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Abstract— Online social networks have gained tremendous
popularity and have dramatically changed the way we commu-
nicate in recent years. However, the publishing of social network
data raises more and more privacy concerns. To protect user
privacy, social networking data are usually anonymized before
being released. Nevertheless, existing anonymization techniques
do not have sufficient protection effects. A large number of
deanonymization attacks have arisen, and they mainly make use
of either network topology or node attribute information to suc-
cessfully reidentify anonymized users. In this article, we model a
social network as a structure-attribute network (SAN) integrating
the structural characteristics and the attribute information asso-
ciated with social network users. A novel similarity measurement
of social network nodes is proposed by considering the structural
similarity and attribute similarity. A two-phase scheme is then
designed to perform deanonymization by first dividing a social
network (graph) into smaller subgraphs based on spectral graph
partitioning and then applying the proposed deanonymization
algorithm on each matched subgraph pair. We simulate the
deanonymization attack with extensive experiments on three real-
world datasets, and the experimental results demonstrate that
our approach can improve the accuracy and time complexity of
deanonymization compared with the state of the art.
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NOMENCLATURE

Notations:
Notation Description
G = (V , E, B) a social network graph
Ga = (V a, Ea, Ba) an anonymized graph
Gu = (V u, Eu, Bu) an auxiliary graph
Na(i), Nu(i) the neighborhood of node i in the

anonymized graph and in the auxil-
iary graph, respectively

!a(i),!u(i) the degree of node i in the
anonymized graph and in the auxil-
iary graph, respectively

σ the mapping V a → V u

SA(i, j) the attribute similarity between nodes
i and j

SR(i, j) the structural similarity between
nodes i and j

S(i, j) the similarity between nodes i and j
Simσ (Ga, Gu) the similarity between Ga and Gu

under the mapping σ

I. INTRODUCTION

ONLINE social networks have gained tremendous pop-
ularity and have been playing important roles in our

daily life. They can provide online information sharing and
serve as exchange platforms for different groups with diverse
capabilities/functions, which dramatically changes the ways
we communicate [1]. As a reflection of real-world social
life, social networking data contain a large amount of sen-
sitive information. In many social networking sites, users
are asked to fill in personal information, such as name,
gender, birthday, educational background, occupation, marital
status, e-mail, or even personal photographs. In addition,
texts, pictures, videos, and geographical locations published
by users (user-generated contents) are retained in the social
network database [2]. These data are often published to third
parties for services, such as data analysis, targeted advertising,
recommendations, and evaluations on applications, resulting in
increasing concerns on privacy violations.

To protect user privacy, social networking data are usually
anonymized before being released [3], [4]. Generally speaking,
data anonymization techniques can be characterized into three
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categories: naive ID removal, k-anonymity [5] (including
l-diversity [6] and t-closeness [7]), and differential privacy
[8], [9]. These techniques achieve data anonymization mainly
by removing certain unique attribute information and then
perturbing network structures, which aims to improve the
privacy preservation level while maintaining high data utility.

However, such anonymization schemes do not have suf-
ficient protection effects. There have been a number of
deanonymization attacks targeting the released anonymized
social network data to reidentify an anonymous individual
[10]–[17]. Deanonymization takes as inputs an anonymized
graph and an auxiliary graph and outputs as many matched
node pairs in these two graphs as possible. They are either
seed-based [11], [16], [18] (assuming the availability of a set
of known anonymized identities and true identity mappings)
or seedless [19], [20] and resort to the network structure
(node degrees and/or connectivity, and so on) and/or attribute
information to deanonymize an anonymized social network.
By making use of a variety of background knowledge,
deanonymization can have a strong attack ability.

Nevertheless, deanonymization accuracy is significantly
impacted by various factors. For example, seed-based algo-
rithms heavily depend on the quality and quantity of the
seeds, and low-quality seeds could lead to poor performance
of reidentification due to error propagation and accumulation.
Moreover, it is hard to collect an appropriate number of
high-quality seed pairs since the published network is highly
anonymized. On the other hand, the published graph data
contains much non-Personal Identifiable Information (non-PII)
or attribute information, such as gender, age, education, and
residence. Attribute information has a great impact on the
deanonymization accuracy of graph data [21], but the cor-
responding investigation from the existing research is far
from satisfactory, let alone the joint consideration of both
structural and attribute information. In this article, we propose
a deanonymization approach considering both local topology
and node attribute values in a social network. Our contributions
can be summarized as follows (a preliminary version of this
article is presented in [22]).

1) Considering that the scale of a social network is usually
large, we resort to spectral graph partitioning to first
partition a social network into small subgraphs and then
deanonymize the subgraphs in parallel. Experimental
studies reveal that, when the number of partitions is
small, the deanonymization accuracy can be enhanced
as error accumulation is less serious, while the accu-
racy is decreased when the number of partitions is
large enough because too many intersubgraph links are
overlooked.

2) We propose a novel similarity measurement of social
network nodes by considering the structural similarity
and attribute similarity, so as to improve the accuracy
of deanonymization. Based on this new node similarity
metric, we design a graph deanonymization algorithm
that relies on a single seed pair following the BFS
traversal order to gradually search for the matching
nodes. The design motivation of our deanonymization
algorithm lies in that the neighbors of matched nodes

tend to match with a high probability, thus significantly
improving the deanonymization efficiency.

3) We carry out extensive experimental studies to vali-
date the deanonymization performance on three real-
world datasets, i.e., Twitter, Facebook, and Google+,
and the results indicate that our approach can obtain a
good tradeoff between the efficiency and accuracy of
deanonymization compared to the state of the art.

The rest of this article is organized as follows. We describe
the most related work in Section II and present the structure-
attribute network (SAN) model, the attack model, and the for-
mal definition of our deanonymization problem in Section III.
The spectral partitioning algorithm employed in this article
to partition large social networks into small subgraphs for
parallel processing, the novel node similarity metric that
captures both structural similarity and attribute similarity, and
the deanonymization algorithm that employs the new similarity
metric are all detailed in Section IV. Our experimental studies
based on three real-world datasets to evaluate the performance
of the deanonymization algorithm are presented in Section V,
and the results validate the good performance in terms of
accuracy and efficiency. Conclusions and future research are
presented in Section VI.

II. RELATED WORK

Deanonymization approaches in social networks can be
deemed as either seed-based or seedless depending on whether
a set of known mappings between anonymized identities and
true identities is needed. Another type of classification relies
on whether the node similarity measurement is based on local
social graph structures. In this section, we summarize the
most related work by classifying the existing deanonymiza-
tion methods as either structure-based or nonstructure-based.
Structure-based deanonymization makes use of the local topol-
ogy information of each node, such as the node degree
and neighborhood information for deanonymization, while
nonstructure-based approaches employ information other than
topology.

