
	 1	

Tabletop	Games	Designed	to	Promote	Computational	Thinking	

Frederick	J.	Poole	

	Center	for	Language	Teaching	Advancement,	Michigan	State	University,	Lansing,	

United	States	

poolefre@msu.edu	

Jody	Clarke-Midura	

Department	of	Instructional	Technology	and	Learning	Sciences,	Utah	State	University,	

Logan,	United	States	

jody.clarke@usu.edu	

Melissa	Rasmussen	

Department	of	Computer	Science,	Utah	State	University,	Logan,	United	States	

melissa.ann.r@gmail.com	

Umar	Shehzad	

Department	of	Instructional	Technology	and	Learning	Sciences,	Utah	State	University,	

Logan,	United	States	

agha.umar.s@gmail.com	

Victor	R.	Lee	

Graduate	School	of	Education,	Stanford	University,	Stanford,	United	States	

vrlee@stanford.edu	

	

	 2	

This	work	was	supported	by	National	Science	Foundation	(NSF)	under	Grant	[number	

1837224]	

	
Tabletop	Games	Designed	to	Promote	Computational	Thinking	

Background	and	Context:	There	is	a	growing	perception	that	

computational	thinking	can	be	developed	in	unplugged	environments.	

A	recent	trend	among	these	unplugged	approaches	is	the	use	of	

tabletop	games.	While	there	are	many	commercial	tabletop	games	on	

the	market	that	are	promoted	as	teaching	computer	science	learning	

and/or	computational	skills,	there	is	little	research	to	support	these	

claims.	

Objective:	This	study	investigates	the	types	of	tabletop	games	that	are	

currently	being	promoted	as	teaching	or	requiring	computational	

thinking,	who	such	games	are	marketed	towards,	and	how	game	

designs	could	provide	opportunities	for	developing	computational	

thinking.		

Method:	We	conducted	a	content	analysis	to	explore	the	type	of	

tabletop	games	currently	being	created,	their	audiences,	and	the	kinds	

of	game	mechanics	and	design	features	being	implemented	to	teach	

computational	thinking	concepts.	We	present	the	results	of	our	content	

analysis	and	provide	design	cases	of	three	tabletop	games	to	illustrate	

how	different	game	designs	afford	opportunities	for	learning	

computational	thinking	concepts	at	different	age	levels.		

Findings:	In	this	study,	we	created	a	taxonomy	of	computational	

thinking	tabletop	games	that	identified	three	primary	categories	(e.g.	

code	building,	code	executing,	and	puzzle	games)	and	one	category	that	

includes	a	combination	of	the	first	three	categories.	Games	that	fall	into	

our	categories	share	similar	learning	claims,	target	audiences,	and	

game	mechanics.	

	 3	

Implications:	Our	taxonomy	offers	a	starting	place	for	instructors	who	

want	to	explore	the	use	of	tabletop	games	for	introducing	

computational	thinking	concepts	in	unplugged	settings,	suggestions	for	

designers,	and	areas	of	investigation	for	researchers.		

	

Keywords:	Tabletop	games,	computational	thinking,	content	analysis	

Introduction	

There	is	a	growing	perception	that	computational	thinking	(CT)	can	be	developed	
and	experienced	in	unplugged,	or	non-digital,	environments	and	materials	(Bell,	et	
al.,	2015).	A	recent	trend	among	these	unplugged	approaches	is	the	use	of	tabletop	
games	(Tang	et	al.,	2020).	Tabletop	games	are	analog	games	that	are	played	on	a	flat	
surface	and	include	both	board	and	card	games.	Researchers	have	argued	for	the	
use	of	tabletop	games	to	teach	CT	concepts	because	they	promote	computation	
naturally	(Berland	&	Lee,	2011;	Horn	et	al.,	2012)	are	cheaper	and	thus	scalable	
(Gresse	von	Wangenheim	et	al.,	2019),	and	can	promote	transfer	when	learners	
start	programming	in	digital	environments	(Lee	et	al.,	2020;	Kafai	&	Vasudevan,	
2015).	In	a	seminal	study	on	CT	and	tabletop	games,	Berland	and	Lee	(2011)	
identified	several	forms	of	CT	that	can	emerge	in	game	play.	In	particular,	they	
observed	people	playing	the	collaborative	tabletop	game	Pandemic	and	found	
evidence	of	CT	as	the	players	internalized	the	rules	and	created	and	enacted	
strategies	to	optimize	gameplay.		

While	some	researchers	have	designed	and	evaluated	their	own	tabletop	
games	to	promote	CT	(Apostolellis	et	al.,	2014;	Gresse	von	Wangenheim	et	al.,	2019;	
Kuo	&	Hsu,	2020)	there	are	many	commercial	tabletop	games	on	the	market.	These	
tabletop	games	are	marketed	as	promoting	computer	science	(CS)	learning	and/or	
computational	skills,	although	empirical	research	will	need	to	be	done	to	support	
these	claims.	A	casual	glance	at	the	different	games	would	suggest	that	there	tend	to	
be	some	similar	designs.	For	instance,	many	tabletop	CT	games	ask	players	to	plan	
movement	on	a	two-dimensional	grid	space	that	is	reminiscent	of	the	turtle	in	the	
LOGO	programming	language.	Presumably,	the	benefits	of	the	turtle	interaction	
metaphor	for	LOGO	would	apply	to	playing	these	games	(Papert,	1980).	Others	
involve	players	following	a	linear	path	with	their	tokens,	common	in	many	other	
board	games.	Considering	there	seems	to	be	some	regularity,	this	paper	reports	on		
a	content	analysis	to	explore	the	type	of	tabletop	games	currently	being	created,	
their	audiences,	and	the	kinds	of	recurring	game	mechanics	and	design	features	
being	implemented	to	teach	CT	concepts.	These	tabletop	games	are	complex	
environments	involving	both	gaming	and	learning	mechanics	that	interact	in	
dynamic	ways.	Understanding	not	only	the	types	of	games	and	game	designs	that	

	 4	

are	available,	but	also	how	such	game	designs	potentially	promote	learning	of	CT	
concepts	can	be	valuable	resource	for	game	designers,	researchers,	and	teachers.		

In	this	paper,	we	present	the	results	of	our	content	analysis	and	provide	
design	cases	of	three	tabletop	games	to	illustrate	how	game	designs	afford	
opportunities	for	learning	various	CT	concepts.	By	explicitly	illustrating	how	game	
designs	promote	learning	we	provide	information	for	designers	to	design	new	
games,	researchers	to	identify	and	evaluate	the	efficacy	of	games,	and	teachers	to	
determine	aspects	of	these	games	that	can	be	leveraged	or	enhanced	for	learning	CT	
in	a	formal	or	informal	setting.	In	the	following	literature	review,	we	first	provide	
our	definition	of	CT	and	the	CT	concepts	that	were	used	to	explore	learning	
potential	and	objectives	within	the	tabletop	games.	Next,	we	review	how	tabletop	
games	have	been	used	in	other	educational	settings.	We	then	discuss	arguments	for	
using	tabletop	games	to	promote	CT	learning	and	review	the	studies	that	have	
explored	this	topic	to	date,	specifically	investigating	the	game	design	approaches	
employed	in	the	literature.	

Literature	Review	

CT	Concepts	

Researchers	studying	CT	have	pursued	a	variety	of	frameworks	to	identify	and	
categorize	the	components	included	in	CT	(e.g.,	Brennan	&	Resnick,	2012;	Grover	&	
Pea,	2013;	Shute	et	al.,	2017;	Weintrop	et	al.,	2016;	Wing,	2006).	The	current	study	
focuses	on	the	frameworks	presented	by	Brennan	and	Resnick	(2012)	and	Shute	et	
al.	(2017).	Brennan	and	Resnick	(2012)	centered	their	framework	on	the	block-
based	coding	platform	Scratch.	They	divided	ideas	into	concepts	(e.g.	loops,	
parallelism,	data),	practices	(e.g.	iteration,	debugging,	abstracting),	and	perspectives	
(expressing,	connecting,	questioning).	Their	concepts	map	onto	individual	Scratch	
blocks,	whereas	their	practices	deal	with	designing	a	program.	

While	Brennan	and	Resnick	(2012)	included	coding	concepts	in	CT,	others	
propose	that	CT	is	similar	to	problem	solving	(Shute	et	al.,	2017).	The	framework	
proposed	by	Shute	et	al.	(2017)	is	based	on	a	definition	of	CT	as	“the	conceptual	
foundation	required	to	solve	problems	effectively	and	efficiently,	with	solutions	that	
are	reusable	in	different	contexts”	(p.	151)	and	draws	from	a	number	of	studies	and	
frameworks,	including	that	of	Brennan	and	Resnick	(2012).	Shute	et	al.	(2017)	
identified	decomposition,	abstraction,	algorithms,	and	debugging	as	the	components	
of	CT	that	occurred	most	frequently	in	the	literature,	and	included	them	as	skills	
engaged	in	CT.	Abstraction	is	divided	into	data	collection/analysis,	pattern	
recognition,	and	modeling;	algorithms	include	subcategories	of	algorithm	design,	
parallelism,	efficiency,	and	automation.	

We	developed	a	framework	for	categories	within	CT	from	a	combination	of	
the	frameworks	from	Brennan	and	Resnick	(2012)	and	from	Shute	et	al.	(2017).	In	
this	framework,	CT	includes	skills	employed	in	the	process	of	designing	a	solution	to	
a	problem:	debugging,	abstraction,	and	algorithm	design.	In	addition,	CT	includes	

	 5	

the	knowledge	required	to	implement	a	solution	in	a	way	that	computers	
understand:	control	statements,	data,	language-specific	syntax.	These	six	areas	of	CT	
are	defined	in	Table	1.	

	[Table 1 near here]

Research	on	tabletop	games	for	learning	

Tabletop	games	have	been	used	and	investigated	for	learning	in	a	variety	of	contexts	
including	medicine	(Beylefeld	&	Struwig,	2007;	Kaufman	&	Flanagan,	2016;	Reeve	et	
al.,	2008),	mathematics	(Elofsson	et	al.,	2016;	Jimenez	et	al.,	2011;	Siegler	&	Ramani,	
2009;	Skillen	et	al.,	2018),	second	language	learning	(Poole	et	al.,	2019),	and	climate	
change	(Castronova	&	Knowles,	2015),	among	other	areas	(King	&	Cazessus,	2014;	
Thomas	et	al.,	2019).	While	the	topics	and	content	areas	for	which	tabletop	games	
are	used	is	diverse,	the	rationale	for	researchers	using	and	investigating	such	games	
can	be	broadly	parsed	into	two	categories.	On	one	side	are	those	who	argue	that	
games	are	inherently	enjoyable	and	thus	can	motivate	learners	to	do	seemingly	
monotonous	tasks;	on	the	other	side	are	those	who	argue	that	tabletop	games	
involve	game	mechanics	and	structures	that	promote	learning.	

Researchers	who	see	educational	games	as	a	motivating	force	on	their	own,	
regardless	of	the	game	mechanics,	tend	to	create	and	investigate	quiz-based	or	
trivia	games	(Nicholson,	2011).	In	these	games,	players	typically	roll	a	die	or	draw	a	
card,	and	are	then	prompted	with	a	question	related	to	the	topic	being	studied.	Such	
games	have	been	called	chocolate-covered	broccoli	(Bruckman,	1999)	because	the	
game	functions	as	chocolate	covering	a	task	the	learner	finds	dull	(broccoli).	
Researchers	investigating	these	types	of	tabletop	games	have	found	that	players	
view	them	positively	(Beylefeld	&	Struwig,	2007;	Ogershok	&	Cottrell,	2004;	Rose,	
2011)	and	have	reported	learning	gains	(Rose,	2011;	Struwig	et	al.,	2014).	Though	
research	has	shown	that	by	simply	framing	an	activity	as	a	game,	learners	tend	to	
rate	the	activity	more	positively	(Leiberoth,	2015),	thus	calling	into	question	
enjoyment	as	a	measure	of	validation	for	games.	

