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A Novel Framework for the Analysis and Design of
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Abstract—In federated learning, heterogeneity in the clients’
local datasets and computation speeds results in large variations
in the number of local updates performed by each client in each
communication round. Naive weighted aggregation of such models
causes objective inconsistency, that is, the global model converges
to a stationary point of a mismatched objective function which can
be arbitrarily different from the true objective. This paper provides
a general framework to analyze the convergence of federated op-
timization algorithms with heterogeneous local training progress
at clients. The analyses are conducted for both smooth non-convex
and strongly convex settings, and can also be extended to partial
client participation case. Additionally, it subsumes previously pro-
posed methods such as FedAvg and FedProx, and provides the first
principled understanding of the solution bias and the convergence
slowdown due to objective inconsistency. Using insights from this
analysis, we propose FedNova, a normalized averaging method
that eliminates objective inconsistency while preserving fast error
convergence.

Index Terms—Federated learning, distributed optimization.

I. INTRODUCTION

F EDERATED learning [2]–[4] is an emerging sub-area of
distributed optimization where both data collection and

model training is pushed to a large number of edge clients that
have limited communication and computation capabilities. Un-
like traditional distributed optimization [5], [6] where consensus
(either through a central server or peer-to-peer communication)
is performed after every local gradient computation, in federated
learning, the subset of clients selected in each communication
round perform multiple local updates before these models are
aggregated in order to update a global model.

Heterogeneity in the Number of Local Updates in Federated
Learning: The clients participating in federated learning are
typically highly heterogeneous, both in the size of their local
datasets as well as their computation speeds. The original paper
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Fig. 1. Model updates in the parameter space. Green squares and blue triangles
denote the minima of global and local objectives, respectively.

on federated learning [2] proposed that each client performs
E epochs (traversals of their local dataset) of local-update
stochastic gradient descent (SGD) with a mini-batch size B.
Thus, if a client has ni local data samples, the number of local
SGD iterations is τi = �Eni/B�, which can vary widely across
clients. The heterogeneity in the number of local SGD iterations
is exacerbated by relative variations in the clients’ computing
speeds. When clients are required to upload their local updates
after a given wall-clock time interval to mitigate the straggler
effects, faster clients will perform more local updates than slower
clients. The number of local updates made by a client can also
vary across communication rounds due to unpredictable strag-
gling or slowdown caused by background processes, outages,
memory limitations etc.

Heterogeneity in Local Updates Causes Objective Incon-
sistency: Most recent works that analyze the convergence of
federated optimization algorithms [7]–[19] assume that number
of local updates is the same across all clients (that is, τi = τ
for all clients i). These works show that, when the learning
rate is properly tuned, periodic consensus between the locally
trained client models attains a stationary point of the global
objective function F (x) =

∑m
i=1 niFi(x)/n, which is a sum

of local objectives weighted by the dataset size ni. However,
none of these prior works provides insight into the convergence
of local-update or federated optimization algorithms in the prac-
tical setting when the number of local updates τi varies across
clients 1, . . . ,m. In fact, as we show in Section III, standard
averaging of client models after heterogeneous local updates
results in convergence to a stationary point – not of the original
objective function F (x), but of an inconsistent objective F̃ (x),
which can be arbitrarily different fromF (x) depending upon the
relative values of τi and the similarity among local objectives.
We refer to this problem as objective inconsistency. To gain
intuition into this phenomenon, observe in Fig. 1 that if client
1 performs more local updates, then the updated global model
x(t+1,0) strays towards the local minimum x∗

1, away from the
true global minimum x∗.
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The Need for a General Analysis Framework: A naive ap-
proach to overcome heterogeneity is to fix a target number
of local updates τ that each client must finish within a com-
munication round and keep fast nodes idle while the slow
clients finish their updates. This method will ensure objective
consistency (that is, the surrogate objective F̃ (x) equals to the
true objective F (x)). Nonetheless, waiting for the slowest one
can significantly increase the total training time [20]. More
sophisticated approaches such as FEDPROX [21], VRLSGD
[16] and SCAFFOLD [15], designed to handle non-IID local
datasets, can be used to reduce (not eliminate) objective in-
consistency to some extent, but these methods either result in
slower convergence or require additional communication and
memory. So far, there is no rigorous understanding of the objec-
tive inconsistency and the speed of convergence for this chal-
lenging setting of federated learning with heterogeneous local
updates.

Other Sources of Heterogeneous local Progress: We note
that the root cause of the objective inconsistency is the im-
balanced local training progress at clients. When clients use
different local learning rates or different local solvers, there
will also be a similar effects to taking different local steps.
Therefore, in this paper, instead of just focusing on different local
steps, we study a more general problem: how heterogeneous
local progress influences the convergence of federated learning
algorithms?

Main Contributions: The main contributions of this paper are
listed below.
� We propose a general theoretical framework that subsumes

a suite of federated optimization algorithms (such as FE-
DAVG and FEDPROX) and helps to analyze the effects of
heterogeneous local training progress on their error con-
vergence. The framework allows heterogeneous number
of local updates, non-IID local datasets as well as different
local solvers such as GD, SGD, SGD with proximal gradi-
ents, gradient tracking, adaptive learning rates, momentum,
etc.

� Based on the general framework, we are able to find
out the analytical expression of the surrogate objective
function F̃ (x) and show that previous federated opti-
mization algorithms converge to the stationary points of
F̃ (x) rather thanF (x). There is an objective inconsistency
problem.

� In order to eliminate the inconsistency problem, we pro-
pose FEDNOVA, a method that correctly normalizes local
model updates when averaging. The main idea of FED-
NOVA is that instead of averaging the cumulative local
model changes, the aggregator averages the normalized
local gradients according to the local training progress.
FEDNOVA ensures objective consistency while preserving
fast error convergence and outperforms existing methods as
shown in Section VII. By enabling aggregation of models
with heterogeneous local progress, FEDNOVA gives the
bonus benefit of overcoming the problem of stragglers,
or unpredictably slow nodes by allowing fast clients to
perform more local updates than slow clients within each
communication round.

To the best of our knowledge, this work provides the first
fundamental understanding of the bias in the solution (caused
by objective inconsistency) and how the convergence rate is
influenced by heterogeneity in clients’ local progress.

II. SYSTEM MODEL AND PRIOR WORK

The Federated Heterogeneous Optimization Setting: In fed-
erated learning, a total of m clients aim to jointly solve the
following optimization problem:

min
x∈Rd

[
F (x) :=

m∑
i=1

piFi(x)

]
(1)

where pi = ni/n denotes the relative sample size, and Fi(x) =
1
ni

∑
ξ∈Di

fi(x; ξ) is the local objective function at the i-th
client. Here, fi is the loss function (possibly non-convex) defined
by the learning model and ξ represents a data sample from
local dataset Di. In the t-th communication round, each client
independently runs τi iterations of local solver (e.g., SGD)
starting from the current global model x(t,0) to optimize its own
local objective.

In our theoretical framework, we treat τi as an arbitrary
scalar which can also vary across rounds. In practice, if clients
run for the same local epochs E, then τi = �Eni/B�, where
B is the mini-batch size. Alternately, if each communication
round has a fixed length in terms of wall-clock time, then τi
represents the local iterations completed by client i within the
time window and may change across clients (depending on their
computation speeds and availability) and across communication
rounds.

