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Abstract—Differential privacy provides strong privacy preservation guarantee in information sharing. As social network analysis has
been enjoying many applications, it opens a new arena for applications of differential privacy. This article presents a comprehensive
survey connecting the basic principles of differential privacy and applications in social network analysis. We concisely review the
foundations of differential privacy and the major variants. Then, we discuss how differential privacy is applied to social network
analysis, including privacy attacks in social networks, models of differential privacy in social network analysis, and a series of popular
tasks, such as analyzing degree distribution, counting subgraphs and assigning weights to edges. We also discuss a series of

challenges for future work.

Index Terms—Differential privacy; social network data analysis; global sensitivity; smooth sensitivity; local differential privacy;
dependent differential privacy; degree distributions; subgraph counting; edge weight query.

1 INTRODUCTION

As a reflection of real social life, social networking pro-
vides a vehicle to share a lot of private and sensitive infor-
mation [1]. For example, in many online social networking
sites, a user is required to provide personal information
such as name, gender, birthdate, education level, marital
status, personal photo, or even cell phone number. Besides,
user-generated contents such as texts, pictures, videos, and
geographical locations are also retained in the databases [2].
Such data is often shared with third parties for additional
business services, such as data analysis, targeted advertis-
ing, recommendations and evaluations on apps. If personal
private information is leaked or abused, involved individu-
als may become victims of intrusion attacks, such as spam-
ming mails, junk messages and telephone harassments. In
some extreme cases, damages to personal reputation, prop-
erties, or even physical injuries may be caused due to illegal
data disclosures [3].

The problem of data privacy protection was first put
forward by Dalenius [4] in the late 1970s, who pointed
out that the purpose of protecting private information in
a database is to prevent any user, including legitimate
users and potential attackers, from obtaining accurate in-
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formation about arbitrary individuals when accessing the
database. Following this principle, many privacy preserva-
tion models with strong operability were proposed, such as
k-anonymity [5], I-diversity [6], t-closeness [7] and («, k)-
anonymity [8]. However, each of those models provides
protection against only a specific type of attacks and cannot
defend against newly developed ones. A fundamental cause
of this deficiency lies in that the security of a privacy
preservation model relies on an assumption of some specific
background knowledge of an attacker. Nevertheless, it is
almost impossible to enumerate all possible types of back-
ground knowledge that an attacker may have. Therefore,
a privacy preservation model independent of background
knowledge is highly desirable.

Dwork developed differential privacy [18] to provide a
strong privacy guarantee and protect against the privacy
disclosure of statistical databases. Under differential pri-
vacy, query results of a dataset are insensitive to the change
of a single record. That is, whether a single record exists
in the dataset has little effect on the output distribution
of the analytical results. An attacker cannot obtain accurate
individual information by observing the results because the
risk of privacy disclosure caused by adding or deleting a sin-
gle record is kept within a user-specified, acceptable range.
Differential privacy assumes that an attacker can obtain all
information in a dataset except for the target record, which
can be regarded as the maximum background knowledge
that an attacker may have. It rests on a sound mathematical
foundation under certain assumptions as well as quantita-
tive evaluations. Differential privacy is a standard for quan-
tifying privacy risks rather than a single tool and has been
widely used in statistical estimations, data publishing, data
mining and machine learning. There exist many methods
and implementations to achieve differentially private data
analysis.

Differential privacy mainly aims at statistical problems
in databases at first. Because of its unique strengths, dif-
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TABLE 1
Summary on Previous Survey Articles

Topic ‘ Ref ‘ Focuses Major angles
9] Basic techniques to achieve differential privacy and applications Learning theory,
in statistical datasets. Statistical datasets
Differential [10] Differential privacy theory and application on two aspects of statistical Statistical data publishing and mining,
Privacy datasets, privacy preserving data release and privacy preserving data mining. | Applications of differential privacy
Techniques [11] A comprehensive survey on differential privacy techniques for Application and implementation
cyber-physical systems. ’ in cyber-physical systems
[12-15] Surveys on privacy risks and anonymization techniques for privacy Privacy risks,
preserving publishing of social network data. Anonymization in social networks
Privacy of [16] A survey on graph data anonymization, de-anonymization attacks Anonymization,
Social and de-anonymizability quantification. De-anonymization
Networks [17] A review on the privacy risks that exist in different aspects of Privacy risks,
social media data such as attribute and identity disclosure attacks. Social media

ferential privacy has been applied to social network data
analysis. A number of suitable adaptations of differentially
private social network analysis techniques have been de-
veloped [19-25]. Nevertheless, social networks post a series
of challenges for privacy preserving analysis. Generally
speaking, social networks can be modeled as graphs and
become very complicated at large scale; they often have
strong data correlations since social relationships among
users are not independent. Particularly, as demonstrated by
Liu et al. [26], the dependence among tuples in statistical
databases may seriously weaken the privacy guarantee that
current differential privacy mechanisms provide. This obvi-
ously also holds for social networks.

Therefore, there exist at least three fundamental chal-
lenges that should be tackled in order to apply differential
privacy to social network data analysis. First, we have to
adapt differential privacy from tabular data to network data.
Second, we have to address the issue of high sensitivity in
complex and correlated social network data. Last, we have
to explore the tradeoff between data utility and privacy
guarantee as too much noise added for differential privacy
guarantee may make query results useless.

Comprehensively understanding differential privacy
and its applications in social network data analysis is far
from trivial. There exist multiple relevant surveys on dif-
ferential privacy [9-11] and privacy preservation in social
network analysis [12-17], whose topics, focuses and major
angles are summarized in Table 1. One can see that these
existing surveys focus on either differential privacy in tab-
ular statistical databases or privacy preservation on social
network analysis. More specifically, most surveys on differ-
ential privacy focus on its theory, basic techniques and ap-
plications on statistical datasets, such as differential privacy
for various queries; those on privacy preservation in social
networks mainly focus on privacy risks and attacks, de-
anonymization and graph data anonymization techniques
in social networks. Although differential privacy in social
network analysis has become an active and influential area,
to the best of our knowledge, no existing survey is fully
dedicated to applications of differential privacy in social
network analysis.

This motivates our endeavor in this article, whose major
objective is to provide intuitive interpretations and illus-
trations on the important ideas in differential privacy, es-
pecially noise calibration to global sensitivity and smooth

uires IEEE permission. See http://www.ieee.o

sensitivity, and review the state-of-the-art applications of
differentially privacy in social network analysis addressing
the three major challenges mentioned above. In our survey,
we explore the interplay between differential privacy and
social network analysis by systematically introducing the
theoretical basis of differential privacy and comprehen-
sively reviewing differentially private methods on social
network analysis. Specifically, we summarize four models
of differential privacy definitions from the perspective of
social graphs including node privacy, edge privacy, out-
link privacy and partition privacy; then carefully divide
the existing differentially private methods for three most
widely-used graph analysis techniques (degree distribution,
counting subgraphs and social network weights) into dif-
ferent categories based on their technical strategies such as
post-processing, bounded-degree graph and random matrix
projection. Moreover, we summarize the research results of
local differential privacy on social network analysis, which
has gained significant attentions in recent years as a promis-
ing approach for privacy-preserving data publishing.

Conducting research on differential privacy in social net-
works needs real social network data. The Stanford Network
Analysis Platform (SNAP)! provides an extensive reposi-
tory [27]. It includes a few popular online social networks,
communication networks, citation networks, web and blog
datasets, and several other large network datasets.

The rest of the article is organized as follows. In Sec-
tion 2, we review the basic concepts of differential privacy
with detailed interpretations and examples. More specifi-
cally, we define and explain the differential privacy model,
describe its noise mechanisms calibrated to global sensitiv-
ity and smooth bounds of local Sensitivity, and present the
composition properties. For better elaboration, we exem-
plify popular functions such as count and median, and detail
the corresponding differentially private noise mechanisms.

In Section 3, we discuss two most popular variants of
differential privacy. Dependent differential privacy is proposed
to handle queries involving correlated database tuples. Local
differential privacy is a well-developed extension to central-
ized differential privacy.

In Section 4, to effectively demonstrate how to adapt
differential privacy from tabular data to social network
data, we first summarize the popular privacy attacks in

1. http:/ /snap.stanford.edu/data/
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TABLE 2 from a dataset. That is, when querying two almost identical

An Example Database datasets (differing by only one record, for example), the re-

sults are differentially privatized so that an attacker cannot

Name | Disease or Not glean any new knowledge about an individual with high

Ross 1 probability, i.e., whether or not a given individual is present

Monica 1 in the dataset cannot be guessed with useful confidence. In

Bob 0 the example shown in Table 2, to protect Alice’s privacy, one

Joey 0 can inject noises into answers to Q5(D) and Q4(D) so that

Alice 1 Q5(D) — Q4(D) and Alice’s value on the column ‘Disease

social networks, and then introduce the four models of
network privacy, namely node privacy, edge privacy, out-link
privacy, and partition privacy. We illustrate the definitions of
these graph differential privacy models and analyze their
applicability and complexity.

In Section 5, we provide an overview on differentially
private algorithms for analyzing degree distribution, counting
subgraphs and assigning weights to edges, the three most
widely-used graph analysis techniques under the social
network privacy models mentioned in Section 4. Our anal-
ysis demonstrates that most of them may not be able to
obtain good utility due to large network size, complex graph
structures and strong graph attribute correlations.

In Section 6, we summarize the state-of-the-art research
results in local differential privacy and point out the chal-
lenges of applying local differential privacy to social net-
work analysis.

In Section 7, we conclude this article and present several
open research challenges.

2 DIFFERENTIAL PRIVACY

In this section, we review the core concepts in differential
privacy. We exemplify popular query functions, such as
count and median, to illustrate the corresponding noise
mechanisms calibrated to global sensitivity and smooth sen-
sitivity.

2.1 Intuition

An individual’s information may be inferred even without
explicitly querying for the specific details. For example, con-
sider the data in Table 2, which is about whether a person
suffers from a disease. Suppose the database provides a
query interface @; (D), which returns the sum of the second
column, ‘Disease or Not’, of the first ¢ rows. The query
returns an aggregate and does not explicitly query about
any specific person.

