Tabletop Games Designed to Promote Computational Thinking

Frederick J. Poole

Center for Language Teaching Advancement, Michigan State University, Lansing,

United States
poolefre@msu.edu

Jody Clarke-Midura

Department of Instructional Technology and Learning Sciences, Utah State University,

Logan, United States

jody.clarke@usu.edu

Melissa Rasmussen

Department of Computer Science, Utah State University, Logan, United States
melissa.ann.r@gmail.com

Umar Shehzad

Department of Instructional Technology and Learning Sciences, Utah State University,

Logan, United States

agha.umar.s@gmail.com
Victor R. Lee

Graduate School of Education, Stanford University, Stanford, United States

vrlee@stanford.edu

This work was supported by National Science Foundation (NSF) under Grant [number

1837224]

Tabletop Games Designed to Promote Computational Thinking

Background and Context: There is a growing perception that
computational thinking can be developed in unplugged environments.
A recent trend among these unplugged approaches is the use of
tabletop games. While there are many commercial tabletop games on
the market that are promoted as teaching computer science learning
and/or computational skills, there is little research to support these
claims.

Objective: This study investigates the types of tabletop games that are
currently being promoted as teaching or requiring computational
thinking, who such games are marketed towards, and how game
designs could provide opportunities for developing computational
thinking.

Method: We conducted a content analysis to explore the type of
tabletop games currently being created, their audiences, and the kinds
of game mechanics and design features being implemented to teach
computational thinking concepts. We present the results of our content
analysis and provide design cases of three tabletop games to illustrate
how different game designs afford opportunities for learning
computational thinking concepts at different age levels.

Findings: In this study, we created a taxonomy of computational
thinking tabletop games that identified three primary categories (e.g.
code building, code executing, and puzzle games) and one category that
includes a combination of the first three categories. Games that fall into
our categories share similar learning claims, target audiences, and

game mechanics.

Implications: Our taxonomy offers a starting place for instructors who
want to explore the use of tabletop games for introducing
computational thinking concepts in unplugged settings, suggestions for

designers, and areas of investigation for researchers.

Keywords: Tabletop games, computational thinking, content analysis

Introduction

There is a growing perception that computational thinking (CT) can be developed
and experienced in unplugged, or non-digital, environments and materials (Bell, et
al,, 2015). A recent trend among these unplugged approaches is the use of tabletop
games (Tang et al., 2020). Tabletop games are analog games that are played on a flat
surface and include both board and card games. Researchers have argued for the
use of tabletop games to teach CT concepts because they promote computation
naturally (Berland & Lee, 2011; Horn et al., 2012) are cheaper and thus scalable
(Gresse von Wangenheim et al., 2019), and can promote transfer when learners
start programming in digital environments (Lee et al., 2020; Kafai & Vasudevan,
2015). In a seminal study on CT and tabletop games, Berland and Lee (2011)
identified several forms of CT that can emerge in game play. In particular, they
observed people playing the collaborative tabletop game Pandemic and found
evidence of CT as the players internalized the rules and created and enacted
strategies to optimize gameplay.

While some researchers have designed and evaluated their own tabletop
games to promote CT (Apostolellis et al., 2014; Gresse von Wangenheim et al.,, 2019;
Kuo & Hsu, 2020) there are many commercial tabletop games on the market. These
tabletop games are marketed as promoting computer science (CS) learning and/or
computational skills, although empirical research will need to be done to support
these claims. A casual glance at the different games would suggest that there tend to
be some similar designs. For instance, many tabletop CT games ask players to plan
movement on a two-dimensional grid space that is reminiscent of the turtle in the
LOGO programming language. Presumably, the benefits of the turtle interaction
metaphor for LOGO would apply to playing these games (Papert, 1980). Others
involve players following a linear path with their tokens, common in many other
board games. Considering there seems to be some regularity, this paper reports on
a content analysis to explore the type of tabletop games currently being created,
their audiences, and the kinds of recurring game mechanics and design features
being implemented to teach CT concepts. These tabletop games are complex
environments involving both gaming and learning mechanics that interact in
dynamic ways. Understanding not only the types of games and game designs that

are available, but also how such game designs potentially promote learning of CT
concepts can be valuable resource for game designers, researchers, and teachers.

In this paper, we present the results of our content analysis and provide
design cases of three tabletop games to illustrate how game designs afford
opportunities for learning various CT concepts. By explicitly illustrating how game
designs promote learning we provide information for designers to design new
games, researchers to identify and evaluate the efficacy of games, and teachers to
determine aspects of these games that can be leveraged or enhanced for learning CT
in a formal or informal setting. In the following literature review, we first provide
our definition of CT and the CT concepts that were used to explore learning
potential and objectives within the tabletop games. Next, we review how tabletop
games have been used in other educational settings. We then discuss arguments for
using tabletop games to promote CT learning and review the studies that have
explored this topic to date, specifically investigating the game design approaches
employed in the literature.

Literature Review

CT Concepts

Researchers studying CT have pursued a variety of frameworks to identify and
categorize the components included in CT (e.g., Brennan & Resnick, 2012; Grover &
Pea, 2013; Shute et al,, 2017; Weintrop et al.,, 2016; Wing, 2006). The current study
focuses on the frameworks presented by Brennan and Resnick (2012) and Shute et
al. (2017). Brennan and Resnick (2012) centered their framework on the block-
based coding platform Scratch. They divided ideas into concepts (e.g. loops,
parallelism, data), practices (e.g. iteration, debugging, abstracting), and perspectives
(expressing, connecting, questioning). Their concepts map onto individual Scratch
blocks, whereas their practices deal with designing a program.

While Brennan and Resnick (2012) included coding concepts in CT, others
propose that CT is similar to problem solving (Shute et al., 2017). The framework
proposed by Shute et al. (2017) is based on a definition of CT as “the conceptual
foundation required to solve problems effectively and efficiently, with solutions that
are reusable in different contexts” (p. 151) and draws from a number of studies and
frameworks, including that of Brennan and Resnick (2012). Shute et al. (2017)
identified decomposition, abstraction, algorithms, and debugging as the components
of CT that occurred most frequently in the literature, and included them as skills
engaged in CT. Abstraction is divided into data collection/analysis, pattern
recognition, and modeling; algorithms include subcategories of algorithm design,
parallelism, efficiency, and automation.

We developed a framework for categories within CT from a combination of
the frameworks from Brennan and Resnick (2012) and from Shute et al. (2017). In
this framework, CT includes skills employed in the process of designing a solution to
a problem: debugging, abstraction, and algorithm design. In addition, CT includes

the knowledge required to implement a solution in a way that computers
understand: control statements, data, language-specific syntax. These six areas of CT
are defined in Table 1.

[Table 1 near here]
Research on tabletop games for learning

Tabletop games have been used and investigated for learning in a variety of contexts
including medicine (Beylefeld & Struwig, 2007; Kaufman & Flanagan, 2016; Reeve et
al,, 2008), mathematics (Elofsson et al., 2016; Jimenez et al., 2011; Siegler & Ramani,
2009; Skillen et al., 2018), second language learning (Poole et al., 2019), and climate
change (Castronova & Knowles, 2015), among other areas (King & Cazessus, 2014;
Thomas et al., 2019). While the topics and content areas for which tabletop games
are used is diverse, the rationale for researchers using and investigating such games
can be broadly parsed into two categories. On one side are those who argue that
games are inherently enjoyable and thus can motivate learners to do seemingly
monotonous tasks; on the other side are those who argue that tabletop games
involve game mechanics and structures that promote learning.