The FedAvg Baseline Algorithm: Federated Averaging (FE-
DAVG) [2] is the first and most common algorithm used to
aggregate these locally trained models at the central server at
the end of each communication round. The shared global model
x(t,0) at round t is updated as follows:

x(t+1,0) − x(t,0) =

m∑
i=1

piΔ
(t)
i (2)

= −
m∑
i=1

pi · η
τi−1∑
k=0

gi(x
(t,k)
i |ξ(t,k)i ) (3)

wherex(t,k)
i denotes client i’s model after thek-th local update in

the t-th communication round, x(t,0)
i = x(t,0) is client i’s initial

model at the t-th round, and Δ
(t)
i = x

(t,τi)
i − x

(t,0)
i denotes

the cumulative local progress made by client i. Also, η is the
client learning rate and gi(x

(t,k)
i |ξ(t,k)i ) represents the stochastic

gradient over a mini-batch ξ
(t,k)
i ⊂ Di of B samples. For the

ease of writing, we will use gi(x
(t,k)
i ) to represent the stochastic

gradients in the following texts. When the number of clientsm is
large, then the central server may only randomly select a subset
of clients to perform computation at each round.

Convergence Analysis of FedAvg: The papers [7]–[9] first
analyze FEDAVG by assuming the local objectives are identical
and show that FEDAVG is guaranteed to converge to a station-
ary point of F (x). This analysis was further expanded to the
non-IID data partition and client sampling cases by [10]–[13].
However, in all these works, they assume that the number of
local steps and the client optimizer are the same across all clients.
Besides, asynchronous federated optimization algorithms pro-
posed in [8], [22] take a different approach of allowing clients
make updates to stale versions of the global model, and their
analyses are limited to IID local datasets and convex local
functions.

FedProx: Improving FedAvg by Adding a Proximal Term: To
alleviate inconsistency due to non-IID data and heterogeneous
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local updates, [21] proposes adding a proximal term μ
2 ‖x−

x(t,0)‖2 to each local objective, where μ ≥ 0 is a tunable pa-
rameter. This proximal term pulls each local model backward
closer to the global model x(t,0). Although [21] empirically
shows that FEDPROX improves FEDAVG, its convergence anal-
ysis is limited by assumptions that are stronger than previ-
ous FEDAVG analysis and only works for sufficiently large μ.
Since FEDPROX is a special case of our general framework,
our convergence analysis provides sharp insights into the effect
of μ. We show that a larger μ mitigates (but does not elim-
inate) objective inconsistency, albeit at an expense of slower
convergence. Our proposed FEDNOVA method can improve
FEDPROX by guaranteeing consistency without slowing down
convergence.

Improving FedAvg via Momentum and Cross-Client Variance
Reduction: The performance of FEDAVG has been improved in
recent literature by applying momentum on the server side [17],
[23], [24], or using cross-client variance reduction such as
VRLSGD and SCAFFOLD [15], [16]. Again, these works do
not consider heterogeneous local progress. Our proposed nor-
malized averaging method FEDNOVA is orthogonal to and can be
easily combined with these acceleration or variance-reduction
techniques. Moreover, FEDNOVA is also compatible with and
complementary to gradient compression/quantization [25]–[31]
and fair aggregation techniques [32], [33].

Connections With Classic Distributed Optimization Litera-
ture: While this paper studies the bias induced by imbalanced
local training progress at clients, there are other kinds of bias
in SGD convergence discussed in distributed optimization lit-
erature. For example, stochastic gradients are biased if the
mini-batch is not chosen uniformly at random [34]; consensus
optimization algorithms need to use the push-sum protocol to
eliminate the bias associated with the underlying directed net-
work [35], [36]. The bias introduced in our paper is orthogonal
to these previous works, as they are caused by different mecha-
nisms. All the above mentioned bias can appear simultaneously
in certain algorithms. Moreover, the objective inconsistency
problem is not limited to federated learning algorithms. Classic
distributed or decentralized optimization algorithms can also
have the inconsistency problem when they allow workers/clients
to use different learning rates or perform heterogeneous local
updates before synchronization.

III. A CASE STUDY TO DEMONSTRATE THE OBJECTIVE

INCONSISTENCY PROBLEM

In this section, we use a simple quadratic model to illustrate
the convergence problem. Suppose that the local objective func-
tions are Fi(x) =

1
2‖x− ei‖2, where ei ∈ Rd is an arbitrary

vector and it is the minimum of the local objective. Consider
that the global objective function is defined as

F (x) =
1

m

m∑
i=1

Fi(x) =
1

2m

m∑
i=1

‖x− ei‖2 (4)

which is minimized by x∗ = 1
m

∑m
i=1 ei. Below, we show

that the convergence point of FEDAVG can be arbitrarily away
from x∗.

Lemma 1 (Objective Inconsistency in FedAvg): For the ob-
jective function in (4), if client i performs τi local steps
per round, then FEDAVG (with sufficiently small learning rate
η, deterministic gradients and full client participation) will

Fig. 2. Simulations comparing the FEDAVG, FEDPROX (μ = 1), VRLSGD and
our proposed FEDNOVA algorithms for 30 clients with the quadratic objectives
defined in (4), where ei ∼ N (0, 0.01I), i ∈ [1, 30]. Clients perform GD with
η = 0.05, which is decayed by a factor of 5 at rounds 600 and 900. (a): Clients
perform the same number of local steps τi = 30 – FEDNOVA is equivalent to
FEDAVG in this case; (b): local steps are IID, and time-varying Gaussians with
mean 30, i.e., τi(t) ∈ [1, 96]. FEDNOVA significantly outperforms others in the
heterogeneous τi setting.

converge to

x̃∗
FEDAVG = lim

T→∞
x(T,0) =

∑m
i=1 τiei∑m
i=1 τi

. (5)

The proof (of a more general version of Lemma 1) is deferred
to Section VIII-A. While FEDAVG aims at optimizing F (x),
it actually converges to the optimum of a surrogate objective
F̃ (x). As illustrated in Fig. 2, there can be an arbitrarily large
gap between x̃∗

FEDAVG and x∗ depending on the relative values
of τi and Fi(x). This non-vanishing gap also occurs when
the local steps τi are IID random variables across clients and
communication rounds (see the right panel in Fig. 2).

Convergence Problem in Other Federated Algorithms: We
can generalize Lemma 1 to the case of FEDPROX to demonstrate
its convergence gap. From the simulations shown in Fig. 2,
observe that FEDPROX can slightly improve on the optimal-
ity gap of FEDAVG, but it converges slower. Besides, previ-
ous cross-client variance reduction methods such as variance-
reduced local SGD (VRLSGD) [16] and SCAFFOLD [15] are
only designed for homogeneous local steps case. In the con-
sidered heterogeneous setting, if we replace the same local
steps τ in VRLSGD by different τi’s, then we observe that it
has drastically different convergence under different settings
and even diverge when clients perform random local steps
(see the right panel in Fig. 2). These observations empha-
size the critical need for a deeper understanding of objective
inconsistency and new federated heterogeneous optimization
algorithms.

