) versus communication cost on the Twitter
dataset (large) and the Tom’s hardware dataset. For both datasets, COKE saves
around 50% communication resource than DKLA to achieve the same level of
learning performance.

learning gap from DKLA, and both DKLA and COKE require much less communication
resources than CTA. For example, the number of transmissions required to reach a training
estimation error of 2.3⇥10�3 on Twitter dataset by COKE is 577, which is only 53% of that
required by DKLA to reach the same level of learning performance. For Tom’s hardware
dataset, COKE requires 361 total transmissions to reach a learning error of 9.95 ⇥ 10�4,
which is 56.4% of DKLA and 0.02% of CTA. Note that much of the censoring occurs at
the beginning update iterations. While at the later stage, COKE nearly transmits all
parameters at every iteration since the censoring thresholds are smaller than the di↵erence
between two consecutive updates.
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Training error (MSE (10�3)) / Commun. cost Test error (MSE(10�3))
Iteration CTA DKLA COKE CTA DKLA COKE
k = 50 25.65/500 22.52/500 25.22/0 26.45 22.97 26.02
k = 100 24.88/1000 22.12/1000 23.65/57 25.57 22.50 24.2
k = 200 24.17/2000 21.81/2000 22.57/254 24.77 22.15 23.02
k = 500 23.40/5000 21.55/5000 21.88/987 23.92 21.86 22.22
k = 1000 22.84/10000 21.48/10000 21.51/5752 23.31 21.79 21.82
k = 1500 22.54/15000 21.47/15000 21.47/10752 22.97 21.78 21.78

k = 2000 22.35/20000 21.47/20000 21.47/15752 22.75 21.78 21.78

Table 4: MSE performance on the Energy dataset, � = 0.1, L = 100, � = 10�3, stepsize
⌘ = 0.99 for CTA, ⇢ = 10�2 for DKLA and COKE, censoring thresholds h(k) =
0.5⇥ 0.98k. DKLA and COKE achieve better MSE performance than CTA while
COKE requires the least communication resource.

Training error (MSE (10�3)) / Commun. cost Test error (MSE(10�3))
Iteration CTA DKLA COKE CTA DKLA COKE
k = 50 6.4/500 1.8/500 3.7/72 6.7 2.1 4.0
k = 100 4.5/1000 1.6/1000 2.2/172 4.8 1.8 2.5
k = 200 3.2/2000 1.4/2000 1.7/384 3.5 1.7 2.0
k = 500 2.2/5000 1.3/5000 1.3/2263 2.5 1.6 1.6

k = 1000 1.7/10000 1.2/10000 1.2/7263 2.0 1.6 1.6

k = 1500 1.6/15000 1.2/15000 1.2/12263 1.8 1.6 1.6

k = 2000 1.5/20000 1.2/20000 1.2/17263 1.8 1.6 1.6

Table 5: MSE performance on the Air quality dataset, � = 0.1, L = 200, � = 10�5,
stepsize ⌘ = 0.99 for CTA, ⇢ = 10�2 for DKLA and COKE, censoring thresholds
h(k) = 0.9⇥0.97k. DKLA and COKE achieve better MSE performance than CTA
while COKE requires the least communication resource than DKLA.
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Energy Air quality
MSE (10�3) Commun. cost MSE (10�3) Commun. cost

CTA DKLA COKE CTA DKLA COKE
25 860 20 11 5.0 810 60 49

24 2290 70 48 3.0 2290 180 81

23.5 4160 140 76 2.0 6010 360 211

23 7690 250 134 1.8 8160 490 285

22.5 14750 480 258 1.6 12300 750 424

22 - 1160 652 1.5 16190 1010 586

21.5 - 4950 4062 1.2 - 5990 5383

Table 6: MSE performance (training error) versus communication cost on the Energy
dataset and the Air quality dataset. For both datasets, COKE saves around 45%-
55% communication resource than DKLA to achieve the same level of learning
performance.