Other	researchers	have	investigated	how	tabletop	game	mechanics	can	be	
leveraged	to	promote	learning.	For	example,	several	studies	have	explored	the	effect	
of	rolling	dice	and	counting	while	moving	a	game	piece	on	number	sense	and	
mathematical	knowledge	(Elofsson	et	al.,	2016,	Siegler	&	Ramani,	2009;	Skillen	et	
al.,	2018;).	These	studies	generally	find	that	simple	game	mechanics	of	rolling	dice	
and	then	counting	and	moving	a	game	piece,	has	a	strong	impact	on	learners'	
number	sense.	Poole	et	al.	(2019)	illustrated	how	a	non-linear	board	allowed	for	
meaningful	language	learning	opportunities,	and	further	how	game	design	can	
encourage	collaboration	by	creating	tasks	(e.g.	defeating	a	‘baddie’)	that	cannot	be	
completed	alone.	Tabletop	games	have	also	been	argued	to	support	teaching	
complex	systems	because	players	can	manipulate	different	mechanics	and	pieces	
within	the	game	and	explore	how	they	affect	the	system	(Castronova	&	Knowles,	
2015).		

In	recent	years,	researchers	have	started	exploring	the	use	of	tabletop	games	
to	promote	CT	and	the	learning	of	CT	concepts.	Researchers	have	argued	that	

	 6	

tabletop	games	are	ideal	for	learning	these	concepts	and	skills	because	players	often	
engage	in	computation	even	when	playing	tabletop	games	not	specifically	designed	
to	teach	such	concepts	(Berland	&	Lee,	2011).	Further	researchers	have	argued	that	
unlike	in	digital	games,	in	tabletop	games	the	game	mechanics	are	transparent,	and	
thus	more	salient	to	players	(Horn	et	al.,	2012).	

Research	on	tabletop	games	for	CT	

Research	investigating	the	use	of	tabletop	games	to	promote	CT	has	focused	on	
researcher-designed	games	and	conceptual	arguments.	Tabletop	games	used	in	
these	studies,	similar	to	games	used	in	other	educational	settings,	fall	into	a	few	
categories.	Some	games	promote	learning	by	giving	players	code	to	execute	and	
then	movement	is	determined	by	the	result	of	that	execution.	Other	games	attempt	
to	integrate	learning	via	game	mechanics	that	typically	involve	an	action	queue	and	
or	a	puzzle	to	be	solved.		

In	one	of	the	first	studies	investigating	the	use	of	tabletop	games	to	teach	
computer	science	concepts,	Singh	et	al.	(2007)	invited	undergraduate	students	and	
five	lecturers	to	play	C-Jump.	C-Jump	is	a	linear	tabletop	game	in	which	players	roll	a	
dice	and	execute	code	based	on	the	dice	roll.	For	instance,	if	a	player	is	on	a	square	
with	the	expression:	x+2,	then	the	player	adds	two	to	the	dice	roll	and	moves	the	
game	piece	along	the	board.	While	the	students	reported	enjoying	the	game	and	
agreed	that	it	promoted	learning,	the	lecturers	were	more	critical	and	skeptical	of	
the	game’s	learning	value.	One	lecturer	stated	that	the	game	focused	too	much	on	
syntax	and	not	enough	on	programming	skills,	such	as	problem	solving.		

In	game	designs	that	have	integrated	CT	concepts	into	game	mechanics,	
designers	have	relied	on	an	action	queue.	An	action	queue	adds	a	series	of	steps	(e.g.	
move	forward,	turn	left)	to	a	queue	that	will	be	executed.	For	instance,	Gresse	von	
Wangenheim	et	al.	(2019)	designed	the	game	SplashCode.	In	the	game,	players	draw	
five	movement	cards	(e.g.	move	forward,	turn	left)	to	be	placed	into	an	action	queue	
of	three	cards.	These	action-queue	cards	are	then	executed	to	move	the	player's	
character	around	an	open-grid	board.	The	goal	of	the	game	is	to	get	the	player's	
character	to	a	designated	location	before	other	players	do.	In	another	study,	Kuo	
and	Hsu	(2020)	designed	Robot	City,	a	game	that	also	has	players	move	around	a	
grid	using	an	action	queue	of	cards.	However,	players	have	multiple	tasks	to	
complete	on	the	grid.	For	example,	players	are	asked	to	pick	up	material	and	deliver	
them	to	spatial	locations.	To	improve	the	efficiency	and	complete	tasks	quicker	they	
can	create	more	advanced	action	queues	that	include	conditional	statements	and	
procedures.		

Other	tabletop	games	that	have	integrated	CT	concepts	into	game	mechanics	
have	relied	on	puzzle	features.	For	example,	Apostolellis	et	al.	(2014)	designed	the	
game	RabBit	EscApe.	In	this	game,	players	must	manipulate	wooden	tiles	that	are	
connected	to	each	other	by	magnets	to	create	a	path	for	a	rabbit	to	escape	an	ape.	In	
another	study,	Lee,	et	al,	(2020)	used	the	ThinkFun	game	On	the	Brink	in	a	classroom	
setting	to	promote	CT	and	transfer	to	a	digital	version	of	the	game	in	Scratch.		In	the	
game	On	the	Brink,	players	move	a	robot	around	a	grid	towards	an	endpoint.	To	do	

	 7	

so,	they	must	identify	a	pattern	of	colors	hidden	in	the	grid	and	then	explore	
solutions	to	the	puzzle	by	adding	cards	to	an	action	queue	that	is	executed	by	the	
players.	

Finally,	Tsarava	et	al.	(2018)	designed	three	tabletop	games	and	explored	
student	and	expert	gaming	experiences	across	all	three	games.	Interestingly,	the	
three	games	fall	into	the	aforementioned	categories.	The	first	game	they	designed	is	
a	race-to-the-end	game	called	The	Race,	in	which	players	solve	coding	problems	on	a	
card	to	advance	game	pieces	across	a	linear	board.	They	also	designed	an	action-
queue	game,	Treasure	Hunt,	in	which	two	players	create	an	action	queue	involving	
movement	and	control	statement	cards	to	move	either	a	crab	or	a	turtle	around	a	
grid	to	collect	items.	Finally,	their	last	game	is	a	puzzle-based	game,	Patterns,	in	
which	players	identify	patterns	to	solve	puzzles	before	other	players	do.	They	claim	
that	The	Race	teaches	control	statements	and	data	concepts,	Treasure	Hunt	teaches	
algorithm	design	and	abstraction,	and	Patterns	teaches	control	statements	and	
abstraction.		

The	present	study	has	three	primary	goals.	First,	we	identify	the	landscape	of	
tabletop	games	that	are	marketed	as	teaching	CT.	Secondly,	we	offer	a	taxonomy	for	
categorizing	these	tabletop	games	based	on	design	features.	Finally,	we	provide	
design	cases	for	games	that	fall	into	each	of	our	categories	to	illustrate	how	game	
mechanics	are	intended	to	promote	development	of	CT	skills	and	concepts	within	
each	game	type.	

Methods	

Our	analysis	includes	three	steps:	search	for	games,	content	analysis,	and	design	
cases.	In	this	section,	we	first	detail	our	search	strategy	for	locating	commercial	
tabletop	games	that	make	marketing	claims	around	teaching	CT.	Next,	we	provide	a	
brief	description	of	content	analysis	and	how	this	approach	was	used	to	summarize	
the	current	tabletop	games	available	for	learning	CT.	Finally,	we	provide	a	
description	of	design	cases.		

Search	Strategy	

This	review	used	a	three-phase	search.	In	the	initial	search	the	following	terms	were	
used:		

"computer	science"	OR	"computational	thinking"	OR	"programming"	OR	"coding"	
AND	"tabletop	games"	OR	"board	games"	OR	card	games"	

In	this	initial	phase,	websites	were	searched	for	commercial	tabletop	games	
that	are	believed	and/or	marketed	to	promote	CT,	computer	science,	and/or	general	
programming	skills.	Commercial	games	were	our	focus	because	a	disproportionate	
amount	of	educational	games	in	research	has	focused	on	researcher	developed	
games	and	thus	relatively	little	is	known	about	the	design	of	commercial	ones	(Lee,	
2020).	All	commercial	games	that	appeared	to	involve	computer	science	in	any	form	

	 8	

were	included	resulting	in	the	identification	of	22	games.	Publisher	websites	that	
specialize	in	designing	computational	thinking/computer	science	games	and/or	
websites	that	review	tabletop	games	(e.g.		https://boardgamegeek.com/)	were	also	
identified.	In	the	second	phase,	both	the	publisher	and	tabletop	game	review	
websites	were	further	investigated	for	additional	games	that	made	claims	to	teach	
CT	skills.	Nineteen	additional	games	were	identified,	bringing	the	total	to	41.	Finally,	
in	the	third	phase,	we	searched	for	research	involving	CT	tabletop	games	using	the	
following	library	databases:	Education	Source,	ERIC,	and	Google	Scholar.	The	search	
strings	above	were	used	in	this	search.		

This	search	resulted	in	171	articles	from	Education	Source	and	ERIC,	and	
17,000+	articles	from	Google	Scholar.	Abstracts	for	the	first	20	pages	(200	results)	
in	Google	Scholar	were	examined.	After	20	pages	the	results	became	irrelevant	to	
games	and	CT.	The	abstracts	of	articles	from	both	searches	were	then	reviewed	to	
confirm	that	the	studies	were	investigating	the	CT	skills	in	tabletop	games.	We	then	
identified	tabletop	games	used	in	each	of	these	articles	that	were	unique	from	our	
already	established	list	and	identified	8	additional	games	to	bring	the	total	number	
of	games	identified	to	49.	Next,	we	examined	the	inclusion/exclusion	criteria	used	to	
identify	which	games	were	included	in	this	analysis.	

Inclusion	and	Exclusion	Criteria	

Tabletop	games	investigated	in	this	analysis	were	included	if	they	met	all	the	
following	criteria	(See	Table	2):		

[Table 2 near here]
After	applying	the	inclusion	criteria	25	games	were	dropped,	leaving	24	

games	for	analysis.	Of	the	25	games	dropped,	5	were	dropped	because	they	were	
researcher	designed	games	and	thus	were	not	readily	available	to	the	public,	12	
tabletop	games	were	dropped	because	they	did	not	specifically	claim	to	teach	CT	
concepts,	7	were	dropped	because	they	either	were	not	tabletop	games	or	required	
the	use	of	an	iPad	or	other	digital	screen,	and	1	was	dropped	because	it	has	not	yet	
been	released.	It	is	important	to	note	that	the	12	games	dropped	because	they	did	
not	specifically	claim	to	teach	CT	concepts	were	originally	added	for	review	because	
either	a	researcher	or	a	reviewer	on	a	tabletop	game	review	website	identified	them	
as	games	that	promote	CT.	While	they	do	not	explicitly	claim	to	teach	CT,	these	
particular	tabletop	games	may	provide	valuable	insight	into	the	design	of	future	
games.		