IV. NEW THEORETICAL FRAMEWORK FOR HETEROGENEOUS

FEDERATED OPTIMIZATION

We now present a general theoretical framework that sub-
sumes a suite of federated optimization algorithms and helps
analyze the effect of objective inconsistency on their error con-
vergence. Although the results are presented for the full client
participation setting, it is fairly easy to extend them to the case
where a subset of clients are randomly sampled in each round.
More discussions on client sampling case will be presented in
Section V-B.
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A. A Generalized Update Rule for Heterogeneous Federated
Optimization

Recall from (3) that the update rule of federated optimization
algorithms can be written as x(t+1,0) − x(t,0) =

∑m
i=1 piΔ

(t)
i ,

where Δ
(t)
i := x(t,τi) − x(t,0) denote the local parameter

changes of client i at round t and pi = ni/n, the fraction of
data at client i. We re-write this update rule in a more general
form as follows:

x(t+1,0) − x(t,0) = −τeff

m∑
i=1

wi · ηd(t)
i (6)

which optimizes F̃ (x) =
∑m

i=1 wiFi(x). The three key ele-

ments τeff, wi andd(t)
i of this update rule take different forms for

different algorithms. Below, we provide detailed descriptions of
these key elements.

1) Locally averaged gradient: d
(t)
i : Without loss

of generality, we can rewrite the accumulated
local changes as Δ

(t)
i = −ηG

(t)
i ai, where G

(t)
i =

[gi(x
(t,0)
i ), gi(x

(t,1)
i ), . . . , gi(x

(t,τi−1)
i )] ∈ Rd×τi stacks

all stochastic gradients in the t-th round, and ai ∈ Rτi

is a non-negative vector and defines how stochastic
gradients are locally accumulated. Then, by normalizing
the gradient weights ai, the locally averaged gradient
is defined as d

(t)
i = G

(t)
i ai/‖ai‖1. The normalizing

factor ‖ai‖1 in the denominator is the �1 norm of the
vector ai. By setting different ai, (6) works for most
common client optimizers such as SGD with proximal
updates, local momentum, and variable learning rate,
and more generally, any solver whose accumulated
gradient Δ(t)

i = −ηG
(t)
i ai, a linear combination of local

gradients.
Specifically, if the client optimizer is vanilla SGD (i.e.,
the case of FEDAVG), then ai = [1, 1, . . . , 1] ∈ Rτi and
‖ai‖1 = τi. As a result, the normalized gradient is just a
simple average of all stochastic gradients within current
round: d(t)

i = G
(t)
i ai/τi =

∑τi−1
k=0 gi(x

(t,k)
i )/τi. Later in

this section, we will present more specific examples on
how to set ai in other algorithms.

2) Aggregation weights: wi: Each client’s locally averaged
gradient di is multiplied with weight wi when com-
puting the aggregated gradient

∑m
i=1 widi. By defini-

tion, these weights satisfy
∑m

i=1 wi = 1. Observe that
these weights determine the surrogate objective F̃ (x) =∑m

i=1 wiFi(x), which is optimized by the general algo-
rithm in (6) instead of the true global objective F (x) =∑m

i=1 piFi(x) – we will prove this formally in Theorem
1.

3) Effective number of steps: τeff: Since client i makes τi
local updates, the average number of local SGD steps
per communication round is τ̄ =

∑m
i=1 τi/m. However,

the server can scale up or scale down the effect of the
aggregated updates by setting the parameter τeff larger
or smaller than τ̄ (analogous to choosing a global learn-
ing rate [17], [24]). We refer to the ratio τ̄ /τeff as the
slowdown, and it features prominently in the convergence
analysis presented in Section V.

Remark 1 (General Local Update Rule): It is worth noting
that the length and exact value of accumulation vector ai are
determined by the number of local steps. We useai(k) to denote

Fig. 3. Comparison between the novel framework and FEDAVG in the model
parameter space. Solid black arrows denote local updates at clients. Green and
blue dots denote the global updates made by the novel generalized update rule
and FEDAVG respectively. While wi controls the direction of the solid green
arrow, effective steps τeff determines how far the global model moves along
with this direction. FEDAVG implicitly assigns too higher weights for clients
with more local steps, resulting in a biased global direction.

the accumulation vector after performingk local steps on client i.
Unless otherwise stated, we setai = ai(τi). With these notation,
we can write down the local update rule as x

(t,k)
i = x

(t,0)
i −

η
∑k−1

s=0 ai,s(k)gi(x
(t,s)
i ) for any k ≥ 0, where ai,s(k) is the

s-th element in vector ai(k) ∈ Rk.
In Fig. 3, we further illustrate how the above key elements

influence the algorithm and compare the novel generalized up-
date rule and FEDAVG in the model parameter space. The general
rule (6) enables us to freely choose τeff and wi for a given local
solver ai, which helps design fast and consistent algorithms
such as FEDNOVA, the normalized averaging method proposed
in Section VI. To implement this generalized update rule, each
client can send the normalized update −ηd

(t)
i to the central

server, which is just a re-scaled version ofΔ(t)
i , the accumulated

local parameter update sent by clients in the vanilla update rule
(3). The server does not need to know the specific form of local
accumulation vector ai.

B. Previous Algorithms as Special Cases

Any previous algorithm whose accumulated local changes
Δ

(t)
i = −ηG

(t)
i ai, a linear combination of local gradients, is

subsumed by the above formulation, as shown below:

x(t+1,0) − x(t,0) =
m∑
i=1

piΔ
(t)
i

= −
m∑
i=1

pi‖ai‖1 · ηG
(t)
i ai

‖ai‖1

= −
(

m∑
i=1

pi‖ai‖1
)

︸ ︷︷ ︸
τeff: effective local steps

m∑
i=1

η

(
pi‖ai‖1∑m
i=1 pi‖ai‖1

)
︸ ︷︷ ︸

wi: weight

(
G

(t)
i ai

‖ai‖1

)
︸ ︷︷ ︸

di

.

(7)
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Unlike the more general form (6), in (7), which subsumes the
following previous methods, τeff and wi are implicitly fixed by
the choice of the local solver (i.e., the choice of ai).

1) Vanilla SGD as Local Solver (FedAvg): In FEDAVG, the
local solver is SGD such that ai = [1, 1, . . . , 1] ∈ Rτi and
‖ai‖1 = τi. As a consequence, the normalized gradient di

is a simple average over τi iterations, τeff =
∑m

i=1 piτi, and
wi = piτi/

∑m
i=1 piτi. That is, the normalized gradients with

more local steps will be implicitly assigned higher weights.
2) Proximal SGD as Local Solver (FedProx): In FEDPROX,

local SGD steps are corrected by a proximal term. It can be
shown that ai = [(1− α)τi−1, (1− α)τi−2, . . . , (1− α), 1] ∈
Rτi , where α = ημ and μ is a tunable parameter. In this case,
we have ‖ai‖1 = [1− (1− α)τi ]/α and hence,

τeff =
1

α

m∑
i=1

pi[1− (1− α)τi ], wi =
pi[1− (1− α)τi ]∑m
i=1 pi[1− (1− α)τi ]

.

(8)

When α = 0, FEDPROX is equivalent to FEDAVG. As α = ημ
increases, the wi in FEDPROX is more similar to pi, thus making
the surrogate objective F̃ (x) more consistent. However, a larger
α corresponds to smaller τeff, which slows down convergence,
as we discuss more in Section V.

3) SGD With Decayed Learning Rate as Local Solver: Sup-
pose the clients’ local learning rates are exponentially decayed,
then we have ai = [1, γi, . . . , γ

τi−1
i ] where γi ≥ 0 can vary

across clients. As a result, we have ‖ai‖1 = (1− γτi
i )/(1− γi)

and wi ∝ pi(1− γτi
i )/(1− γi). Comparing with the case of

FEDPROX (8), changing the values of γi has a similar effect as
changing (1− α).