A. Structure-Based Deanonymization

Backstrom et al. [10] first introduced structure-based
deanonymization, where the authors proposed both active
attacks and passive attacks to deanonymize social network
data. The basic idea of these attacks is to create a subgraph
with a special link pattern to the target users, based on
which the target users can be deanonymized by identifying
the previously created subgraph and the link pattern from the
released anonymized graph. It is obvious that these attacks
are not scalable and difficult to control due to the continuous
growth of social network data during the process of the data
release. Narayanan and Shmatikov [11] proposed a robust
and scalable seed-based deanonymization attack for large-
scale directed social networks. Their algorithm consists of
two processes: seed identification and propagation, to identify
a set of seed mappings in the first phase and propagate the
deanonymization from the seed mappings to other users in
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the anonymized graph by adopting several deanonymization
heuristics in the second phase.

Srivatsa and Hicks [15] designed a deanonymization attack
to mobility traces using social network data as the side-
channel information. They presented three two-phase schemes
to perform the deanonymization attack, but the proposed
schemes suffer from scalability limitations. Ji et al. [18]
described an adaptive seed-based deanonymization (ADA)
framework for the scenario where the anonymized graph
and the auxiliary graph partially overlap. Ji et al. [23] pre-
sented a practical single-phase cold start optimization-based
deanonymization algorithm. Nilizadeh et al. [17] developed
a community-based deanonymization scheme for social net-
works, which can be employed to enhance seed-based attacks.
Ji et al. [16] conducted the first perfect deanonymizability
and partial deanonymizability study with seed information in
general scenarios, in which social networks are assumed to
follow an arbitrary network model not only ER model.

Fang et al. [24] proposed a structure-based weighted
neighborhood matching algorithm by considering local struc-
tural features and closeness centrality of nodes when cal-
culating node similarities. This algorithm adopts a dynamic
similarity matrix and the weighted neighborhood match-
ing to ensure good noise tolerance and deanonymization
accuracy. Shao et al. [19] developed a fast and effective
seedless deanonymization approach relying on structural infor-
mation equipped with a pairwise node similarity measure.
Hu et al. [25] considered the deanonymization of partially
overlapping networks with the aid of seed nodes and provided
general forms of theoretical results under the ER model.

Zhang et al. [26] probed into the seedless deanonymiza-
tion problem, formalized it in the context of multihop adja-
cency relationship, and further generated the collective-form
deanonymization problem, which aims to minimize the total
differences between multihop adjacency matrices of the two
observed networks called collective adjacency disagreement
(CAD).

Xian et al. [27] proposed a multiview low-rank coding
(MVLRC)-based deanonymization framework, in which the
auxiliary network can be incorporated naturally with the target
network for anonymized links’ inference.

B. Nonstructure-Based Deanonymization

Qian et al. [20] introduced a knowledge graph to explicitly
represent the prior information of an attacker for any individual
user. Based on the defined knowledge graph, they formu-
lated the process of deanonymization and privacy inference.
Ji et al. [21] studied the impact of non-PII on the privacy
of graph data with attribute information. They analyzed the
attribute-based anonymity for structure-attribute graph data.
The difference between this work and ours lies in that it
focuses on the analysis of the impact of attribute information
on data privacy, while our work defines a new similarity metric
integrating the structural similarity and attribute similarity for
node deanonymization.

Wang et al. [28] proposed a profile matching method based
on the generation of user features. In [29], a deanonymization

strategy was proposed, which is operated based on the
information threshold. The attacker can query the selected
anonymous user’s attributes sequentially and can calculate the
amount of information. The performance for social networks
with a fixed finite number of users and for asymptotically
large social networks was analyzed. Zhang et al. [30] explored
the impact of user attributes in social network deanonymiza-
tion. They first quantified the significance of attributes in a
social network and then designed an algorithm by exploiting
attribute-based similarity to deanonymize the social network
data.

In light of the above analysis, one can see that the following
aspects distinguish our work from the existing ones. First,
we consider both the structure characteristics and the user’s
attribute information to define a novel node similarity metric
for good deanonymization performance. Second, we present a
deanonymization algorithm for partially overlapping networks
starting from only a single seed pair and achieve scalability
via spectral graph partitioning.

III. DEFINITION AND MODEL

In this section, we introduce our SAN model, the attack
model, and the formal definition of the deanonymization
problem. To make this article more readable, we summarize
the notations and their semantic meanings in Nomenclature.

A. Social-Attribute Network Model

We model a social network as an undirected graph
G = (V , E), where V represents the users (nodes) and E
represents the social relationships between the nodes in V .
In addition to social relationships, each node is associated with
a set of attributes. For instance, in SINA microblog, nodes are
the SINA microblog users, and edges represent the friendship
between different users; node attributes, such as age, gender,
major, occupation, and residence, can be extracted from the
user profiles.

We need to distinguish between attributes and attribute
values. Each user has a finite number of attributes, such as
residence, major, and occupation, and each attribute has a finite
number of attribute values. For example, a user’s occupation
can be a doctor, an engineer, or a teacher. Let d be the total
number of distinct attribute values in a social network. Then,
one can employ a d-dimensional binary vector to represent
the existence of the attribute values for each node. More
specifically, let "bu be the attribute vector for node u. Then,
an entry in "bu equal to 1 indicates that u has the corresponding
attribute value and 0 otherwise. The attribute values of all
social nodes are represented by matrix B = [ "b1, "b2, . . . , "bn],
of which n is the total number of social nodes.

In this article, we use a structure-attribute network
G = (V , E, B) to model a social network consisting of a social
structure G = (V , E) and an attribute matrix B . Assume that
an attacker has the certain background knowledge to help him
complete the deanonymization. Before attacking, the adversary
holds two graphs: an anonymized graph Ga = (V a, Ea, Ba)
published by the OSN service provider and an auxiliary graph
Gu = (V u, Eu, Bu) constructed by the adversary based on
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Fig. 1. Example of deanonymization.

his background knowledge. Note that the auxiliary graph
is partially or completely overlapping with the anonymized
graph. Given i ∈ V a, its neighborhood is defined as Na(i) =
{v ∈ V a|ea

i,v ∈ Ea}, and the degree of node i is denoted
as !a(i) = |Na(i)|. Similarly, Nu( j) and !u( j) denote the
neighborhood and the degree of node j in the auxiliary graph.
For the sake of simplicity, we use G = (V , E) to represent
G = (V , E, B) if clear from the context.