Content	Analysis	

Content	analysis	is	a	research	tool	used	for	synthesizing	concepts	or	themes	
within	a	selected	data.	It	involves	the	identification	of	certain	concepts	followed	by	
quantification	of	those	concepts	with	the	help	of	analytical	coding	and	subsequent	
categorization	of	those	analytical	codes.	Content	analysis	can	provide	insight	into	
trends,	features,	and	relationships	between	concepts	within	the	target	data	(Lin	et	

	 9	

al.,	2019).	We	applied	this	technique	to	the	commercial	tabletop	games	identified	in	
our	search	marketed	as	teaching	CT.	The	researchers	in	the	present	study	had	
access	to	physical	copies	of	most	of	the	24	games.	For	those	we	did	not	have	copies	
of,	we	consulted	online	instruction	manuals	and	videos	to	understand	how	the	game	
was	played.	Analysis	based	on	manuals	exclusively	has	been	fruitful	for	other	
studies	of	tabletop	gaming	(Garcia,	2017).		

To	explore	the	types	of	game	mechanics	being	used	within	games,	we	first	
created	a	list	of	all	board	game	mechanics	found	on	https://boardgamegeek.com/.	
Then	we	found	examples	of	each	of	these	board	game	mechanics	within	one	of	the	
CT	games	we	identified.	Game	mechanics	that	were	not	identified	in	any	of	the	
games	were	then	dropped	from	the	list.	Next,	we	coded	all	24	games	in	terms	of	
whether	they	contained	one	of	the	remaining	game	mechanics.	It	was	at	this	point	
that	we	recognized	that	these	games	could	be	collapsed	into	three	overarching	
categories,	games	that	used	an	action-queue,	those	that	required	the	execution	of	
code,	and	those	that	relied	on	puzzle-based	mechanics.	Given	that	this	matched	
game	designs	being	developed	and	explored	in	the	literature	we	felt	confident	in	
these	categories.	Finally,	we	discussed	definitions	for	these	categories	as	a	group	
and	then	used	these	definitions	for	our	coding	scheme,	see	Table	3.	Two	researchers	
used	this	coding	scheme	to	code	each	of	the	games.	Cohen’s	Kappa	was	calculated	as	
a	measure	of	inter-coder	reliability.	As	we	see	in	table	3,	Cohen’s	k	for	each	of	the	
game	types	was	.78	or	greater,	suggesting	good	reliability.	

[Table 3 near here]
In	addition	to	coding	for	game	type,	we	also	coded	each	game	for	the	targeted	

age-group	based	on	suggestions	by	the	publisher,	the	narrative	theme	(e.g.	robots,	
space)	and	complexity	(e.g.	simple,	complex),	learning	claims	made	either	on	the	
publisher’s	website	or	in	the	instructional	manual,	and	the	gameplay	configuration	
(e.g.	single-player,	collaborative,	competitive).	Narrative	complexity	was	coded	as	
either	simple	or	complex.	A	simple	narrative	provides	players	with	a	goal	and	agents	
to	complete	the	goal.	For	instance,	in	Cosmic	Coding	players	are	given	a	spaceship	
(agent)	and	a	task	to	collect	all	the	stars	(goal).	Complex	narratives	include	
additional	plot	information	such	as	information	about	the	setting,	agent/character	
background	stories,	and/or	rationale	for	completing	goals.	Finally,	the	learning	
claims	were	identified	from	the	publisher’s	website	or	the	instructional	manual,	
using	the	keywords	in	Table	4	below.	Synonymous	words	or	phrases	-	for	example,	
“programming	language”	is	synonymous	with	“syntax”	-	also	counted	as	a	learning	
claim,	and	all	claims	were	collapsed	into	the	six	basic	categories	described	in	Table	
1.		

[Table 4 near here]

Design	Cases	

Design	cases	are	descriptions	of	“real	artifact[s]	or	experiences	that	[have]	been	
intentionally	designed”	(Boling,	2010,	p.2).	In	the	present	study,	the	artifacts	are	

	 10	

tabletop	games	that	have	been	intentionally	designed	to	teach	or	promote	CT	skills	
and/or	knowledge.	Design	cases	do	not	provide	validation	for	designs,	rather	they	
are	a	form	of	summative	discourse	about	the	principles	and	conjectures	that	designs	
are	based	on.	Specifically,	we	explore	the	conjectures	about	learning	that	are	made	
in	tabletop	game	designs.		
To	systematically	build	the	design	cases,	we	applied	Arnab’s	et	al.	(2015)	learning	
mechanic-game	mechanic	(LM-GM)	model	to	three	games	that	fall	into	each	of	the	
game	types	identified	in	our	taxonomy.	The	LM-GM	model	was	designed	to	help	
researchers	and	educators	identify	serious	game	mechanics	that	are	argued	to	be	
“game	components	that	translate	a	pedagogical	practice/pattern	into	concrete	game	
mechanics	directly	perceivable	by	a	player’s	action”	(Arnab	et	al.,	2015,	p.	395).	To	
use	this	model,	the	authors	suggest	that	users:	first	identify	the	learning	mechanics	
(LM)	and	game	mechanics	(GM),	then	describe	their	relationships	and	
implementation.	In	other	words,	how	do	GM	afford	opportunities	for	LM.	Next,	users	
should	illustrate	the	dynamic	appearance	of	both	LM	and	GM	during	gameplay.	It’s	
is	important	to	note	here	that	while	Arnab	et	al.,	(2015)	do	provide	several	
examples	of	LM	and	GM	in	their	paper,	they	do	not	explicitly	define	these	examples	
and	neither	do	they	claim	that	their	list	of	examples	to	be	exhaustive.	Rather,	it	is	up	
to	the	researcher	to	user	of	the	framework	to	define	the	LM	and	GM	in	the	analysis.		
In	our	design	cases,	we	first	provide	a	brief	overview	of	the	game.	Then	we	describe	
the	GM	in	detail.	Finally,	we	explore	the	conjectures	about	learning	by	applying	the	
LM-GM	model.	The	goal	of	this	model	is	to	“determine	at	which	point	gameplay	and	
pedagogy	intertwine”	(Arnab	et	al.,	2015,	p.	398).		It	is	at	this	intersection	that	
potential	learning	opportunities	afforded	by	the	game	can	be	observed.		

Results	

Results	of	the	content	analysis	are	organized	into	our	taxonomy	that	contains	four	
categories	of	game	types:	code	building,	executing	code,	puzzle,	and	combination	(see	
Table	4).	Within	each	category,	we	present	findings	on	game	configuration,	
environment,	goals,	and	actions	followed	by	a	design	case.	

Code	Building	Games	

Code	Building	games	are	those	in	which	players	create	code	via	an	action	queue	and	
then	execute	the	code.	These	games	are	designed	for	single	player	(N=4),	
cooperative	(N=2),	and	competitive	(N=2)	configurations	and	involve	controlling	
and	moving	an	agent	through	a	grid-like	space	(See	figure	2).	Thus,	the	coding	in	
these	games	is	based	on	movement	and	the	syntax	is	directional	arrows.	These	
games	draw	inspiration	from	the	LOGO	Programming	language,	which	also	uses	
directional	commands	to	move	a	turtle	around	a	grid	system	(Papert,	1980).	Eight	
games	were	identified	within	this	category	(see	Table	5).	All	games	in	this	category	
are	designed	for	younger	learners	who	are	not	reading	or	are	emergent	readers.	
Seven	of	the	games	have	robot-based	themes	and	one	has	a	space	theme.	Three	of	

	 11	

the	robot-themed	games	use	animal	robots.	The	narrative	for	these	games	is	simple	
and	involves	a	directive	to	reach	a	specific	target.	For	example,	in	Coder	Bunnyz,	
players	are	told	that	they	must	retrieve	their	carrot	and	bring	it	home.	Games	with	a	
complex	narrative	provide	stories	that	attempt	to	provide	context	for	the	gameplay.	
For	example,	in	Robot	Turtles,	an	additional	story	book	provides	a	narrative	and	
rationale	for	several	board	configurations.	To	increase	difficulty	in	these	games,	
obstacles	are	introduced	at	higher	levels	and	require	players	to	either	create	a	new	
path	or	use	control	statements	to	get	around	them.	Finally,	learning	claims	made	by	
these	types	of	games	focus	on	CT	employed	in	designing	a	solution	to	a	problem,	
such	as	algorithm	design	(N=8),	abstraction	(N=5),	and	debugging	(N=3).	Some	
games	claim	to	teach	control	statements	(N=4),	and	some	claimed	to	teach	data	
(N=2)	and	syntax	(N=1)	concepts.	The	following	design	case	provides	an	in-depth	
look	at	one	of	the	games	in	this	category.		

[Table 5 near here]

Design	Case:	Robot	Turtles	

Overview.	

In	Robot	Turtles,	two	to	four	players	program	robot	turtles	to	reach	a	jewel	that	is	
placed	somewhere	on	a	grid	(see	Figure	2).	Once	a	player	reaches	their	jewel,	they	
win	the	game.	The	game	has	many	levels	and	introduces	obstacles	on	the	paths	to	
make	the	play	more	challenging.		

[Figure 1 near here]	

Game	Mechanics	and	Rules.		

The	primary	game	mechanic	in	Robot	Turtles	is	placing	a	series	of	coding	cards	
(Forward,	Rotate	Left,	and	Rotate	Right)	face	up	that	indicate	which	way	a	player	
wants	their	turtle	to	move.	The	players,	called	Turtle	Masters,	lay	down	the	cards.	
Then,	the	Turtle	Mover,	a	teacher,	parent,	or	more	experienced	peer,	executes	the	
code	on	the	board	by	moving	the	player's	turtle.	A	secondary	mechanic	is	the	use	of	
function	cards.	In	more	advanced	levels,	players	can	use	function	cards	to	define	a	
series	of	steps	to	be	called	with	the	use	of	one	card,	rather	than	repeating	the	same	
steps.	Finally,	there	is	a	debugging	mechanic.	This	is	a	game	card	that	the	player	can	
hit	if	they	notice	an	error	in	their	code.		

There	are	two	types	of	rules	that	provide	parameters	around	how	the	game	
is	played.	The	first	rule	relates	to	the	obstacles	(ice	blocks,	brick	blocks,	and	crates).	
Each	obstacle	requires	a	unique	approach	to	overcome	them.	An	ice	block	triggers	
the	use	of	a	laser,	the	brick	triggers	a	need	to	go	around,	and	the	crate	requires	the	
player	to	push	it	out	of	the	way.	These	obstacles	allow	for	more	challenging	paths	
and	more	complex	code.	The	second	type	of	rule	is	applied	to	provide	scaffolding.	

	 12	

This	rule	states	that	in	game	version	one,	players	only	play	one	card	at	a	time	and	
then	the	Turtle	mover	executes	it.	In	the	second	version	of	the	game,	players	add	
three	cards	at	a	time	and	in	the	last	version,	players	add	all	the	cards	needed	to	the	
action	queue	to	reach	the	jewel.	

LM-GM	Analysis.	