4) Momentum SGD as Local Solver: If we use momentum
SGD where the local momentum buffers of active clients are
reset to zero at the beginning of each round [17] due to the
stateless nature of FL [3], then we have ai = [1− ρτi , 1−
ρτi−1, . . . , 1− ρ]/(1− ρ), where ρ is the momentum factor, and
‖ai‖1 = [τi − ρ(1− ρτi)/(1− ρ)]/(1− ρ).

More generally, the new formulation (7) suggests thatwi 
= pi
whenever clients have different ‖ai‖1, which may be caused by
imbalanced local updates (i.e., ai’s have different dimensions),
or various local learning rate/momentum schedules (i.e., ai’s
have different scales).

V. CONVERGENCE ANALYSIS

A. Main Results: Analysis for Smooth Non-Convex Functions

In Theorem 1 and Theorem 2 below we provide a convergence
analysis for the general update rule (6) and quantify the solu-
tion bias due to objective inconsistency. The analysis relies on
Assumptions 1 and 2 used in the standard analysis of SGD [37]
and Assumption 3 commonly used in the federated optimization
literature [3], [11], [15], [21], [24], [38], [39] to capture the
dissimilarities of local objectives.

Assumption 1 (Smoothness): Each local objective function
is Lipschitz smooth, that is, ‖∇Fi(x)−∇Fi(y)‖ ≤ L‖x−
y‖, ∀x,y ∈ Rd, ∀i ∈ {1, 2, . . . ,m}.

Assumption 2 (Unbiased Gradient and Bounded Variance):
The stochastic gradient at each client is an unbiased estimator
of the local gradient: Eξ[gi(x|ξ)] = ∇Fi(x) where ξ represents
a randomly sampled mini-batch from the local dataset Di, and
has bounded variance Eξ[‖gi(x|ξ)−∇Fi(x)‖2] ≤ σ2, ∀x ∈
Rd, ∀i ∈ {1, 2, . . . ,m}, σ2 ≥ 0.

Assumption 3 (Bounded Dissimilarity): For any sets
of weights {wi ≥ 0}mi=1,

∑m
i=1 wi = 1, there exist con-

stants β2 ≥ 1, κ2 ≥ 0 such that
∑m

i=1 wi‖∇Fi(x)‖2 ≤
β2‖∑m

i=1 wi∇Fi(x)‖2 + κ2. If local functions are identical to
each other, then we have β2 = 1, κ2 = 0.

Assumption 4 (Accumulation Vector): All elements in the
accumulation vector ai(k), in which k ∈ [1, τi], ∀i, are upper
bounded by Λ. Also, ‖ai(k)‖p ≤ ‖ai(k + 1)‖p for p = {1, 2}.

One can easily validate that Assumption 4 holds for many
common local sovlers, such as vanilla SGD, proximal SGD and
momentum SGD. In all these special cases, we have Λ = 1.
Under the above assumptions, our main theorem is stated as
follows.

Theorem 1 (Convergence to the Surrogate Objective F̃ (x)’s
Stationary Point): Under Assumptions 1 to 4, any federated
optimization algorithm that follows the update rule (6), will
converge to a stationary point of a surrogate objective F̃ (x) =∑m

i=1 wiFi(x). More specifically, if the total communication
rounds T is pre-determined and the learning rate η is small
enough η =

√
m/τT where τ = 1

m

∑m
i=1 τi, then the optimiza-

tion error mint∈[T ] E‖∇F̃ (x(t,0))‖2 will be bounded by:

O
(

τ/τeff√
mτT

)
+O

(
Aσ2

√
mτT

)
+O

(
mBσ2

τT

)
+O

(
mCκ2

τT

)
︸ ︷︷ ︸

denoted by εopt in (13)

(9)

where O swallows all constants (including L), and quantities
A,B,C are defined as follows:

A = mτeff

m∑
i=1

w2
i ‖ai‖22
‖ai‖21

, (10)

B = Λ

m∑
i=1

wi(τi − 1) ‖ai‖22 / ‖ai‖1 , (11)

C = Λ2 max
i

{τi(τi − 1)}. (12)

In Section VIII-B, we also provide another version of this the-
orem that explicitly contains the local learning rate η. Moreover,
since the surrogate objective F̃ (x) and the original objective
F (x) are just different linear combinations of the local functions,
once the algorithm converges to a stationary point of F̃ (x), one
can also obtain some guarantees in terms of F (x), as given by
Theorem 2 below.

Theorem 2 (Convergence in Terms of the True Objec-
tive F (x)): Under the same conditions as Theorem 1, the
minimal gradient norm of the true global objective function
mint∈[T ] E‖∇F (x(t,0))‖2 will be bounded by:

2
[
χ2
p‖w(β2 − 1) + 1

]
εopt︸ ︷︷ ︸

vanishing error term

+ 2χ2
p‖wκ2︸ ︷︷ ︸

non-vanishing error due to obj. inconsistency

(13)
where εopt denotes the vanishing optimization error given
by (9) and χ2

p‖w =
∑m

i=1(pi − wi)
2/wi represents the chi-

square divergence between vectors p = [p1, . . . , pm] and w =
[w1, . . . , wm].

Proof: Please refer to Appendix A-A. �
Discussion: Theorems 1 and 2 describe the convergence be-

havior of a broad class of federated heterogeneous optimization
algorithms. Observe that when p = w we have that χ2 = 0.
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Fig. 4. Illustration on how the parameter α = ημ influences the convergence
of FEDPROX. We set m = 30, pi = 1/m, τi ∼ N (20, 20). ‘Weight bias’ de-
notes the chi-square distance between p and w. ‘Slowdown’ and ‘Relative
Variance’ quantify how the first and the second terms in (9) change.

Also, when all local functions are identical to each other,
we have β2 = 1, κ2 = 0. Only in these two special cases, is
there no objective inconsistency. For most other algorithms
subsumed by the general update rule in (6), both wi and τeff
are influenced by the choice of ai. When clients have different
local progress (i.e., different ai vectors), previous algorithms
will end up with a non-zero error floor χ2κ2, which does not
vanish to 0 even with sufficiently small learning rate. In Ap-
pendix A-B, we further construct a lower bound and show that
limT→∞ mint∈[T ] ‖∇F (x(t,0))‖2 = Ω(χ2κ2), suggesting (13)
is tight.

Novel Insights Into the Convergence of FedProx and the
Effect ofμ: Recall that in FEDPROXai = [(1− α)τi−1, . . . , (1−
α), 1], where α = ημ. Accordingly, substituting the effective
steps and aggregated weight, given by (8), into (9) and (13),
we get the convergence guarantee for FEDPROX. Again, it has
objective inconsistency because wi 
= pi. As we increase α, the
weights wi come closer to pi and thus, the non-vanishing error
χ2κ2 in (13) decreases (see blue curve in Fig. 4). However
increasing α worsens the slowdown τ/τeff, which appears in
the first error term in (9) (see the red curve in Fig. 4). In the
extreme case whenα = 1, although FEDPROX achieves objective
consistency, it has a significantly slower convergence because
τeff = 1 and the first term in (9) is τ times larger than that with
FEDAVG (eq. to α = 0).

Theorem 1 also reveals that, in FEDPROX, there should exist a
best value ofα that balances all terms in (9). It can be shown that
α = O(m

1
2 /τ

1
2T

1
6 ) optimizes the error bound (9) of FEDPROX

and yields a convergence rate of O(1/
√
mτT + 1/T

2
3 ) on the

surrogate objective. This can serve as a guideline on setting α
in practice.