In practice, social networking data are usually anonymized
to generate an anonymized graph before it is released, while
the auxiliary graph can be obtained based on a variety of
ways, such as data mining, cooperative information systems,
and knowledge/data attacks [16]. As shown in Fig. 1, graph
G = (V , E) represents the original graph maintained by the
OSN service provider, while graphs Ga and Gu are extracted
from G with overlapping nodes and edges, and five nodes in
Ga are mapped to five nodes in Gu .

B. Attack Model

The goal of deanonymization is to map the nodes in Ga to
the nodes in Gu as accurately as possible. Given Ga and Gu ,
we can employ a mapping to formally define a deanonymiza-
tion attack: σ : V a → V u . ∀i ∈ V a, its mapping under σ is
σ (i) ∈ V u ⋃{⊥}, where ⊥ is a special not existing indicator.
Under σ , a successful deanonymization attack on i ∈ V a is
defined as σ (i) = i ′ if i ′ ∈ V u and i and i ′ correspond to
the same user or σ (i) =⊥ if σ (i) /∈ V u . Otherwise, the attack
on i fails. Accordingly, our goal of a deanonymization attack
is to successfully deanonymize as many users in V a as
possible.

C. Problem Definition

As mentioned earlier, a deanonymization scheme can be
defined as a mapping: σ = V a → V u , which maximizes the
total number of matched node pairs in Ga and Gu . To formally
define our problem, we need a parameter “similarity” to
quantify the probability of i in Ga being mapped to j in Gu ,
and our goal is to find a mapping σ that maximizes the total
similarity of the nodes in Ga and their corresponding mapping
nodes in Gu . We use Sim to measure the node similarity

between Ga and Gu after matching by σ , that is,

Sim
σ

(
Ga, Gu) =

∑

(i,σ (i)= j)

S(i, j) (1)

of which S(i, j) denotes the node similarity between i ∈ V a

and j ∈ V u and is defined in Section IV-B. As a result, our
deanonymization problem can be formally stated as follows.

Definition 1 (Deanonymization Problem):
Input: An anonymized graph Ga and an auxiliary graph Gu .
output: A mapping σ .
Goal: maximizing the similarity between Ga and Gu ,

i.e., Simσ (Ga, Gu).

IV. DEANONYMIZATION

In this section, we first introduce a graph partitioning
algorithm [31] to divide a large-scale social graph into smaller
subgraphs. Then, we formally define the similarity measure-
ment of two nodes with the consideration of structural char-
acteristics and attributes of a social network before proposing
the deanonymization algorithm.

A. Spectral Graph Partitioning

For large-scale social networks, the computation cost of
deanonymization is high, and the accuracy is low. An effective
method is to partition a large social network into small sub-
graphs. Graph partitioning can also effectively reduce the error
accumulation of deanonymization. In this section, we briefly
introduce the graph partitioning algorithm proposed in [31],
which can achieve a significantly higher partitioning quality
for social networks than other schemes [31].

We first introduce the simple case of bisection spectral
graph partitioning, which produces two subgraphs with certain
properties. Let S ⊆ V be a set of vertices; then, its boundary
is a set of edges ∂(S)⊂ E with each having only one endpoint
in S. In other words

∂(S) =
{
ei, j : i ∈ S ∧ j /∈ S

}
. (2)

The bisection spectral graph partitioning intends to find a
minimum balanced cut C = (S, S̄) of graph G = (V , E) in
the sense that S satisfies either

ρ(S) = min
S

|∂(S)|
|S||S̄| (3)

or

η(S) = min
S

|∂(S)|∑
i∈S !(i) · ∑ j∈S̄ !( j)

(4)

where S̄ is the complement set of S with respect to V and
| · | denotes the cardinality of a set. Note that ρ(S) is often
referred to as the ratio cut, while η(S) is referred to as the
normalized cut.

Next, we generalize bisection to multiple partitions. For a
graph G = (V , E), let matrix A = [ai, j ] be its weighted
adjacency matrix. Notice that G is an unweighted graph under
our consideration, in which edge weights can be considered
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to be all one. Thus, the matrix A of graph G can be defined
as follows:

ai, j =
{

1, if ei, j ∈ E
0, otherwise.

(5)

Given the adjacent matrix A, its diagonal matrix is
D = diag(Ae), where the vector e = (1, . . . , 1)T. For an
unweighted graph G, the entry ai, j = 1 denotes the existence
of an edge between nodes i and j , and the diagonal of matrix
D denotes the degrees of the nodes. The Laplace matrix L is
defined as L = D − A. Since D is a diagonal matrix, one can
find that Le = 0.

Let t be the number of subgraphs produced by graph
partitioning. Denote by Sp the set of nodes in one partition,
of which p = 1, . . . , t . The matrix U = [ui,p] denotes a set of
vectors U = [ "u1, . . . , "ut ], where each vector "u p corresponds
to the set Sp with elements

ui,p =
{

θ, if i ∈ Sp

0, otherwise
(6)

of which θ is a constant number depending on the kind of cut
under consideration.

For the ratio cut, we have θ = (1/(|Sp|)1/2), and

"u p
T L "u p = |∂

(
Sp

)
|

|Sp|
(7)

U TU = I. (8)

Then, the graph partitioning problem can be reformulated
as

ρ̃(S1, . . . , St )= min
S1,...,St

t∑

p=1

|∂
(
Sp

)
|

|Sp|
= min

S1,...,St

t∑

p=1

"u p
TL "u p. (9)

The solution to the optimization problem (9) is the eigenvec-
tor associated with the t smallest eigenvalues of the following
problem:

LU = U'. (10)

For the normalized cut, we have θ = (1/(
∑

i∈Sp
!(i))1/2),

and

"u p
T L "u p = |∂

(
Sp

)
|

∑
i∈Sp

!(i)
(11)

U T DU = I (12)

where I is the t × t identity matrix. Then, the graph parti-
tioning problem can be reformulated as

η̃(S1, . . . , St ) = min
S1,...,St

t∑

p=1

|∂
(
Sp

)
|

∑
i∈Sp

!(i)
= min

S1,...,St

t∑

p=1

"u p
T L "u p.

(13)

The solution to the optimization problem (13) is the eigen-
vector associated with the t smallest eigenvalues of the fol-
lowing problem:

LU = DU' (14)

where ' = diag([λ1, . . . ,λt ]) and λt is the eigenvalue of L.