Researchers who see educational games as a motivating force on their own,
regardless of the game mechanics, tend to create and investigate quiz-based or
trivia games (Nicholson, 2011). In these games, players typically roll a die or draw a
card, and are then prompted with a question related to the topic being studied. Such
games have been called chocolate-covered broccoli (Bruckman, 1999) because the
game functions as chocolate covering a task the learner finds dull (broccoli).
Researchers investigating these types of tabletop games have found that players
view them positively (Beylefeld & Struwig, 2007; Ogershok & Cottrell, 2004; Rose,
2011) and have reported learning gains (Rose, 2011; Struwig et al., 2014). Though
research has shown that by simply framing an activity as a game, learners tend to
rate the activity more positively (Leiberoth, 2015), thus calling into question
enjoyment as a measure of validation for games.

Other researchers have investigated how tabletop game mechanics can be
leveraged to promote learning. For example, several studies have explored the effect
of rolling dice and counting while moving a game piece on number sense and
mathematical knowledge (Elofsson et al., 2016, Siegler & Ramani, 2009; Skillen et
al,, 2018;). These studies generally find that simple game mechanics of rolling dice
and then counting and moving a game piece, has a strong impact on learners'
number sense. Poole et al. (2019) illustrated how a non-linear board allowed for
meaningful language learning opportunities, and further how game design can
encourage collaboration by creating tasks (e.g. defeating a ‘baddie”’) that cannot be
completed alone. Tabletop games have also been argued to support teaching
complex systems because players can manipulate different mechanics and pieces
within the game and explore how they affect the system (Castronova & Knowles,
2015).

In recent years, researchers have started exploring the use of tabletop games
to promote CT and the learning of CT concepts. Researchers have argued that

tabletop games are ideal for learning these concepts and skills because players often
engage in computation even when playing tabletop games not specifically designed
to teach such concepts (Berland & Lee, 2011). Further researchers have argued that
unlike in digital games, in tabletop games the game mechanics are transparent, and
thus more salient to players (Horn et al., 2012).

Research on tabletop games for CT

Research investigating the use of tabletop games to promote CT has focused on
researcher-designed games and conceptual arguments. Tabletop games used in
these studies, similar to games used in other educational settings, fall into a few
categories. Some games promote learning by giving players code to execute and
then movement is determined by the result of that execution. Other games attempt
to integrate learning via game mechanics that typically involve an action queue and
or a puzzle to be solved.

In one of the first studies investigating the use of tabletop games to teach
computer science concepts, Singh et al. (2007) invited undergraduate students and
five lecturers to play C-Jump. C-Jump is a linear tabletop game in which players roll a
dice and execute code based on the dice roll. For instance, if a player is on a square
with the expression: x+2, then the player adds two to the dice roll and moves the
game piece along the board. While the students reported enjoying the game and
agreed that it promoted learning, the lecturers were more critical and skeptical of
the game’s learning value. One lecturer stated that the game focused too much on
syntax and not enough on programming skills, such as problem solving.

In game designs that have integrated CT concepts into game mechanics,
designers have relied on an action queue. An action queue adds a series of steps (e.g.
move forward, turn left) to a queue that will be executed. For instance, Gresse von
Wangenheim et al. (2019) designed the game SplashCode. In the game, players draw
five movement cards (e.g. move forward, turn left) to be placed into an action queue
of three cards. These action-queue cards are then executed to move the player's
character around an open-grid board. The goal of the game is to get the player's
character to a designated location before other players do. In another study, Kuo
and Hsu (2020) designed Robot City, a game that also has players move around a
grid using an action queue of cards. However, players have multiple tasks to
complete on the grid. For example, players are asked to pick up material and deliver
them to spatial locations. To improve the efficiency and complete tasks quicker they
can create more advanced action queues that include conditional statements and
procedures.

Other tabletop games that have integrated CT concepts into game mechanics
have relied on puzzle features. For example, Apostolellis et al. (2014) designed the
game RabBit EscApe. In this game, players must manipulate wooden tiles that are
connected to each other by magnets to create a path for a rabbit to escape an ape. In
another study, Lee, et al, (2020) used the ThinkFun game On the Brink in a classroom
setting to promote CT and transfer to a digital version of the game in Scratch. In the
game On the Brink, players move a robot around a grid towards an endpoint. To do

so, they must identify a pattern of colors hidden in the grid and then explore
solutions to the puzzle by adding cards to an action queue that is executed by the
players.

Finally, Tsarava et al. (2018) designed three tabletop games and explored
student and expert gaming experiences across all three games. Interestingly, the
three games fall into the aforementioned categories. The first game they designed is
a race-to-the-end game called The Race, in which players solve coding problems on a
card to advance game pieces across a linear board. They also designed an action-
queue game, Treasure Hunt, in which two players create an action queue involving
movement and control statement cards to move either a crab or a turtle around a
grid to collect items. Finally, their last game is a puzzle-based game, Patterns, in
which players identify patterns to solve puzzles before other players do. They claim
that The Race teaches control statements and data concepts, Treasure Hunt teaches
algorithm design and abstraction, and Patterns teaches control statements and
abstraction.

The present study has three primary goals. First, we identify the landscape of
tabletop games that are marketed as teaching CT. Secondly, we offer a taxonomy for
categorizing these tabletop games based on design features. Finally, we provide
design cases for games that fall into each of our categories to illustrate how game
mechanics are intended to promote development of CT skills and concepts within
each game type.

Methods

Our analysis includes three steps: search for games, content analysis, and design
cases. In this section, we first detail our search strategy for locating commercial
tabletop games that make marketing claims around teaching CT. Next, we provide a
brief description of content analysis and how this approach was used to summarize
the current tabletop games available for learning CT. Finally, we provide a
description of design cases.

Search Strategy

This review used a three-phase search. In the initial search the following terms were
used:

"computer science" OR "computational thinking" OR "programming" OR "coding"
AND "tabletop games" OR "board games" OR card games"

In this initial phase, websites were searched for commercial tabletop games
that are believed and/or marketed to promote CT, computer science, and/or general
programming skills. Commercial games were our focus because a disproportionate
amount of educational games in research has focused on researcher developed
games and thus relatively little is known about the design of commercial ones (Lee,
2020). All commercial games that appeared to involve computer science in any form

were included resulting in the identification of 22 games. Publisher websites that
specialize in designing computational thinking/computer science games and/or
websites that review tabletop games (e.g. https://boardgamegeek.com/) were also
identified. In the second phase, both the publisher and tabletop game review
websites were further investigated for additional games that made claims to teach
CT skills. Nineteen additional games were identified, bringing the total to 41. Finally,
in the third phase, we searched for research involving CT tabletop games using the
following library databases: Education Source, ERIC, and Google Scholar. The search
strings above were used in this search.

This search resulted in 171 articles from Education Source and ERIC, and
17,000+ articles from Google Scholar. Abstracts for the first 20 pages (200 results)
in Google Scholar were examined. After 20 pages the results became irrelevant to
games and CT. The abstracts of articles from both searches were then reviewed to
confirm that the studies were investigating the CT skills in tabletop games. We then
identified tabletop games used in each of these articles that were unique from our
already established list and identified 8 additional games to bring the total number
of games identified to 49. Next, we examined the inclusion/exclusion criteria used to
identify which games were included in this analysis.

Inclusion and Exclusion Criteria

Tabletop games investigated in this analysis were included if they met all the
following criteria (See Table 2):

[Table 2 near here]

After applying the inclusion criteria 25 games were dropped, leaving 24
games for analysis. Of the 25 games dropped, 5 were dropped because they were
researcher designed games and thus were not readily available to the public, 12
tabletop games were dropped because they did not specifically claim to teach CT
concepts, 7 were dropped because they either were not tabletop games or required
the use of an iPad or other digital screen, and 1 was dropped because it has not yet
been released. It is important to note that the 12 games dropped because they did
not specifically claim to teach CT concepts were originally added for review because
either a researcher or a reviewer on a tabletop game review website identified them
as games that promote CT. While they do not explicitly claim to teach CT, these
particular tabletop games may provide valuable insight into the design of future
games.