Linear Speedup Analysis: Another implication of Theorem
1 is that when the communication rounds T is sufficiently
large, then the convergence of the surrogate objective will be
dominated by the first two terms in (9), which is 1/

√
mτT . This

suggests that the algorithm only uses T/γ total rounds when
using γ times more clients (i.e., achieving linear speedup) to
reach the same error level.

B. Extension: Analysis for Partial Client Participation

In this subsection, we extend the general analysis to the case
where only a random subset of clients participate into training at
each round. Following previous works [11], [12], [15], [21], we
assume the sampling scheme guarantees that the update rule (7)

holds in expectation. This can be achieved by sampling with
replacement from {1, 2, . . . ,m} with probabilities {pi}, and
averaging local updates from selected clients with equal weights.
Specifically, we have

x(t+1,0) − x(t,0) =
1

q

q∑
j=1

Δ
(t)
lj

(14)

where q is the number of selected clients per round, and lj is
a random index sampled from {1, 2, . . . ,m} satisfying P (lj =
i) = pi. Recall that pi = ni/n is the relative sample size at client
i. One can directly validate that

ES

⎡⎣1
q

q∑
j=1

Δ
(t)
lj

⎤⎦ =
m∑
i=1

piΔ
(t)
i (15)

where ES represents the expectation over random indices S =
{l1, . . . , lq} at the current round. When the client sampling
scheme satisfies (15), we can obtain the following theorem.

Theorem 3: Under the same condition as in Theorem 1,
suppose at each round, the server randomly selects q clients
with replacement to perform local computation. Any federated
optimization algorithms satisfying (14) and 15 converge to a sta-
tionary point of a surrogate objective F̃ (x) =

∑m
i=1 wiFi(x).

If we set η =
√
q/τ̃T where τ̃ = ES [

∑q
j=1 τlj/q] =

∑m
i=1 piτi

is the average local update across clients, then the expected
gradient norm mint∈[T ] E‖∇F̃ (x(t,0))‖2 is bounded as follows:

O
(

τ̃ /τeff√
qτ̃T

)
+O

(
A′σ2√
qτ̃T

)
+O

(
q(Bσ2 + Cκ2)

τ̃T

)
(16)

whereA′ = τeff
∑m

i=1
w2

i ‖ai‖22
pi‖ai‖21 ,B,C are defined in (11) and (12)

and O combines all other constants (including L).
Proof: Please refer to Appendix A-C. �
Discussion: Comparing with the full client participation case,

Theorem 3 has a similar form as Theorem 1. When the number
of communication rounds T is sufficiently large, the conver-
gence rate will be dominated by the first two terms, which is
O(1/

√
qτ̃T ). This suggests that in the case of client sampling,

the algorithm can still achieve linear speedup in terms of the
number of sampled clients.

C. Extension: Analysis for Strongly Convex Functions

Another benefit of using our general theoretical analysis is
that it can be easily extended to the strongly-convex case as
a corollary. In particular, when the global objective is strongly
convex, it satisfies the Polyak-Łojasiewicz (PL) condition, stated
as follows:

‖∇F (x)‖2 ≥ 2c[F (x)− Finf] (17)

where c is a positive constant. Under the PL condition, the
convergence rate of federated optimization algorithms can be
further improved. In particular, we have the following theorem.

Theorem 4 (Convergence under PL Condition): When each
local objective function is strongly convex with constant c,
any federated optimization algorithm that follows the update
rule (6) will converge to the minimum of a surrogate objective
F̃ (x) =

∑m
i=1 wiFi(x). Specifically, if the client learning rate

is set as η(t) = 6/[cτeff(t+ γ)], where γ = L/(cν), ν > 0, then
the optimization error F̃ (x(T,0))− F̃inf will converge to 0 at the
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following rate:

O
(

L

sc2
σ2A

mTτ

)
+O

(
L2

s2c3
σ2B + κ2C

T 2τ2

)
. (18)

where s = τeff/τ and A,B,C are constants as defined in (10)
to (12). Moreover, in order to achieve the above rate, τeff should
be upper bounded by the following quantity:

τ2eff ≤
648ν2(σ2B + κ2C)

cL2[F̃ (x(0,0))− F̃inf]− 36νL2σ2
(19)

where ν > 0 is a constant.
Proof: Please refer to Appendix A-D. �
Discussion: Theorem 4 shows that under the PL condition,

the convergence rate of federated optimization algorithms is
dominated by O(1/(mTτ)), which is the same as synchronous
mini-batch SGD [37]. Similar to the non-convex results (The-
orem 1), there is an additional error caused by performing
local updates. The additional error decays to 0 at a faster rate
O(1/T 2τ2) and has limited influence on the error bound.

Moreover, observe that the error bound (18) monotonically
decreases when τeff becomes larger. However, τeff cannot be
arbitrarily large. Given a set of local steps at clients {τi}, τeff
has an upper bound as given in (19). Again, Theorem 4 not
only applies to FEDAVG but also works for other federated
optimization algorithms using proximal SGD, or momentum
SGD, as the local solver.

VI. FEDNOVA: PROPOSED FEDERATED NORMALIZED

AVERAGING ALGORITHM

Theorems 1 and 2 suggest an extremely simple solution to
overcome the problem of objective inconsistency. When we set
wi = pi in (6), then the second non-vanishing term χ2

p‖wκ2

in (13) will just become zero. This simple intuition yields the
following new algorithm:

FEDNOVA : x(t+1,0) − x(t,0) = −τ
(t)
eff

m∑
i=1

pi · ηd(t)
i (20)

where d
(t)
i =

G
(t)
i a

(t)
i

‖a(t)
i ‖1

. The proposed algorithm is named fed-

erated normalized averaging (FEDNOVA), because the normal-
ized stochastic gradients di are averaged/aggregated instead
of the local changes Δi = −ηGiai. When the local solver
is vanilla SGD, then ai = [1, 1, . . . , 1] ∈ Rτi and d

(t)
i is a

simple average over current round’s gradients. In order to
be consistent with FEDAVG whose update rule is (7), one
can simply set τ

(t)
eff =

∑m
i=1 piτ

(t)
i . Then, in this case, the

update rule of FEDNOVA is equivalent to x(t+1,0) − x(t,0) =

(
∑m

i=1 piτ
(t)
i )

∑m
i=1 piΔ

(t)
i /τ

(t)
i . Comparing to previous algo-

rithm x(t+1,0) − x(t,0) =
∑m

i=1 piΔ
(t)
i , each accumulative lo-

cal change Δi in FEDNOVA is re-scaled by (
∑m

i=1 piτ
(t)
i )/τ

(t)
i .

This simple tweak in the aggregation weights eliminates in-
consistency in the solution and gives better convergence than
previous methods.

Flexibility in Choosing Hyper-parameters and Local Solvers:
Besides vanilla SGD, the new formulation of FEDNOVA naturally
allows clients to choose various local solvers (i.e., client-side
optimizer). As discussed in Section IV-A, the local solver can
be any optimizers as long as the local model changes can be

written as a linear combination of gradients.1 Examples include
SGD with decayed local learning rate, SGD with proximal
updates, SGD with local momentum, etc. Furthermore, the value
of τeff is not necessarily to be controlled by the local solver
as previous algorithms. For example, when using SGD with
proximal updates, one can simply set τeff =

∑m
i=1 piτi instead

of its default value
∑m

i=1 pi[1− (1− α)τi ]/α. This can help
alleviate the slowdown problem discussed in Section V.