Suppose an attacker somehow knows the background
knowledge that the record about Alice is the last row in
the database, and wants to infer whether or not Alice has
the disease. The attacker can issue two queries Q5(D) and
Q4(D), and compute Q5(D) — Q4(D). Alice has the disease
if the outcome is 1 and she does not have the disease other-
wise. This simple example shows how personal information
may be disclosed even when it is not explicitly queried. It
is not safe to release exact query answers even when data is
not published.

The intuition of differential privacy is to inject a con-
trolled level of statistical noise into query results to hide the
consequence of adding or removing an arbitrary individual

Authorized licensed use limited to: George Mason Univers|

or Not” are independent with high probability.

2.2 Definition of Differential Privacy

Let f be a query function to be evaluated on a dataset D.
We want to have an algorithm A running on the dataset D
and returning A(D) such that A(D) should be f(D) with
a controlled amount of random noise added. The goal of
differential privacy is to make A(D) close to f(D) as much
as possible to ensure data utility, and at the same time A(D)
should preserve the privacy of the entities in the dataset.

Differential privacy mainly addresses adversarial attacks
that queries datasets differing by only a small number of
entries. There are two flavors of differential privacy, namely
unbounded and bounded, which are distinguished by the defi-
nition of neighboring datasets [28]. For two datasets D and D',
if D’ can be obtained by adding or removing a tuple from
D, itis called unbounded. If D’ can be obtained by changing
the value of a tuple from D, then it is called bounded. That
is, bounded neighboring datasets have the same size while
the sizes of two unbounded neighboring datasets differ by
1. There exist slight differences in presenting the query
results for unbounded and bounded neighboring datasets,
but the ideas of designing and analyzing the differential
privacy mechanisms are the same. Therefore in this article,
we employ both types of neighboring datasets to illustrate
the introduced differential privacy mechanisms.

Definition 1 (Differential privacy [29]). A randomized al-
gorithm A is e—diﬁ‘erentiall}/ private if, for any two neigh-
boring datasets D and D’ and any subset S of possible
outputs of A4,

Pr[A(D) € S] < e“Pr[A(D") € 9],
where € > 0 is a parameter called privacy budget.

Privacy budget € in Definition 1 is often a small positive
real number that reflects the level of privacy preserva-
tion algorithm A can provide. For example, if ¢ = 0.01,
e%01 ~ 1.01; and 0.01-differential privacy ensures that
the distributions of A(D) and A(D’) are very similar and
almost indistinguishable. The smaller the value of ¢, the
higher the level of privacy preservation. A smaller € pro-
vides greater privacy preservation at the cost of lower data
accuracy since more noise has to be added. When ¢ = 0,
the level of privacy preservation reaches the maximum, that
is, “perfect” protection. In this case, the algorithm outputs
two results with indistinguishable distributions but the
corresponding results do not reflect any useful information
about the dataset. Therefore, the setting of € should balance
the tradeoff between privacy and data utility. In practical
applications, € usually takes small values such as 0.01, 0.1,
or In2, In3 [9]. Computing e-differential privacy may be
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challenging in some scenarios. To facilitate approximation,

a generalized notion of differential privacy is developed.

Definition 2 (Approximate differential privacy [30]). A ran-
domized algorithm A is (¢, 0)-differentially private if, for
any two neighboring datasets D and D’ and any subset
S of possible outputs of A4,

PrlA(D) € S] < ePr[A(D') € S| +6

When 6 > 0, (e )-differential privacy relaxes e-
differential privacy by a small probability controlled by
parameter J. In e-differential privacy, the ratio between the
output probability distributions for neighboring datasets D
and D’ is strictly bounded by e€; while in (¢, 0)-differential
privacy, a freedom to breach the strict e-differential pri-
vacy for certain low probability events is offered. That is,
in (e, d)-differential privacy, equation Pr[A(D) € S| <
e*Pr[A(D’) € S] holds with the probability at least 1 — 4.

Typically, ¢ is set to far smaller than the inverse of any
polynomial in the size n of the database (i.e., § < ﬁ) [31].
An equivalent formulation states that ¢ is cryptographically
negligible when 6 < n~«® [31]. Note that ﬁ can be
described as an upper bound of J since a value of § in the
order of p% is dangerous for privacy leakage.

Differential privacy can be achieved by adding an ap-
propriate amount of noise to query results, that is, A(D) =
f(D) + Z. Adding too much noise may hurt data util-
ity, while adding too little noise cannot provide sufficient
privacy guarantee. Sensitivity, which captures the largest
change to the query results caused by adding/deleting or
changing any record in the dataset, is the key parameter to
determine the magnitude of the added noise. Accordingly,
global sensitivity, local sensitivity, and smooth sensitivity
are defined under differential privacy.

2.3 Noise Calibration

How to add noise to query results f(D) and how much
noise should be added are the key to the noise mechanisms
in differential privacy. In this subsection, we introduce
two frameworks of differentially private noise mechanisms,
namely, noise calibration to global sensitivity and noise
calibration to smooth sensitivity.

2.3.1 Noise Calibration to Global Sensitivity

Definition 3 (Global sensitivity [18]). For f : D — R4,
the global sensitivity of f for all pairs of neighboring
datasets D and D' is

GS; = max 1(D) = £(D)].

where || - ||; denotes the L norm.

The global sensitivity measures the maximum change
of query results when modifying one tuple. It is related
only to the query function, and is independent from the
dataset. For some functions such as sum, count, and max,
the global sensitivity is easy to compute. For instance, the
global sensitivity for counting is 1 since only one tuple is
changed for any two neighboring datasets, and that for the
histogram query is 2, where the change is measured by
the L; norm between two histogram vectors. For some
other functions such as maximum diameter of k-means
clusters and subgraph counting, the global sensitivity may
be difficult to compute or be unbounded. For example, the

Authorized licensed use limited to: George Mason Univers|

median function can have a high global sensitivity. Take
f(D) = median(zy, T2, ..., z,) as an example, of which z;
is a real number in [0, M]. Assume that n is an odd number
and that x1, xo, .. ., x, are sorted. Thus, f(D) = x,,, where
”T'H. Consider the following extreme case,

D : {0,0,...,2m =0,Zm+1 =M,..., M},
D" : {0,0,...,%m-1 =0,z =M,...,M}.

We have f(D) = 0 and f(D’) = M. Therefore, the global
sensitivity for this function is M, which can be arbitrarily
large in general. As another example, the global sensitivity
of the triangle counting query of a graph is unbounded,
since the change of triangle counts depends on the graph
size.

The noise injected to achieve differential privacy can be
calibrated according to the global sensitivity of the query
function, that is, the maximum amount of change to the
query result when only one record is modified in the dataset.
For a function with a small global sensitivity, only a small
amount of noise needs to be added to cover up the impact
on query results when one record is changed. However,
when the global sensitivity is large, it is necessary to add
a substantial amount of noise to the output to ensure the
privacy guarantee, which leads to poor data utility. Two
noise mechanisms, namely Laplace mechanism [29] and
exponential mechanism [32], were respectively proposed for
numerical and categorical query results.

2.3.1.1 Laplace Mechanism: The Laplace distribu-

tion [33] (centered at w) with scale b is the distribution with
probability density function

h(e) = o exp(~ 22,

Denote by Lap(b) the Laplace distribution (centered at
0) with scale b. Dwork et al. [29] proposed the Laplace
mechanism, which states that for dataset D and function
f: D — R4 with global sensitivity GSy, A(D) = f(D)+ Z
is e-differentially private, where Z ~ Lap(GSy/e).

The Laplace mechanism is suitable for protecting nu-
merical results. Considering the counting function as an
example, since the global sensitivity of counting is GSy = 1,
if we choose ¢ = 0.1, the Laplace mechanism outputs
3 + Lap(10) for the specific D.

2.3.1.2 Exponential Mechanism: In some situations,
query results are categorical, such as finding the zip code of
the highest average income. McSherry et al. [32] developed
the exponential mechanism for the situations where the
“best” needs to be selected. Let Range be the output domain
of a query function and each value r € Range be an entity
object. In the exponential mechanism, the utility function
of the output value r, denoted by ¢(D,r), is employed to
evaluate the quality of 7. Given a randomized algorithm A
with input dataset D and output entity object r € Range,
let Aq be the global sensitivity of function ¢(D,r). Mc-
Sherry et al. [32] showed that, if an algorithm A selects
and outputs r from Range at a probability proportional to
exp( eqz(gl";) ), then A is e-differentially private.

Table 3 presents an example of the exponential mecha-
nism. Consider a basket D with three kinds of fruits: apple
(A), banana (B), and cherry (C). Algorithm A seeks to output
the kind of fruits that has the largest amount. Let ¢(D, A) =
count(A), q¢(D,B) = count(B), and ¢(D,C) = count(C).
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TABLE 3
An Example of Exponential Mechanism

Ttem q(D,r) Probability
(Ag=1) e=0 e=0.1 e=1
eap(L0) — 1, exp(85540) = &7, . eap(FXL0) = €”, .
A 10 Pr 2xL 7 A= 1 —1y3 Pr[output = Al = 5farrs Prloutput = Al = 5t
loutput = A1 = iz =13 | 186 - = 4509 x 1075 ‘
eap(2X20) = eap(%570) = ¢!, . exp( ) = e, o
B 20 S ax /T iput = B] = 51— ut = B] = ——<~
Pr [output = B] = 71+{+1 =1/3 iro[(;é;pm Bl 05 telqel® I:DTO[(())Z;%M B] eStelltels
0IX30y — 15 [EET ——
R it ) = s | it =€) =
Tloutpul = (| = omoriers "loutpul =L = Ftoc1s
Proutput = C] = l+7}+l =1/3 —0.506 05 el tel ~ oo0s S rel0fel

Thus Ag = 1, since adding or removing an apple, a banana
or a cherry causes a change of the utility function value to
be at most 1. Based on the exponential mechanism, one can
compute the probabilities of outputting A, B and C with a
given €, which are shown in Table 3.