Opportunities	for	learning	and	developing	CT	skills	come	when	players	create	an	
action	queue	and	when	the	code	is	executed	or	enacted	by	the	Turtle	Mover.	By	
creating	an	action	queue	(the	game	mechanic),	players	demonstrate	their	ability	to	
plan	a	sequence	of	moves	(the	learning	mechanic).	Placing	a	series	of	cards	has	been	
argued	to	help	learners	develop	an	understanding	of	the	computational	concept	
sequencing	(Brennan	&	Resnick,	2012).	This	illustrates	how	the	LM	and	GM	blend	
into	pedagogy.	This	game	is	unique	from	other	action	queue	games	because	rules	
explicitly	state	that	the	Turtle	Mover	(game	mechanic)	should	execute	the	code	and	
not	the	player.	This	may	help	players	understand	how	code	is	executed	by	a	
computer	once	a	command	is	given.	Further,	this	places	emphasis	on	writing	the	
code	sequence	(learning	mechanic)	rather	than	the	enactment	of	the	code	on	the	
game	board.		Another	opportunity	for	learning	is	created	by	using	the	debug	card.	
When	mistakes	are	made,	players	are	encouraged	to	slap	a	debug	card	(game	
mechanic),	which	gives	them	an	opportunity	to	fix	their	code	(learning	mechanic).	
This	may	help	in	developing	the	players’	understanding	of	programming	as	an	
iterative,	problem-solving	task.	Finally,	when	players	use	the	function	card	(game	
mechanic),	they	can	engage	in	abstraction,	by	identifying	(learning	mechanic)	a	
series	of	codes	that	can	be	reused	in	other	parts	of	their	queue.	Similar	to	the	tables	
created	in	Arnab	et	al.,	(2015),	Table	6	illustrates	how	the	game	mechanics	connect	
to	learning	mechanics.	
[Table	6	near	here]	

Executing	Code	Games	

Executing	code	games	are	those	in	which	players	are	presented	with	a	code	or	a	
sequency	of	code	to	execute.	There	are	six	games	in	this	category.	All	these	games	
are	played	with	multiple	players	and	have	a	competitive	gameplay	configuration.	
Executing	the	code	requires	players	to	integrate	information	from	either	a	dice	roll	
(N=2)	or	from	the	current	state	of	the	board	(N=4).	These	games	target	older	
learners	with	most	games	suggesting	an	upper	elementary	age	(10+)	as	the	starting	
point.	The	themes	in	this	category	are	more	diverse	and	include	sports	(N=1);	space	
(N=2);	animals	(N=1)	and	farming	(N=1).	None	of	the	games	we	identified	in	this	
category	have	robot	themes	and	all	the	narratives	are	simple.	Players	are	presented	
with	a	linear	board	and	are	given	a	simple	explanation	for	moving	their	character	to	
the	end	goal.	For	example,	in	Code	Monkey	Island,	the	objective	is	to	get	three	
monkeys	to	the	banana	grove.	The	learning	claims	focus	on	CT	for	implementing	a	
solution	to	a	problem,	such	as	teaching	syntax	(N=5),	data	concepts	(N=4),	and	
control	statements	(N=5).	Only	one	game	in	the	executing	category	claimed	to	teach	

	 13	

algorithm	design.		

[Table 7 near here]

Design	Case:	Coding	Farmers	

Overview.		

Coding	Farmers	is	played	with	two	to	four	players.	Each	player	draws	cards	from	a	
draw	pile	and	executes	those	cards	to	move	their	tractor	across	a	linear	board	
towards	a	farm.	Along	the	path	to	the	farm	are	several	obstacles	that	players	must	
navigate	around.	Each	player	can	hold	a	maximum	of	three	action	cards	in	their	
hand	and	each	action	card	has	instructions	written	in	English	as	well	as	in	java	code	
(See	figure	3).	

	[Figure 2 near here]	

Game	Mechanics	and	Rules.		

The	primary	game	mechanic	involves	drawing	an	action	card	and	then	executing	
code	on	the	card.	For	example,	one	card	might	read,	“if	the	die	roll	is	greater	than	2,	
then	move	forward	two	spaces.”	This	game	mechanic	acts	similar	to	many	quiz-
based	games	in	that	players	are	given	a	problem	to	solve	and	then	are	rewarded	
with	gameplay	based	on	a	correct	answer.	However,	it	adds	in	the	element	of	chance	
by	rolling	the	die.	Subsequently,	data	concepts,	and	more	specifically,	variables,	can	
be	simulated	by	rolling	the	die.	The	die	acts	as	a	variable	that	is	constantly	being	
changed	each	time	a	player	rolls	the	die.	The	value	of	the	die	is	then	used	within	the	
pre-given	functions	to	be	executed.	Most	of	the	problems	presented	in	the	cards	
target	control	statements.	There	are	two	types	of	action	cards:	(1)	English	and	Java	
and	(2)	Java.	In	beginner	mode,	players	use	action	cards	with	both	English	and	Java.	
These	cards	act	as	a	form	of	scaffolding	in	that	they	provide	support	(e.g.	English)	
for	the	Java	syntax.	Once	the	players	become	comfortable	with	the	Java	syntax,	they	
can	play	in	advanced	mode	by	only	using	the	Java	cards.		
[Figure 3 near here]	

Players	can	only	hold	three	action	cards	at	a	time	and	can	choose	to	play	a	
card	depending	on	their	location	on	the	board.	Although	the	game	is	played	by	
traversing	a	linear	path,	there	are	obstacles,	which	makes	playing	certain	cards	
more	strategic	at	different	points	in	the	game.	By	allowing	players	to	a)	only	hold	a	
limited	number	of	cards,	and	b)	select	which	card	to	play,	Coding	Farmers	provide	
players	with	a	sense	of	autonomy	that	may	not	exist	in	other	linear	tabletop	games.		
LM-GM	Analysis.	

Coding	Farmers	intends	for	players	to	learn	Java	through	game	play.	There	are	three	
ways	that	learning	is	assumed	to	occur.	First,	by	using	the	cards	(game	mechanic)	to	

	 14	

execute	code	containing	control	statements,	it	is	assumed	that	players	may	gain	
incidental	knowledge	about	the	functionality	and	syntax	of	control	statements.	To	
win	the	game,	players	should	evaluate	code	(learning	mechanic)	on	all	three	cards	in	
their	hand	and	determine	which	card	will	allow	them	to	advance	farthest	on	each	
given	hand.	Secondly,	by	transitioning	from	action	code	written	in	simple	English	to	
code	written	in	Java,	the	game	provides	a	form	of	scaffolding	to	learners	as	they	
move	towards	scripting.	Again,	there	is	an	assumption	that	by	observing	this	code	
and	executing	the	code	repetitively	(learning	mechanic),	learners	will	make	
connections	between	simple	English	and	Java	code.	Finally,	rolling	the	die	(game	
mechanic)	and	adding	the	values	(learning	mechanic)	to	the	executable	code	
provides	a	simulation	of	how	variables	are	applied.	Table	8	below	illustrates	how	
the	game	mechanics	combine	with	learning	mechanics	to	provide	learning	
opportunities	in	the	game.		
[Table	8	Near	Here]	

Puzzle	Games	

Puzzle	games	require	players	to	either	identify	or	match	a	pattern	to	complete	a	
task.	We	identified	two	puzzle	tabletop	games	in	our	content	analysis.	Both	games	
are	designed	around	a	robot	theme.	In	one	game,	the	objective	is	for	the	player	to	fix	
the	robot.	In	the	second	game,	the	objective	is	to	direct	the	robot	along	a	path.	Both	
games	are	designed	around	pattern	matching.	Players	are	given	a	pattern	or	a	set	of	
conditions	and	are	tasked	with	matching	the	pattern	or	set	of	conditions	on	the	
game	board.	The	learning	claims	for	these	games	included	algorithm	design,	control	
statements,	and	data.		

[Table 9 near here]

Design	Case:	Rover	Control	

Overview.		

Rover	Control	is	a	single	player	game	designed	around	patterns	and	paths.	The	game	
contains	40	different	levels,	or	puzzles,	that	increase	in	difficulty	as	they	progress.	
The	objective	of	each	level	is	to	help	the	rover	move	from	the	starting	point	to	the	
endpoint.	Each	level	is	a	graph	containing	nodes	and	edges	(See	figure	5)	and	the	
rover	can	move	from	one	node	to	another	following	an	edge.		

[Figure 4 near here]	

Game	Mechanics	and	Rules.		

The	primary	mechanic	in	rover	control	is	pattern	matching.	On	the	board,	players	
have	a	series	of	paths	connected	by	number-labeled	nodes.	Players	are	given	a	

	 15	

starting	number	and	a	finishing	number	to	dictate	where	the	rover	must	go.	They	
are	then	presented	with	a	color-coded	pattern	(e.g.	red,	blue,	red)	that	they	must	
follow	to	complete	the	level.	The	secondary	game	mechanic	comes	in	the	form	of	
decision	nodes	that	have	various	names	(e.g.	storage	station,	data	station,	charging	
station)	(see	figure	6).	These	decision	nodes	(game	mechanic)	prompt	the	learner	to	
make	a	decision	based	on	where	they	are	or	what	they	currently	hold	in	the	game.	
For	instance,	one	decision	node	asks	if	the	player	is	currently	at	a	charging	station,	if	
they	are,	they	should	continue	on	to	a	green	path,	if	they	are	not,	they	should	
continue	on	to	a	blue	path.	Through	these	secondary	mechanics,	the	game	
introduces	concepts	like	loops,	conditionals,	and	variables,	which	fall	into	our	CT	
categories	of	control	statements	and	data.		

[Figure 5 near here]	
LM-GM	Analysis	

The	pattern	matching	mechanic	(game	mechanic)	in	Rover	Control	promotes	the	CT	
skill	abstraction	by	requiring	learners	to	identify	(learning	mechanic)	and	then	
reuse	(learning	mechanic)	a	series	of	steps	in	different	parts	of	the	levels.	In	
addition	to	teaching	abstraction,	this	mechanic	also	provides	an	opportunity	to	
learn	algorithmic	thinking	and	sequencing	as	players	simulate	(learning	mechanic)	
potential	paths	through	the	nodes	using	the	provided	patterns.	In	other	words,	
players	must	plan	a	sequence	of	moves	based	on	the	pattern	and	then	test	it	out.	
Rover	Control	also	promotes	deduction	through	a	trial	and	error	approach	in	which	
the	learner	colors	a	path,	simulates	the	proposed	path,	and	then	evaluates	the	
functionality	of	the	path.	Based	on	the	results,	the	player	can	make	adjustments.	In	
Rover	Control,	players	begin	with	very	basic	patterns	and	puzzles	and	slowly	
increase	in	difficulty	until	the	final	levels	when	multiple	game	mechanics	are	
introduced.	Control	statements	are	introduced	in	this	game	via	special	nodes	(game	
mechanic)	that	ask	players	to	make	decisions	(learning	mechanic)	about	the	next	
color	in	their	pattern	and/or	what	their	game	piece	currently	holds.	While	these	
nodes	make	the	pattern	matching	task	more	complicated	and	perhaps	more	fun,	the	
learning	assumption	is	that	players	will	develop	knowledge	about	control	
statements	incidentally	by	enacting	the	puzzles	to	test	their	solutions.	Table	10	
below	illustrates	how	game	and	learning	mechanics	provide	opportunities	for	
learning.		
[Table	10	Near	Here]	

Combination	Games	

The	final	set	of	games	includes	games	that	fall	into	two	categories.	These	were	
either	games	with	code	building	and	puzzle	mechanics	(N=4)	or	code	building	and	
code	executing	mechanics	(N=4).	There	were	no	games	with	puzzle	and	code	
executing	mechanics.	The	code	building	and	puzzle	mechanics	included	games	that	
used	an	action	queue	while	trying	to	either	navigate	a	puzzle-like	path	or	match	a	
set	of	conditions.	These	games	claimed	to	teach	algorithm	design	(N=3),	debugging	

	 16	

(N=1),	abstraction	(N=1),	control	statements	(N=1),	and	data	concepts	(N=1).	Games	
that	included	code	building	and	code	executing	codes	allowed	players	to	create	an	
action	queue,	but	then	also	prompted	learners	to	execute	code	or	an	algorithm	on	
some	of	the	cards	in	the	action	queue.	These	games	claimed	to	teach	CT	concepts	in	
both	the	design	process	(N=7)	and	solution	implementation	(N=7).	Overall,	
combination	games	are	more	complex	and	have	more	diversity	in	the	themes,	board	
types,	play	styles,	and	learning	claims.	Themes	in	this	section	include	pirates,	
hackers,	space,	and	robots.	Only	two	games	had	a	complex	narrative.		