Content Analysis

Content analysis is a research tool used for synthesizing concepts or themes
within a selected data. It involves the identification of certain concepts followed by
quantification of those concepts with the help of analytical coding and subsequent
categorization of those analytical codes. Content analysis can provide insight into
trends, features, and relationships between concepts within the target data (Lin et

al,, 2019). We applied this technique to the commercial tabletop games identified in
our search marketed as teaching CT. The researchers in the present study had
access to physical copies of most of the 24 games. For those we did not have copies
of, we consulted online instruction manuals and videos to understand how the game
was played. Analysis based on manuals exclusively has been fruitful for other
studies of tabletop gaming (Garcia, 2017).

To explore the types of game mechanics being used within games, we first
created a list of all board game mechanics found on https://boardgamegeek.com/.
Then we found examples of each of these board game mechanics within one of the
CT games we identified. Game mechanics that were not identified in any of the
games were then dropped from the list. Next, we coded all 24 games in terms of
whether they contained one of the remaining game mechanics. It was at this point
that we recognized that these games could be collapsed into three overarching
categories, games that used an action-queue, those that required the execution of
code, and those that relied on puzzle-based mechanics. Given that this matched
game designs being developed and explored in the literature we felt confident in
these categories. Finally, we discussed definitions for these categories as a group
and then used these definitions for our coding scheme, see Table 3. Two researchers
used this coding scheme to code each of the games. Cohen’s Kappa was calculated as
a measure of inter-coder reliability. As we see in table 3, Cohen’s k for each of the
game types was .78 or greater, suggesting good reliability.

[Table 3 near here]

In addition to coding for game type, we also coded each game for the targeted
age-group based on suggestions by the publisher, the narrative theme (e.g. robots,
space) and complexity (e.g. simple, complex), learning claims made either on the
publisher’s website or in the instructional manual, and the gameplay configuration
(e.g. single-player, collaborative, competitive). Narrative complexity was coded as
either simple or complex. A simple narrative provides players with a goal and agents
to complete the goal. For instance, in Cosmic Coding players are given a spaceship
(agent) and a task to collect all the stars (goal). Complex narratives include
additional plot information such as information about the setting, agent/character
background stories, and/or rationale for completing goals. Finally, the learning
claims were identified from the publisher’s website or the instructional manual,
using the keywords in Table 4 below. Synonymous words or phrases - for example,
“programming language” is synonymous with “syntax” - also counted as a learning
claim, and all claims were collapsed into the six basic categories described in Table
1.

[Table 4 near here]
Design Cases

Design cases are descriptions of “real artifact[s] or experiences that [have] been
intentionally designed” (Boling, 2010, p.2). In the present study, the artifacts are

tabletop games that have been intentionally designed to teach or promote CT skills
and/or knowledge. Design cases do not provide validation for designs, rather they
are a form of summative discourse about the principles and conjectures that designs
are based on. Specifically, we explore the conjectures about learning that are made
in tabletop game designs.

To systematically build the design cases, we applied Arnab’s et al. (2015) learning
mechanic-game mechanic (LM-GM) model to three games that fall into each of the
game types identified in our taxonomy. The LM-GM model was designed to help
researchers and educators identify serious game mechanics that are argued to be
“game components that translate a pedagogical practice/pattern into concrete game
mechanics directly perceivable by a player’s action” (Arnab et al., 2015, p. 395). To
use this model, the authors suggest that users: first identify the learning mechanics
(LM) and game mechanics (GM), then describe their relationships and
implementation. In other words, how do GM afford opportunities for LM. Next, users
should illustrate the dynamic appearance of both LM and GM during gameplay. It’s
is important to note here that while Arnab et al., (2015) do provide several
examples of LM and GM in their paper, they do not explicitly define these examples
and neither do they claim that their list of examples to be exhaustive. Rather, it is up
to the researcher to user of the framework to define the LM and GM in the analysis.
In our design cases, we first provide a brief overview of the game. Then we describe
the GM in detail. Finally, we explore the conjectures about learning by applying the
LM-GM model. The goal of this model is to “determine at which point gameplay and
pedagogy intertwine” (Arnab et al., 2015, p. 398). It is at this intersection that
potential learning opportunities afforded by the game can be observed.

Results

Results of the content analysis are organized into our taxonomy that contains four
categories of game types: code building, executing code, puzzle, and combination (see
Table 4). Within each category, we present findings on game configuration,
environment, goals, and actions followed by a design case.

Code Building Games

Code Building games are those in which players create code via an action queue and
then execute the code. These games are designed for single player (N=4),
cooperative (N=2), and competitive (N=2) configurations and involve controlling
and moving an agent through a grid-like space (See figure 2). Thus, the coding in
these games is based on movement and the syntax is directional arrows. These
games draw inspiration from the LOGO Programming language, which also uses
directional commands to move a turtle around a grid system (Papert, 1980). Eight
games were identified within this category (see Table 5). All games in this category
are designed for younger learners who are not reading or are emergent readers.
Seven of the games have robot-based themes and one has a space theme. Three of

10

the robot-themed games use animal robots. The narrative for these games is simple
and involves a directive to reach a specific target. For example, in Coder Bunnyz,
players are told that they must retrieve their carrot and bring it home. Games with a
complex narrative provide stories that attempt to provide context for the gameplay.
For example, in Robot Turtles, an additional story book provides a narrative and
rationale for several board configurations. To increase difficulty in these games,
obstacles are introduced at higher levels and require players to either create a new
path or use control statements to get around them. Finally, learning claims made by
these types of games focus on CT employed in designing a solution to a problem,
such as algorithm design (N=8), abstraction (N=5), and debugging (N=3). Some
games claim to teach control statements (N=4), and some claimed to teach data
(N=2) and syntax (N=1) concepts. The following design case provides an in-depth
look at one of the games in this category.

[Table 5 near here]

Design Case: Robot Turtles

Overview.

In Robot Turtles, two to four players program robot turtles to reach a jewel that is
placed somewhere on a grid (see Figure 2). Once a player reaches their jewel, they
win the game. The game has many levels and introduces obstacles on the paths to
make the play more challenging.

[Figure 1 near here]

Game Mechanics and Rules.

The primary game mechanic in Robot Turtles is placing a series of coding cards
(Forward, Rotate Left, and Rotate Right) face up that indicate which way a player
wants their turtle to move. The players, called Turtle Masters, lay down the cards.
Then, the Turtle Mover, a teacher, parent, or more experienced peer, executes the
code on the board by moving the player's turtle. A secondary mechanic is the use of
function cards. In more advanced levels, players can use function cards to define a
series of steps to be called with the use of one card, rather than repeating the same
steps. Finally, there is a debugging mechanic. This is a game card that the player can
hit if they notice an error in their code.

There are two types of rules that provide parameters around how the game
is played. The first rule relates to the obstacles (ice blocks, brick blocks, and crates).
Each obstacle requires a unique approach to overcome them. An ice block triggers
the use of a laser, the brick triggers a need to go around, and the crate requires the
player to push it out of the way. These obstacles allow for more challenging paths
and more complex code. The second type of rule is applied to provide scaffolding.

11

This rule states that in game version one, players only play one card at a time and
then the Turtle mover executes it. In the second version of the game, players add
three cards at a time and in the last version, players add all the cards needed to the
action queue to reach the jewel.

LM-GM Analysis.

Opportunities for learning and developing CT skills come when players create an
action queue and when the code is executed or enacted by the Turtle Mover. By
creating an action queue (the game mechanic), players demonstrate their ability to
plan a sequence of moves (the learning mechanic). Placing a series of cards has been
argued to help learners develop an understanding of the computational concept
sequencing (Brennan & Resnick, 2012). This illustrates how the LM and GM blend
into pedagogy. This game is unique from other action queue games because rules
explicitly state that the Turtle Mover (game mechanic) should execute the code and
not the player. This may help players understand how code is executed by a
computer once a command is given. Further, this places emphasis on writing the
code sequence (learning mechanic) rather than the enactment of the code on the
game board. Another opportunity for learning is created by using the debug card.
When mistakes are made, players are encouraged to slap a debug card (game
mechanic), which gives them an opportunity to fix their code (learning mechanic).
This may help in developing the players’ understanding of programming as an
iterative, problem-solving task. Finally, when players use the function card (game
mechanic), they can engage in abstraction, by identifying (learning mechanic) a
series of codes that can be reused in other parts of their queue. Similar to the tables
created in Arnab et al,, (2015), Table 6 illustrates how the game mechanics connect
to learning mechanics.