The output probability of the item with a high utility
function is amplified when ¢ is large, such as when € = 1 in
the table. As e decreases, the utility differences of the items
become more and more smoothed and the probabilities of
the outputs tend to be equal. When ¢ = 0, the output
probabilities for all items are equal.

2.3.2 Noise Calibration to Smooth Sensitivity

When the global sensitivity is large, a substantial amount
of noise has to be added to the output to achieve differential
privacy, which may seriously impair data utility. To address
this issue, Nissim et al. [22] proposed the idea of local
sensitivity, the sensitivity with respect to a given data set.
Definition 4 (Local sensitivity [22]). The local sensitivity of

function f : D — R%on D is
LSy (D) = ax 1£(D) = F(DY)Ix

m.
neighboring data set D’ of D

Let us take the median function as an example, that

is, f(D) = median(z1,22,...,z,), where n is odd and
X1,T2,...,%, are sorted. We have f(D) = x,,, where
m = ";‘1, and LSf(D) = max{Zm — Tm—1,Tm+1 — Tm }-

The local sensitivity is related to not only the query
function f but also the given dataset D. According to
Definition 3, GS; = mgx(LS +(D)). Since the magnitude
of noise is proportional to sensitivity, the amount of noise
added is much less with local sensitivity. Unfortunately,
local sensitivity does not satisfy the requirement of dif-
ferential privacy, because the noise magnitude itself may
reveal the database information. For example, consider a
database where the values are between 0 and M > 0,
and two neighboring databases D(0,0,0,0,0, M, M) and
D’(0,0,0,0, M, M, M). Let f be the median function. Then,
f(D) =0and f(D') =0, and the corresponding local sen-
sitivities are respectively LS¢(D) = 0 and LS¢(D’) = M.
Thus if the noises are calibrated according to 0 and M,
respectively, to compute A(D) and A(D’), then they are
easy to be distinguished by an adversary. An algorithm A is
not (¢, 6)-differentially private if local sensitivity is adopted.

To bridge the gap, a smooth upper bound of the local
sensitivity is proposed to determine the magnitude of the
added noise [22].

Authorized licensed use limited to: George Mason Univers|

Definition 5 (Smooth bound and smooth sensitivity [22]).
For a dataset D and a query function f, a function
S : D — Ris a f-smooth upper bound of LS¢(D)
with 8 > 0, if VD, S(D) > LSy (D) and for all bounded
neighboring datasets D, D', S(D) < e#S(D’).
The 3-smooth sensitivity of function f with 5 > 0 is

S76(D) = max{LS;(D’) - e~F4D.D)y

When 8 = 0, S(D) becomes the constant GS¢ to satisfy
the requirements in Definition 5. Obviously, global sensi-
tivity is a simple but possibly loose upper bound on LS.
When 5 > 0, the smooth sensitivity is a conservative upper
bound on LSy. LSy may have multiple smooth bounds,
and the smooth sensitivity is the smallest one that meets
Definition 5.

Again, consider the median function as an example. We

construct a function A*)(D) that calculates how much the
sensitivity can change when up to k entries are modified.

A® (D) = LS (D)

max
D’€D:d(D,D")<k
where D is the domain of all possible datasets. Then, the
smooth sensitivity can be expressed using A*)(D) as

S7,5(D) = max e *P AW (D).

To compute A*) (D), we need to calculate the maximum
of LS (D’) where D’ and D differ by up to k tuples. Recall
that D is sorted, f(D) = x,, and LS;(D) = max{z,, —
ZTyn—1, Tm+1 — Tm }- Thus, we have

A(k>(D) = Ogr{lggﬂ{lfmﬂ — Tngt—k—1}-

Then, the smooth sensitivity of the median function can
be calculated by

kB, _
OSI?Sai{FI(xm-Ft $m+t7k71))

In general, computing smooth sensitivities for functions
such as counting the number of triangles in a graph is non-
trivial and even NP-hard [34]. Therefore, a smooth upper
bound is used to replace the smooth sensitivity when the
latter is hard to compute. Next, we show how to employ a
B-smooth sensitivity (or upper bound) to calibrate noise for
e-differential privacy.

According to the framework of differential privacy pre-
sented in Section 2.3.1, A(D) = f(D) + Z is returned for
query f on dataset D, where Z is a random variable drawn
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Fig. 1. Comparison of noise calibrations.

from a distribution. If Z ~ Lap(GSy/¢€), A(D) provides e-
differential privacy. In e-differential privacy, the magnitude
of the added noise should be as small as possible to preserve
data utility and should be independent of the database
for strong privacy protection. Noise calibrated according to
global sensitivity is independent from the database D but
the magnitude may be too big making the query results
unusable. Noise calibrated according to local sensitivity is
dependent on D thus failing to provide differential privacy.
To address this challenge, Nissim et al. [22] proposed to use
noise calibrated according to the smooth upper bound of
local sensitivity (more preferably, the smooth sensitivity).
The basic idea is to add noise proportional to @, that is,
A(D) = f(D) + % - Z, where Sy is a -smooth upper
bound on the local sensitivity of f, Z is a random vari-
able with probability density function h. Nissim et al. [22]
pointed out that A must be («, ()-admissible in order to
achieve differential privacy based on smooth sensitivity.

Definition 6 ((o, 8)-admissible noise distribution [22]). For
all A € R and A € R such that [A] < aand |A| < 3,
a probability density function h is («, 3)-admissible if it
satisfies the following conditions:

Sliding Property: h(z) <e? -h(z+A)+
' )

)
Dilation Property:  h(z) < e3 - (e (e - 2)

The sliding and dilation properties ensure that the noise
distribution cannot change much under sliding and dilation,
and the values of a and 3 are the upper bounds of A (the
sliding offset) and A (the dilation offset) based on h. If i of Z
is (a, B)-admissible,the database access mechanism A(D) =
f(D)+ @ - Z is (e, §)-differentially private [22].

There are three families of admissible distributions:
Cauchy, Laplace, and Gaussian [22]. A Cauchy admissi-
ble distribution yields a “pure” e-differential privacy with
0 = 0. Laplace and Gaussian admissible distributions can
produce an approximate differential privacy with § > 0
under different o and S values.

Consider the median function again and let D =
(x1,29,...,2,), where 1 < 29 < --- < 2, and z; € [0, M].
The global sensitivity of the median function is M. Figure 1
illustrates the two differentially private mechanisms based
on global sensitivity and smooth sensitivity, both utilizing

™,
\
S \
<—— Query 1
Datasetl
— Respondl- €,
S

<—— Query 2
Dataset2
A@seE | 5 Respond2- ¢,

—

«— Query,
Dataset

— Respond,- ¢,

max(e;)-differential privacy /

<——— Query 1
= Respondl- €;
Dataset Query 2

———> Respond2- €,

\ ZLe;-differential privacy

Fig. 2. Composition properties of differential privacy.

Laplace distributions. The noise calibrated to the smooth
sensitivity is less, since the probability of the random vari-
able Z taking a value closer to 0 is larger, and that of Z
taking a larger value is smaller. Thus, more noise is added
to the output of the global sensitivity based mechanism. In
conclusion, for median, at the same privacy protection level
(same €), noise calibrated to smooth sensitivity has a smaller
magnitude, thus better preserving data utility.

2.4 Composite Differential Privacy

Sometimes a complex privacy preservation problem needs a
composite algorithm that involves more than one differen-
tial privacy algorithms. More specifically, one may need to
sequentially apply various differential privacy algorithms
to a dataset, or may need to run various differential pri-
vacy algorithms over disjoint datasets to solve a composite
problem. The privacy budgets of the composite algorithms
for these two cases are summarized by the following two
theorems, and the basic concepts are further demonstrated
in Figure 2.

Let Ay, As,..., A, be n e-differential privacy algo-
rithms, whose privacy budgets are respectively denoted by
€1,€2,...
Theorem 1. (Sequential Composition [35]) The com-

posite algorithm obtained by sequentially applying

Ar, As, ..
differential privacy.

Theorem 2. (Parallel Composition [35]) Let Dy, Ds, ..., D,
be n arbitrary disjoint datasets. The composite algorithm
obtained by applying each A; on a corresponding D;
provides max{e; }-differential privacy.

s €n-

., A, on the same dataset D provides ) ¢;-

i=1

The above two theorems provide the so-called “sequen-
tial composition” and “parallel composition” properties.
Theorem 1 states the sequential composition property: the
level of privacy preservation provided by a composite al-
gorithm consisting of a sequence of differential privacy
algorithms over the same dataset is determined by the sum
of the individual privacy budgets. Theorem 2 presents the
“parallel composition” property: when differential privacy
algorithms are applied to disjoint datasets, the overall level
of privacy preservation provided by the composite algo-
rithm depends on the worst privacy guarantee among all
the differential privacy algorithms, that is, the one with the
largest privacy budget. These two theorems can be used
to determine whether a composite algorithm satisfies the
differential privacy requirement and to reasonably control
the allocation of the total privacy budget to each algorithm.
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a weaker privacy guarantee

Fig. 3. Privacy guarantee for a dependent dataset.

3 Two VARIATIONS OF DIFFERENTIAL PRIVACY

To adapt to various problem domains and settings, different
variations of differential privacy have been developed. In
this section, we introduce two most popular variants: de-
pendent differential privacy tends to handle queries involv-
ing correlated database tuples while local differential privacy
targets the scenarios where an untrustworthy third-party is
employed to collect data.

3.1 Dependent Differential Privacy

Differential privacy assumes that the tuples in a database are
independent from each other. This assumption is not always
true in practice. As indicated by Kifer and Machanava-
jjhala [28], the correlation or dependence between tuples
may undermine the privacy guarantees of differential pri-
vacy mechanisms. Yang et al. [36] investigated the influ-
ence of data correlations on privacy and presented the
notion of Bayesian differential privacy. They further proposed
a Gaussian correlation model to accurately describe data
correlations and developed a perturbation algorithm satis-
fying Bayesian differential privacy. Consider the following
simple example [26, 36]. Let D = (x1,x2) be a database,
and tuples x; and x9 have a probabilistic dependence
zo = 0.521 + 0.5Y, where z; and Y have uniform and
independent distributions over [0,1], and Y is a random
variable to model the relationship between z; and x5 and to
keep z1 and 3 in [0, 1]. The global sensitivity is 1. Consider
the situation where the Laplace mechanism is applied to the

sum query f(D) = x1 + x2. One can see from Figure 3

that the privacy guarantee is exp(1.5¢) when z; and z are

considered correlated while it is exp(e) if we assume that z;

and z; are independent.