Algorithm 1 Spectral Graph Partitioning
1: Let G = (V , E) be an input graph, A be its

adjacent matrix, and D be its Diagonal matrix;
2: Compute the Laplacian matrix L = D − A;
3: Let B = I for a ratio cut or B = D for a normalized cut;

let t be the number of partitions;
4: Find the t smallest eigenpairs of the eigenvalue problem

LU = BU';
5: Run a clustering algorithm such as k-means on the points

defined by the rows of U .

After defining the two different partitions, we outline the
graph partitioning algorithm in Algorithm 1 [31].

By applying Algorithm 1, one can partition a large social
graph into t small subgraphs. Both the anonymized graph
and the auxiliary graph are divided into subgraphs by the
same approach with similar adjacency matrix and Laplace
matrix as, in reality, the noise ratio for anonymization
is not high. Then, the corresponding subgraphs can be
matched according to the t largest eigenvalues. Denote by
(Ga

1, Gu
1), (Ga

2, Gu
2), . . . , (Ga

t , Gu
t ) the t matched subgraph

pairs.

B. Similarity Measurement

In this section, we formally define the similarity of two
nodes. The similarity S(i, j) between nodes i and j considers
the attribute similarity and the structural similarity.

1) Attribute Similarity: The attribute similarity of node
i ∈ V a and j ∈ V u is denoted as SA(i, j). Let "ba

i and "bu
j

be

"ba
i =

(
ba

1i , ba
2i , ba

3i , . . . , ba
di

)
(15)

"bu
j = (

bu
1 j , bu

2 j , bu
3 j , . . . , bu

d j

)
(16)

of which d is the number of attribute values. We have

SA(i, j) =
"ba
i • "bu

j
∑d

x=1

(
ba

xi

⊕
bu

x j

)
+ "ba

i • "bu
j

. (17)

Note that the value of SA(i, j) is between 0 and 1. If two
nodes have a greater number of the same attribute values, their
attribute similarity is higher.

2) Structural Similarity: Let SR(i, j) be the structural sim-
ilarity between i ∈ V a and j ∈ V u . The degrees of i and
j are, respectively, !a(i) and !u( j), which are defined in
Section III.

We first consider the degrees of the 1-hop neighbors of
nodes i and j . Sort the degrees of the 1-hop neighbors of nodes
i and j in descending order. Let α = min(!a(i),!u( j)); then,
we extract the largest α degrees of the 1-hop neighbors of
nodes i and j and construct two α-dimensional vectors "Da

α(i)
and "Du

α( j).
Similarly, we consider the degrees of the two-hop neighbors

of nodes i and j . Sort the degrees of the two-hop neighbors
Na

2 (i) and Nu
2 ( j) of nodes i and j in descending order.

Let β = min(|Na
2 (i)|, |Nu

2 ( j)|); then, we extract the largest
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β degrees of the two-hop neighbors of nodes i and j and
construct two β-dimensional vectors "Da

β(i) and "Du
β( j).

Then, we combine the two vectors of "Da
α(i) and "Da

β(i) to
get [ "Da

α(i), "Da
β(i)]; similarly, we get [ "Du

α( j), "Du
β( j)]. Next,

we compute the cosine similarity of the two combination
vectors, of which the value of parameter 0 ≤ c1 ≤ 1 is
determined by experimental studies. Cosine similarity is a
measure of similarity between two nonzero vectors, which is
the most commonly used in high-dimensional positive spaces

SR(i, j) = c1



1 −
|!a

i − !u
j |

max
{
!a

i ,!
u
j

}





+ (1 − c1) cos
([

"Da
α(i), "Da

β(i)
]
,
[

"Du
α( j), "Du

β( j)
])

.

(18)

3) Node Similarity: The node similarity between i ∈ V a

and j ∈ V u is denoted as S(i, j), which is computed as

S(i, j) = c2SA(i, j) + (1 − c2)SR(i, j) (19)

of which c2 is a weight coefficient with 0 ≤ c2 ≤ 1.
If c2 > 0.5, it means that the attribute information is more
important; otherwise, structural similarity is weighed higher.

C. Deanonymization Algorithm

We employ (Ga
s , Gu

s ) to represent a matched subgraph pair
after graph partitioning. The objective of our deanonymization
attack is to find a mapping that maximizes the similarity
of the social nodes in Gu

s and those in Ga
s . Intuitively, one

can construct a weighted complete bipartite graph G B
s =

(V a
s + V u

s , εB
s ), of which εB

s is the set of edges between
the nodes in V a

s and those in V u
s . The similarity value

S(i, j) is assigned to link ei, j ∈ εB
s as its weight. Then,

the deanonymization problem is reduced to the maximum
weighted bipartite matching problem, which can be solved by
the Hungarian algorithm. However, constructing the complete
bipartite graph has large time and space complexities as we
have to calculate the similarity between any pair of nodes
in Gu

s and Ga
s . To address this problem, we build a lightly

weighted bipartite graph in Algorithm 2. The basic idea is to
find the best possible k candidate matching nodes from V u

s for
each node in V a

s , starting from an initial node pair following
the BFS traversal order.

Algorithm 2 takes as inputs the matched subgraph pair
(Ga

s , Gu
s ), an initial node pair (pa

0, pu
0 ), and parameters k

and r , where r is the similarity threshold for selecting the
k candidate nodes, and outputs a maximum weighted bipartite
matching σ . The initial node pa

0 ∈ V a
s and its matching

node pu
0 ∈ V u

s can be selected by randomly choosing a
node in V a

s and calculate its similarities with all the nodes
in V u

s to examine if there is a successful mapping, i.e., the
largest similarity is greater than a threshold and is evidently
greater than the second largest similarity. As the correctness
of the initial node pair strongly affects the attack performance,
we might repeat this step a few times to get the right initial
node pair with high confidence.

Starting from pa
0 and its matching node pu

0 , we traverse
the nodes in V a

s based on the BFS ordering. For any node
i ∈ V a

s , its parent node in the BFS is denoted as p(i), and
its candidate node set in V u

s is denoted by Cani . Candidate
nodes are selected based on the observation that, if two nodes
match, their neighbors are likely to match. We first initialize
G B

s to be a bipartite graph with node set V a
s ∪V u

s and an empty
edge set (line 1). Then, Canpa

0
is initialized to include only pu

0
(line 2). Next, for each node i ∈ V a

s , the algorithm searches
p(i)’s candidate nodes and their neighbors in Gu

s , computes
the similarities, and then compares the similarities with the
threshold r to obtain at most k candidate matching nodes with
the largest similarities to i (lines 3–17). After obtaining Cani

for each node i ∈ V a
s , we construct a link from i to each node

in Cani and insert it into εB
s to get the bipartite graph G B

s
(lines 18–21).