[Table 6 near here]

Executing Code Games

Executing code games are those in which players are presented with a code or a
sequency of code to execute. There are six games in this category. All these games
are played with multiple players and have a competitive gameplay configuration.
Executing the code requires players to integrate information from either a dice roll
(N=2) or from the current state of the board (N=4). These games target older
learners with most games suggesting an upper elementary age (10+) as the starting
point. The themes in this category are more diverse and include sports (N=1); space
(N=2); animals (N=1) and farming (N=1). None of the games we identified in this
category have robot themes and all the narratives are simple. Players are presented
with a linear board and are given a simple explanation for moving their character to
the end goal. For example, in Code Monkey Island, the objective is to get three
monkeys to the banana grove. The learning claims focus on CT for implementing a
solution to a problem, such as teaching syntax (N=>5), data concepts (N=4), and
control statements (N=5). Only one game in the executing category claimed to teach

12

algorithm design.

[Table 7 near here]

Design Case: Coding Farmers

Overview.

Coding Farmers is played with two to four players. Each player draws cards from a
draw pile and executes those cards to move their tractor across a linear board
towards a farm. Along the path to the farm are several obstacles that players must
navigate around. Each player can hold a maximum of three action cards in their
hand and each action card has instructions written in English as well as in java code
(See figure 3).

[Figure 2 near here]

Game Mechanics and Rules.

The primary game mechanic involves drawing an action card and then executing
code on the card. For example, one card might read, “if the die roll is greater than 2,
then move forward two spaces.” This game mechanic acts similar to many quiz-
based games in that players are given a problem to solve and then are rewarded
with gameplay based on a correct answer. However, it adds in the element of chance
by rolling the die. Subsequently, data concepts, and more specifically, variables, can
be simulated by rolling the die. The die acts as a variable that is constantly being
changed each time a player rolls the die. The value of the die is then used within the
pre-given functions to be executed. Most of the problems presented in the cards
target control statements. There are two types of action cards: (1) English and Java
and (2) Java. In beginner mode, players use action cards with both English and Java.
These cards act as a form of scaffolding in that they provide support (e.g. English)
for the Java syntax. Once the players become comfortable with the Java syntax, they
can play in advanced mode by only using the Java cards.

[Figure 3 near here]

Players can only hold three action cards at a time and can choose to play a
card depending on their location on the board. Although the game is played by
traversing a linear path, there are obstacles, which makes playing certain cards
more strategic at different points in the game. By allowing players to a) only hold a
limited number of cards, and b) select which card to play, Coding Farmers provide
players with a sense of autonomy that may not exist in other linear tabletop games.
LM-GM Analysis.

Coding Farmers intends for players to learn Java through game play. There are three
ways that learning is assumed to occur. First, by using the cards (game mechanic) to

13

execute code containing control statements, it is assumed that players may gain
incidental knowledge about the functionality and syntax of control statements. To
win the game, players should evaluate code (learning mechanic) on all three cards in
their hand and determine which card will allow them to advance farthest on each
given hand. Secondly, by transitioning from action code written in simple English to
code written in Java, the game provides a form of scaffolding to learners as they
move towards scripting. Again, there is an assumption that by observing this code
and executing the code repetitively (learning mechanic), learners will make
connections between simple English and Java code. Finally, rolling the die (game
mechanic) and adding the values (learning mechanic) to the executable code
provides a simulation of how variables are applied. Table 8 below illustrates how
the game mechanics combine with learning mechanics to provide learning
opportunities in the game.

[Table 8 Near Here]

Puzzle Games

Puzzle games require players to either identify or match a pattern to complete a
task. We identified two puzzle tabletop games in our content analysis. Both games
are designed around a robot theme. In one game, the objective is for the player to fix
the robot. In the second game, the objective is to direct the robot along a path. Both
games are designed around pattern matching. Players are given a pattern or a set of
conditions and are tasked with matching the pattern or set of conditions on the
game board. The learning claims for these games included algorithm design, control
statements, and data.

[Table 9 near here]

Design Case: Rover Control

Overview.

Rover Control is a single player game designed around patterns and paths. The game
contains 40 different levels, or puzzles, that increase in difficulty as they progress.
The objective of each level is to help the rover move from the starting point to the
endpoint. Each level is a graph containing nodes and edges (See figure 5) and the
rover can move from one node to another following an edge.

[Figure 4 near here]

Game Mechanics and Rules.

The primary mechanic in rover control is pattern matching. On the board, players
have a series of paths connected by number-labeled nodes. Players are given a

14

starting number and a finishing number to dictate where the rover must go. They
are then presented with a color-coded pattern (e.g. red, blue, red) that they must
follow to complete the level. The secondary game mechanic comes in the form of
decision nodes that have various names (e.g. storage station, data station, charging
station) (see figure 6). These decision nodes (game mechanic) prompt the learner to
make a decision based on where they are or what they currently hold in the game.
For instance, one decision node asks if the player is currently at a charging station, if
they are, they should continue on to a green path, if they are not, they should
continue on to a blue path. Through these secondary mechanics, the game
introduces concepts like loops, conditionals, and variables, which fall into our CT
categories of control statements and data.

[Figure 5 near here]
LM-GM Analysis

The pattern matching mechanic (game mechanic) in Rover Control promotes the CT
skill abstraction by requiring learners to identify (learning mechanic) and then
reuse (learning mechanic) a series of steps in different parts of the levels. In
addition to teaching abstraction, this mechanic also provides an opportunity to
learn algorithmic thinking and sequencing as players simulate (learning mechanic)
potential paths through the nodes using the provided patterns. In other words,
players must plan a sequence of moves based on the pattern and then test it out.
Rover Control also promotes deduction through a trial and error approach in which
the learner colors a path, simulates the proposed path, and then evaluates the
functionality of the path. Based on the results, the player can make adjustments. In
Rover Control, players begin with very basic patterns and puzzles and slowly
increase in difficulty until the final levels when multiple game mechanics are
introduced. Control statements are introduced in this game via special nodes (game
mechanic) that ask players to make decisions (learning mechanic) about the next
color in their pattern and/or what their game piece currently holds. While these
nodes make the pattern matching task more complicated and perhaps more fun, the
learning assumption is that players will develop knowledge about control
statements incidentally by enacting the puzzles to test their solutions. Table 10
below illustrates how game and learning mechanics provide opportunities for
learning.

[Table 10 Near Here]

Combination Games

The final set of games includes games that fall into two categories. These were
either games with code building and puzzle mechanics (N=4) or code building and
code executing mechanics (N=4). There were no games with puzzle and code
executing mechanics. The code building and puzzle mechanics included games that
used an action queue while trying to either navigate a puzzle-like path or match a
set of conditions. These games claimed to teach algorithm design (N=3), debugging

15

(N=1), abstraction (N=1), control statements (N=1), and data concepts (N=1). Games
that included code building and code executing codes allowed players to create an
action queue, but then also prompted learners to execute code or an algorithm on
some of the cards in the action queue. These games claimed to teach CT concepts in
both the design process (N=7) and solution implementation (N=7). Overall,
combination games are more complex and have more diversity in the themes, board
types, play styles, and learning claims. Themes in this section include pirates,
hackers, space, and robots. Only two games had a complex narrative.