[Table 11 near here]
Due	to	space	limitations,	we	do	not	provide	a	design	case	for	this	category.	However,	
the	mechanics	that	are	combined	are	clearly	outlined	in	the	previous	cases.	In	the	
next	section,	we	discuss	the	implications	of	these	findings.	

Discussion	

The	last	five	years	has	seen	an	increase	in	the	number	of	commercially	produced	
board	games	that	are	marketed	as	teaching	CT	skills.	Most	of	these	games	are	aimed	
at	pre-elementary	and	elementary	learners.	This	paper	set	out	to	provide	an	
overview	of	the	games	being	designed,	a	taxonomy	of	the	design	types,	and	further	
to	provide	insight	into	how	games	within	that	taxonomy	promote	CT	using	the	LM-
GM	model.	We	identified	four	types	of	games:	code	building,	executing	code,	puzzle,	
and	combination	games.		

Our	taxonomy	parses	games	based	on	design	features	and	mechanics.	In	addition,	
we	found	that	games	within	each	category	share	similar	targeted	audiences	and	
learning	claims,	further	lending	credence	to	our	taxonomy.	Specifically,	we	found	
that	code	building	games	targeted	younger	learners	and	focused	more	on	CT	in	
terms	of	solution	design.	Executing	code	games	targeted	older	learners	and	focused	
primarily	on	syntax	and	control	statements.	While	puzzle	games	and	combination	
puzzle	games	targeted	older	learners,	they	included	learning	claims	for	CT	in	both	
solution	design	and	solution	implementation.	We	further	contend	that	our	
taxonomy	has	implications	for	how	players	conceptualize	CS,	design,	formal	and	
informal	learning	contexts,	and	research,	which	we	discuss	below.	

	
Representations	of	CS	

Using	board	games	to	introduce	CT	concepts	has	potential	to	broaden	participation	
by	targeting	a	younger	and	potentially	more	diverse	audience.	However,	it	is	also	
important	to	consider	how	the	design	of	the	game	represents	CS	and	the	messages	it	
sends	players	about	what	programming	is.	For	instance,	code	building	emphasize	
how	computation	works	from	a	hardware	perspective.	In	other	words,	computers	
must	be	given	commands	that	will	be	followed	exactly	as	written.	In	addition,	while	
these	games	do	provide	the	players	with	a	goal	or	objective	(e.g.	spatial	target),	

	 17	

players	are	allowed	autonomy	on	how	they	achieve	that	goal	Thus,	these	games	
focus	on	the	creativity	and	open-endedness	of	programming,	but	also	tend	to	
restrict	the	idea	of	programming	to	simple	sequences	of	navigational	instructions.	In	
code	execution	games	the	focus	is	on	the	player's	ability	to	understand	and	recognize	
the	programming	language	that	is	used	to	implement	solutions	to	a	problem.	This	
approach	limits	the	view	of	programming	to	a	particular	context	or	syntax,	but	this	
context-specific	knowledge	may	also	transfer	the	easiest	to	beginner	coding	
exercises.	The	third	category,	puzzle	games,	tends	to	frame	CT	in	terms	of	ill-
designed	problems.	In	other	words,	CT	or	programming	involves	finding	solutions	
to	problems	through	iterative,	trial-and-error	like	approaches.	These	approaches,	
problematically,	typically	restrict	creativity	by	only	accepting	one	solution.	Finally,	
our	fourth	category,	combination	games,	are	game	designs	that	include	either	code	
building	and	puzzle	mechanics	or	code	building	and	code	execution	mechanics.	By	
implementing	multiple	game	designs,	these	games	can	provide	a	broader	framing	of	
what	CT	and	programming	is.		

	 Understanding	the	implicit	messages	that	are	being	delivered	through	these	
game	designs	is	particularly	important	given	that	research	suggests	that	youth	
perception	of	CS	can	impact	whether	they	choose	to	opt	in	(Pantic	et	al.,	2018).		
Further	it	is	important	for	educators	to	recognize	not	only	how	CS/CT	is	being	
portrayed	when	using	these	games,	but	also	what	aspects	of	CS/CT	are	being	left	out	
when	they	choose	to	teach	with	these	tools.	Likewise,	designers	should	explore	
other	areas	of	CT	that	may	not	be	represented	by	the	current	landscape	of	CT	
tabletop	games	such	as	state-based,	object-oriented,	or	functional	programming.	

Implications	for	Design	

In	the	three	categories	of	games	we	identified,	we	noticed	a	clear	distinction	in	the	
audience	age	groups	targeted	by	designs.	Games	that	target	young	learners	use	
designs	within	the	code	building	games	category.	These	games	have	less	diversity	in	
themes	with	nearly	all	games	involving	robots	in	some	form.	They	allow	players	to	
create	an	action	queue	of	movement	cards	which,	when	executed,	move	a	game	
piece	towards	a	spatial	goal.	Given	that	these	games	target	younger	learners,	the	use	
of	an	action	queue	with	movement	cards	lowers	the	threshold	for	introductory	CT	
as	literacy	skills	are	not	required	(Bers,	2019).	Action	queues	potentially	allow	for	
players	to	attempt	to	fix	problems	they	find	as	they	enact	the	queue,	which	may	
facilitate	decomposition	and	simulation	in	the	process	of	debugging.	However,	many	
of	these	games	are	simple,	and	after	a	few	turns,	players	may	master	the	mechanic	
and	thus	rarely	experience	a	bug	to	be	fixed.		

Most	of	the	code	building	games	use	a	robot	theme	where	the	narrative	builds	
on	the	idea	that	robots	(e.g.	computers)	need	input	from	the	player	to	complete	a	
task.	Although	three	games	distinguish	their	robots	as	animal	robots,	these	games	
could	use	more	variety	in	thematic	choices.	Such	robot-inspired	themes	may	enforce	
current	stereotypes	around	computing.	Master	et	al.	(2016)	found	that	simply	
adding	stereotypical	objects	(e.g.	computer	parts,	electronics)	to	an	image	of	a	

	 18	

computer	science	classroom	influenced	female	interest	in	an	introductory	computer	
science	course.	Adding	more	diversity	in	the	themes	applied	at	this	level	may	attract	
a	larger	audience	to	these	types	of	games	(Rusk	et	al.,	2008).	In	addition,	two	of	the	
eight	games	in	this	category	situated	the	game	within	a	complex	narrative.	Complex	
narratives	may	help	young	learners	make	connections	between	gameplay	and	the	
CT	skills	that	the	game	promotes.	Further,	such	narratives	may	provide	an	anchor	
for	transferring	skills	learned	in	the	game	into	a	future	digital	programming	
environment	(Bers,	2019).	Nevertheless,	complex	narratives	may	distract	young	
learners;	thus,	the	use	of	narratives	should	be	carefully	considered.	The	learning	
claims	within	these	games	focus	more	on	developing	skills	related	to	the	design	of	a	
solution.	Some	games	do	add	secondary	game	mechanics	in	advanced	levels	of	the	
game	that	target	concepts	related	to	implementing	a	design,	such	as	control	
statements	and	data.	

Games	that	target	older	learners	tend	to	use	game	designs	found	in	the	
executing	code	games	category.	These	games	focus	on	scripting	knowledge	as	
learners	are	presented	with	code,	either	written	in	plain	English	or	in	a	
programming	language	(e.g.	Java),	to	execute.	Executing	code	in	these	games	
determines	how	the	player	moves	through	a	linear	board.	None	of	the	games	in	this	
category	made	use	of	a	complex	narrative,	and	because	the	code	being	executed	can	
be	placed	either	on	a	card	or	the	board,	there	is	no	need	to	apply	a	logical	narrative	
to	explain	the	task.	Thus,	in	this	category,	greater	variety	of	themes	are	used	to	mask	
the	repetitious	execution	of	codes.	A	review	on	the	use	of	games	in	higher	education	
CS	classes	found	that	many	games	have	students	execute	algorithms	in	a	
competitive	gaming	context	to	add	entertainment	to	the	memorization	task	
(Battistella	&	Gresse	von	Wangenheim,	2016).	Likewise,	the	designers	of	these	
games	appear	to	view	CT	and/or	computer	science	as	a	task	of	memorizing	a	syntax	
or	semantics	associated	with	syntax.	One	way	to	expand	on	the	executing	code	
design	is	to	allow	players	to	combine	cards	with	executable	code	into	larger	
functions,	as	is	done	in	the	game	Potato	Pirates.	In	Potato	Pirates	players	can	
combine	up	to	three	cards	to	build	an	attack	on	other	players	(See	Figure	7.).	Each	
card	played	also	contains	code	like	those	in	many	of	the	executing	code	games,	but	
players	can	build	on	that	code	in	a	meaningful	way.		

[Figure 6 near here]
Older	learners	were	also	targeted	by	games	in	the	puzzle	category.	These	

embedded	CT,	both	as	designing	and	implementing	a	solution,	into	puzzles	that	
required	either	pattern	matching	or	pattern	identification	to	be	solved.	Two	puzzle	
games	did	not	include	designs	from	other	game	categories,	and	four	puzzle	games	
included	designs	from	the	code	building	games	category.	In	both	the	combination	
and	non-combination	puzzle	games,	the	difficulty	of	the	puzzles	often	requires	a	
trial-and-error	approach	in	which	the	player	puts	forth	an	idea,	tests	it,	reflects	on	
the	idea	and	then	tries	a	new	approach.	These	games	also	have	a	greater	variety	of	
themes.	In	future	designs	for	puzzle	games,	designers	should	explore	designs	that	
encourage	collaborative	play	(Zagal	et	al.,	2006).	While	many	of	these	games	allow	
players	to	cooperate	with	a	peer,	most	are	designed	for	a	single	player.	In	our	own	
research,	we	find	that	when	pairs	work	on	puzzles,	one	player	often	takes	over	and	

	 19	

solves	the	puzzle	independently.	Further,	researchers	have	noted	that	a	primary	
benefit	of	tabletop	games	is	the	social	interaction	that	occurs	naturally	when	
multiple	players	engage	with	the	physical	environment	(Battistella	&	Gresse	von	
Wangenheim,	2016).	