Note that, in our algorithm, the initial node pa
0 needs to

compare with all the nodes in V u
s to find out its matching

node pu
0 . Other nodes only need to compare with the neigh-

bors of their parent nodes’ candidate matching nodes, which
can greatly decrease the time complexity. Specifically, if we
construct a complete bipartite graph, we need to transverse all
the nodes in the graph. The number of links in this complete
bipartite graph is O(na

s ·nu
s ) (the number of social nodes in the

matched subgraph pair Ga
s and Gu

s ). To reduce the mapping
complexity, we can decrease the links by keeping only links
with the top-k largest weights. Each node in V a

s is linked to
top-k candidate nodes in V u

s . Accordingly, the number of links
is reduced to O(k · na

s ). Thus, the time complexity of solving
the maximum weighted bipartite matching problem is lowered.

Also, note that the predefined parameters k and r can trade
off the deanonymization accuracy and algorithm efficiency:
when k is too large or r is too small, the bipartite graph may
have too many unnecessary edges for mapping; conversely,
the matching process may miss important links. We will eval-
uate the impact of these two parameters through experimental
studies.

V. EXPERIMENTAL EVALUATIONS

In this section, we study the performance of our
deanonymization algorithm and compare it with the state-of-
the-art approaches on three real datasets of Twitter, Facebook,
and Google+.

A. Datasets’ Descriptions

1) Twitter Dataset: We collected the social structures
(including social users and their relationships) and user
attributes from Twitter using the Twitter API. Then, we con-
structed an undirected social network with an undirected link
between user i and user j if i is in j ’s friend list or j is in
i ’s friend list.

The attribute data that we crawled from Twitter include
“user id,” “screen name,” “user name,” “create time,” “city,”
“time zone,” and “biography.” We considered two attributes,
i.e., “create time” and “city,” in our experimental study. It is
noted that the users can fill in their profiles freely resulting in
many infrequent or meaningless attribute values. Moreover,
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Algorithm 2 SAN-Based Deanonymization (SAN-DA)
Input: a matched subgraph pair (Ga

s = (V a
s , Ea

s ), Gu
s =

(V u
s , Eu

s )), an initial node pa
0 ∈ V a

s and its mapping node
pu

0 ∈ V u
s , parameters k and r .

Output: a maximum weighted bipartite matching
σ

1: Define εB = ∅, build a bipartite graph G B
s = (V a

s ∪V u
s , εB

s )
2: Can pa

0
= pu

0
3: for each i ∈ V a

s following the BFS order starting from p0

do
4: Define Cani = ∅
5: for each v ∈ Can p(i) do
6: // p(i) denotes the parent node of i .
7: if S(i, v) > r then
8: Cani = Cani

⋃{v}
9: end if

10: for each neighbor j of v in Gu
s do

11: if S(i, j) > r then
12: Cani = Cani

⋃{ j}
13: end if
14: end for
15: end for
16: Update Cani to the k nodes with the first k highest

similarities
17: end for
18: for each i ∈ V a

s do
19: for each a ∈ Cani do
20: εB

s = εB
s

⋃
ei,a

21: end for
22: end for
23: Execute the Hungarian algorithm on the bipartite graph G B

s
24: Return a maximum weighted bipartite matching σ

typos of inputs sometimes make the same attribute value
different. Thus, we preprocessed the data and removed the
incomplete, invalid, or duplicate attribute values. Also, note
that the Twitter website records the “create time” of each
user, but we only quoted “year” as the attribute in this study.
We selected as attribute values the top nine years for “create
time” and the top-70 cities for “city” in which most users
claimed that they have lived.

Finally, we obtained a dataset consisting of 7910 users,
874 222 undirected social links, and 79 distinct attribute
values.

2) Facebook and Google+ Datasets: The datasets of Face-
book and Google+ were obtained from the Stanford Network
Analysis Project (SNAP) [32].

The Facebook dataset contains “education school,” “home-
town,” and some other anonymized features. We processed the
network data by removing the invalid and duplicate attribute
values. Moreover, we added gender as a new user attribute
by randomly assigning a gender value to each social network
user. After this processing, we obtained a Facebook dataset,
including three attributes: “education school,” “hometown,”
and “gender.” This dataset contains 4032 nodes, 88 234 undi-
rected social links, and 112 distinct attribute values, including
40 education schools, 70 hometowns, and two genders.

TABLE I

BASIC STATISTICS OF THE SANS

The Google+ dataset contains the “education school,”
“major,” “province,” “city,” and “gender.” We chose three
attributes of “province,” “city,” and “gender.” This dataset con-
tains 3859 nodes, 4992 social links, and 67 distinct attribute
values, including 35 provinces, 30 cities, and two genders.

B. Constructing an SAN

We took each social user as a node and the friendships
between users as edges to construct a network. For each
dataset, we constructed the attribute matrix B to represent the
attribute information associated with the users. Table I shows
the basic statistics of our constructed SANs.

1) Anonymized Graph: We first generated an anonymized
graph before conducting deanonymization. For this purpose,
we employed the parameter p to denote the degree of
anonymization. The larger the p, the greater number of edges
that are modified. The anonymization algorithms used in our
experiments include the following.

1) Naive Anonymization: The naive approach simply sub-
stitutes the user IDs with random anonymous identifiers,
while the graph structure remains unchanged.

2) Switch Anonymization: The switch approach randomly
selects two edges (i1, j1) and (i2, j2) and exchanges their
endpoints, that is, (i1, j1) and (i2, j2) are deleted, and
(i1, j2) and (i2, j1) are inserted to the network. If we
intend to add p noise to the anonymized graph, this
process needs to be repeated (p/2) × |Ea| times.

3) Perturb Anonymization: The perturb anonymization ran-
domly deletes some links and then randomly inserts the
same number of edges. If we aim at adding p noise
to the anonymized graph, we need to randomly delete
(p/2) × |Ea| links and then add the same number of
random links.

2) Anonymized Attribute Information: We also anonymized
the attribute information of social network users before con-
ducting deanonymization. For this purpose, we employed the
parameter q to denote the degree of anonymization. The larger
the q , the greater number of attribute values that are modified.
That is, the larger the q , the greater number of elements in
matrix B that is perturbed. If we aim at adding q noise to the
attribute values, we need to randomly flip q × (n ·d) elements
of B , of which n is the number of social nodes of one graph
and d is the number of attribute values.

3) Auxiliary Graph: The auxiliary graph was the reduced
graph of V u , which contains 80% of the nodes randomly
selected from V .