[Table 11 near here]

Due to space limitations, we do not provide a design case for this category. However,
the mechanics that are combined are clearly outlined in the previous cases. In the
next section, we discuss the implications of these findings.

Discussion

The last five years has seen an increase in the number of commercially produced
board games that are marketed as teaching CT skills. Most of these games are aimed
at pre-elementary and elementary learners. This paper set out to provide an
overview of the games being designed, a taxonomy of the design types, and further
to provide insight into how games within that taxonomy promote CT using the LM-
GM model. We identified four types of games: code building, executing code, puzzle,
and combination games.

Our taxonomy parses games based on design features and mechanics. In addition,
we found that games within each category share similar targeted audiences and
learning claims, further lending credence to our taxonomy. Specifically, we found
that code building games targeted younger learners and focused more on CT in
terms of solution design. Executing code games targeted older learners and focused
primarily on syntax and control statements. While puzzle games and combination
puzzle games targeted older learners, they included learning claims for CT in both
solution design and solution implementation. We further contend that our
taxonomy has implications for how players conceptualize CS, design, formal and
informal learning contexts, and research, which we discuss below.

Representations of CS

Using board games to introduce CT concepts has potential to broaden participation
by targeting a younger and potentially more diverse audience. However, it is also
important to consider how the design of the game represents CS and the messages it
sends players about what programming is. For instance, code building emphasize
how computation works from a hardware perspective. In other words, computers
must be given commands that will be followed exactly as written. In addition, while
these games do provide the players with a goal or objective (e.g. spatial target),

16

players are allowed autonomy on how they achieve that goal Thus, these games
focus on the creativity and open-endedness of programming, but also tend to
restrict the idea of programming to simple sequences of navigational instructions. In
code execution games the focus is on the player's ability to understand and recognize
the programming language that is used to implement solutions to a problem. This
approach limits the view of programming to a particular context or syntax, but this
context-specific knowledge may also transfer the easiest to beginner coding
exercises. The third category, puzzle games, tends to frame CT in terms of ill-
designed problems. In other words, CT or programming involves finding solutions
to problems through iterative, trial-and-error like approaches. These approaches,
problematically, typically restrict creativity by only accepting one solution. Finally,
our fourth category, combination games, are game designs that include either code
building and puzzle mechanics or code building and code execution mechanics. By
implementing multiple game designs, these games can provide a broader framing of
what CT and programming is.

Understanding the implicit messages that are being delivered through these
game designs is particularly important given that research suggests that youth
perception of CS can impact whether they choose to opt in (Pantic et al., 2018).
Further it is important for educators to recognize not only how CS/CT is being
portrayed when using these games, but also what aspects of CS/CT are being left out
when they choose to teach with these tools. Likewise, designers should explore
other areas of CT that may not be represented by the current landscape of CT
tabletop games such as state-based, object-oriented, or functional programming.

Implications for Design

In the three categories of games we identified, we noticed a clear distinction in the
audience age groups targeted by designs. Games that target young learners use
designs within the code building games category. These games have less diversity in
themes with nearly all games involving robots in some form. They allow players to
create an action queue of movement cards which, when executed, move a game
piece towards a spatial goal. Given that these games target younger learners, the use
of an action queue with movement cards lowers the threshold for introductory CT
as literacy skills are not required (Bers, 2019). Action queues potentially allow for
players to attempt to fix problems they find as they enact the queue, which may
facilitate decomposition and simulation in the process of debugging. However, many
of these games are simple, and after a few turns, players may master the mechanic
and thus rarely experience a bug to be fixed.

Most of the code building games use a robot theme where the narrative builds
on the idea that robots (e.g. computers) need input from the player to complete a
task. Although three games distinguish their robots as animal robots, these games
could use more variety in thematic choices. Such robot-inspired themes may enforce
current stereotypes around computing. Master et al. (2016) found that simply
adding stereotypical objects (e.g. computer parts, electronics) to an image of a

17

computer science classroom influenced female interest in an introductory computer
science course. Adding more diversity in the themes applied at this level may attract
a larger audience to these types of games (Rusk et al., 2008). In addition, two of the
eight games in this category situated the game within a complex narrative. Complex
narratives may help young learners make connections between gameplay and the
CT skills that the game promotes. Further, such narratives may provide an anchor
for transferring skills learned in the game into a future digital programming
environment (Bers, 2019). Nevertheless, complex narratives may distract young
learners; thus, the use of narratives should be carefully considered. The learning
claims within these games focus more on developing skills related to the design of a
solution. Some games do add secondary game mechanics in advanced levels of the
game that target concepts related to implementing a design, such as control
statements and data.

Games that target older learners tend to use game designs found in the
executing code games category. These games focus on scripting knowledge as
learners are presented with code, either written in plain English or in a
programming language (e.g. Java), to execute. Executing code in these games
determines how the player moves through a linear board. None of the games in this
category made use of a complex narrative, and because the code being executed can
be placed either on a card or the board, there is no need to apply a logical narrative
to explain the task. Thus, in this category, greater variety of themes are used to mask
the repetitious execution of codes. A review on the use of games in higher education
CS classes found that many games have students execute algorithms in a
competitive gaming context to add entertainment to the memorization task
(Battistella & Gresse von Wangenheim, 2016). Likewise, the designers of these
games appear to view CT and/or computer science as a task of memorizing a syntax
or semantics associated with syntax. One way to expand on the executing code
design is to allow players to combine cards with executable code into larger
functions, as is done in the game Potato Pirates. In Potato Pirates players can
combine up to three cards to build an attack on other players (See Figure 7.). Each
card played also contains code like those in many of the executing code games, but
players can build on that code in a meaningful way.

[Figure 6 near here]

Older learners were also targeted by games in the puzzle category. These
embedded CT, both as designing and implementing a solution, into puzzles that
required either pattern matching or pattern identification to be solved. Two puzzle
games did not include designs from other game categories, and four puzzle games
included designs from the code building games category. In both the combination
and non-combination puzzle games, the difficulty of the puzzles often requires a
trial-and-error approach in which the player puts forth an idea, tests it, reflects on
the idea and then tries a new approach. These games also have a greater variety of
themes. In future designs for puzzle games, designers should explore designs that
encourage collaborative play (Zagal et al.,, 2006). While many of these games allow
players to cooperate with a peer, most are designed for a single player. In our own
research, we find that when pairs work on puzzles, one player often takes over and

18

solves the puzzle independently. Further, researchers have noted that a primary
benefit of tabletop games is the social interaction that occurs naturally when
multiple players engage with the physical environment (Battistella & Gresse von
Wangenheim, 2016).

Our taxonomy of tabletop games designed to promote CT learning provides a
road map for future designers by illustrating how past designs have been leveraged
for specific age groups to elicit CT learning in unique ways. Designing tabletop
games for learning is a complex process that not only considers the designer’s intent
and rationale for a design, but also how those designs are realized and enacted by
players (Engelstein, 2017). By exploring how past games have leveraged game and
learning mechanics to target CT, designers can either apply similar mechanics to
games with novel themes and narratives or they can expand on and improve
existing mechanics. Further it is important to identify aspects of CS/CT that are not
currently addressed in the board games. Blanco and Engstrom (2020) conducted
similar analysis with commercial digital games that made claims for teaching
programming. They found that most digital games focused on developing
fundamental programming concepts which includes syntax, control structures,
among others. However, they noted that few digital games addressed algorithm and
design concepts. While algorithm, design, and syntax are well covered in tabletop
games, there are still many computing concepts that are not addressed in these
games, in particular data structures. Game designers should explore designs that
address some of these less covered CS concepts and may consider drawing
inspiration from the commercial digital games that are designed to teach
programming concepts (Blanco & Engstrom, 2020).