Our	taxonomy	of	tabletop	games	designed	to	promote	CT	learning	provides	a	
road	map	for	future	designers	by	illustrating	how	past	designs	have	been	leveraged	
for	specific	age	groups	to	elicit	CT	learning	in	unique	ways.	Designing	tabletop	
games	for	learning	is	a	complex	process	that	not	only	considers	the	designer’s	intent	
and	rationale	for	a	design,	but	also	how	those	designs	are	realized	and	enacted	by	
players	(Engelstein,	2017).	By	exploring	how	past	games	have	leveraged	game	and	
learning	mechanics	to	target	CT,	designers	can	either	apply	similar	mechanics	to	
games	with	novel	themes	and	narratives	or	they	can	expand	on	and	improve	
existing	mechanics.	Further	it	is	important	to	identify	aspects	of	CS/CT	that	are	not	
currently	addressed	in	the	board	games.	Blanco	and	Engstrom	(2020)	conducted	
similar	analysis	with	commercial	digital	games	that	made	claims	for	teaching	
programming.	They	found	that	most	digital	games	focused	on	developing	
fundamental	programming	concepts	which	includes	syntax,	control	structures,	
among	others.	However,	they	noted	that	few	digital	games	addressed	algorithm	and	
design	concepts.	While	algorithm,	design,	and	syntax	are	well	covered	in	tabletop	
games,	there	are	still	many	computing	concepts	that	are	not	addressed	in	these	
games,	in	particular	data	structures.	Game	designers	should	explore	designs	that	
address	some	of	these	less	covered	CS	concepts	and	may	consider	drawing	
inspiration	from	the	commercial	digital	games	that	are	designed	to	teach	
programming	concepts	(Blanco	&	Engstrom,	2020).		

Implications	for	Formal	and	Informal	Learning	Contexts	

In	the	content	analysis,	we	sort	games	by	their	primary	game	mechanics	and	
identify	their	learning	claims.	Then	within	each	category,	we	provide	a	design	case	
to	illustrate	how	the	game	mechanics	are	assumed	to	promote	learning.	Game	
mechanics	that	promote	learning	may	be	ideal	starting	points	for	educators	to	focus	
on	when	bringing	tabletop	games	into	the	classroom	or	an	informal	learning	space	
to	promote	CT.	For	instance,	in	code	building	games	educators	could	leverage	the	
action	queue;	in	executing	code	games	the	focus	could	be	on	control	statements,	and	
educators	looking	to	develop	problem-solving	skills	associated	with	CT	may	
consider	using	the	puzzle	games.	However,	many	of	the	game	mechanics	that	are	
designed	for	learning	control	statements	and	data	concepts	may	not	be	salient	to	the	
learner.	These	game	mechanics	may	improve	the	game	experience,	but	at	some	
point,	an	educator	may	need	to	help	students	see	how	such	concepts	relate	to	
computing.	Past	research	has	drawn	on	principles	from	expansive	framing	(Engle	et	
al.,	2012)	to	make	connections	between	game	mechanics	in	tabletop	games	that	are	
similar	to	their	digital	instantiations	(Lee	et	al.,	2020).	For	instance,	in	the	game	On	
the	Brink,	players	are	presented	with	a	color-coded	action	queue	(e.g.	blue,	yellow,	
red),	in	which	they	can	place	two	movement	cards	on	each	color.	Then	when	a	
player’s	game	piece	lands	on	a	specific	color	they	enact	the	code	that	is	associated	

	 20	

with	that	color.	Focusing	on	this	game	mechanic,	researchers	designed	a	curriculum	
that	promotes	transfer	from	an	analog	gaming	environment	to	a	digital	
programming	environment	by	emphasizing	the	similarities	between	the	action	
queue	and	procedures	in	the	digital	environment.	A	similar	framework	could	be	
applied	to	the	executing	code	games	to	help	students	see	how	the	die	simulates	
variables	or	to	point	out	similarities	between	quasi-code	and	syntax	used	in	
authentic	programming	languages.	Given	the	trial-and-error	approach	that	is	often	
required	in	the	puzzle	games,	educators	may	provide	support	by	demonstrating	the	
debugging	process	in	which	players	attempt	a	solution,	identify	a	bug,	reflect	on	
their	original	solution,	and	then	propose	an	adapted	solution.		

Our	taxonomy	provides	educators	with	a	starting	point	in	determining	which	
type	of	game	is	best	for	their	context.	In	other	words,	if	educators	are	working	with	
younger	learners,	they	may	start	with	Code	Building	Games.	Once,	educators	have	
determined	which	game	they	will	teach	with,	they	can	apply	the	LM-GM	model	as	we	
did	in	this	study	to	identify	moments	when	learning	is	most	probable.	Then,	by	
understanding	where	learning	is	occurring	within	the	game,	educators	can	design	
lessons	that	highlight,	enhance,	and/or	extend	learning	opportunities	found	within	
the	game.	Finally,	taking	into	account	how	the	game	is	representing	CS	the	
instructor	should	consider	ways	of	expanding	the	learners	view	of	CS	and/or	
breaking	down	stereotypes	that	may	exist	within	the	games.		

Implications	for	Research	

For	researchers,	we	believe	that	our	taxonomy	not	only	highlights	several	potential	
areas	for	research,	but	it	also	provides	a	guide	for	what	that	research	might	look	
like.	First,	several	researchers	have	chosen	to	design	games	for	their	particular	
context	of	study.	While	some	of	these	games	may	provide	some	unique	aspects,	
many	of	the	researcher-designed	games	could	have	been	replaced	by	a	commercial	
game.	For	example,	Gresse	von	Wangenheim’s	et	al.	(2019)	Splash	Code	is	very	
similar	to	Coder	Bunnyz.		

	Second,	in	terms	of	areas	rich	in	research	potential,	each	of	the	game	types	within	
our	taxonomy	include	a	set	of	assumptions	about	learning	based	on	the	game	
design.	For	example,	within	the	code	building	games,	there	is	an	assumption	that	by	
allowing	players	to	create	and	enact	an	action	queue	of	movement	cards,	players	
will	develop	skills	specifically	related	to	algorithmic	design.	Researchers	have	
designed	assessments	(Grover	et	al.,	2014;	Román-González	et	al.,	2017;	Zhao	&	
Shute,	2019)	that	could	be	used	to	determine	if	these	games	do	in	fact	promote	CT	in	
terms	of	algorithmic	design.	Further,	code	building	games	often	increase	in	difficulty	
by	adding	game	mechanics	around	building	functions	and	obstacles	to	complicate	
solution	paths.	Given	that	these	games	use	directional	cards	in	action	queues	to	
build	code,	researchers	could	explore	how	the	visual	and	spatial	aspects	of	action	
queues	supports	learning	and	understanding	of	computer	science	concepts	like	
functions	and	control	statements.		

	 21	

Executing	code	games	makes	two	primary	assumptions.	First,	they	assume	
that	by	playing	the	game	players	will	learn	programming	languages	and/or	
structures	as	a	by-product	of	seeing	the	code	and	executing	it.	Research	could	
explore	what	learning	occurs	as	a	result	of	playing	the	game,	and	how	long	the	
players	need	to	play	to	develop	this	knowledge.	In	linear	path	games,	where	there	is	
only	one	direction	and	one	solution,	learners	may	not	find	the	game	interesting	after	
a	game	has	been	completed	a	few	times.	Thus,	researchers	may	want	to	explore	how	
interest	changes	over	continued	play.	Secondly,	there	is	an	assumption	that	by	
simply	learning	a	script,	players	will	learn	to	program.	Thus,	there	is	a	question	of	
transfer.	Are	learners	able	to	take	the	scripting	knowledge	learned	in	these	games	
and	apply	them	to	a	programming	environment?	Finally,	given	that	these	games	
tend	to	focus	on	control	statements,	exploring	how	executing	code	within	these	
games	supports	learning	and	understanding	of	these	concepts	is	another	area	for	
potential	research.		

In	terms	of	puzzle	and	combination	based	games,	more	so	than	games	in	
other	categories,	there	is	an	assumption	that	by	playing	games	and	implicitly	
engaging	with	concepts	that	involve	control	statements	and	data,	players	will	notice	
and	learn	something	about	these	concepts.	However,	given	that	such	concepts	are	
embedded	within	game	mechanics	and	thus	not	overtly	clear	to	the	players,	
research	should	investigate	if	players	are	aware	of	and	if	they	notice	these	concepts	
that	puzzles	games	claim	to	promote.	Furthermore,	given	the	challenge	and	problem	
solving	involved	in	these	games,	player	experience	and	frustration	levels	should	be	
considered	when	exploring	the	efficacy	of	these	games	as	learning	environments.	
Research	should	consider	the	approaches	mentioned	in	the	previous	section	on	
implications	for	teaching	and	explore	ways	of	leveraging	these	unplugged	learning	
environments	in	formal	and	informal	spaces.	Further	research	could	explore	do	
these	unplugged	games	work?	If	so,	when	and	under	what	conditions?	Finally,	given	
the	differences	in	how	tabletop	games	represent	the	CS	field	and	the	objective	of	
introducing	programming	at	a	young	age,	researchers	should	explore	how	younger	
learners	perceive	programming	and	the	CS	field	after	playing	of	these	tabletop	
games.		

Conclusion	

The	recent	influx	of	commercial	CT	tabletop	games	is	undoubtedly	a	positive	trend	
for	young	emergent	coders.	However,	having	too	many	options	can	also	make	it	
difficult	to	choose	an	appropriate	game	for	one’s	context.	In	this	study,	we	created	a	
taxonomy	of	CT	tabletop	games	that	identified	three	primary	categories	(e.g.	code	
building,	code	executing,	and	puzzle	games)	and	one	category	that	includes	a	
combination	of	the	first	three	categories.	Games	that	fall	into	our	discrete	categories	
share	similar	learning	claims,	target	audiences,	and	game	mechanics.	In	our	
discussion	we	illustrate	how	our	taxonomy	offers	a	starting	place	for	instructors	
who	want	to	explore	the	use	of	tabletop	games	for	introducing	CT	concepts	in	
unplugged	settings,	suggestions	for	designers	looking	to	build	similar	games,	and	
areas	for	investigation	for	researchers.		

	 22	

ACKNOWLEDGMENTS	

This	paper	was	funded	by	the	National	Science	Foundation	(NSF)	grant	#1837224.	

Data	Availability	Statement	

The	data	that	support	the	findings	of	this	study	are	available	from	the	

corresponding	author,	[F.J.P],	upon	reasonable	request.	 	

	 23	

REFERENCES	

Apostolellis,	P.,	Stewart,	M.,	Frisina,	C.,	&	Kafura,	D.	(2014).	RaBit	EscAPE:	A	board	

game	for	computational	thinking.	Proceedings	of	the	2014	Conference	on	

Interaction	Design	and	Children,	349–352.	

https://doi.org/10.1145/2593968.2610489	

Battistella,	P.	&	Gresse	von	Wangenheim,	C.	(2016).	Games	for	Teaching	Computing	

in	Higher	Education	–	A	Systematic	Review.	IEEE Technology and Engineering

Education, 9(1), 8-30..	

Bell,	T.	C.,	Witten,	I.	H.,	Fellows,	M.	R.,	Adams,	R.,	&	McKenzie,	J.	(2015).	CS	

unplugged:	An	enrichment	and	extension	programme	for	primary-aged	

students.	Retrieved	from	http://csunplugged.org/wp-

content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf	

Berland,	M.,	&	Lee,	V.	R.	(2011).	Collaborative	Strategic	Board	Games	as	a	Site	for	

Distributed	Computational	Thinking.	International	Journal	of	Game-Based	

Learning	(IJGBL),	1(2),	65–81.	https://doi.org/10.4018/ijgbl.2011040105	

Bers,	M.	U.	(2019).	Coding	as	another	language:	A	pedagogical	approach	for	teaching	

computer	science	in	early	childhood.	Journal	of	Computers	in	Education,	6(4),	

499–528.	https://doi.org/10.1007/s40692-019-00147-3	

Beylefeld,	D.	A.	A.,	&	Struwig,	M.	C.	(2007).	A	gaming	approach	to	learning	medical	

microbiology:	Students’	experiences	of	flow.	Medical	Teacher,	29(9–10),	933–

940.	https://doi.org/10.1080/01421590701601550

Blanco,	A.	A.,	&	Engström,	H.	(2020).	Patterns	in	Mainstream	Programming	

Games.	Int.	J.	Serious	Games,	7(1),	97-126.