4) Graph Partitioning: Both the anonymized graph and
the auxiliary graph were partitioned into t number of sub-
graphs based on Algorithm 1 described in Section IV-A.
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Fig. 2. Experimental results versus k on Twitter with p = 0.1 and q = 0.01. (a) Accuracy versus k. (b) Runtime versus k.

The corresponding subgraphs were matched according to the t
eigenvalues. As a result, we obtained the following t matched
subgraph pairs: (Ga

1, Gu
1), (Ga

2, Gu
2), . . . , (Ga

t , Gu
t ).

C. Experimental Results

We employed accuracy and run time as the performance
metrics to evaluate our deanonymization algorithm. Accu-
racy was defined as (|Mcorrect(i, j)|)/(|V a ∩ V u|), of which
Mcorrect(i, j) indicates the number of correctly matched node
pairs. Our deanonymization algorithm was applied on the three
datasets of Twitter, Facebook, and Google+ introduced in
Section V-A.

1) Performance Results Versus Different Parameter Values:
In this section, we evaluated the impact of parameters c1, c2, k,
r , and t on the deanonymization performance. Recall that c1 is
a weight coefficient measuring the relative importance of one-
and two-hop neighborhoods in structural similarity, while c2

and 1 − c2 are the weights assigned to attribute similarity and
structural similarity in determining the overall node similarity.
Both c1 and c2 play important roles in measuring the node
similarity. On the other hand, k and r are employed to tradeoff
the deanonymization accuracy and the algorithm complexity,
of which k is the number of candidate matching nodes for
each node and r is a similarity threshold to help select the
candidate nodes. The last parameter under our consideration
is t , which is the number of subgraphs obtained from the graph
partitioning algorithm.

We conducted our experiments on the Twitter dataset to
determine these parameters since the larger the amount of data,
the more accurate the parameter selection. Note that we only
evaluated the results based on perturb anonymization, as the
naive anonymization and switch anonymization are its special
cases. We first determined c1, c2, k, and r without considering
partitioning, based on which we then figured out the value of t .
Each experiment was repeated 100 times to obtain an averaged
result.

Determined after many trials, we set c1 = 0.4 and c2 =
0.4 since we only adopt two or three attributes for each
dataset. With the aid of graph partitioning, Algorithm 2 can
be parallelized in different subgraphs, so the runtime decreases

with the increase in t due to parallelism, and the accuracy can
be improved with the increase in t when t is less than a certain
value because error accumulation becomes less serious when t
gets larger. However, when t is too large, the accuracy slightly
decreases as more intersubgraph structure information is not
used for deanonymization. More specifically, we choose t = 4
for the Twitter dataset and t = 2 for Facebook and Google+
in the following experimental studies.

Fig. 2 illustrates the impact of parameters k and r on the
accuracy and runtime of Algorithm 2 based on the Twitter
dataset when the perturb noise p = 0.1 and q = 0.01. From
Fig. 2(a), one can see that the accuracy can be improved with
the increasing k when k ≤ 8, and the improvement becomes
not obvious when k > 8. Moreover, the runtime constantly
increases with the growing k, as shown in Fig. 2(b). Thus,
we choose k = 8 in the following studies. Moreover, when
r increases, the obtained bipartite graph becomes sparser, and
some critical links could be missed, causing the involved node
matchings to fail; thus, the accuracy and runtime both greatly
decrease. Therefore, we choose r = 0.4 in the following
experiments. The simulation results shown in Figs. 3 and 4
demonstrate similar conclusions for the datasets of Facebook
and Google+.

2) Comparison Studies:
a) Accuracy: We compared our algorithm with the most

influential deanonymization method proposed in [11], which
serves as a baseline, the ADA algorithm in [18], which
employs a unified similarity (US) measurement considering
both the local and global structural characteristics, and the
De-SAG algorithm in [21], which also considers structural
information and attribute information. We considered three
different anonymization techniques, namely, naive, switch,
and perturb to generate an anonymized graph. One can see
that from Fig. 5 where p = 0.1 and q = 0, different
deanonymization algorithms on different datasets all achieve
high accuracy for the naive anonymization method since the
naive approach does not change the graph structure. For the
switch and perturb anonymization methods, our algorithm
achieves better performance than the other two algorithms.

We also discussed the impact of the noise rate p of the
anonymized graph with perturb anonymization and the one
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Fig. 3. Experimental results versus k on Facebook with p = 0.1 and q = 0.01. (a) Accuracy versus k. (b) Runtime versus k.

Fig. 4. Experimental results versus k on Google+ with p = 0.1 and q = 0.01. (a) Accuracy versus k. (b) Runtime versus k.

Fig. 5. Comparison results based on different anonymization methods (p = 0.1 and q = 0). (a) Twitter. (b) Facebook. (c) Google+.

of attribute information q on the matching accuracy. Fig. 6
reports the comparison results of deanonymization accuracy
with different p’s when q = 0.01 on the three datasets.
We did not perturb the attribute information too much since
the attribute information of these datasets is already general
information, and perturbation on generalized information can
greatly ruin data utility. It can be seen that our method
achieves the best performance. Even, for a high noise ratio,
our algorithm can still guarantee high accuracy. Our method
achieves almost the same performance with De-SAG, while the
structural similarity in De-SAG also considers betweenness
centrality and closeness centrality. Although it can improve
accuracy, the computational complexity is relatively high,

while our method achieves the same performance with high
efficiency, which will be illustrated in the following section.
It is worth noting that, when more than 40% links are modified,
the structure of the social network graph is significantly
changed. Nevertheless, in reality, a publisher would not dra-
matically change the structure of a real dataset for data utility.

The impact of q on the performance can be demonstrated
in Fig. 7. As q increases, the deanonymization accuracy of the
baseline and ADA does not change since these two methods do
not consider attribute information, while the results of De-SAG
and our method decrease since the anonymity increases.

Note that the improvement of our method and De-SAG over
the other two approaches is higher for a larger p in most cases.
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Fig. 6. Comparison results with different p’s (graph anonymization method=“perturbation” and q = 0.01). (a) Comparison result on Twitter. (b) Comparison
result on Facebook. (c) Comparison result on Google+.

Fig. 7. Comparison results with different q’s (graph anonymization method=“perturbation” and p = 0.1). (a) Comparison result on Twitter. (b) Comparison
result on Facebook. (c) Comparison result on Google+.

The reason is that the attribute information associated with
users can relatively provide help for deanonymization when
more structural information is perturbed.