Combination With Acceleration Techniques: If clients have
additional communication bandwidth, they can use cross-client
variance reduction techniques to further accelerate the train-
ing [15], [16]. In this case, each local gradient step at the
t-round will be corrected by

∑m
i=1 pid

(t−1)
i − d

(t−1)
i . That is,

the local gradient at the k-th local step becomes gi(x
(t,k)) +∑m

i=1 pid
(t−1)
i − d

(t−1)
i . Besides, on the server side, one can

also implement server momentum or adaptive server optimiz-
ers [17], [23], [24], in which the aggregated normalized gradient
−τeff

∑m
i=1 ηpidi is used to update the server momentum buffer

instead of directly updating the server model.
Convergence Analysis: In FEDNOVA, the local solvers at

clients do not necessarily need to be the same or fixed across
rounds. In the following theorem, we obtain strong convergence
guarantee for FEDNOVA, even with arbitrarily time-varying local
updates and client optimizers.

Theorem 5 (Convergence of: FEDNOVA to a Consistent So-
lution): Suppose that each client performs arbitrary number
of local updates τi(t) using arbitrary gradient accumulation
method ai(t), t ∈ [T ] per round. Under Assumptions 1 to 3, and
local learning rate as η =

√
m/(τ̂T ), where τ̂ =

∑T−1
t=0 τ(t)/T

denotes the average local steps over all rounds at clients, then
FEDNOVA converges to a stationary point of F (x) in a rate of
O(1/

√
mτ̂T ). The detailed bound is the same as the right hand

side of (9), except that τ , A,B,C are replaced by their average
values over all rounds.

The proof of Theorem 5 can be found in Appendix A-E. Using
the same technique as Theorem 3, one can further generalize
Theorem 5 to incorporate client sampling schemes.

VII. EXPERIMENTAL RESULTS

Experimental Setup: We evaluate all algorithms on two setups
with non-IID data partitioning: (1) Logistic Regression on a
Synthetic Federated Dataset: The dataset Synthetic(1,1) is
originally constructed in [21]. The local dataset sizes ni, i ∈
[1, 30] follows a power law. (2) DNN trained on a Non-IID
partitioned CIFAR-10 dataset: We train a VGG-11 [40] network
on the CIFAR-10 dataset [41], which is partitioned across 16
clients using a Dirichlet distribution Dir16(0.1), as done in [42].
The original CIFAR-10 test set (without partitioning) is used
to evaluate the generalization performance of the trained global
model. The local learning rate η is decayed by a constant factor
after finishing 50% and 75% of the communication rounds.
The initial value of η is tuned separately for FEDAVG with
different local solvers. When using the same solver, FEDNOVA
uses the same η as FEDAVG to guarantee a fair comparison. On
CIFAR-10, we run each experiment with 3 random seeds and
report the average and standard deviation. Our code is available
at here: https://github.com/JYWa/FedNova.

1Adaptive optimization methods (such as Adam, AdaGrad) do not meet this
criteria.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 05,2022 at 01:25:56 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/JYWa/FedNova


WANG et al.: A NOVEL FRAMEWORK FOR THE ANALYSIS AND DESIGN OF HETEROGENEOUS FEDERATED LEARNING 5241

Fig. 5. Results on the synthetic dataset constructed in [21] under three different settings. Left: All clients perform Ei = 5 local epochs; Middle: Only C = 0.3
fraction of clients are randomly selected per round to perform Ei = 5 local epochs; Right: Only C = 0.3 fraction of clients are randomly selected per round to
perform random and time-varying local epochs Ei(t) ∼ U(1, 5).

TABLE I
RESULTS COMPARING FEDAVG AND FEDNOVA WITH VARIOUS CLIENT

OPTIMIZERS (I.E., LOCAL SOLVERS) TRAINED ON NON-IID CIFAR-10 DATASET.
FEDPROX AND SCAFFOLD CORRESPOND TO FEDAVG WITH PROXIMAL SGD
UPDATES AND CROSS-CLIENT VARIANCE-REDUCTION (VR), RESPECTIVELY

Synthetic Dataset Simulations: In Fig. 5, we observe that by
simply changing wi to pi, FEDNOVA not only converges signifi-
cantly faster than FEDAVG but also achieves consistently the best
performance under three different settings. Note that the only
difference between FEDNOVA and FEDAVG is the aggregated
weights when averaging the normalized gradients.

Non-IID CIFAR-10 Experiments: In Table I we compare the
performance of FEDNOVA and FEDAVG on non-IID CIFAR-
10 with various client optimizers run for 100 communication
rounds. When the client optimizer is SGD or SGD with momen-
tum, simply changing the weights yields a 6–9% improvement
on the test accuracy; When the client optimizer is proximal SGD,
FEDAVG is equivalent to FEDPROX. By setting τeff =

∑m
i=1 piτi

and correcting the weights wi = pi while keeping ai same as
FEDPROX, FedNova-Prox achieves about 10% higher test
accuracy than FEDPROX. It turns out that FEDNOVA consis-
tently converges faster than FEDAVG. When using variance-
reduction methods such as SCAFFOLD (that requires doubled
communication), FEDNOVA-based method preserves the same
test accuracy. Furthermore, combining local momentum and
variance-reduction can be easily achieved in FEDNOVA. It yields
the highest test accuracy among all other local solvers. This
kind of combination is non-trivial and has not appeared yet in
the literature.

Effectiveness of Local Momentum: From Table I, it is worth
noting that using momentum SGD as the local solver is an
effective way to improve the performance. It generally achieves

3–7% higher test accuracy than vanilla SGD. This local mo-
mentum scheme can be further combined with server mo-
mentum [17], [23], [24]. When Ei(t) ∼ U(2, 5), the hybrid
momentum scheme achieves test accuracy 81.15 ± 0.38% As
a reference, using server momentum alone achieves 77.49 ±
0.25%.

VIII. DEFERRED PROOFS OF MAIN THEOREMS

A. Proof of Lemma 1: Quadratic Case Analysis

Here, we provide a general proof for arbitrary quadratic
functions. Since FEDAVG can be treated as a special case of
FEDPROX, we analyze the convergence of FEDPROX instead.
Consider a setting where each local objective function is strongly
convex and defined as follows:

Fi(x) =
1

2
x�Hix− e�i x+

1

2
e�i H

−1
i ei ≥ 0 (21)

where Hi ∈ Rd×d is an invertible matrix and ei ∈ Rd is an
arbitrary vector. It is easy to show that the optimum of the i-th
local function is x∗

i = H−1
i ei. Without loss of generality, we

assume the global objective function to be a weighted average
across all local functions, that is

F (x) =
m∑
i=1

piFi(x) =
1

2
x�Hx− e�x+

1

2

m∑
i=1

pie
�
i H

−1
i ei

where H =
∑m

i=1 piHi and e =
∑m

i=1 piei. As a result, the

global minimum is x∗ = H
−1
e. Now, let us study whether

previous federated optimization algorithms can converge to this
global minimum.

The local update rule of FEDPROX for the i-th device can be
written as follows:

x
(t,k+1)
i = x

(t,k)
i − η

[
Hix

(t,k)
i − ei + μ(x

(t,k)
i − x(t,0))

]
= (I − ημI − ηHi)x

(t,k)
i + ηei + ημx(t,0) (22)

where x
(t,k)
i denotes the local model parameters at the k-th

local iteration after t communication rounds, η denotes the local
learning rate and μ is a tunable hyper-parameter in FEDPROX.
When μ = 0, the algorithm will reduce to FEDAVG. We omit
the device index in x(t,0), since it is synchronized and the same
across all devices.