6. Concluding Remarks

This paper studies the decentralized kernel learning problem under privacy concern and
communication constraints for multi-agent systems. Leveraging the random feature map-
ping, we convert the non-parametric kernel learning problem into a parametric one in the
RF space and solve it under the consensus optimization framework by the alternating di-
rection method of multipliers. A censoring strategy is applied to conserve communication
resources. Through both theoretical analysis and simulations, we establish that the pro-
posed algorithms not only achieve linear convergence rate but also exhibit e↵ective gener-
alization performance. Thanks to the fixed-size parametric learning model, the proposed
algorithms circumvent the curse of dimensionality problem and do not involve raw data
exchange among agents. Hence, they can be applied in distributed learning that involve
big-data and o↵er some level of data privacy protection. To cope with dynamic environ-
ments and enhance the learning performance, future work will be devoted to decentralized
online kernel learning and multi-kernel learning.
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Appendix A. Proof of Theorem 1 and Theorem 2

Proof. As discussed in Section 3.2, solving the decentralized kernel learning problem in
the RF space (17) is equivalent to solving the problem (16). From (14), it is evident
that the convergence of the optimal functional f in (16) hinges on the convergence of the
decision variables ✓ in the RF space. Since in the RF space, the decision variables are data-
independent, the convergence proof of DKLA boils down to proving the convergence of a
convex optimization problem solved by ADMM. However, the convergence proof of COKE
is nontrivial because of the error caused by the outdated information introduced by the
communication censoring strategy. Our proof for both theorems consists of two steps. The
first step is to show linear convergence of decision parameters ✓ for DKLA via Theorem 4
and for COKE via Theorem 5 below, which are derived straightforwardly from (Shi et al.,
2014) and (Liu et al., 2019), respectively. The second step is to show how the convergence
of ✓ translates to the convergence of the learned functional, which are the same for both
algorithms.

Compared to (Shi et al., 2014) and (Liu et al., 2019) that deal with general optimization
problems for parametric learning, this work focuses on specific decentralized kernel learning
problem which is more challenging in both solution development and theoretical analysis.
By leveraging the RF mapping technique, we successfully develop the DKLA algorithm and
the COKE algorithm. Noticeably, a direct application of ADMM as in (Shi et al., 2014)
on decentralized kernel learning is infeasible without raw data exchanges. Moreover, we
analyze the convergence of the nonlinear functional to be learned and the generalization
performance of kernel learning in the decentralized setting. The analysis is built on the
work of (Shi et al., 2014) and (Liu et al., 2019) but goes further, and it is only attainable
because of the adoption of the RF mapping.

For both algorithms, the linear convergence of decision variables in the RF space is
based on matrix reformulation of (17). Define ⇥

⇤ := [✓⇤,✓⇤, . . . ,✓⇤]> 2 RN⇥L and ⇥⇤ :=
[#⇤,#⇤, . . . ,#⇤]> 2 RN⇥L be the optimal primal variables, and �⇤ be the optimal dual
variable. Then, for DKLA, Theorem 4 states that {⇥k

} (⇥k := [✓k
1 ,✓

k
2 , . . . ,✓

k
N ]> 2 RN⇥L)

is R-linear convergent to the optimal ⇥⇤. For detailed proof, see (Shi et al., 2014).
Theorem 4 [Linear convergence of decision variables in DKLA] For the optimiza-
tion problem (16), initialize the dual variables as �0

i = 0, 8i, with Assumptions 1 - 2, then
{⇥

k
} is R-linearly convergent to the optimal ⇥⇤ when k goes to infinity following from

k⇥
k
�⇥

⇤
k
2
F 

1

mR̂


⇢k⇥k�1

�⇥⇤
k
2
F +

1

⇢
k�k�1

� �⇤
k
2
F

�
, (29)

where {(⇥k,�k)} is Q-linearly convergent to its optimal {(⇥⇤,�⇤)}:

⇢k⇥k
�⇥⇤
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2
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1
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k�k
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2
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(30)

with

�d = min

(
(⌫ � 1)�̃2

min(S�)

⌫�̃2
max(S+)

,
mR̂

⇢
4 �̃

2
max(S+) +

⌫
⇢M

2
R̂
�̃2
min(S�)

)
,

where ⌫ > 1 is an arbitrary constant, �̃max(S+) is the maximum singular value of the
unsigned incidence matrix S+ of the network, and �̃2

min(S�) is the minimum non-zero sin-
gular value of the signed incidence matrix S� of the network, mR̂ and MR̂ are the minimum
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strong convexity constant of the local cost functions and the maximum Lipschitz constant of
the local gradients, respectively. The Q-linear convergence rate of {(⇥k,�k)} to {(⇥⇤,�⇤)}
satisfies

rc 

r
1

1 + �d
. (31)