Liu et al. [26] further developed the notion of Dependent
Differential Privacy and the corresponding mechanisms. In
a database D, if any tuple is dependent on at most L — 1
other tuples, the dependence size is L. Denote by R the
probabilistic dependence relationship over the L dependent
tuples. Two datasets D(L, R) and D’'(L, R) are dependently
neighboring if changing one tuple in D(L, R) can impact at
most L — 1 other tuples in D'(L, R).

Definition 7 (Dependent Differential Privacy [26]). A ran-
domized algorithm A is e-dependent differentially pri-
vate if for any two dependent neighboring datasets
D(L,R) and D'(L,R), and for all sets S of possible
outputs, we have

Authorized licensed use limited to: George Mason Univers|

e P(A(D(L,R)) = S)
D(L,R),D'(L,R) P(A(D'(L, R)) = S)

< exp(e)

Dependent differential privacy limits the capacity of an
adversary to infer sensitive information, and can defend
against all possible adversarial inferences even if the ad-
versary has full knowledge of the tuple correlations.

A Laplace mechanism achieving e-dependent differential
privacy for a dataset D(L,R) with dependence size L
and probabilistic dependence relationship R was proposed
in [26]. Specifically, for a dataset D(L,R) and a query
function f with global sensitivity G Sy, an €/ L-differentially
private Laplace mechanism A(D) = f(D)+ Lap(L-GSy/¢)
can achieve e-dependent differential privacy.

Consider the example shown in Figure 3. The global
sensitivity for the sum query is 1 and the dependence size
L = 2. Thus, the output for this Laplace mechanism is
A(D) = f(D)+Lap(2/¢). However, this mechanism implies
that all the dependent tuples are completely dependent on
each other, which makes the query sensitivity L - GSy = 2,
while the sensitivity of the sum query for the two dependent
tuples is 1.5. In real world datasets, there may be very few
tuples that are completely dependent on each other, though
they may be related. Thus, many mechanisms consider a
fine-grained dependence relationship between tuples to ob-
tain a small dependent sensitivity of queries. For example,
Zhao et al. [37] adopted the probability graphical model to
represent the dependency structure of tuples and achieved
high utility.

3.2 Local Differential Privacy

The basic differential privacy setup relies on a trusted third
party to collect data, add carefully crafted noise to a query
result according to the specification of differential privacy,
and publish the noisy statistical results. Nevertheless, in
practice it is often difficult to find a truly trusted third party
to collect and process data. The lack of trusted third par-
ties greatly limits the applications of the basic, centralized
differential privacy. To address this issue, local differential
privacy [38] emerges, which does not assume the existence
of any trusted third-party data collector. Instead, it transfers
the process of data privacy protection to individual users
by asking each of them to independently deal with and
protect personal sensitive information. Figure 4 shows the
framework of local differential privacy. One can see that
local differential privacy extends its centralized counterpart
by localizing perturbed data to resist privacy attacks from
untrusted third-party data collectors.

3.2.1 The Definition of Local Differential Privacy

Definition 8 (Local Differential Privacy [38]). Consider n
users, with each possessing one record. A randomized
algorithm A with input and output domains Dom(A)
and Ran(A), respectively, is said to satisfy e-local differ-
ential privacy if the probability of A obtaining the same
output result t* (t* C Ran(A)glon any two records ¢t and
t' (t,t' € Dom(A)) satisfies

Pr[A(t) =t'] < e x Pr[A(t) = t"]

Local differential privacy ensures the similarity between
the output results of any two records. By this way it is
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Fig. 4. A framework of local differential privacy.

almost impossible to infer which record is the input data
according to an output result of algorithm A. In centralized
differential privacy, the privacy guarantee of algorithm A
is defined on neighboring datasets, and requires a trusted
third-party data collector. Nevertheless, in local differential
privacy, each user processes its individual data indepen-
dently, that is, the privacy preserving process is transferred
from the data collector to individual users, so that a trusted
third party is no longer needed and privacy attacks brought
from an untrusted third-party data collector is thus avoided.
The implementation of local differential privacy requires
data perturbation mechanisms.

3.2.2 Perturbation Mechanisms

The random response technique [39] proposed by Warner
in 1965 is the mainstream perturbation mechanism adopted
by local differential privacy. The main idea is to protect data
privacy by making use of the uncertainty in the responses to
sensitive questions. Consider an example of n persons with
an unknown proportion 7 of diseased patients. To calculate
m, a survey question is launched: "are you a patient with
some disease?" Each user responds with either “Yes” or
“No”. For privacy preservation, a user may not respond
with the true answer. Assume that a user responds with
the help of a non-uniform coin flip in which the probabil-
ity of heads showing up is p and the probability of tails
showing up is 1 — p. Then if a head shows up, the user
responds with the true answer; otherwise, it responds with
the opposite. The data collector aggregates all responses
from the users and estimates the count of diseased persons.
This mechanism achieves e-local differential privacy, where
€ = |In 5| If each individual randomly responds the
survey question with a biased coin flip of p = 3/4, the
mechanism achieves In 3 local differential privacy.

The Warner model mentioned above is simple but in-
fluential. Some variations and extensions were developed,
including the Mangat Model [40] and the forced alternative
response [41]. Some other perturbation mechanisms such as
information compression and distortion were also employed by
different applications [42, 43].

3.2.3 Composition

As mentioned in Section 2.4, sequential composition and
parallel composition are employed to provide a differen-
tially private solution to a complex problem that involves
more than one queries. By definition, centralized differen-
tial privacy is based on “neighboring datasets” and local dif-
ferential privacy is defined on any two records of a dataset.

, 2020 8

The forms of privacy guarantee are the same. Therefore,
local differential privacy inherits the sequential and parallel
composition features mentioned in Section 2.4.

4 PRIVACY ATTACKS AND MODELS OF DIFFEREN-
TIAL PRIVACY FOR SOCIAL NETWORKS

In this section, we first summarize the popular privacy
attacks and provide insights on how to model privacy in
social networks. Then we present four models of differen-
tial privacy, including node privacy, edge privacy, out-link
privacy and partition privacy, which contribute to adapt
differential privacy from tabular data to social network data,

4.1

Privacy attacks [13, 44-48] refer to a wide variety of activities
that leak sensitive information to unauthorized parties who
should not know the information. The most serious type
of privacy attacks in online social networks is inference
attacks [49], which breach users’ private information by an-
alyzing background knowledge, such as user occupations or
salary. Two classes of inference attacks are observed in social
networks, namely private attribute inference [47, 48, 50-54]
and user de-anonymization [45, 46, 55-61].

Private attribute inference aims to reveal a hidden at-
tribute value that is intentionally protected by the user or
service provider. Neighbor-based inference attacks [47, 48,
50, 51] abuse the fact that adjacent users may have the
same or similar attribute values with a high probability
and infer the private attribute of one user by exploiting
the known attribute values of some other users sharing
similar interests [53]. For example, if the majors of more
than half of a user’s friends are “computer science”, then
the user has a high probability of majoring in “computer
science”. Behavior-based inference [52-54] tries to identify
the similarities of certain attribute values through the be-
havioral data, such as interests, characteristics and cultural
behaviors. For example, if most of the apps, books, and
music that a user likes are from China, there is a high
probability that the user was originally from China.

User de-anonymization [45, 46, 55-61] takes an
anonymized graph and a reference graph having the true
user identities as inputs and maps the nodes in these
two graphs such that the identities of the users in the
anonymized graph can be reidentified. An anonymized so-
cial network graph is usually released by a service provider
to various requesters, such as researchers, advertisers, app
developers and government agencies, after hiding private
identifiable information by various anonymization tech-
niques, such as pseudonym, graph modification, clustering
and generalization. A reference graph can be easily obtained
through the gathered information from other sources such
as a different social network which has overlapping users
with a published social graph. Typically, a reference graph
may have less attributes about nodes than an anonymized
social network graph.

These two categories of privacy attacks lead to the ex-
posure of different sensitive information. To protect private
data in a social network and formalize the notion of “pri-
vacy” in social networks, distinctive privacy threats were
recognized, which are shown in Figure 5.

Privacy Attacks in Social Networks
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Fig. 5. Privacy attacks in online social networks.

o Identity disclosure [13, 62]: In social networks, the
identity of an individual may be considered private,
while attackers may exploit various user information
to reidentify a social network user or to determine
whether or not a target individual is present in
a social network. For instance, AOL released an
anonymized partial three-month search history to
the public in 2006. Although personally identifiable
information was carefully processed, some identities
were accurately reidentified — The New York Times
immediately located the following individual: the
person with number 4417749 was a 62-year-old wid-
owed woman who suffered from some diseases and
had three dogs.

e Attribute disclosure [13, 44, 63-65]: A social network
user’s profile usually includes various attributes
such as age, gender, major and occupation, some
of which, such as salary, health status and disease
information, are considered sensitive and private.

o Link disclosure [13, 44, 62]: The social relationships
between individuals can be modeled as edges in a
social graph. The link information may be considered
sensitive in some cases. For example, Kossinets and
Watts [66] analyzed a graph derived from email com-
munications among students and faculty members in
a university, of which the email relationships of “who
emailed whom” was deemed sensitive [19].

o Graph Metrics disclosure [16]: Since social networks
can be modeled as graphs, graph metrics, such as
degree, betweenness, closeness centrality, shortest
path length, subgraph counting and edge weight,
may be employed to conduct social network analysis.
The disclosure of such information may indirectly
lead to privacy leakage. For example, many de-
anonymization attacks are based on the structure
information of a social graph.