After minor rearranging of (22), we obtain

x
(t,k+1)
i − c

(t)
i = (I − ημI − ηHi)

(
x
(t,k)
i − c

(t)
i

)
. (23)
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where c(t)i = (Hi + μI)−1(ei + μx(t,0)). Then, after perform-
ing τi steps of local updates, the local model becomes

x
(t,τi)
i = (I − ημI − ηHi)

τi
(
x(t,0) − c

(t)
i

)
+ c

(t)
i . (24)

Subtracting x(t,0) on both sides and rearranging, it follows that

x
(t,τi)
i − x(t,0) = Ki

(
ei −Hix

(t,0)
)

(25)

where Ki = [I − (I − ημI − ηHi)
τi ](Hi + μI)−1.

In FEDPROX and FEDAVG, the server averages all local models
according to the sample size

x(t+1,0) − x(t,0) =

m∑
i=1

piKi

(
ei −Hix

(t,0)
)
. (26)

Accordingly, we get the following update rule for the central
model:

x(t+1,0) =

[
I −

m∑
i=1

piKiHi

]
x(t,0) +

m∑
i=1

piKiei. (27)

This is equivalent to

x(t+1,0) − x̃ =

[
I −

m∑
i=1

piKiHi

] [
x(t,0) − x̃

]
. (28)

where

x̃ =

(
m∑
i=1

piKiHi

)−1( m∑
i=1

piKiei

)
. (29)

After T communication rounds, one obtains

x(T,0) =

[
I −

m∑
i=1

piKiHi

]T [
x(t,0) − x̃

]
+ x̃. (30)

Accordingly, when ‖I −∑m
i=1 piKiHi‖2 < 1, the iterates

will converge to

lim
T→∞

x(T,0) = x̃ =

(
m∑
i=1

piKiHi

)−1( m∑
i=1

piKiei

)
.

(31)

Now let us focus on a concrete example where p1 = p2 =
· · · = pm = 1/m,H1 = H2 = · · · = Hm = I and μ = 0. In
this case, Ki = 1− (1− η)τi . As a result, we have

lim
T→∞

x(T,0) =

∑m
i=1 [1− (1− η)τi ] ei∑m
i=1 [1− (1− η)τi ]

. (32)

Furthermore, when the learning rate is sufficiently small (e.g.,
can be achieved by gradually decaying the learning rate), ac-
cording to L’Hôpital’s Rule, we obtain

lim
η→0

lim
T→∞

x(T,0) =

∑m
i=1 τiei∑m
i=1 τi

. (33)

Here, we complete the proof of Lemma 1.

B. Proof of Theorem 1: Convergence of Surrogate Objective

For the ease of writing, let us define the following auxiliary
variables:

h
(t)
i =

1

ai

τi−1∑
k=0

ai,k∇Fi(x
(t,k)
i ) (34)

where ai,k ≥ 0 is an arbitrary scalar, ai = [ai,0, . . . , ai,τi−1]
�,

and ai = ‖ai‖1. One can show that E[d(t)
i − h

(t)
i ] = 0. In ad-

dition, since clients are independent of each other, we have
E〈d(t)

i − h
(t)
i , d

(t)
j − h

(t)
j 〉 = 0, ∀i 
= j.

According to the update rule and Lipschitz-smooth assump-
tion, we have

E[F̃ (x(t+1,0))]− F̃ (x(t,0)) ≤ τ2effη
2L

2
E

⎡⎣∥∥∥∥∥
m∑
i=1

wid
(t)
i

∥∥∥∥∥
2
⎤⎦

︸ ︷︷ ︸
T1

− τeffη E

[〈
∇F̃ (x(t,0)),

m∑
i=1

wid
(t)
i

〉]
︸ ︷︷ ︸

T2

(35)

where the expectation is taken over mini-batches ξ
(t,k)
i , ∀i ∈

{1, 2, . . . ,m}, k ∈ {0, 1, . . . , τi − 1}. Before diving into the
detailed bounds forT1 andT2, we first introduce a useful lemma.

Lemma 2: Suppose {Ak}Tk=1 is a sequence of random matri-
ces and E[Ak|Ak−1, Ak−2, . . . , A1] = 0, ∀k. Then,

E

⎡⎣∥∥∥∥∥
T∑

k=1

Ak

∥∥∥∥∥
2

F

⎤⎦ =

T∑
k=1

E

[
‖Ak‖2F

]
. (36)

Proof:

E

⎡⎣∥∥∥∥∥
T∑

k=1

Ak

∥∥∥∥∥
2

F

⎤⎦ =

T∑
k=1

E

[
‖Ak‖2F

]
+

T∑
i=1

T∑
j=1,j 
=i

× E
[
Tr{A�

i Aj}
]

=

T∑
k=1

E

[
‖Ak‖2F

]
+

T∑
i=1

T∑
j=1,j 
=i

× Tr{E [A�
i Aj

]}
Assume i < j. Then, using the law of total expectation,

E
[
A�

i Aj

]
= E

[
A�

i E [Aj |Ai, . . . , A1]
]
= 0. (37)

�
1) Bounding the First Term in (35): For the First term on the

RHS of (35), we have

T1 ≤ 2E

⎡⎣∥∥∥∥∥
m∑
i=1

wi

(
d
(t)
i − h

(t)
i

)∥∥∥∥∥
2
⎤⎦+ 2E

⎡⎣∥∥∥∥∥
m∑
i=1

wih
(t)
i

∥∥∥∥∥
2
⎤⎦

(38)

= 2

m∑
i=1

w2
iE

[∥∥∥d(t)
i − h

(t)
i

∥∥∥2]+ 2E

⎡⎣∥∥∥∥∥
m∑
i=1

wih
(t)
i

∥∥∥∥∥
2
⎤⎦

(39)

where (38) follows from the fact: ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2
and (39) uses the special property of d

(t)
i ,h

(t)
i , that is,

E〈d(t)
i − h

(t)
i , d

(t)
j − h

(t)
j 〉 = 0, ∀i 
= j. Then, let us expand the

expression of d(t)
i and h

(t)
i , to obtain that

T1 ≤
m∑
i=1

2w2
i

a2i

τi−1∑
k=0

[ai,k]
2
E

[∥∥∥gi(x(t,k)
i )−∇Fi(x

(t,k)
i )

∥∥∥2]
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+ 2E

⎡⎣∥∥∥∥∥
m∑
i=1

wih
(t)
i

∥∥∥∥∥
2
⎤⎦ (40)

≤ 2σ2
m∑
i=1

w2
i ‖ai‖2
‖ai‖21

+ 2E

⎡⎣∥∥∥∥∥
m∑
i=1

wih
(t)
i

∥∥∥∥∥
2
⎤⎦ (41)

where (40) is derived using Lemma 2, and (41) follows Assump-
tion 2.

2) Bounding the Second Term in (35): For the second term
on the right hand side (RHS) in (35), we have

T2 = E

[〈
∇F̃ (x(t,0)),

m∑
i=1

wi

(
d
(t)
i − h

(t)
i

)〉]

+ E

[〈
∇F̃ (x(t,0)),

m∑
i=1

wih
(t)
i

〉]
(42)

= E

[〈
∇F̃ (x(t,0)),

m∑
i=1

wih
(t)
i

〉]
(43)

=
1

2

∥∥∥∇F̃ (x(t))
∥∥∥2 + 1

2
E

⎡⎣∥∥∥∥∥
m∑
i=1

wih
(t)
i

∥∥∥∥∥
2
⎤⎦

− 1

2
E

⎡⎣∥∥∥∥∥∇F̃ (x(t,0))−
m∑
i=1

wih
(t)
i

∥∥∥∥∥
2
⎤⎦ (44)

where the last equation uses the fact: 2〈a, b〉 = ‖a‖2 + ‖b‖2 −
‖a− b‖2.