Boling,	E.	(2010).	The	need	for	design	cases:	Disseminating	design	knowledge.	

International	Journal	of	Designs	for	Learning,	1(1).	

Brennan,	K.,	&	Resnick,	M.	(2012).	New	frameworks	for	studying	and	assessing	the	

development	of	computational	thinking.	Proceedings	of	the	2012	Annual	

Meeting	of	the	American	Educational	Research	Association,	Vancouver,	

Canada,	1,	25.	

	 24	

Bruckman,	A.	(1999).	Can	educational	be	fun.	Game	Developers	Conference,	99,	75–

79.	

Castronova,	E.,	&	Knowles,	I.	(2015).	Modding	board	games	into	serious	games:	The	

case	of	Climate	Policy.	International	Journal	of	Serious	Games,	2(3),	41–62.	

Elofsson,	J.,	Gustafson,	S.,	Samuelsson,	J.,	&	Träff,	U.	(2016).	Playing	number	board	

games	supports	5-year-old	children’s	early	mathematical	development.	The	

Journal	of	Mathematical	Behavior,	43,	134–147.	

Engle,	R.	A.,	Lam,	D.	P.,	Meyer,	X.	S.,	&	Nix,	S.	E.	(2012).	How	does	expansive	framing	

promote	transfer?	Several	proposed	explanations	and	a	research	agenda	for	

investigating	them.	Educational	Psychologist,	47(3),	215–231.	

Engelstein,	G.	(2017).	Gametek:	The	math	and	science	of	gaming.	Ludology.	

Garcia,	A.	(2017).	Privilege,	Power,	and	Dungeons	&	Dragons:	How	Systems	Shape	Racial	
and	Gender	Identities	in	Tabletop	Role-Playing	Games.	Mind,	Culture,	and	Activity,	
24(3),	232-246.	doi:10.1080/10749039.2017.1293691	

Gresse	von	Wangenheim,	C.,	Silva	de	Medeiros,	G.,	Filho,	R.,	Petri,	G.,	Da	Cruz	

Pinheiro,	F.,	Ferreira,	N.,	Hauck,	J.	(2019).	SplashCode–A	Board	Game	for	

Learning	an	Understanding	of	Algorithms	in	Middle	School.	Informatics	in	

Education,	18(2),	259–280.	

Grover,	S.	&	Pea,	R.	(2013).	Computational	thinking	in	K–12:	A	review	of	the	state	of	

the	field.	Educational	Researcher,	42(1),	38-43.	doi:	

https://doi.org/10.3102/0013189X12463051	

Horn,	M.	S.,	Weintrop,	D.,	Beheshti,	E.,	&	Olson,	I.	D.	(2012).	Spinners,	dice,	and	

pawns:	Using	board	games	to	prepare	for	agent-based	modeling	activities.	

American	Educational	Research	Association	Annual	Meeting.	

Jimenez,	O.,	Arena,	D.,	&	Acholonu,	U.	(2011).	Tug-of-war:	A	card	game	for	pulling	

students	to	fractions	fluency.	Proceedings	of	the	Games,	Learning,	&	Society	

Conference,	7.	

Kafai,	Y.,	&	Vasudevan,	V.	(2015).	Hi-Lo	tech	games:	Crafting,	coding	and	

collaboration	of	augmented	board	games	by	high	school	youth.	Proceedings	of	

the	14th	International	Conference	on	Interaction	Design	and	Children,	130–

139.	

	 25	

Kaufman,	G.,	&	Flanagan,	M.	(2016).	High-low	split:	Divergent	cognitive	construal	

levels	triggered	by	digital	and	non-digital	platforms.	Proceedings	of	the	2016	

CHI	Conference	on	Human	Factors	in	Computing	Systems,	2773–2777.	

King,	C.,	&	Cazessus,	M.	(2014).	Teaching	with	Audacity:	A	board	game	for	urban	

studies.	8th	European	conference	on	games	based	learning:	ECGBL2014.	

Academic	Conferences	and	Publishing	International.	

Kuo,	W.-C.,	&	Hsu,	T.-C.	(2020).	Learning	computational	thinking	without	a	

computer:	How	computational	participation	happens	in	a	computational	

thinking	board	game.	The	Asia-Pacific	Education	Researcher,	29(1),	67–83.	

Lee,	V.	R.	(2020).	Let’s	cut	to	commercial:	Where	research,	evaluation,	and	design	of	

learning	games	should	go	next.	Educational	Technology	Research	and	

Development.	https://doi.org/10.1007/s11423-020-09865-3	

Lee,	V.	R.,	Poole,	F.,	Clarke-Midura,	J.,	Recker,	M.,	&	Rasmussen,	M.	(2020).	

Introducing	Coding	through	Tabletop	Board	Games	and	Their	Digital	

Instantiations	across	Elementary	Classrooms	and	School	Libraries.	

Proceedings	of	the	51st	ACM	Technical	Symposium	on	Computer	Science	

Education,	787–793.	

Lieberoth,	A.	(2015).	Shallow	gamification:	Testing	psychological	effects	of	framing	

an	activity	as	a	game.	Games	and	Culture,	10(3),	229–248.	

Lin,	T.-J.,	Lin,	T.-C.,	Potvin,	P.,	&	Tsai,	C.-C.	(2019).	Research	trends	in	science	

education	from	2013	to	2017:	A	systematic	content	analysis	of	publications	

in	selected	journals.	International	Journal	of	Science	Education,	41(3),	367–

387.	

Master,	A.,	Cheryan,	S.,	&	Meltzoff,	A.	N.	(2016).	Computing	whether	she	belongs:	

Stereotypes	undermine	girls’	interest	and	sense	of	belonging	in	computer	

science.	Journal	of	educational	psychology,	108(3),	424.	

Nicholson,	S.	(2011).	Making	gameplay	matter:	Designing	modern	educational	

tabletop	games.	Knowledge	Quest,	40(1),	60.	

Ogershok,	P.	R.,	&	Cottrell,	S.	(2004).	The	pediatric	board	game.	Medical	Teacher,	

26(6),	514–517.	

	 26	

Pantic,	K.,	Clarke-Midura,	J.,	Poole,	F.,	Roller,	J.,	&	Allan,	V.	(2018).	Drawing	a	

computer	scientist:	stereotypical	representations	or	lack	of	

awareness?.	Computer	Science	Education,	28(3),	232-254.	

Papert,	S.	(1980).	Mindstorms:	Children,	computers,	and	powerful	ideas.	New	York:	

Basic	Books.		

Poole,	F.,	Clarke-Midura,	J.,	Sun,	C.,	&	Lam,	K.	(2019).	Exploring	the	pedagogical	

affordances	of	a	collaborative	board	game	in	a	dual	language	immersion	

classroom.	Foreign	Language	Annals,	52(4),	753–775.	

Reeve,	K.,	Rossiter,	K.,	&	Risdon,	C.	(2008).	The	Last	Straw!	A	board	game	on	the	

social	determinants	of	health.	Medical	Education,	42(11),	1125–1126.	

https://doi.org/10.1111/j.1365-2923.2008.03215.x	

Román-González,	M.,	Pérez-González,	J.-C.,	&	Jiménez-Fernández,	C.	(2017).	Which	

cognitive	abilities	underlie	computational	thinking?	Criterion	validity	of	the	

Computational	Thinking	Test.	Computers	in	Human	Behavior,	72,	678–691.	

https://doi.org/10.1016/j.chb.2016.08.047	

Rose,	T.	M.	(2011).	A	Board	Game	to	Assist	Pharmacy	Students	in	Learning	

Metabolic	Pathways.	American	Journal	of	Pharmaceutical	Education,	75(9).	

https://doi.org/10.5688/ajpe759183	

Rusk,	N.,	Resnick,	M.,	Berg,	R.,	&	Pezalla-Granlund,	M.	(2008).	New	Pathways	into	

Robotics:	Strategies	for	Broadening	Participation.	Journal	of	Science	

Education	and	Technology,	17(1),	59–69.	https://doi.org/10.1007/s10956-007-

9082-2	

Shute,	V.	J.,	Sun,	C.,	&	Asbell-Clarke,	J.	(2017).	Demystifying	computational	thinking.	

Educational	Research	Review,	22,	142–158.	

Siegler,	R.	S.,	&	Ramani,	G.	B.	(2009).	Playing	linear	number	board	games—But	not	

circular	ones—Improves	low-income	preschoolers’	numerical	

understanding.	Journal	of	Educational	Psychology,	101(3),	545–560.	

https://doi.org/10.1037/a0014239	

Singh,	J.,	Dorairaj,	S.	K.,	&	Woods,	P.	(2007).	Learning	computer	programming	using	

a	board	game–case	study	on	C-Jump.	Proc.	of	the	Int.	Symposium	on	

Information	and	Communications	Technologies,	Kuala	Lumpur,	Malaysia.	

	 27	

Skillen,	J.,	Berner,	V.-D.,	&	Seitz-Stein,	K.	(2018).	The	rule	counts!	Acquisition	of	

mathematical	competencies	with	a	number	board	game.	The	Journal	of	

Educational	Research,	111(5),	554–563.	

Struwig,	M.	C.,	Beylefeld,	A.	A.,	&	Joubert,	G.	(2014).	Learning	medical	microbiology	

and	infectious	diseases	by	means	of	a	board	game:	Can	it	work?	Innovations	

in	Education	and	Teaching	International,	51(4),	389–399.	

Tang,	K.-Y.,	Chou,	T.-L.,	&	Tsai,	C.-C.	(2020).	A	content	analysis	of	computational	

thinking	research:	An	international	publication	trends	and	research	typology.	

The	Asia-Pacific	Education	Researcher,	29(1),	9–19.	

Thomas,	M.	K.,	Shyjka,	A.,	Kumm,	S.,	&	Gjomemo,	R.	(2019).	Educational	Design	

Research	for	the	Development	of	a	Collectible	Card	Game	for	Cybersecurity	

Learning.	Journal	of	Formative	Design	in	Learning,	3(1),	27–38.	

Tsarava,	K.,	Moeller,	K.,	&	Ninaus,	M.	(2018).	Training	computational	thinking	

through	board	games:	The	case	of	Crabs	&	Turtles.	International	Journal	of	

Serious	Games,	5(2),	25–44.	

Weintrop,	D.,	Beheshti,	E.,	Horn,	M.,	Orton,	K.,	Jona,	K.,	Trouille,	L.,	&	Wilensky,	U.	

(2016).	Defining	computational	thinking	for	mathematics	and	science	

classrooms.	Journal	of	Science	Education	and	Technology,	25(1),	127–147.	

Wing,	J.	M.	(2006).	Computational	thinking.	Communications	of	the	ACM,	49(3),	33–

35.	

Zagal,	J.	P.,	Rick,	J.,	&	Hsi,	I.	(2006).	Collaborative	games:	Lessons	learned	from	board	

games.	Simulation	&	Gaming,	37(1),	24–40.	

Zhao,	W.,	&	Shute,	V.	J.	(2019).	Can	playing	a	video	game	foster	computational	

thinking	skills?	Computers	&	Education,	141,	103633.	
	 	

	 28	

	

Table	1.	Areas	of	Computational	Thinking	

CT	Area	 Definition	

Debugging	 Detecting,	investigating,	then	fixing	errors	in	a	procedure	

Abstraction	 Finding	or	constructing	patterns	within	problems	and	
solutions,	in	order	to	facilitate	understanding.		