Modeling privacy is critical for realizing privacy preser-
vation in social networks. Differential privacy assumes the
maximum background knowledge for adversaries. In the
subsequent section, we present how to protect social net-
works under differential privacy by extending the differen-
tial privacy definition from traditional databases to graphs,
and demonstrate how to formally define differential privacy
in social networks based on the privacy threats mentioned
above.

Two graphs are neighbors if one can be obtained from the
other by deleting an arbitrary node and all its adjacent edges

Fig. 6. Node privacy.

4.2 Differential Privacy Models for Social Networks

A social network can be modeled as a graph G(V, E), where
V is a set of nodes and E is a set of relational activities
between nodes. Differential privacy originates from tradi-
tional databases. The key to extending differential privacy
to social networks is to determine the neighboring input
entries, that is, how to define “adjacent graphs”. In this sub-
section, we review the applications of differential privacy in
social networks by presenting adjacent graphs defined on
node, edge, out-link and graph partition, and describing the
corresponding privacy models of node privacy [34], edge
privacy [34], out-link privacy [67] and partition privacy [68].

4.2.1 Node Privacy

A privatized query () preserves node privacy [19] if it satisfies
differential privacy for every pair of graphs G1 = (V4, E1)
and Gy = (Vi, E) such that |(V; U VL) \ (V1 NV3)| =1 and
{(E1UEQ) \ (E1NE3)} = {(u,v)|u =z Vv =2z}, where x
is the only node in (V1 UV3) \ (V1 NV3) and (u, v) represents
the edge between nodes u and v.

In node privacy, an adjacent graph G’ of a given social
network G is the one obtained by deleting or adding a node
and all edges incident to that node, as shown in Figure 6.
Node differential privacy intends to prevent an attacker
from determining whether or not an individual node x
appears in the graph. It guarantees privacy preservation
for individuals and relationships simultaneously rather than
just a single relationship, at the cost of strict restrictions
on queries and reduced-accuracy results. A differentially
private algorithm must conceal the worst-case discrepancy
between adjacent graphs, which may be substantial under
node privacy. For example, if we consider an extreme case
where a node connects to all other nodes (a star graph), then
the sensitivity is high and the added noise has to be dra-
matic, too. Generally speaking, node privacy is infeasible to
provide high utility (accurate network analysis) due to high
sensitivity, but it provides desirable privacy protection [19].

4.2.2 Edge Privacy

A privatized query Q) preserves edge privacy [19] if it satisfies
differential privacy for each pair of graphs G; = (V1, E1)
and Gy = (3, E) such that Vi = Vo and [(E2 U E)) \ (B2 N
Ey)| =1

In edge privacy, an adjacent graph G’ of a given social
network G is obtained by deleting or adding one edge from
G, as shown in Figure 7. It can be generalized to allow at
most k edges to be changed.
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Two graphs are neighbors if they differ by one edge

Fig. 7. Edge privacy.

Two graphs are neighbors if one can be obtained from the
other by deleting all the out-links of an arbitrary node

Fig. 8. Out-link privacy.

Edge privacy protects against learning about specific
relationships between users and prevents an attacker from
determining with a high certainty whether two individuals
are connected. Comparing with node privacy, edge privacy
can only provide protection on information about relation-
ships between users. Nodes with higher degrees still have a
higher impact on query results, despite the fact that the re-
lationships between these nodes have been protected. Edge
privacy provides meaningful privacy protection in many
practical applications and has been more widely used than
node privacy [67]. For example, Kossinets and Watts [66]
employed edge privacy to protect email relationships.

4.2.3 Out-Link Privacy

A privatized query @) preserves out-link privacy [67] when it
meets the definition of differential privacy for every pair of
graphs G = (V1, E1) and Gy = (Va, E») such that Vi = V5
and there exists a node z such that {(E1UE2)\ (E1NE2)} =
{(zx = v)|Jr e Vi Av € Vaorz € Vo Av € Vi}, where
(x — v) is a directed link from z to v.

In out-link privacy, for a given social network G, an
adjacent graph G’ is obtained by either removing all the
existing out-links of a node z, or adding one or more new
out-links to a node whose out-degree in G is 0. See Figure 8
for an example. It protects the out-links of a node using the
same conceptual privacy standard as node privacy.

Out-link privacy can reduce the distinguishing prop-
erties of high-degree nodes, that is, a high-degree node
can deny that the friendships are mutual in query results
although others claim to be friends with this node. Out-
link privacy is strictly weaker than node privacy, but for
certain query functions it has better performance than edge
privacy [68]. Out-link privacy simplifies the calculation
of sensitivity and reduces the amount of injected noise
required, thus allowing certain queries that are infeasible
under node privacy and edge privacy [67]. In Section 5.1 we
take the degree distribution as an example to demonstrate
that the out-link privacy requires less noise.

i

\- f’

Two graphs are neighbors if they differ by one disjoint subgraph

7
1

Fig. 9. Partition privacy.

4.2.4 Partition Privacy

A partitioned graph G is comprised of multiple disjoint
components H; [68]. A privatized query () preserves par-
tition privacy if it satisfies differential privacy for every pair
of graphs G; and Gg, where G; = Gy — H; with H; €
Go N H; ¢ Gqor Gy =Gy 7Hj Witth S Gl/\Hj ¢ Go.

In partition privacy, an adjacent graph of a given social
network G is obtained by adding a new or deleting an
existing subgraph from G (see Figure 9 for an illustration).
Most social-structure queries are conducted over a set of
subgraphs instead of a connected social graph. Some at-
tributes of the nodes such as address, major, and education
level can be used to partition a large social graph into
multiple subgraphs, and each subgraph can be treated as
a multi-attribute data point. Then, deleting or inserting
a subgraph is equivalent to removing or adding a data
point [68]. Accordingly, traditional differential privacy can
be applied to the set of subgraphs (data points).

Partition privacy provides broader preservation than
node privacy, and the protection is applied not to a single
node, but to a social group.

5 DIFFERENTIAL PRIVACY IN SoCIAL NETWORK
ANALYSIS

In this section, we summarize the state-of-the-art research
on a series of most-widely used differentially private social
network analysis techniques. Social network analysis refers
to the quantitative analysis on the data generated by social
network services using statistics, graph theory and other
techniques. Some popular tasks of social network analy-
sis include degree distribution, subgraph counting (trian-
gle counting, k-star counting, k-triangle counting,etc.) and
edge weight analysis. In this section, we analyze a few
widely used techniques in social network analysis under
differential privacy preservation. Table 4 summarizes the
major existing differentially private social network analysis
techniques for degree distribution and subgraph counting
while those for edge weight is summed up in Table 5.

5.1 Degree Distribution

Degree distribution is one of the most widely studied graph
characteristics. It reflects the graph structure statistics and
may affect the whole process of graph operations. Degree
distributions can be employed to describe the basic so-
cial network structures, design graph models and measure
graph similarities.
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TABLE 4
Summary on Existing Differentially Private Graph Analysis Techniques

Privacy standard

Graph statisti
raph statistics Edge privacy

Node privacy Out-link Privacy Partition Privacy

Degree distribution [19], [69] [21], [20], [70-73] [68] [68]
Graph publishing/sharing [74], [23]
Triangle counting, Centrality [68] [68]
Triangle counting, Clustering, MST cost [22]
Cut function of graph [75]

Subgraph counting (341, [76], [24],

[77] (Weaker than edge privacy)

[21], [71], [24]

Average degree,
Distance to connectivity

[78]
(Stronger than node privacy)

Degree Histogram Degree Histogram without Node A

Hist=<0,6,0,0,1>

T~

Il <0,6,0,0,1>-<6,0,0,0,0>[,=13

Hist=<6,0,0,0,0>

\

Fig. 10. Degree histogram under node privacy.
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\

Fig. 11. Degree histogram under edge privacy.

The degree distribution of a graph can be simply trans-
formed to a degree sequence by counting the frequency of
each degree. Here we use a degree histogram to describe
the degrees of the nodes in a graph. Consider the example
shown in Figure 10. One can see that the degree counts
change significantly when deleting node A. This implies
that the sensitivity of degree distribution is high under node
privacy since the change of one node may affect multiple
degree counts. A careful analysis reveals that a node of
degree k affects 2k + 1 values of the histogram at most.
In the worst case, the addition or deletion of a node of the
maximum degree results in the change of 2n + 1 values,
which indicates that the global sensitivity depends on the
value of n, the number of nodes in the graph. Since n is
unbounded, the degree histogram (distribution) query is
not feasible for differential privacy protection under node
privacy.

Under edge privacy, protecting degree histogram queries
using differential privacy is feasible, as illustrated in Fig-
ure 11. One can see that removing an edge from a network
only changes the degrees of two nodes, thus affecting 4
counts at most. The sensitivity is 4k under the k-edge
privacy. Accordingly, when k is small, the amount of added
noise is relatively small and even negligible for a graph that
is large enough, providing preservation in data utility.
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Fig. 12. Degree histogram under out-link privacy.

Out-link privacy requires less noise for a degree his-
togram query. Removing out-links of one node from a graph
affects one value in the histogram when only out-degrees
are counted, as shown in Figure 12. Under the out-link
privacy, although one node may delete all its out-links from
the graph, this node can still be identified by its friends’
out-degrees. Nevertheless, a slightly higher-than-expected
node degree in a graph may not be easily identified [68].
Therefore, if an attacker intends to guess the presence of a
high-degree node with certainty, she may have to learn full
knowledge about the social network.

To obtain differentially private results in degree distribu-
tion analysis, a number of techniques were proposed, such
as post-processing [19, 69], projection (also known as bounded
degree) [20, 21, 70, 71], Lipschitz extension [72], Erdds-Rényi
graph [73] and random matrix projection [74]. Post-processing
and projection are the most commonly used ones.