To achieve linear convergence of decision variables in COKE, choosing appropriate cen-
soring functions is crucial. Moreover, the penalty parameter ⇢ also needs to satisfy certain
conditions, see Theorem 5 for details (Liu et al., 2019).
Theorem 5 [Linear convergence of decision variables in COKE] For the optimiza-
tion problem (16) with strongly convex local cost functions whose gradients are Lipschitz
continuous, initialize the dual variables as �0

i = 0, 8i, set the censoring thresholds to be
h(k) = vµk, with v > 0 and µ 2 (0, 1), and choose the penalty parameter ⇢ such that

0 < ⇢ < min

(
4mR̂

⌘1
,
(⌫ � 1)�̃2

min(S�)

⌫⌘3�̃2
max(S+)

,

✓
⌘1
4

+
⌘2�̃2

max(S+)

8

◆�1
 
mR̂ �

⌘3⌫M2
R̂

�̃2
min(S�)

!)
, (32)

where ⌘1 > 0, ⌘2 > 0, ⌘3 > 0 and ⌫ > 1 are arbitrary constants, mR̂ and MR̂ are the
minimum strong convexity constant of the local cost functions and the maximum Lipschitz
constant of the local gradients, respectively. �̃max(S+) and �̃2

min(S�) are the maximum
singular value of the unsigned incidence matrix S+ and the minimum non-zero singular
value of the signed incidence matrix S� of the network, respectively. Then, {⇥

k
} is R-

linearly convergent to the optimal ⇥⇤ when k goes to infinity following from.
Remark 3. For the kernel ridge regression problem (25), the minimum strong convexity
constant of the local cost functions and the maximum Lipschitz constant of the local gra-
dients are mR̂ := mini �̃2

min(
1
Ti
�

i
L(�

i
L)

> + 2�
N I) and MR̂ := maxi �̃2

max(
1
Ti
�

i
L(�

i
L)

> + 2�
N I),

respectively.
With the convergence of decision variables in the RF space given in Theorem 4 and

Theorem 5, the second step is to prove the linear convergence of the learned functional
f̂✓k

i
(x) to the optimal f̂✓⇤(x), which is straightforward for both algorithms.

Denote f̂⇥k(x) = [f̂✓k
1
(x), . . . , f̂✓k

N
(x)]> = ⇥

k�L(x) and f̂⇥⇤(x) = [f̂✓⇤(x), . . . , f̂✓⇤(x)]> =

⇥
⇤�L(x), then we have

kf̂⇥k(x)� f̂⇥⇤(x)k2 = k⇥
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(33)

where the second inequality comes from the fact that k�L(x)k2  1 with the adopted RF
mapping.

For DKLA, we have

kf̂⇥k(x)� f̂⇥⇤(x)k2  k⇥
k
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. (34)

Therefore, the Q-linear convergence of {⇥k,�k
} to the optimal (⇥⇤,�⇤) translates to the R-

linear convergence of {f̂⇥k(x)}. Similarly, the R-linear convergence of {⇥k
} to the optimal
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⇥
⇤ of COKE can be translated from the Q-linear convergence of {⇥k,�k

} to the optimal
(⇥⇤,�⇤), see Liu et al. (2019) for detailed proof.

It is then straightforward to see that the individually learned functionals converge to
the optimal one when k goes to infinity, that is, for i 2 N ,

lim
k!1

|f̂✓k
i
(x)� f̂✓⇤(x)| = lim

k!1

|(✓k
i )

>�L(x)� (✓⇤)>�L(x)|

 lim
k!1

k✓k
i � ✓⇤

k2k�L(x)k2
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k!1

k✓k
i � ✓⇤

k2

= 0.