One also notices that, for the Twitter dataset, the accuracy
does not decrease too much with the increase of the per-
turbation ratio p, which varies from 0.936 to 0.894. How-
ever, for the datasets of Facebook and Google+, the noise
ratio has an obvious effect on accuracy. More specifically,
the accuracy has a great drop from 0.912 to 0.832 for the
Facebook dataset and from 0.893 to 0.823 for the Google+
dataset. This is because the number of social nodes is not
large, but the number of social links is very large in the
Twitter dataset, resulting in a high average degree; thus,
when we perturb the social graph, the change is not so
obvious.

b) Runtime: As we can see from Figs. 6 and 7, our
method and De-SAG achieve almost the same performance of
accuracy. Based on our theoretical analysis, we improve the
time complexity and deanonymization efficiency from three
aspects: 1) the process of spectral graph partitioning allows
deanonymizing in parallel; 2) the deanonymization algorithm
reduces the mapping complexity; and 3) the metric of node
similarity is time-efficient. Therefore, we explore the average
runtime of our method and De-SAG on the three datasets
to demonstrate our method’s superiority. Fig. 8 illustrates
the runtime results when the perturbation noise p = 0, 1,
q = 0.01, k = 8, and r = 0.4. The runtime includes the
process of spectral graph partitioning, the highest runtime of
the deanonymization on all subgraphs. As shown in Fig. 8,
the runtime of our algorithm is much lower than that of
De-SAG, while they obtain almost the same accuracy, which
demonstrates our theoretical results.

Fig. 8. Comparison results on average runtime based on different
deanonymization methods.

Discussion: The good performance of our algorithm is
mainly attributed to the consideration of both attribute sim-
ilarity and structural similarity, which can greatly improve
the matching accuracy. In our evaluations, we only used two
or three attributes. Nevertheless, the greater the number of
attributes adopted, the higher the accuracy. On the other hand,
the time and space complexities of the algorithm increase with
the adoption of a larger attribute matrix. However, a careful
study indicates that the matrix is sparse. Therefore, when
we analyze the matrix and calculate the node similarities,
we can perform optimization techniques such as compression
processing to improve the runtime and space utilization.

VI. CONCLUSION

Social network deanonymization is an effective approach to
test the preservation level of anonymization techniques. With
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the results of deanonymization, one can dig out how the graph
anonymization techniques affect the network properties and
provide similarity analysis on different structural character-
istics. In this article, we model a social network as a SAN
that integrates the structural characteristics and the attribute
information of the users. We propose a two-phase scheme to
perform deanonymization. First, a social network (graph) is
divided into smaller subgraphs by spectral graph partitioning.
Subsequently, we apply a deanonymization algorithm on the
matched subgraph pairs by considering both attribute similarity
and structural similarity. Comprehensive experimental results
on real-world datasets demonstrate that our approach can
obtain a good tradeoff between the efficiency and accuracy of
deanonymization. For future research, we intend to define a
multimeasurement with the consideration of a greater number
of similarity metrics for effective deanonymization.

REFERENCES

[1] D. M. Boyd and N. B. Ellison, “Social network sites: Definition,
history, and scholarship,” J. Computer-Mediated Commun., vol. 13,
no. 1, pp. 210–230, Oct. 2007.

[2] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin,
“Persona: An online social network with user-defined privacy,” in Proc.
ACM SIGCOMM Conf. Data Commun., 2009, pp. 135–146.

[3] B. Zhou, J. Pei, and W. Luk, “A brief survey on anonymization
techniques for privacy preserving publishing of social network data,”
ACM SIGKDD Explor. Newslett., vol. 10, no. 2, pp. 12–22, Dec. 2008.

[4] X. Wu, X. Ying, K. Liu, and L. Chen, “A survey of privacy-preservation
of graphs and social networks,” in Managing and Mining Graph Data.
Boston, MA, USA: Springer, 2010, pp. 421–453.

[5] L. Sweeney, “K-anonymity: A model for protecting privacy,” Int. J.
Uncertainty, Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570,
Oct. 2002.

[6] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam,
“L-diversity: Privacy beyond k-anonymity,” in Proc. 22nd Int. Conf.
Data Eng. (ICDE), Mar. 2006, p. 24.

[7] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond
k-anonymity and l-diversity,” in Proc. IEEE 23rd Int. Conf. Data Eng.,
Apr. 2007, pp. 106–115.

[8] C. Dwork, “Differential privacy,” in Automata, Languages and Program-
ming, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds. Springer,
2006, pp. 1–12.

[9] N. Li, W. Qardaji, D. Su, Y. Wu, and W. Yang, “Membership privacy:
A unifying framework for privacy definitions,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), 2013, pp. 889–900.

[10] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou r3579x?:
Anonymized social networks, hidden patterns, and structural steganog-
raphy,” in Proc. 16th Int. Conf. World Wide Web, 2007, pp. 181–190.

[11] A. Narayanan and V. Shmatikov, “De-anonymizing social net-
works,” 2009, arXiv:0903.3276. [Online]. Available: http://arxiv.org/abs/
0903.3276

[12] A. Narayanan and V. Shmatikov, Robust de-Anonymization of Large
Datasets (how to Break Anonymity of the Netflix Prize Dataset). Austin,
TX, USA: Univ. Texas at Austin, 2008.

[13] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A practical attack
to de-anonymize social network users,” in Proc. IEEE Symp. Secur.
Privacy, May 2010, pp. 223–238.

[14] M. Korayem and D. Crandall, “De-anonymizing users across heteroge-
neous social computing platforms,” in Proc. 7th Int. AAAI Conf. Weblogs
Social Media, 2013, pp. 1–4.

[15] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using social
network as a side-channel,” in Proc. ACM Conf. Comput. Commun.
Secur. (CCS), 2012, pp. 628–637.

[16] S. Ji, W. Li, N. Z. Gong, P. Mittal, and R. Beyah, “On your social
network de-anonymizablity: Quantification and large scale evaluation
with seed knowledge,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
Feb. 2015, pp. 1–15.

[17] S. Nilizadeh, A. Kapadia, and Y.-Y. Ahn, “Community-enhanced de-
anonymization of online social networks,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2014, pp. 537–548.

[18] S. Ji, W. Li, M. Srivatsa, J. S. He, and R. Beyah, “Structure based data
de-anonymization of social networks and mobility traces,” in Proc. Int.
Conf. Inf. Secur. Cham, Switzerland: Springer, 2014, pp. 237–254.

[19] Y. Shao, J. Liu, S. Shi, Y. Zhang, and B. Cui, “Fast de-anonymization
of social networks with structural information,” Data Sci. Eng., vol. 4,
no. 1, pp. 76–92, Mar. 2019.