5.1.1 Post-Processing Techniques

Hay et al. [69] proposed a post-processing technique to boost
the accuracy of the existing differentially private algorithms.
The key idea is to find a new set of answers that is the
“closest” to the set of noisy ones returned from differentially
private algorithms by means of “constrained inference” for
better accuracy, that is, enforcing consistency constraints
among the noisy query results. It involves three steps. First,
an analyst sends to the data owner a set of queries with
constraints holding among the corresponding answers for
a given task. Then the data owner replies to the set of
queries using standard differentially private algorithms. In
the third step, the analyst post-processes the set of noisy
answers with constrained inference to resolve the possible
inconsistencies among the noisy answers for the purpose of
finding a new set of answers that is the closest to the old one
while satisfying the consistency constraints. Here, "closest"
is measured in L, distance, and the result is a minimum
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L5 solution. This technique can be viewed as an instance of
linear regression.

We use an example to illustrate the procedure. Suppose
an analyst needs answers to the total number of students
¢, the numbers of students x4, zg, ¢, xp and =g, re-
spectively, receiving grades A, B, C, D and F, and the
number of passing students x,, from a private student
database. Intuitively the analyst can obtain differentially
private answers to (z4,Zp, ¢, Zp, F), and then use them
to compute those for x; and x,. Nevertheless, based on
the post-processing approach proposed in [69], the analyst
first requests differentially private answers to all queries
Z¢, Tp, TA,TB,TC,TD,TF, then applies the two constraints
2y = xp +op and 2, = x4 + B + xc + xp to derive
more accurate answers for x; and x,,. Hay ef al. [69] claimed
that the above post-processing technique does not sacrifice
privacy.

Hay et al. [19] adapted the definition of differential pri-
vacy to graph-structure data and proposed a differentially
private algorithm based on the post-processing technique
proposed in [69] to obtain an approximation of a graph’s
degree distribution. The authors provided the minimum L,
solution to the degree distribution query. The basic idea is
to obtain the query results of a graph’s degree sequence in
a non-decreasing order, then transform them to a degree
distribution by counting the frequency of each degree. Let S
denote the degree sequence query S = (deg(1), ..., deg(n)),
of which deg(i) denotes the i*" smallest degree in G. For
example, assume that the degrees of a five-node graph are
{3,3,3,2,1}, then S = (1,2, 3,3, 3). Let S denote the sorted
results of the differentially private algorithm seeking the
degree of each node. Since the degrees are positioned in
a sorted order, S is constrained, which can be denoted by
S[i] < S[i + 1] for 1 <4 < n. Then the minimum Ly solu-
tion S is obtained by applying constrained inference to S.
Considering the example, if the differentially private result
is S = (1,9,4, 3,4), the algorithm computes the minimum
Ly solution S as (1,5,5,5,5) based on the constraints of
S[i] < Sfi+1].

5.1.2 Bounded Degree Techniques

Kasiviswanathan et al. [21] proposed a carefully-designed
projection scheme mapping an input graph to a bounded
degree graph to obtain the degree distribution of the original
one under node privacy. Aiming at obtaining statistical
information with low sensitivity, the original network is
projected to a set of graphs whose maximum degree is
lower than a certain threshold. In a bounded degree graph,
node privacy is easier to achieve as the sensitivity can be
much smaller for a given query function. When the degree
threshold is carefully chosen for realistic networks, such
a transformation leaks little information. Two families of
random distributions are adopted for the noise: Laplace dis-
tributions with global sensitivity and Cauchy distributions
with smooth sensitivity. The key difficulty of this approach
lies in that the projection itself may be sensitive to the
change caused by a single node in the original graph. Thus,
the process of projection should be “smooth” enough to
ensure the privacy-preservation property of the entire algo-
rithm. Two different techniques were proposed in [21]. The
first one defines tailored projection operators, which have low
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sensitivity and protect information for specific statistics. The
second one is a “naive” projection that just simply discards
the high-degree nodes in a graph. Interestingly, the naive
projection enables the design of algorithms to bound the
local sensitivity of the projected graph, and the development
of a generic reduction technique allows differentially private
algorithms to be applied to bounded-degree graphs.

Day et al. [20] proposed an edge-addition based graph
projection method to reduce the sensitivity of the graph
degree distribution under node privacy. This improved pro-
jection technique preserves more information than previous
ones. It was proved in [20] that the degree histogram under
the projected graph has sensitivity 26 + 1 for a 6-bounded
graph in which the maximum degree is §. Based on this sen-
sitivity bound, two approaches, namely (6, ?)-Histogram
and f-Cumulative Histogram, for degree histograms were
proposed under node privacy. Macwan et al. [70] adopted
the same method of edge-addition [20] to reduce the sen-
sitivity of the node degree histogram. Note that existing
projection-based approaches cannot yield good utility for
continual privacy-preserving releases of graph statistics. To
tackle this challenge, Song et al. [71] proposed a differen-
tially private solution to continually release degree distri-
butions with a consideration on privacy-accuracy tradeoff,
assuming that there is an upper bound on the maximum
degree of the nodes in the whole graph sequence.

5.1.3 Other Techniques

Raskhodnikova et al. [72] proposed an approximation of the
graph degree distribution by making use of the Lipschitz ex-
tension and the generalized exponential mechanism under
node privacy. Sealfon et al. [73] developed a simple, compu-
tationally efficient algorithm for estimating the parameter of
an Erdos-Rényi graph under node privacy. This algorithm
optimally estimates the edge-density of any graph whose
degree distribution is concentrated on a small interval.
Ahmed et al. [74] presented a random matrix approach to
social network data publishing, which achieves differential
privacy with storage and computational efficiency by reduc-
ing the dimensionality of adjacency matrices with random
projection. The key idea is to first randomly project each
row of an adjacency matrix into a low-dimensional space,
then perturb the projected matrix with random noise, and
finally publish the projected and perturbed matrix. The ran-
dom projection retains the graph matrix’s top eigenvectors.
As both random projection and random perturbation can
preserve differential privacy with a small amount of noise,
data utility can be improved.

5.2 Subgraph Counting

Given an input graph G and a query graph H, a subgraph
counting query asks for the number of isomorphic copies of
H in G. Example subgraphs include triangles, k-triangles, k-
stars, and k-cliques, where a k-triangle consists of k triangles
sharing one common edge, a k-star is composed of a central
node connecting to k other nodes, and a k-clique is a clique
with £ vertices. Figure 13 demonstrates these subgraphs.
Note that subgraph counting counts the copies of a
subgraph. Therefore a node of degree d > k contributes
(z) to k-star counting. Figure 14 presents a few examples of
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Fig. 14. Examples of subgraph counting.

subgraph counting. We consider the counting problems of
triangle, k-star, and k-triangle in this section, and denote
them respectively by fa, fi« and fra. These counting
results are keys to many descriptive graph statistics that
are used to describe and compare graph properties and
structures. For example, the clustering coefficient of a graph
is the ratio of 3fA over fa,.

Subgraph counting queries generally have different pri-
vacy characteristics and high global sensitivities. To realize
differential privacy, it is necessary to add a large amount of
noise, which may lead to serious query result distortions.
Therefore, a smooth upper bound of the local sensitivity
is usually used to determine the noise magnitude. Addi-
tionally, truncation, Lipschitz extension and ladder function
were adopted in literature [21, 34, 76] to achieve differential
privacy while improving the counting performance.

Before summarizing the state-of-the-art techniques, let
us introduce the following notations. For an undirected
graph with n nodes, the adjacency matrix is X = (z;5),
where z;; = 0 for all ¢ € [n]. Let a;; denote the number of
common neighbors shared by a particular pair of vertices 4
and j, thatis, a;; = Zle[n] x;1-215. Let b;; denote the number
of vertices connected only to one of the two vertices ¢ and
J, that is, bjj = >7,c(,) Zu €@ 2. Denote by d(G,G') the
distance between two n-vertex graphs G and G’, which is
the number of edges they differ. Graph G and G’ are neigh-
bors if d(G,G’) = 1. Let LSA, LSk and LSk, denote the
local sensitivities of fa, fua and fi., respectively. Denote
by SA s, Ska s and S, 5 the smooth sensitivities of fa,
fen and fr., respectively.

5.2.1

As mentioned earlier, node privacy is a strong privacy
guarantee, so it is not feasible to obtain a triangle counting
satisfying node privacy in most cases. At the worst case,
adding a vertex to a complete n-node graph brings (%) new
triangles. Since this change depends on the size of the graph,

the global sensitivity of triangle counting is unbounded.

Triangle Counting

Authorized licensed use limited to: George Mason Univers|

Moreover, triangle counting is also not feasible under edge
privacy as in the worst case, deleting one edge from an n-
node graph deletes n — 2 triangles. Although the global
sensitivity of a triangle counting query is not bounded,
its local sensitivity for some specific graphs is bounded
under edge privacy. Thus, smooth sensitivity [22, 34] can
be adopted to achieve differential privacy. In the following,
we briefly summarize edge and node differentially private
algorithms as well as other techniques to achieve differential
privacy in triangle counting.

5.2.1.1 Edge Differentially Private Algorithms: Nis-
sim et al. [22] introduced an approach to calculate the
smooth sensitivity of triangle counting and provided the
cost of a minimum spanning tree under edge privacy. The
local sensitivity of fa is LSy, = max; jc[n) aij, the global
sensitivity is GSy, = n — 2, while LSy, at distance
s is LSJ({Z) =
|_s+min(s,bij)J

~max  ¢;;(s), where ¢;;(s) = min(a;; +
i#£ji,5€EN

,n — 2). The f-smooth sensitivity of fa has
time complexity O(M (n)), where M (n) is the time required
for multiplying two matrices of size n x n.

Karwa et al. [34] presented an efficient algorithm for out-
putting approximate answers to subgraph counting queries,
such as triangle counting, k-star counting and k-triangle
counting. These algorithms satisfy edge privacy and can
be regarded as an extension of the algorithm in [22] to a
bigger class of subgraph counting problems with privacy
guarantees and better accuracy.

Sala et al. [23] proposed a differentially private graph
model called Pygmalion to generate synthetic graphs. They
adopted the dK-graph model and its statistical series as the
query function. The dK-graph model extracts the detailed
structure of a graph into degree correlation statistics, and
outputs a synthetic graph using the d K -series values. A dK-
series is the degree distribution of connected components of
certain size within a target graph. Here, the dK-series is a
graph transformation function. Sala et al. [23] first proved
that the dK-series has a high sensitivity, then proposed a
partitioning approach to group tuples with similar degrees,
which effectively reduces the noise magnitude and achieves
a desired privacy guarantee.