(35)

Appendix B. Proof of Theorem 3

Proof. The empirical risk (6) to be minimized for the kernel regression problem in the
RKHS is

min
↵2RT

R̂(↵) =
NX

i=1

R̂i(↵) =
NX

i=1

✓
1

Ti
kyi �K

>

i ↵k
2
2 + �i↵

>
K↵

◆
, (36)

where yi = [yi,1, . . . , yi,Ti ]
>
2 RTi⇥1, the matrices Ki 2 RT⇥Ti and K 2 RT⇥T are used to

store the similarity of the total data and data from agent i, and the similarity of all data,
respectively, with the assumption that all data are available to all agents. The optimal
solution is given in closed form by

↵⇤ = (K̃>
K̃+ �K)�1

K̃ỹ, (37)

where K̃ = [K̃1, . . . , K̃N ] 2 RT⇥T with K̃i =
1

p
Ti
Ki, 8i 2 N , ỹ = [ỹ1; . . . ; ỹN ] 2 RT⇥1 with

ỹi =
1

p
Ti
yi, 8i 2 N , and � =

PN
i=1 �i. Denote the predicted values on the training examples

using ↵⇤ as f
i
↵⇤ 2 RTi for node i and the overall predictions as f↵⇤ = [f1↵⇤ ; . . . ; fN↵⇤ ] 2 RT .

In the corresponding RF space, we can denote the predicted values obtained for node i by
✓⇤ in (26) as f i✓⇤ 2 RTi and the overall prediction by f✓⇤ = [f1✓⇤ ; . . . ; fN✓⇤ ] 2 RT .

To prove Theorem 3, we start by customizing several lemmas and theorems from the
literature, which facilitate proving our main results.

Definition 1 (Bartlett and Mendelson, 2002, Definition 2) Let {xq}
Q
q=1 be i.i.d samples

drawn from the probability distribution pX . Let F be a class of functions that map X to R.
Define the random variable

R̂Q(F) := E✏

2

4sup
f2F

������
2

Q

QX

q=1

✏qf(xq)

������
|x1, . . . ,xQ

3

5 , (38)

where {✏q}
Q
q=1 are i.i.d. {±1}-valued random variables with P(✏q = 1) = P(✏q = �1) = 1

2 .
Then, the Rademacher complexity of F is defined as

RQ(F) := E
h
R̂Q(F)

i
. (39)
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Rademacher complexity is adopted in machine learning and theory of computation to
measure the richness of a class of real-valued functions with respect to a probability distri-
bution. Here we adopt it to measure the richness of functions defined in the RKHS induced
by the positive definite kernel  with respect to the sample distribution p.

Lemma 2 (Bartlett and Mendelson, 2002, Lemma 22) Let H be a RKHS associated with
a positive definite kernel  that maps X to R. Then, we have R̂Q(H)  2

Q

p
Tr(K), where

K is the kernel matrix for kernel  over the i.i.d. sample set {xq}
Q
q=1. Correspondingly, the

Rademacher complexity satisfies RQ(H)  2
QE
hp

Tr(K)
i
.

The next theorems state that the generalization performance of a particular estimator
in H not only depends on the number of data points, but also depends on the complexity
of H.
Theorem 6 (Bartlett and Mendelson, 2002, Theorem 8, Theorem 12) Let {xq, yq}

Q
q=1 be

i.i.d samples drawn from the distribution p defined on X ⇥ Y. Assume the loss function
` : Y ⇥R ! [0, 1] is Lipschitz continuous with a Lipschitz constant M`. Define the expected
risk for all f 2 H be E(f) = Ep [`(f(x), y)], and its corresponding empirical risk be Ê(f) =
1
Q

PQ
q=1 `(yq, f(xq)). Then, for �p 2 (0, 1), with probability at least 1 � �p, every f 2 H

satisfies

E(f)  Ê(f) +RQ(˜̀�H) +

s
8 log(2/�p)

Q
, (40)

where ˜̀�H = {(x, y) ! `(y, f(x))� `(y, 0)|f 2 H}.
Theorem 7 (Bartlett and Mendelson, 2002, Theorem 12) If ` : Y ⇥R ! [0, 1] is Lipschitz
with constant M` and satisfies `(0) = 0, then RQ(˜̀�H)  2M`RQ(H).

Lemma 3 (Li et al., 2018, Modified Proposition 1) For the RKHS induced by the kernel
 with expression (10), define Ĥ

k := {f̂k : f̂k = (✓k)>�L(x) =
PL

l=1 ✓
k
l �(x,!l), then we

have 8f̂k
2 Ĥ

k, kf̂k
k
2
Ĥk  k✓k

k
2
2, where Ĥ

k is the RKHS of functions f̂k at the k-th step.

The kernel that induces Ĥ
k is the approximated kernel ̂L defined in (11).