Implications for Formal and Informal Learning Contexts

In the content analysis, we sort games by their primary game mechanics and
identify their learning claims. Then within each category, we provide a design case
to illustrate how the game mechanics are assumed to promote learning. Game
mechanics that promote learning may be ideal starting points for educators to focus
on when bringing tabletop games into the classroom or an informal learning space
to promote CT. For instance, in code building games educators could leverage the
action queue; in executing code games the focus could be on control statements, and
educators looking to develop problem-solving skills associated with CT may
consider using the puzzle games. However, many of the game mechanics that are
designed for learning control statements and data concepts may not be salient to the
learner. These game mechanics may improve the game experience, but at some
point, an educator may need to help students see how such concepts relate to
computing. Past research has drawn on principles from expansive framing (Engle et
al,, 2012) to make connections between game mechanics in tabletop games that are
similar to their digital instantiations (Lee et al., 2020). For instance, in the game On
the Brink, players are presented with a color-coded action queue (e.g. blue, yellow,
red), in which they can place two movement cards on each color. Then when a
player’s game piece lands on a specific color they enact the code that is associated

19

with that color. Focusing on this game mechanic, researchers designed a curriculum
that promotes transfer from an analog gaming environment to a digital
programming environment by emphasizing the similarities between the action
queue and procedures in the digital environment. A similar framework could be
applied to the executing code games to help students see how the die simulates
variables or to point out similarities between quasi-code and syntax used in
authentic programming languages. Given the trial-and-error approach that is often
required in the puzzle games, educators may provide support by demonstrating the
debugging process in which players attempt a solution, identify a bug, reflect on
their original solution, and then propose an adapted solution.

Our taxonomy provides educators with a starting point in determining which
type of game is best for their context. In other words, if educators are working with
younger learners, they may start with Code Building Games. Once, educators have
determined which game they will teach with, they can apply the LM-GM model as we
did in this study to identify moments when learning is most probable. Then, by
understanding where learning is occurring within the game, educators can design
lessons that highlight, enhance, and/or extend learning opportunities found within
the game. Finally, taking into account how the game is representing CS the
instructor should consider ways of expanding the learners view of CS and/or
breaking down stereotypes that may exist within the games.

Implications for Research

For researchers, we believe that our taxonomy not only highlights several potential
areas for research, but it also provides a guide for what that research might look
like. First, several researchers have chosen to design games for their particular
context of study. While some of these games may provide some unique aspects,
many of the researcher-designed games could have been replaced by a commercial
game. For example, Gresse von Wangenheim’s et al. (2019) Splash Code is very
similar to Coder Bunnyz.

Second, in terms of areas rich in research potential, each of the game types within
our taxonomy include a set of assumptions about learning based on the game
design. For example, within the code building games, there is an assumption that by
allowing players to create and enact an action queue of movement cards, players
will develop skills specifically related to algorithmic design. Researchers have
designed assessments (Grover et al., 2014; Roman-Gonzalez et al., 2017; Zhao &
Shute, 2019) that could be used to determine if these games do in fact promote CT in
terms of algorithmic design. Further, code building games often increase in difficulty
by adding game mechanics around building functions and obstacles to complicate
solution paths. Given that these games use directional cards in action queues to
build code, researchers could explore how the visual and spatial aspects of action
queues supports learning and understanding of computer science concepts like
functions and control statements.

20

Executing code games makes two primary assumptions. First, they assume
that by playing the game players will learn programming languages and/or
structures as a by-product of seeing the code and executing it. Research could
explore what learning occurs as a result of playing the game, and how long the
players need to play to develop this knowledge. In linear path games, where there is
only one direction and one solution, learners may not find the game interesting after
a game has been completed a few times. Thus, researchers may want to explore how
interest changes over continued play. Secondly, there is an assumption that by
simply learning a script, players will learn to program. Thus, there is a question of
transfer. Are learners able to take the scripting knowledge learned in these games
and apply them to a programming environment? Finally, given that these games
tend to focus on control statements, exploring how executing code within these
games supports learning and understanding of these concepts is another area for
potential research.

In terms of puzzle and combination based games, more so than games in
other categories, there is an assumption that by playing games and implicitly
engaging with concepts that involve control statements and data, players will notice
and learn something about these concepts. However, given that such concepts are
embedded within game mechanics and thus not overtly clear to the players,
research should investigate if players are aware of and if they notice these concepts
that puzzles games claim to promote. Furthermore, given the challenge and problem
solving involved in these games, player experience and frustration levels should be
considered when exploring the efficacy of these games as learning environments.
Research should consider the approaches mentioned in the previous section on
implications for teaching and explore ways of leveraging these unplugged learning
environments in formal and informal spaces. Further research could explore do
these unplugged games work? If so, when and under what conditions? Finally, given
the differences in how tabletop games represent the CS field and the objective of
introducing programming at a young age, researchers should explore how younger
learners perceive programming and the CS field after playing of these tabletop
games.

Conclusion

The recent influx of commercial CT tabletop games is undoubtedly a positive trend
for young emergent coders. However, having too many options can also make it
difficult to choose an appropriate game for one’s context. In this study, we created a
taxonomy of CT tabletop games that identified three primary categories (e.g. code
building, code executing, and puzzle games) and one category that includes a
combination of the first three categories. Games that fall into our discrete categories
share similar learning claims, target audiences, and game mechanics. In our
discussion we illustrate how our taxonomy offers a starting place for instructors
who want to explore the use of tabletop games for introducing CT concepts in
unplugged settings, suggestions for designers looking to build similar games, and
areas for investigation for researchers.

21

ACKNOWLEDGMENTS

This paper was funded by the National Science Foundation (NSF) grant #1837224.

Data Availability Statement

The data that support the findings of this study are available from the

corresponding author, [F.].P], upon reasonable request.

22

REFERENCES

Apostolellis, P., Stewart, M., Frisina, C., & Kafura, D. (2014). RaBit EscAPE: A board
game for computational thinking. Proceedings of the 2014 Conference on
Interaction Design and Children, 349-352.
https://doi.org/10.1145/2593968.2610489

Battistella, P. & Gresse von Wangenheim, C. (2016). Games for Teaching Computing
in Higher Education - A Systematic Review. IEEE Technology and Engineering
Education, 9(1), 8-30..

Bell, T. C., Witten, I. H., Fellows, M. R,, Adams, R., & McKenzie,]. (2015). CS
unplugged: An enrichment and extension programme for primary-aged
students. Retrieved from http://csunplugged.org/wp-
content/uploads/2015/03/CSUnplugged_0S_2015_v3.1.pdf

Berland, M., & Lee, V. R. (2011). Collaborative Strategic Board Games as a Site for
Distributed Computational Thinking. International Journal of Game-Based

Learning (IJGBL), 1(2), 65-81. https://doi.org/10.4018/ijgbl.2011040105

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching
computer science in early childhood. Journal of Computers in Education, 6(4),

499-528. https://doi.org/10.1007/s40692-019-00147-3

Beylefeld, D. A. A., & Struwig, M. C. (2007). A gaming approach to learning medical
microbiology: Students’ experiences of flow. Medical Teacher, 29(9-10), 933-
940. https://doi.org/10.1080/01421590701601550

Blanco, A. A., & Engstrom, H. (2020). Patterns in Mainstream Programming
Games. Int. J. Serious Games, 7(1), 97-126.

Boling, E. (2010). The need for design cases: Disseminating design knowledge.
International Journal of Designs for Learning, 1(1).

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Proceedings of the 2012 Annual
Meeting of the American Educational Research Association, Vancouver,

Canada, 1, 25.

23

Bruckman, A. (1999). Can educational be fun. Game Developers Conference, 99, 75-
79.

Castronova, E., & Knowles, I. (2015). Modding board games into serious games: The
case of Climate Policy. International Journal of Serious Games, 2(3), 41-62.

Elofsson,]., Gustafson, S., Samuelsson, J., & Traff, U. (2016). Playing number board
games supports 5-year-old children’s early mathematical development. The
Journal of Mathematical Behavior, 43, 134-147.