Zhang et al. [76] proposed an approach of specifying a
probability distribution over possible outputs to maximize
the utility of an input graph while providing a privacy
guarantee. They applied a ladder function to the subgraph
counting problems of triangle, k-star and k-clique, and
achieved high accuracy with efficient time complexities.

Gupta et al. [75] considered the problem of approxi-
mately publishing the cut function of a graph under edge
privacy. They proposed a generic framework of converting
iterative database construction algorithms into privatized
query publishing approaches under non-interactive and
interactive settings.

52.1.2 Node Differentially Private Algorithms:
Since node privacy is a strong privacy guarantee, a large
amount of noise needs to be added, leading to a dramatic
distortion of the graph structure and a poor utility. One
of the most widely adopted mechanisms is the generic
reduction to privacy over a bounded-degree graph. If a
graph is known to have a maximum degree of d, deleting
or adding a node may affect (g) triangles at most. For
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graphs whose maximum degree is greater than d, high-
degree nodes can be deleted to get a graph with a maximum
degree falling within a threshold. The number of triangles
of this bounded-degree graph can be a good approximation
to the true query answer. Therefore, networks with a small
number of large degree nodes can adopt this approach to
achieve node privacy for triangle counting.

Kasiviswanathan et al. [21] proposed algorithms for re-
leasing statistics of graph data under node privacy. On the
basis of smooth sensitivity of truncation, they presented
a generic reduction mechanism in order to apply differ-
entially private algorithms for bounded-degree graphs to
arbitrary graphs, that is, just simply removing the nodes
with high degrees. A continual privacy-preserving release
of subgraph counting under node privacy was investigated
in [71], which assumes that there is a publicly known upper
bound on the maximum degree of the nodes in the graphs.

Blocki et al. [24] proposed the definition of restricted
sensitivity, which can improve the accuracy of differen-
tial privacy compared with global sensitivity and smooth
sensitivity. Two important query classes, namely subgraph
counting and local profile matching of social networks, were
analyzed. It was proved that the restricted sensitivities of
these two kinds of queries are much lower than those un-
der smooth sensitivity. More importantly, when computing
the smooth sensitivity involves higher computational com-
plexity and lower efficiency, restricted sensitivity performs
better.

5.2.1.3 Other Types of Privacy: Rastogi et al. [77]
considered general privacy-preserving social network
queries including subgraph counting. They proposed a re-
laxation of edge privacy, called a theoretic standard of ad-
versarial privacy. Their algorithm can release more general
graph statistics than the algorithms in [22], which only
deal with triangles. However, the assumption on adversarial
privacy puts some limits on the applicability of this privacy
definition [77].

Task et al. [68] proposed two differential privacy stan-
dards, i.e., out-link privacy and partition privacy, over network
data. They also introduced two algorithms respectively sat-
isfying the two privacy standards to release approximate
results of degree distribution query, triangle counting and
centrality counting. It was demonstrated that partition pri-
vacy can provide stronger privacy guarantee with less noise
when cross-analyzing multiple social networks.

Gehrke et al. [78] presented a zero-knowledge based pri-
vacy definition, which is stronger than differential privacy.
They constructed a zero-knowledge private mechanism to
release the social graph structure information such as the
average degree and the distance to connectivity.

5.2.2 k-Star Counting

Karwa et al. [34] extended the approach in [22] to the k-
star counting query and proposed how to compute the local
sensitivity and smooth sensitivity of fi.. They proved that
these two sensitivity values of k-star counting are equal,
that is, St 5(G) = LSk.«(G) when dyax > max{k, (k —
1)(%)}, of which dp,x is the largest degree in G.
Kasiviswanathan et al. [21] proposed an (e, §)-node dif-
ferentially private algorithm with a linear programming
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(LP) based function for the special case of the subgraph
H having 3 nodes, e.g., H can be a triangle or a 2-star.
If fg(G) (the number of copies of H in G) is relatively
large, the Laplace mechanism provides an accurate estimate.
The release of fi(G) is more accurate with the LP-based
function when fg (G) is smaller.

Zhang et al. [76] presented a ladder function and applied
it to the k-star query under edge privacy. The ladder func-
tion relies on a carefully designed probability distribution
that can maximize the probability of outputting true an-
swers and minimize that of outputting the answers that are
far from the true answers. In addition, to achieve differential
privacy, it is constrained that the probabilities of outputting
a value for the input graph g and its neighbor ¢’ should
be very close. The authors adopted the concept of “local
sensitivity at distance ¢” in [21] to create a ladder function.
In fact, the upper bound of the “local sensitivity at distance
t” was used as the ladder function for the fj. query.

5.2.3 k-Triangle Counting

When triangle counting is extended to k-triangle counting,
the problem becomes complicated as it is NP-hard to calcu-
late the smooth sensitivity of k-triangle counting. Therefore,
existing approaches mainly focus on a small k, while the
counting query of fia itself is hard.

An approach was proposed in [34], whose main idea
is to compute (¢, d)-differential privacy (edge privacy) by
adding noise proportional to a second-order local sensitivity
instead of a “smooth” upper bound. Since LSy cannot be
directly adopted with the Laplace mechanism, LS, the local
sensitivity of LSy, was employed. It was demonstrated
that LS’ is a deterministic function of a quantity with
global sensitivity 1, based on which the query results can be
published with less noise. Another approach was presented
by Zhang et al. [76], which provided a ladder function for
k-triangle counting under edge privacy.

5.3 Edge Weights

In social networks, social relations are modeled on edges
with weights. An edge may reveal different sensitive in-
formation between individuals, such as the communication
cost, the interaction frequency between two social network
users, the price of a commercial trade or the similarity
between two organizations. Thus, releasing edge weights
must be done in a privacy preserving manner. Table 5
summarizes the most popular exiting differentially private
edge weight algorithms in social networks.

Liu et al. [79] studied the problems of protecting privacy
in edge weights and preserving the utility of statistics of
shortest paths between nodes. They proposed two edge
privacy-preserving approaches, namely greedy perturbation
and Gaussian randomization multiplication. The former mainly
focuses on preserving the length of the perturbed shortest
paths and the latter retains the same shortest paths before
and after perturbation.

Das et al. [80] conducted edge weight anonymization
in social graphs. They developed a linear programming
model to protect graph characteristics such as shortest paths,
minimum spanning trees and k-nearest neighbors, which
can be formalized as linear functions of the edge weights.
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TABLE 5
Summary on Existing Edge Weight Preservation Techniques

Approach

Gaussian randomization multiplication;

(791 Greedy perturbation

[80]  Linear programming model

[81]  Edge weight-count; Laplace perturbation
Edge weight-unattributed histogram;

[82] T s

k-indistinguishability

Costea et al. [81] considered differential privacy protec-
tion to the edge weights assuming that the graph structure
is public and available to users without modification while
the edge weights are private. They employed the Dijkstra
algorithm to get the shortest paths for protection quality
evaluation.

Last, Li et al. [82] treated the edge-weight sequence
as an unattributed histogram by merging all barrels with
the same count into one group and thus ensured k-
indistinguishability among groups. They proposed an ap-
proach with Laplace noise added to every edge weight to
improve accuracy and utility of the published data.

5.4 Summary

Social networks contain information about social users,
their attributes as well as social relationships, which are
usually deemed sensitive. The release of such information
may bring significant privacy concerns or even damages
to personal reputation and properties if the protection on
sensitive information is not sufficiently strong. In this sec-
tion, we discussed degree distribution, subgraph counting
(triangle, k-star and k-triangle) and edge weights, the most
popular graph analysis techniques in social networks. Note
that there exist other statistics on graph structures but the
basic methods and ideas of adopting differential privacy are
similar and thus are omitted here.

Most existing differentially private algorithms have to
pay a substantial tradeoff in utility (e.g., accuracy) for
privacy preservation in analyzing large-scale and complex
graph structures. Indeed, many of those methods try hard
to improve utility as their major contributions. Moreover,
the complexities of the differentially private algorithms are
generally high or even NP-hard due to the complexity of
computing (smooth) sensitivities. In some cases such as k-
triangle counting, even the structure query itself is NP-hard.

6 LocAL DIFFERENTIAL PRIVACY IN SOCIAL NET-
WORK ANALYSIS

Most of the studies reviewed in Section 5 adopt central-
ized differential privacy in order to provide strong privacy
guarantee. As analyzed above, the privacy preservation
comes with a tradeoff in data utility. Local differential
privacy (Definition 8 [38]) presents an important alternative
to balance the tradeoff between privacy preservation and
utility by exploring local data-dependent mechanisms. In
this section, we review the new progresses on applications
of local differential privacy in social network analysis. Table
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6 summarizes a series of research problems including statis-
tical databases and social network analysis that are related
to local differential privacy.

Local differential privacy has mainly been applied to
statistical databases for problems like frequency statistics
publishing, which involves frequency publishing for dis-
crete data [84] and mean value publishing for continuous
data [38, 88, 91]. Frequency distributions can be expressed
by contingency tables, histograms, and some other forms.
According to the number of variables, frequency distribu-
tions can be divided into single-valued ones [83-87] and
multi-valued ones [88-90]. To protect privacy in single-
valued frequency distributions, local differential privacy
can be achieved by performing perturbation, such as the
random response mechanism [39], directly on the encoded
values or the hashed values, and then conducting aggre-
gation and estimation. For the latter case, sampling and
dimension reduction techniques are often used to improve
data utility. In [92], Cheu et al. developed a shuffled model
for distributed differentially private algorithms, which can
be regarded as a technique that is between centralized
differential privacy and local differential privacy.