Lemma 4 (Li et al., 2018, Lemma 6) For the decentralized kernel regression problem
defined in Section 2, let f↵⇤, f✓⇤ be the predictions obtained by (37) and (26), respectively.
Then, we have

hy � f↵⇤ , f✓⇤ � f↵⇤i = 0. (41)

Theorem 8 (Li et al., 2018, Modified Theorem 5) For the decentralized kernel regression
problem defined in Section 2, let �K be the largest eigenvalue of the kernel matrix K, and
choose the regularization parameter � < �K/T so as to control overfitting. Then, for all
�p 2 (0, 1) and kfkH  1, if the number of random features L satisfies

L �
1

�
(
1

✏2
+

2

3✏
) log

16d�K
�p

,
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then with probability at least 1� �p, the following equation holds

sup
kfkH1

inf
k✓k

p
2/L

1

T
kfx � f✓⇤k

2
2  2�, (42)

where fx 2 RT is the predictions evaluated by fH on all samples and ✏ 2 (0, 1).

With the above lemmas and theorems, we are ready to prove Theorem 3, which relies
on the following decomposition:

E(f̂k)� E(fH) = E(f̂k)� Ê(f̂k)| {z }
(1) estimation error

+ Ê(f̂k)� Ê(f̂✓⇤)| {z }
(2) convergence error

+ Ê(f̂✓⇤)� Ê(f̂↵⇤)| {z }
(3) approximation error of RF mapping

+ Ê(f̂↵⇤)� E(f̂↵⇤)| {z }
(4) estimation error

+ E(f̂↵⇤)� E(fH)| {z }
(5) approximation error of kernel representation

,

(43)

where E(f̂k), Ê(f̂k), E(f̂✓⇤), Ê(f̂✓⇤), Ê(f̂↵⇤), E(f̂↵⇤) are defined as follows for the kernel
regression problem:

E(f̂k) :=
NX

i=1

Ei(f̂✓k
i
) =

NX

i=1

Ep[(y � (✓k
i )

>�L(x))
2] := Ep[kyN ��N⇥̃

k
k
2
2],
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3

75 2 RN⇥NL, �̃B =

2

64
(�̃1

L)
>

· · · 0

...
. . .

...
0 · · · (�̃N

L )>

3

75 2

RT⇥NL, ⇥̃k = [✓k
1 ; . . . ;✓

k
i ] 2 RNL, and ⇥̃

⇤ = [✓⇤; . . . ;✓⇤] 2 RNL.

Then, we upper bound the excessive risk of E(f̂k) learned by COKE by upper bounding
the decomposed five terms. For term (1), for �p1 2 (0, 1), with probability at least 1� �p1 ,
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we have

E(f̂k)� Ê(f̂k)  2M`1RT (˜̀1 � Ĥ
k) +

r
8 log(2/�p1)

T

 2M`1RT (Ĥ
k) +

r
8 log(2/�p1)

T


4M`1

T
E[Tr(K̂)] +

r
8 log(2/�p1)

T


4M`1

T

p

T +

r
8 log(2/�p1)

T

=
C1
p
T
,

(44)

where C1 := 4M`1 +
p
8 log(2/�p1), and M`1 is the Lipschitz constant for loss function

`1(f̂✓k
i
, y) = ((✓k

i )
>�L(x) � y)2. The first inequality comes from Theorem 6, the second

inequality comes from Theorem 7, and the third inequality comes from Lemma 2. For
the last inequality, each element in the Gram matrix K̂ 2 RT⇥T is given by (11), thus
Tr(K̂)  Tk�L(x)k22  T with the adopted RF mapping such that k�L(x)k22  1.

Similarly, for term (4), with probability at least 1 � �p2 for �p2 2 (0, 1), the following
holds,

Ê(f̂↵⇤)� E(f̂↵⇤)  2M`2RT (˜̀2 �H) +

r
8 log(2/�p2)

T

 2M`2RT (H) +

r
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r
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T
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p
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r
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T
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p
T
,

(45)

where C2 := 4M`2 +
p

8 log(2/�p2), and M`2 is the Lipschitz constant for the loss function

`2(f̂↵⇤ , y) = ((↵⇤)>(x)� y)2.
For term (2), we have
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(46)

where C3 := k�̃
>

B(�̃B⇥̃
⇤
�ỹ)k2+

M`3
2 , and M`3 is the Lipschitz constant of the loss function

`3(ỹ, ⇥̃) = kỹ � �̃B⇥̃k
2
2. From Theorem 4 and 5, we conclude {⇥̃

k
} converges linearly to

⇥̃
⇤.
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Term (3) is the approximation error caused by RF mapping, which is bounded by
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2 + 2hỹ � f̃↵⇤ , f̃↵⇤ � f̃✓i