Engle, R. A, Lam, D. P., Meyer, X. S., & Nix, S. E. (2012). How does expansive framing
promote transfer? Several proposed explanations and a research agenda for
investigating them. Educational Psychologist, 47(3), 215-231.

Engelstein, G. (2017). Gametek: The math and science of gaming. Ludology.

Garcia, A. (2017). Privilege, Power, and Dungeons & Dragons: How Systems Shape Racial
and Gender Identities in Tabletop Role-Playing Games. Mind, Culture, and Activity,
24(3), 232-246.d0i:10.1080/10749039.2017.1293691

Gresse von Wangenheim, C., Silva de Medeiros, G., Filho, R., Petri, G., Da Cruz
Pinheiro, F., Ferreira, N., Hauck, J. (2019). SplashCode-A Board Game for
Learning an Understanding of Algorithms in Middle School. Informatics in
Education, 18(2), 259-280.

Grover, S. & Pea, R. (2013). Computational thinking in K-12: A review of the state of
the field. Educational Researcher, 42(1), 38-43. doi:
https://doi.org/10.3102/0013189X12463051

Horn, M. S., Weintrop, D., Beheshti, E., & Olson, I. D. (2012). Spinners, dice, and

pawns: Using board games to prepare for agent-based modeling activities.
American Educational Research Association Annual Meeting.

Jimenez, 0., Arena, D., & Acholonu, U. (2011). Tug-of-war: A card game for pulling
students to fractions fluency. Proceedings of the Games, Learning, & Society
Conference, 7.

Kafai, Y., & Vasudevan, V. (2015). Hi-Lo tech games: Crafting, coding and
collaboration of augmented board games by high school youth. Proceedings of
the 14th International Conference on Interaction Design and Children, 130-

139.

24

Kaufman, G., & Flanagan, M. (2016). High-low split: Divergent cognitive construal
levels triggered by digital and non-digital platforms. Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, 2773-2777.

King, C., & Cazessus, M. (2014). Teaching with Audacity: A board game for urban
studies. 8t European conference on games based learning: ECGBL2014.
Academic Conferences and Publishing International.

Kuo, W.-C., & Hsu, T.-C. (2020). Learning computational thinking without a
computer: How computational participation happens in a computational
thinking board game. The Asia-Pacific Education Researcher, 29(1), 67-83.

Lee, V. R. (2020). Let’s cut to commercial: Where research, evaluation, and design of
learning games should go next. Educational Technology Research and
Development. https://doi.org/10.1007 /s11423-020-09865-3

Lee, V. R, Poole, F., Clarke-Midura, ., Recker, M., & Rasmussen, M. (2020).
Introducing Coding through Tabletop Board Games and Their Digital
Instantiations across Elementary Classrooms and School Libraries.
Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, 787-793.

Lieberoth, A. (2015). Shallow gamification: Testing psychological effects of framing
an activity as a game. Games and Culture, 10(3), 229-248.

Lin, T.-],, Lin, T.-C., Potvin, P., & Tsai, C.-C. (2019). Research trends in science
education from 2013 to 2017: A systematic content analysis of publications
in selected journals. International Journal of Science Education, 41(3), 367-
387.

Master, A., Cheryan, S., & Meltzoff, A. N. (2016). Computing whether she belongs:
Stereotypes undermine girls’ interest and sense of belonging in computer
science. Journal of educational psychology, 108(3), 424.

Nicholson, S. (2011). Making gameplay matter: Designing modern educational
tabletop games. Knowledge Quest, 40(1), 60.

Ogershok, P. R., & Cottrell, S. (2004). The pediatric board game. Medical Teacher,
26(6),514-517.

25

Pantic, K., Clarke-Midura,]., Poole, F., Roller, J., & Allan, V. (2018). Drawing a
computer scientist: stereotypical representations or lack of
awareness?. Computer Science Education, 28(3), 232-254.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York:
Basic Books.

Poole, F., Clarke-Midura, ., Sun, C., & Lam, K. (2019). Exploring the pedagogical
affordances of a collaborative board game in a dual language immersion
classroom. Foreign Language Annals, 52(4), 753-775.

Reeve, K., Rossiter, K., & Risdon, C. (2008). The Last Straw! A board game on the

social determinants of health. Medical Education, 42(11), 1125-1126.
https://doi.org/10.1111/5.1365-2923.2008.03215.x

Romadan-Gonzalez, M., Pérez-Gonzalez,].-C., & Jiménez-Fernandez, C. (2017). Which
cognitive abilities underlie computational thinking? Criterion validity of the

Computational Thinking Test. Computers in Human Behavior, 72, 678-691.
https://doi.org/10.1016/j.chb.2016.08.047

Rose, T. M. (2011). A Board Game to Assist Pharmacy Students in Learning

Metabolic Pathways. American Journal of Pharmaceutical Education, 75(9).
https://doi.org/10.5688/ajpe759183

Rusk, N., Resnick, M., Berg, R, & Pezalla-Granlund, M. (2008). New Pathways into
Robotics: Strategies for Broadening Participation. Journal of Science

Education and Technology, 17(1), 59-69. https://doi.org/10.1007/s10956-007-
9082-2

Shute, V.., Sun, C.,, & Asbell-Clarke,]. (2017). Demystifying computational thinking
Educational Research Review, 22, 142-158.
Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—But not

circular ones—Improves low-income preschoolers’ numerical

understanding. Journal of Educational Psychology, 101(3), 545-560.
https://doi.org/10.1037/a0014239

Singh, ., Dorairaj, S. K., & Woods, P. (2007). Learning computer programming using
a board game-case study on C-Jump. Proc. of the Int. Symposium on

Information and Communications Technologies, Kuala Lumpur, Malaysia.

26

Skillen,]., Berner, V.-D., & Seitz-Stein, K. (2018). The rule counts! Acquisition of
mathematical competencies with a number board game. The Journal of
Educational Research, 111(5), 554-563.

Struwig, M. C., Beylefeld, A. A., & Joubert, G. (2014). Learning medical microbiology
and infectious diseases by means of a board game: Can it work? Innovations
in Education and Teaching International, 51(4), 389-399.

Tang, K.-Y., Chou, T.-L., & Tsai, C.-C. (2020). A content analysis of computational
thinking research: An international publication trends and research typology.
The Asia-Pacific Education Researcher, 29(1), 9-19.

Thomas, M. K,, Shyjka, A., Kumm, S., & Gjomemo, R. (2019). Educational Design
Research for the Development of a Collectible Card Game for Cybersecurity
Learning. Journal of Formative Design in Learning, 3(1), 27-38.

Tsarava, K., Moeller, K., & Ninaus, M. (2018). Training computational thinking
through board games: The case of Crabs & Turtles. International Journal of
Serious Games, 5(2), 25-44.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking for mathematics and science
classrooms. Journal of Science Education and Technology, 25(1), 127-147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-
35.

Zagal,]. P, Rick,]., & Hsi, I. (2006). Collaborative games: Lessons learned from board
games. Simulation & Gaming, 37(1), 24-40.

Zhao, W., & Shute, V.]. (2019). Can playing a video game foster computational
thinking skills? Computers & Education, 141, 103633.

27

Table 1. Areas of Computational Thinking

CT Area Definition

Debugging Detecting, investigating, then fixing errors in a procedure

Abstraction Finding or constructing patterns within problems and
solutions, in order to facilitate understanding.

Algorithm Design | Thoroughly defining steps to solve a problem. These steps may
be intended to be executed linearly, in a sequence, or non-
linearly, concurrently or in event-driven programming

Control Choosing between instructions to follow next based on some

Statements condition

Data Structures or methods involved in keeping or modifying values
in a memory

Syntax A system of well-defined rules for communication, i.e., a
language

Table 2. Inclusion Criteria

Inclusion Criteria

Rationale

The game includes either an
instructional manual, instructional
video, or in-depth description of
gameplay. Further game instructions
were in English.