Algorithm	Design	 Thoroughly	defining	steps	to	solve	a	problem.	These	steps	may	
be	intended	to	be	executed	linearly,	in	a	sequence,	or	non-
linearly,	concurrently	or	in	event-driven	programming	

Control	
Statements	

Choosing	between	instructions	to	follow	next	based	on	some	
condition	

Data	 Structures	or	methods	involved	in	keeping	or	modifying	values	
in	a	memory	

Syntax	 A	system	of	well-defined	rules	for	communication,	i.e.,	a	
language	

	

Table	2.	Inclusion	Criteria	

Inclusion	Criteria	 Rationale	
The	game	includes	either	an	
instructional	manual,	instructional	
video,	or	in-depth	description	of	
gameplay.	Further	game	instructions	
were	in	English.	

To	conduct	the	analysis,	it	is	important	to	
understand	how	the	game	is	played.	This	
requires	either	an	instructional	video	or	
manual	that	was	presented	in	English.	

The	game	is	either	marketed	or	
promoted	by	‘the	company’	/	
‘designer’	as	a	game	to	promote	CT	
skills,	as	identified	in	Table	1	above.	

Many	board	games	are	argued	to	contain	
programming	concepts.	Thus,	this	study	
is	only	looking	at	games	that	are	explicit	
in	their	intent	to	teach	CT.	

It	is	a	tabletop	game,	which	includes	
board	games,	card	games,	and	other	
analog	games.	Unplugged	activities	
that	are	not	games	were	not	included.	

This	study	is	focused	on	how	games	and	
game	design	is	used	to	target	CT	skills	so	
only	games	were	examined.	

The	game	can	be	purchased	or	
acquired	freely.	

We	focus	on	games	that	are	readily	
available	to	the	public	for	use	in	
classrooms	or	the	home.	

	

	 29	

Table	3.	CT	Tabletop	Games	Taxonomy	

Game	
Type	

Description	 Example	 Cohen’s	
Kappa	

Code	
Building
	(N=8)	

Players	create	code	or	an	algorithm	by	
placing	a	series	of	movements	or	code	into	
an	action	queue	to	later	be	executed	by	the	
player,	another	person,	or	a	robot.		

Robot	
Turtles	

0.84	

Code	
Executi
ng	
(N=6)		

Players	are	given	a	code	or	an	algorithm	to	
be	executed.	Movement	or	progress	in	the	
game	is	dependent	on	the	correct	execution	
of	the	algorithm.	Players	do	not	create	code	
or	an	algorithm	in	these	games.		

Coding	
Farmers	

0.78	

Puzzle	
Games	
(N=2)		

Players	are	presented	with	a	puzzle	that	can	
be	solved	by	identifying	or	matching	a	
pattern.	

Rover	
Control	

1.00	

Combin
ation	
(N=8)	

A	combination	of	two	game	types	 Potato	
Pirates	

NA	

	

Table	4:	CT	Learning	Claims		

CT	Area	 Example	Claim	

Debugging	
	

“Students	learn	experiential	learning,	debugging,	limited	syntax,	
order	of	operations…”	--(Robot	Turtles)	

Abstraction	
	

“Teaches	simple	concepts	like	loops,	branches,	functions,	
conditionals	and	advance	concepts	like	Inheritance,	Parallelism,	
List,	Stack,	Queue	and	Algorithm	writing.”	–	(CoderBunnyz)	

Algorithm	
Design	

“Playing	Code	Master	won’t	just	teach	you	principles	behind	
programming,	you’ll	also	build	planning,	sequential	reasoning	
and	problem-solving	skills.”	–	(Code	Master)	

Control	
Statements	

“It	teaches	the	child	basic	commands	of	a	programming	language,	
such	as	‘if’,	‘else’,	‘switch’,	and	introduces	variable	‘x’	concept.”	–	
(C-jump)	

Data	 “It	...	exposes	kids	to	fundamental	programming	concepts	like	
control	structures,	data	structures,	Boolean	logic	and	
operators,	and	assignment	and	mathematical	operations.”	–	
(Code	Monkey	Island)	

Syntax	 “Introduces	the	basics	of	java	and	programming	concepts.”	–	
(Coding	Farmers)	

Note:	Keywords	are	in	bold.	

	 30	

	
Table	5:	Code	Building	games	
Game	 Year	 Age	 Theme	 Narrative	

Complexit
y	

Learning	Claims	

Robot	
Turtles	

2013	 4+	 Animals/	
Robots	

Complex	 Debugging,	
abstraction,	algorithm	
design,	data,	syntax	

Coder	
Bunnyz	

2016	 4+	 Animals	 Simple	 Debugging,	
abstraction,	algorithm	
design,	control	
statements,	data	

LittleCodr	 2017	 4+	 Robots	 Simple	 Abstraction,	algorithm	
design	

Future	
Coders	
Robot	
Races	

2018	 4+	 Robots	 Simple	 Algorithm	design	

Code	&	Go	
Robot	

2016	 4+	 Animals/	
Robots	

Simple	 Algorithm	design	

Mojobot	 2019	 4+	 Robots	 Complex	 Abstraction,	algorithm	
design,	control	
statements	

Cody	Roby	 2014	 4+	 Robots	 Simple	 Algorithm	design,	
control	statements	

Bits	&	
Bytes	Card	
Game	

2014	 All	 Space	 Simple	 Debugging,	
abstraction,	algorithm	
design,	control	
statements	

	
Table	6.	The	LM-GM	analysis	of	Robot	Turtles	
Game	
Mechanic	

Learning	
Mechanic	

Implementation	 Usage	

Action	
Queue	

Plan	 Adding	cards	to	the	
action	queue	

Players	add	cards	to	action	
queue	based	on	a	plan	that	
they	wish	to	enact.	

Grid/	
Capture	

Experimentation	 Open-ended	board	
with	a	grid	and	a	
jewel	placed	on	the	
grid	as	the	objective.	

The	grid	constrains	the	
potential	movement	and	
provides	a	space	for	
planning.	While	the	jewel	
gives	the	learner	a	target.	

Function	
Card	

Identify	patterns	 Players	are	
encouraged	to	use	
fewer	cards	via	the	
function	card.	

By	encouraging	the	use	of	
less	cards	via	the	function	
card	mechanic,	players	are	
encouraged	to	identify	

	 31	

patterns	that	can	be	
abstracted.	

Turtle	
Master	

Observation/	
Analyze	

Turtle	master	enacts	
the	code	and	debug	
card.	

Because	the	turtle	master	
moves	the	turtle,	the	player	
can	observe	and	analyze	
their	code.	

	

Table	7:	Executing	Code	Games	

Game	 Year	 Age	 Theme	 Narrative	
Complexity	

Learning	Claims	

Coding	
Farmers	

2015	 7+	 Farming	 Simple	 Control	statements,	
data,	syntax	

Code	Monkey	
Island	

2014	 10+	 Animals	 Simple	 Control	statements,	
data	

C-Jump	 2005	 11+	 Sports	 Simple	 Control	statements,	
data,	syntax	

Cosmic	
Coding	Game	

2019	 6+	 Space	 Simple	 Algorithm	design,	
control	statements,	
syntax	

Coding	is	
Good	

2016	 10+	 None	 None	 Syntax	

Astro	Coders	 2018	 10+	 Space	 Simple	 Control	statements,	
data,	syntax	

	
Table	8.	The	LM-GM	analysis	of	Coding	Farmers	
Game	
Mechanic	

Learning	
Mechanic	

Implementation	 Usage	

Selecting	a	
card	to	
execute	

Generalization/	
Discrimination	

Placing	cards	to	
move	a	tractor	

Players	must	select	between	
three	cards	on	each	turn	to	
determine	which	card	will	
give	them	the	best	
opportunity	to	win.	

Reading	the	
code	on	the	
cards	

Observation	
and	repetition	

Code	to	be	
executed	is	on	
cards.	

Code	is	presented	in	both	
English	and	Java	script,	giving	
players	opportunity	to	
observe	both	forms	multiple	
times.	

Question	&	
Answers	

Identify		 The	code	to	be	
executed	
represents	a	
question	to	be	
answered.	

Executing	the	code	is	how	
players	determine	which	card	
is	best	and	how	far	they	can	
move	on	the	board.		

	 32	

Competition	 Competition	/	
Feedback	

Players	attempt	
to	reach	the	barn	
first.	

Players	race	to	the	end	giving	
them	motivation	to	pick	the	
best	card.	Players	also	check	
that	other	players	are	
executing	code	correctly.	

Table 9: Puzzle Games	
Game Year Age Theme Narrative

Complexity
Learning Claims

Rover
Control

2017 8+ Robot Simple Algorithm design, control
statements	

Robot
Repair

2017 8+ Robot Simple Data

	
Table	10.	The	LM-GM	analysis	of	Rover	Control	
Game	
Mechanic	

Learning	
Mechanic	

Implementation	 Usage	

Puzzles	 Hypothesis/	
Repetition	

Players	make	a	
plan	using	game	
pieces.	

Players	make	hypotheses	
about	how	to	solve	the	
puzzle,	and	then	test	their	
hypotheses	via	simulation.	

Non-linear	
paths	

Modelling/	
Analyze	

Players	enact	their	
plan	by	simulating	
a	path.	

While	simulating	a	
potential	solution,	players	
must	also	analyze	why	it	
did	or	did	not	work.	

Collaboration	 Demonstration	 Players	work	
together	to	solve	
the	puzzle.	

As	players	simulate	
potential	solutions,	they	
model	paths	and	provide	
examples	for	their	peers.	

	
Table	11:	Combination	Games	
Game	 Yea

r	
Combo	
Type	

Age	 Theme	 Narrative	
Complexit
y	

Learning	Claims	

Code	
Master	

201
5	

C	+	P	 8+		 Space	 Simple	 Debugging,	
algorithm	design,	
control	statements	

On	the	
Brink	

201
7	

C	+	P	 8+	 Robots	 Simple	 Abstraction,	
algorithm	design	

	 33	

Game	 Yea
r	

Combo	
Type	

Age	 Theme	 Narrative	
Complexit
y	

Learning	Claims	

Hacker	 201
8	

C	+	P	 10+	 Hacker	 Complex	 Algorithm	design	

Turing	
Tumble	

201
8	

C	+	P	 8+	 Space	 Complex	 Data	

Race	
Condition	

201
1	

C	+	E	 NA	 None	 None	 Algorithm	design,	
control	statements,	
data	

Potato	
Pirates		

201
8	

C	+	E	 10+		 Pirates	 Complex	 Debugging,	
abstraction,	
algorithm	design,	
control	statements,	
data	

CoderMind
z	

201
8	

C	+	E	 4+	 Robots	 None	 Abstraction,	
algorithm	design,	
control	statements	

Robot	Wars	 201
7	

C	+	E	 7+	 Robots	 Simple	 Abstraction,	control	
statements,	syntax	

*C=	Code	Building,	E=Executing	Code,	P=Puzzle	
Figures	

	

	 34	

	

	

	

	

	

	 35	

• Figure	1:	Robot	Turtle	Grid	with	Four	Robot	Turtles	in	the	corners	and	Four	
Destination	Gems	in	the	Center	

• Figure	2:	Coding	Farms	Code	Cards	
• Figure	3:	Coding	Farmers	Board	
• Figure	4:	Rover	Control	Challenge	book	
• Figure	5:	Special	Nodes	in	Rover	Control	that	target	Conditional	Statements	
• Figure	6:	stacking	up	action	cards	in	Potato	Pirates	