⌘
� kỹ � f̃↵⇤k

2
2

= inf
kf̃✓k

kf̃↵⇤ � f̃✓k
2
2 + 2inf

kf̃✓k
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2 + 2hỹ � f̃↵⇤ , f̃↵⇤ � f̃✓⇤i

= inf
kf̃✓k

kf̃↵⇤ � f̃✓k
2
2

 sup
kf̃xk

inf
kf̃✓k

kf̃x � f̃✓k
2
2

 2�,

(47)

where the seventh equality comes from Lemma 4 while the last inequality comes from
Theorem 8 with f̃x := [ 1

p
T1
f1; . . . ;

1
p
TN

fN ] 2 RT and fi = [f(xi,1), . . . , f(xi,Ti)]
>
2 RTi for

f 2 H.
To bound term (5) of the approximation error of the models in the RKHS H, we refer

to the following Lemma.

Lemma 5 (Rudi and Rosasco, 2017, Modified Lemma 5) For the kernel  that can be
represented as (10) and bounded RF mapping, that is k�(x,!)k  1 for any x 2 X , under
Assumption 4, the following holds for any regularization parameter � > 0,

E(f̂↵⇤)� E(fH) = kf̂↵⇤ � Pfpk
2
pX  (R�r)2.

In Lemma 5, fp is the ideal minimizer given the prior knowledge of the marginal distri-
bution pX of x and P is a projection operator on fp so that Pfp is the optimal minimizer
in RKHS. The parameter r 2 [1/2, 1) is equivalent to assuming fH exits, and R can take
value as either 1 or kf̂↵⇤kpX . Setting r = 1/2 and R = 1, we have

E(f̂↵⇤)� E(fH)  �. (48)

Combining (44)-(48) gives
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= 3�+O(
1
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(49)

and completes the proof.
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Alec Koppel, Garrett Warnell, Ethan Stump, and Alejandro Ribeiro. Parsimonious online
learning with kernels via sparse projections in function space. In 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4671–
4675. IEEE, 2017.

Alec Koppel, Santiago Paternain, Cédric Richard, and Alejandro Ribeiro. Decentralized
online learning with kernels. IEEE Transactions on Signal Processing, 66(12):3240–3255,
2018.

Trung Le, Vu Nguyen, Tu Dinh Nguyen, and Dinh Phung. Nonparametric budgeted stochas-
tic gradient descent. In Artificial Intelligence and Statistics, pages 654–572, 2016.

Boyue Li, Shicong Cen, Yuxin Chen, and Yuejie Chi. Communication-e�cient distributed
optimization in networks with gradient tracking. arXiv preprint arXiv:1909.05844, 2019a.

Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication e�cient dis-
tributed machine learning with the parameter server. In Advances in Neural Information
Processing Systems, pages 19–27, 2014.

Weiyu Li, Yaohua Liu, Zhi Tian, and Qing Ling. COLA: Communication-censored linearized
ADMM for decentralized consensus optimization. In 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5237–5241. IEEE, 2019b.

Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of
random Fourier features. arXiv preprint arXiv:1806.09178, 2018.

Yaohua Liu, Wei Xu, Gang Wu, Zhi Tian, and Qing Ling. Communication-censored ADMM
for decentralized consensus optimization. IEEE Transactions on Signal Processing, 67
(10):2565–2579, 2019.

Jing Lu, Steven CH Hoi, Jialei Wang, Peilin Zhao, and Zhi-Yong Liu. Large scale online
kernel learning. Journal of Machine Learning Research, 17(1):1613–1655, 2016.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-
e�cient learning of deep networks from decentralized data. arXiv preprint
arXiv:1602.05629, 2016.

Rangeet Mitra and Vimal Bhatia. The di↵usion-KLMS algorithm. In 2014 International
Conference on Information Technology, pages 256–259. IEEE, 2014.

32



COKE: Communication-Censored Decentralized Kernel Learning

Joao FC Mota, Joao MF Xavier, Pedro MQ Aguiar, and Markus Püschel. D-ADMM: A
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