Local differential privacy can also be applied to social
networks as each social user has a local graph and an
overall social graph can be generated based on all users’
local graphs. A number of interesting applications of local
differential privacy were reported recently. For example,
Qin et al. [25] made an effort to ensure individual’s local
differential privacy while gathering structural information
to generate synthetic social graphs. They proposed a multi-
phase technique named LDPGen, which incrementally clus-
ters structurally similar users via refining parameters into
different partitions. Specifically, whenever a user reports
information, LDPGen deliberately injects noise to guarantee
local differential privacy. Moreover, LDPGen derives opti-
mal parameters to cluster structurally similar users together.
After obtaining a good clustering, LDPGen constructs a
synthetic social network by adopting the existing Chung-
Lu social graph generation model [95].

Sun et al. [93] pointed out that it is insufficient to ap-
ply local differential privacy to protect all network par-
ticipants when collecting extended local views (ELV). The
main problem lies in that each individual has its own local
privacy budget, which covers its own ELV regardless of
its neighbors and the specific information from its ELV.
To prevent this attack, a novel decentralized differential
privacy (DDP) mechanism was proposed, which demands
each participant to consider not only its own privacy, but
also those of the neighbors in its ELV. Towards this goal, a
multi-phase mechanism under DDP was developed, which
allows an analyst to better estimate subgraph counting. In
this framework, an analyst first queries each individual’s
minimum noise scale, which must be performed under DDP
since it relies on the local graph structure and is private.
Then, the analyst calculates the minimum noise scale for the
whole network and gathers subgraph counts accordingly.

Ye et al. [96] presented an LDP-enabled graph metric
estimation framework LF-GDPR for graph analysis. LF-
GDPR first collects the adjacency bit vector and node degree
from each node locally; then provides the perturbation
protocols and the aggregation and calibration algorithms
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TABLE 6
Summary on Existing LDP-Based Techniques

Research Problems

Results

Perturbation mechanism

Compression [42], Distortion [43]

Single-valued frequency distribution

S-Hist [83], O-RR [84], PCE [85], k-Subset [86, 87]

Multi-valued frequency distribution

Harmony-frequency [88], PARROR-Unknown [89], LoPub [90]

Mean value publishing

Minimax rate [38], MeanEst [91], Harmony-Mean [88]

Distributed differential privacy

Shuffled model [92]

Synthetic social graph generation

LDPGen [25] (Edge-LDP)

Subgraph counting
(triangles, three-hop paths, k-clique)

ELV based on decentralized DP [93]
(Stronger than Edge-LDP)

Attributed graph data

AsgLDP [94] (Edge-LDP)

for the two graph analysis task. Wei et al. [94] presented
a novel framework AsgLDP to collect and generate privacy-
preserving attributed graph data that satisfies LDP. AsgLDP
first collects the aggregate information of the original decen-
tralized attributed graph, then optimizes the privacy-utility
tradeoff of the generated data to preserve general graph
properties such as attribute distributions, degree distribu-
tions and community structures.

To the best of our knowledge, no high sensitivity prob-
lem was reported in local differential privacy. However, it is
a great challenge for data collectors to reconstruct a graph
structure with high utility based on the disturbed or local
graph data, i.e., to ensure the preservation of correlations
between different users’ local graph data when the pertur-
bation process of each user is independent of each other.
Furthermore, if we only collect graph statistics, such as
node degrees and subgraph counting, to generate composite
graphs, an output graph may not retain the important
characteristics such as connectivity, clustering coefficient,
closeness centrality or even graph structure of the original
one, and thus may reduce graph utility.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we provide a survey on differential privacy
foundations and applications in protecting the privacy of
social network analytical results. We explain the underlying
design principles of different mechanisms and present the
state-of-the-art research results. To achieve differential pri-
vacy, one needs to specify a privacy budget and calculate
the amount of noise to be added to the query results. The
privacy budget determines the level of privacy preservation:
the smaller, the better the protection. At the same time, the
noise magnitude affects the accuracy (utility) of the query
results, which should be minimized provided that sufficient
privacy protection is achieved. Noise magnitude is derived
from sensitivity and privacy budget. When global sensitivity
is high, smooth sensitivity may be employed instead.

The research on differential privacy is developing fast,
and its applications in social network analysis enjoy
stronger and stronger interest from industry and academia.
In the following we discuss a few open research problems in
differential privacy technologies for social network analysis.
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7.1 Differential Privacy for Complex and Correlated So-
cial Network Data

In social networks a user often has relationships with many
others at different levels. Thus, network structures are often
complex. Since query sensitivities in social networks are
usually high, much noise has to be added to query results
to achieve differential privacy. Nevertheless, the noise may
significantly affect the output data utility. In addition, it may
be hard to effectively compute sensitivities, either global or
smooth, precise or approximate, as the computational com-
plexity may be too high (or even NP-hard) to be practical
for many complex social network analysis queries. Even
though a large number of studies reviewed earlier focus on
how to apply differential privacy to complex social structure
queries, most of them are limited to “small” queries, such
as a small k in k-star and k-triangle counting. It remains a
great challenge to employ traditional differential privacy for
complex graph queries.

Moreover, in social networks, social correlations are usu-
ally strong as behaviors and attributes of adjacent nodes are
often strongly related. For example, adjacent users may have
the same attributes with a high probability. Therefore, the
private attributes of a social network node may be inferred
by exploring the publicized attributes of its neighbors which
share common interests [53]. The social relations, that is,
the edges in a social network, are often not independent,
as the social relationship between two nodes may depend
on a third node that is a common neighbor. To address
dependency in data, dependent differential privacy has
attracted a lot of attention in recent years [26, 37]. Nev-
ertheless, applying dependent differential privacy to social
networks remains to be a grand open challenge due to high
dependencies and complex social structures.

To tackle the challenges, one possible direction is the
transformation techniques. For example, we may consider
adding a sampling process to transform an original graph
data to one in a different domain such that the data tu-
ples become independent and sparse and thus traditional
differential privacy can be applied. This is motivated by the
random but uniform sampling step in [97]. The non-uniform
compressive sampling technique [98-100] may be employed
as it can realize the required transformation with controlled
distortions.
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7.2 Tradeoff between Privacy Budget and Data Utility

How to allocate an appropriate amount of privacy budget
to achieve sufficient privacy protection on sensitive data
and, at the same time, maximize data utility remains a fun-
damental challenge [101]. Recently various schemes were
developed to investigate the privacy-utility tradeoff based
on techniques such as game theory and linear program-
ming [102-105].

Dwork et al. [105] stated that there is little understanding
on the optimal value of privacy budget for a practical sce-
nario. Importantly, their interview results obtained from sur-
veying different practitioners regarding how organizations
made key choices when implementing differential privacy
in practice indicated that there was no clear consensus on
how to choose privacy budget, nor agreement on how to
approach to the problem. One challenge is to quantify the
tradeoff between privacy budget and data utility.

7.3 Differentially Private Publishing of High Dimen-
sional Social Network Data

The unprecedented growth and popularity of online social
networks have generated massive high-dimensional data,
such as social users” attribute information, healthcare data,
location information, trajectory data, and commercial elec-
tronic data, which is often published or made available
to third parties. However, publishing such attribute data
may disclose private and sensitive information and result in
increasing concerns on privacy violations. Differentially pri-
vate publishing of such data has received broad attentions.
Nevertheless, most differentially private data publishing
techniques cannot work effectively for high dimensional
data. On one hand, since the sensitivities of different di-
mensions vary, evenly distributing the total privacy budget
to each dimension degrades the performance. Moreover, the
“Curse of Dimensionality” leads to two critical problems.
First, a dataset containing many dimensions and large at-
tribute domains has a low “Signal-to-Noise Ratio” [106].
Second, complex correlations exist between attribute dimen-
sions, making it impossible to directly and independently
protect each dimension’s privacy. To address these chal-
lenges, one may conduct data dimensionality reduction.
However, it is hard to maintain the characteristics of high
dimensional data to the maximum extent and to prevent
private information from being defected during the process
of dimensionality reduction.

To address these challenges, Bayesian networks [106],
random projection [107] and various sampling techniques
were employed to support differentially private high di-
mensional data publishing [108, 109]. Nevertheless, most of
these approaches still cannot work effectively for releasing
high-dimensional data in practice as they generally ignore
the different roles a dimension may play for a specific query
— one dimension may be more important than another for
a particular query. Additionally, one dimension may release
more information than another if the same amount of noise
is added. Therefore, how to allocate the total privacy budget
to dimensions is query-dependent and should be carefully
investigated. Moreover, the underlying distribution of the
data may be unknown and the high dimensionality and
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large attribute domains may skew the distributions of dif-
ferent dimensions, leading to significant perturbations on
the published data and thus affecting data utility. Last,
dimensionality reduction and noise addition both introduce
defection to the published data. How they jointly affect data
utility is a tough and open problem.

7.4 Differentially Private Publishing of Dynamic Data

Most of the existing differential privacy research focuses on
static data publishing. In practice, many datasets, such as
online retail data, recommendation system information and
trajectory data, are dynamically updated. Representing dy-
namic social network data as a static graph and discarding
temporal information may result in the loss of evolutionary
behaviors of social groups. Thus, how to achieve differen-
tial private dynamic social network data publishing is an
important research direction.

Differential private publishing of dynamic social net-
work data faces two critical challenges: allocating privacy
budget to each data element at each version and handling
noise accumulation over continuous data publishing. In
an algorithm with multiple sequential queries, the privacy
budget may be exhausted after a while based on the notion
of composite differential privacy, and thus the promised
privacy protection may not be maintained. Therefore, we
need a budget allocation strategy that can make the life
cycle of privacy budget as long as possible while providing
sufficient protection in a composite query. Moreover, since
each updated data publishing must consider the added
noise in the previous one to counter the correlation between
the two releases, the cumulative noise increases rapidly
as the number of releases increases, resulting in the fast-
decreasing utility in the published data over time.

There exist initial efforts on this direction. For example,
Chan et al. [110] and Chen et al. [111] tackled the continual
counting problem and the differential private publishing
of sequential data. However, the proposed approaches do
not address the failures caused by early exhaustion of pri-
vacy budget. The continual release of degree distributions
in degree-bounded graphs was considered in [71] but the
proposed technique yields poor utility.

Generally speaking, most approaches for differential
private data publishing in a static environment cannot be
directly applied to publishing of dynamic data. New strate-
gies and mechanisms are highly desirable.
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