[20] J. Qian, X.-Y. Li, C. Zhang, and L. Chen, “De-anonymizing social
networks and inferring private attributes using knowledge graphs,” in
Proc. IEEE INFOCOM 35th Annu. IEEE Int. Conf. Comput. Commun.,
Apr. 2016, pp. 1–9.

[21] S. Ji, T. Wang, J. Chen, W. Li, P. Mittal, and R. Beyah, “De-SAG:
On the de-anonymization of structure-attribute graph data,” IEEE Trans.
Depend. Sec. Comput., vol. 16, no. 4, pp. 594–607, Jul. 2019.

[22] H. Jiang, J. Yu, C. Hu, C. Zhang, and X. Cheng, “SA framework based
de-anonymization of social networks,” Procedia Comput. Sci., vol. 129,
pp. 358–363, Jan. 2018.

[23] S. Ji, W. Li, M. Srivatsa, and R. Beyah, “Structural data
de-anonymization: Quantification, practice, and implications,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2014,
pp. 1040–1053.

[24] J. Fang, A. Li, Q. Jiang, S. Li, and W. Han, “A structure-based de-
anonymization attack on graph data using weighted neighbor match,”
in Proc. IEEE 4th Int. Conf. Data Sci. Cyberspace (DSC), Jun. 2019,
pp. 480–486.

[25] Z. Hu, L. Fu, and X. Gan, “De-anonymize social network under partial
overlap,” in Proc. ACM Turing Celebration Conf. China, May 2019,
p. 16.

[26] J. Zhang, L. Fu, X. Wang, and S. Lu, “De-anonymization of social
networks: The power of collectiveness,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., Jul. 2020, pp. 89–98.

[27] X. Xian, T. Wu, S. Qiao, W. Wang, Y. Liu, and N. Han, “Multi-view
low-rank coding-based network data de-anonymization,” IEEE Access,
vol. 8, pp. 94575–94593, 2020.

[28] M. Wang, Q. Tan, X. Wang, and J. Shi, “De-anonymizing social
networks user via profile similarity,” in Proc. IEEE 3rd Int. Conf. Data
Sci. Cyberspace (DSC), Jun. 2018, pp. 889–895.

[29] F. Shirani, S. Garg, and E. Erkip, “Optimal active social network de-
anonymization using information thresholds,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 1445–1449.

[30] C. Zhang, H. Jiang, Y. Wang, Q. Hu, J. Yu, and X. Cheng, “User
identity de-anonymization based on attributes,” in Proc. Int. Conf.
Wireless Algorithms, Syst., Appl. Cham, Switzerland: Springer, 2019,
pp. 458–469.

[31] M. Naumov and T. Moon, “Parallel spectral graph partitioning,”
NVIDIA, Santa Clara, CA, USA, Tech. Rep., NVR-2016-001, 2016.

[32] J. Leskovec and A. Krevl. (2014). SNAP Datasets: Stan-
ford Large Network Dataset Collection. [Online]. Available:
http://snap.stanford.edu/data.2016:49

Honglu Jiang received the M.S. degree in computer
science from Qufu Normal University, Shandong,
China, in 2012, and the Ph.D. degree in computer
science from The George Washington University,
Washington, DC, USA, in 2021.

She is currently an Assistant Professor of computer
science with The University of Texas Rio Grande
Valley, Brownsville, TX, USA. Her research inter-
ests include wireless networks, differential privacy,
big data, and privacy preservation.

Jiguo Yu (Senior Member, IEEE) received the Ph.D.
degree from the School of Mathematics, Shandong
University, Qingdao, China, in 2004.

He became a Full Professor with the School
of Computer Science, Qufu Normal University,
Shandong, in 2007. He is currently a Full Profes-
sor with Qilu University of Technology (Shandong
Academy of Sciences), Jinan, China. His main
research interests include privacy-aware computing,
wireless networking, distributed algorithms, peer-to-
peer computing, and graph theory including design-

ing and analyzing algorithms for many computationally hard problems in
networks.

Dr. Yu is a member of ACM and a Senior Member of the China Computer
Federation (CCF).

Authorized licensed use limited to: George Mason University. Downloaded on January 31,2022 at 22:53:12 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Xiuzhen Cheng (Fellow, IEEE) received the M.S.
and Ph.D. degrees in computer science from the
University of Minnesota—Twin Cities, Minneapolis,
MN, USA, in 2000 and 2002, respectively.

She is currently a Professor of computer science
with Shandong University, Qingdao, China. Her
current research focuses on blockchain computing,
privacy-aware computing, and wireless and mobile
security.

Dr. Cheng is a member of ACM. She served/is
serving on the editorial boards of several techni-

cal journals and the technical program committees of various professional
conferences/workshops. She was a Faculty Member with the Department of
Computer Science, George Washington University, from September 2002 to
August 2020, and worked as a Program Director for the US National Science
Foundation (NSF) from April to October in 2006 (full time) and from
April 2008 to May 2010 (part time). She received the NSF CAREER Award
in 2004.

Cheng Zhang received the B.S. degree from
Shandong Normal University, Jinan, Shandong,
China, in 2015, and the M.S. and Ph.D. degrees
in computer science from The George Washington
University, Washington, DC, USA, in 2017 and
2020, respectively.

He is currently an Assistant Professor in computer
information systems with West Texas A&M Uni-
versity, Canyon, TX, USA. His research interests
include data anonymization and deanonymization,
privacy-preserving in online social networks, and

cooperative jamming in wireless networks.

Bei Gong received the B.S. degree from Shandong
University, Qingdao, China, in 2005, and the Ph.D.
degree from the Beijing University of Technology,
Beijing, China, in 2012.

He has six National invention patents and one
monograph textbook. He is the Principal Investigator
of eight national projects such as the National Nat-
ural Science Foundation grants and six provincial
and ministerial projects such as the General Sci-
ence and Technology Program of Beijing Municipal
Education Commission. Over the past five years,

he has authored or coauthored more than 30 articles in top-tier journals
and prestigious conferences in relevant research fields. His research interests
include trusted computing, Internet of things security, mobile Internet of
things, and mobile edge computing.

Haotian Yu received the B.A. degree from the
University of Minnesota, Minneapolis, MN, USA,
in 2017, and the M.S. degree in data analytics from
The George Washington University, Washington,
DC, USA, in 2020.

His research interest includes data analysis for
social networks.

Authorized licensed use limited to: George Mason University. Downloaded on January 31,2022 at 22:53:12 UTC from IEEE Xplore.  Restrictions apply. 