The game is either marketed or
promoted by ‘the company’ /
‘designer’ as a game to promote CT
skills, as identified in Table 1 above.

It is a tabletop game, which includes
board games, card games, and other
analog games. Unplugged activities
that are not games were not included.

The game can be purchased or
acquired freely.

To conduct the analysis, it is important to
understand how the game is played. This
requires either an instructional video or
manual that was presented in English.

Many board games are argued to contain
programming concepts. Thus, this study
is only looking at games that are explicit
in their intent to teach CT.

This study is focused on how games and
game design is used to target CT sKkills so
only games were examined.

We focus on games that are readily
available to the public for use in
classrooms or the home.

28

Table 3. CT Tabletop Games Taxonomy

Game Description Example Cohen’s
Type Kappa
Code Players create code or an algorithm by Robot 0.84
Building | placing a series of movements or code into Turtles
(N=8) an action queue to later be executed by the

player, another person, or a robot.
Code Players are given a code or an algorithm to Coding 0.78
Executi | be executed. Movement or progress in the Farmers
ng game is dependent on the correct execution
(N=6) of the algorithm. Players do not create code

or an algorithm in these games.
Puzzle Players are presented with a puzzle that can | Rover 1.00
Games | be solved by identifying or matching a Control
(N=2) pattern.
Combin | A combination of two game types Potato NA
ation Pirates
(N=8)

Table 4: CT Learning Claims

CT Area Example Claim

Debugging “Students learn experiential learning, debugging, limited syntax,
order of operations...” --(Robot Turtles)

Abstraction “Teaches simple concepts like loops, branches, functions,
conditionals and advance concepts like Inheritance, Parallelism,
List, Stack, Queue and Algorithm writing.” - (CoderBunnyz)

Algorithm “Playing Code Master won’t just teach you principles behind

Design programming, you’ll also build planning, sequential reasoning
and problem-solving skills.” - (Code Master)

Control “It teaches the child basic commands of a programming language,

Statements such as ‘if, ‘else’, ‘switch’, and introduces variable X’ concept.” -
(C-jump)

Data “It ... exposes kids to fundamental programming concepts like
control structures, data structures, Boolean logic and
operators, and assignment and mathematical operations.” -
(Code Monkey Island)

Syntax “Introduces the basics of java and programming concepts.” -
(Coding Farmers)

Note: Keywords are in bold.

29

Table 5: Code Building games

Game Year | Age Theme Narrative | Learning Claims
Complexit
y

Robot 2013 | 4+ Animals/ | Complex Debugging,

Turtles Robots abstraction, algorithm
design, data, syntax

Coder 2016 | 4+ Animals Simple Debugging,

Bunnyz abstraction, algorithm
design, control
statements, data

LittleCodr | 2017 | 4+ Robots Simple Abstraction, algorithm
design

Future 2018 | 4+ Robots Simple Algorithm design

Coders

Robot

Races

Code & Go | 2016 | 4+ Animals/ | Simple Algorithm design

Robot Robots

Mojobot 2019 | 4+ Robots Complex Abstraction, algorithm
design, control
statements

Cody Roby | 2014 | 4+ Robots Simple Algorithm design,
control statements

Bits & 2014 | All Space Simple Debugging,

Bytes Card abstraction, algorithm

Game design, control
statements

Table 6. The LM-GM analysis of Robot Turtles

Game Learning Implementation Usage

Mechanic | Mechanic

Action Plan Adding cards to the | Players add cards to action

Queue action queue queue based on a plan that

they wish to enact.

Grid/ Experimentation | Open-ended board The grid constrains the

Capture with a grid and a potential movement and

jewel placed on the | provides a space for
grid as the objective. | planning. While the jewel
gives the learner a target.

Function | Identify patterns | Players are By encouraging the use of

Card encouraged to use less cards via the function

fewer cards via the card mechanic, players are
function card. encouraged to identify

30

patterns that can be
abstracted.
Turtle Observation/ Turtle master enacts | Because the turtle master
Master Analyze the code and debug | moves the turtle, the player
card. can observe and analyze
their code.
Table 7: Executing Code Games
Game Year Age | Theme | Narrative | Learning Claims
Complexity
Coding 2015 7+ | Farming | Simple Control statements,
Farmers data, syntax
Code Monkey | 2014 10+ | Animals | Simple Control statements,
Island data
C-Jump 2005 11+ | Sports Simple Control statements,
data, syntax
Cosmic 2019 6+ | Space Simple Algorithm design,
Coding Game control statements,
syntax
Coding is 2016 10+ | None None Syntax
Good
Astro Coders | 2018 10+ | Space Simple Control statements,
data, syntax

Table 8. The LM-GM analysis of Coding Farmers

Game Learning Implementation | Usage
Mechanic Mechanic
Selectinga | Generalization/ | Placing cards to | Players must select between
card to Discrimination | move a tractor three cards on each turn to
execute determine which card will
give them the best
opportunity to win.
Reading the | Observation Code to be Code is presented in both
code on the | and repetition | executed is on English and Java script, giving
cards cards. players opportunity to
observe both forms multiple
times.
Question & | Identify The code to be Executing the code is how
Answers executed players determine which card
represents a is best and how far they can
question to be move on the board.
answered.

31

Competition

Competition /
Feedback

Players attempt
to reach the barn
first.

Players race to the end giving
them motivation to pick the
best card. Players also check
that other players are
executing code correctly.

Table 9: Puzzle Games

Game Year Age Theme | Narrative Learning Claims
Complexity
Rover 2017 8+ Robot Simple Algorithm design, control
Control statements
Robot 2017 8+ Robot Simple Data
Repair
Table 10. The LM-GM analysis of Rover Control
Game Learning Implementation Usage
Mechanic Mechanic
Puzzles Hypothesis/ Players make a Players make hypotheses
Repetition plan using game about how to solve the
pieces. puzzle, and then test their
hypotheses via simulation.
Non-linear Modelling/ Players enact their | While simulating a
paths Analyze plan by simulating | potential solution, players
a path. must also analyze why it
did or did not work.
Collaboration | Demonstration | Players work As players simulate
together to solve potential solutions, they
the puzzle. model paths and provide
examples for their peers.
Table 11: Combination Games
Game Yea | Combo | Age | Theme | Narrative | Learning Claims
r Type Complexit
y
Code 201 |C+P 8+ Space | Simple Debugging,
Master 5 algorithm design,
control statements
On the 201 |C+P 8+ Robots | Simple Abstraction,
Brink 7 algorithm design

32

Game Yea | Combo | Age | Theme | Narrative | Learning Claims
r Type Complexit
y
Hacker 201 |C+P 10+ | Hacker | Complex Algorithm design
8

Turing 201 |C+P 8+ Space | Complex Data

Tumble 8

Race 201 |C+E NA | None None Algorithm design,

Condition 1 control statements,
data

Potato 201 |C+E 10+ | Pirates | Complex Debugging,

Pirates 8 abstraction,
algorithm design,
control statements,
data

CoderMind | 201 |C+E 4+ Robots | None Abstraction,

vA 8 algorithm design,
control statements

RobotWars | 201 |C+E 7+ Robots | Simple Abstraction, control

7 statements, syntax

*C= Code Building, E=Executing Code, P=Puzzle

Figures

wehile { dsdreemyPosition) }
myPesition = myPasition + 1

Loops

myPosition = myPosition - 22

33

I

id
i}
z
=
]
w
@
=
T
i
i3

34

Figure 1: Robot Turtle Grid with Four Robot Turtles in the corners and Four
Destination Gems in the Center

Figure 2: Coding Farms Code Cards

Figure 3: Coding Farmers Board

Figure 4: Rover Control Challenge book

Figure 5: Special Nodes in Rover Control that target Conditional Statements
Figure 6: stacking up action cards in Potato Pirates

35