3) Intermediate Result: Substituting (44) and (41) back into
(35) and assuming τeffηL ≤ 1/2, we have

E

[
F̃ (x(t+1,0))

]
− F̃ (x(t,0))

ητeff

≤ − 1

2

∥∥∥∇F̃ (x(t,0))
∥∥∥2 + τeffηLσ

2
m∑
i=1

w2
i ‖ai‖22
‖ai‖21

+
1

2
E

⎡⎣∥∥∥∥∥∇F̃ (x(t,0))−
m∑
i=1

wih
(t)
i

∥∥∥∥∥
2
⎤⎦ (45)

≤ − 1

2

∥∥∥∇F̃ (x(t,0))
∥∥∥2 + τeffηLσ

2
m∑
i=1

w2
i ‖ai‖22
‖ai‖21

+
1

2

m∑
i=1

wiE

[∥∥∥∇Fi(x
(t,0))− h

(t)
i

∥∥∥2] (46)

where the last inequality uses the fact F̃ (x) =
∑m

i=1 wiFi(x)
and Jensen’s Inequality: ‖∑m

i=1 wizi‖2 ≤∑m
i=1 wi‖zi‖2. In

order to bound the last term in (46), we can use the following
lemma.

Lemma 3: The difference between the locally averaged gra-
dient and the server gradient ∇Fi(x

(t,0)) can be bounded as
follows:

m∑
i=1

wiE

[∥∥∥∇Fi(x
(t,0))− h

(t)
i

∥∥∥2]

≤ 1

2
E

[∥∥∥∇F̃ (x(t,0))
∥∥∥2]+ 3η2L2σ2B + 6η2L2κ2C (47)

where B = Λ
∑m

i=1 wi(τi − 1)‖ai‖22/‖ai‖1, C = Λ2 maxi τi
(τi − 1), and Λ denotes the upper bound of all elements in any
accumulation vector ai. That is, Λ = maxi,s,k ai,s(k).

Proof: Due to space limitations, we delegate the proof to
Appendix A-F. �

4) Final Results: Substituting (47) back into (46), we have

E

[
F̃ (x(t+1,0))

]
− F̃ (x(t,0))

ητeff

≤ − 1

4

∥∥∥∇F̃ (x(t,0))
∥∥∥2 + τeffηLσ

2
m∑
i=1

w2
i ‖ai‖22
‖ai‖21

+
3

2
η2L2σ2B + 3η2L2κ2C (48)

Taking the average across all rounds, we get

1

T

T−1∑
t=0

E

[∥∥∥∇F̃ (x(t,0))
∥∥∥2] ≤

4
[
F̃ (x(0,0))− F̃inf

]
ητeffT

+
4ηLσ2A

m

+ 6η2L2σ2B + 12η2L2κ2C.

where A = mτeff
∑m

i=1
w2

i ‖ai‖22
‖ai‖21 . Since min ‖∇F̃ (x(t,0))‖2 ≤

1
T

∑T−1
t=0 ‖∇F̃ (x(t,0))‖2, we have

min
t∈[T ]

E

[∥∥∥∇F̃ (x(t,0))
∥∥∥2] ≤ 4

[
F̃ (x(0,0))− F̃inf

]
ητeffT

+
4ηLσ2A

m

+ 6η2L2σ2B + 12η2L2κ2C.
(49)

5) Constraint on the Local Learning Rate: Here, let us sum-
marize the constraints on the local learning rate:

ηL ≤ 1

2τeff
, (50)

4η2L2 max
i

{‖ai‖1 (‖ai‖1 − ai,−1)} ≤ 1

2β2 + 1
. (51)

For the second constraint, we can further tighten it as follows:

4η2L2 max
i

‖ai‖21 ≤ 1

2β2 + 1
(52)

That is,

ηL ≤ 1

2
min

{
1

maxi ‖ai‖1
√

2β2 + 1
,
1

τeff

}
. (53)

6) Further Optimizing the Bound: By setting η =
√

m
τT

where τ = 1
m

∑m
i=1 τi,mint∈[T ] E‖∇F̃ (x(t,0))‖2 will be upper

bounded by

O
(

τ/τeff√
mτT

)
+O

(
Aσ2

√
mτT

)
+O

(
mBσ2

τT

)
+O

(
mCκ2

τT

)
.

Here, we complete the proof of Theorem 1.
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IX. CONCLUDING REMARKS

In federated learning, the participating clients (e.g., IoT sen-
sors, mobile devices) are typically highly heterogeneous, both in
the size of their local datasets and in their computation speeds.
Clients can also join and leave the training at any time accord-
ing to their availabilities. Therefore, it is common that clients
perform different amounts of works within one round of local
computation. However, previous analyses of federated optimiza-
tion algorithms have been limited to the homogeneous case
where all clients have the same local steps, hyper-parameters,
and client optimizers. In this paper, we have developed a novel
theoretical framework to analyze the challenging heterogeneous
setting. We have shown that original FEDAVG algorithm will
converge to a stationary point of a mismatched objective function
which can be arbitrarily different from the true objective. To
the best of our knowledge, we have thus provided the first
fundamental understanding of how the convergence rate and
bias in the final solution of federated optimization algorithms
are influenced by heterogeneity in clients’ local progress. The
new framework naturally allows clients to have different local
steps and local solvers, such as GD, SGD, SGD with momentum,
proximal updates, etc. Inspired by the theoretical analysis, we
have proposed FEDNOVA, which can automatically adjust the
aggregated weights and effective local steps according to the
local progress. We have validated the effectiveness of FEDNOVA
both theoretically and empirically. On a non-IID version of the
CIFAR-10 dataset, FEDNOVA generally achieves 6–9% higher
test accuracy than FEDAVG. Future directions include extending
the theoretical framework to adaptive optimization methods or
gossip-based training methods.

Future Directions: There are many open directions to extend
this work. For example, the main theorems are based on Assump-
tion 3. However, this assumption on dissimilarity among local
objectives can be removed when using cross-client variance-
reduction techniques [15]. Besides, as illustrated by Theorem 2,
the bias term is caused by improper weighting scheme as well
as the differences between local objectives. While our proposed
algorithm FEDNOVA corrects the weighting scheme, we believe
algorithms that reduce the differences among clients’ local
updates can also mitigate the objective inconsistency problem.
Furthermore, our current algorithmic framework requires the
local model changes to be a linear combination of gradients
and cannot work for adaptive optimization methods. Given the
popularity of Adam [43] and AdaGrad [44] on language-related
training tasks, the adaptive variants of FEDNOVA could be a
promising direction.

APPENDIX

PROOFS OF OTHER THEOREMS

A. Proof of Theorem 2: Including Bias in the Error Bound

Lemma 4: For any model parameterx, the difference between
the gradients of F (x) and F̃ (x) can be bounded as follows:

∥∥∥∇F (x)−∇F̃ (x)
∥∥∥2 ≤ χ2

p‖w

[
(β2 − 1)

∥∥∥∇F̃ (x)
∥∥∥2 + κ2

]

where χ2
p‖w denotes the chi-square distance between p and w,

i.e., χ2
p‖w =

∑m
i=1(pi − wi)

2/wi.

Proof: According to the definition of F (x) and F̃ (x), we
have

∇F (x)−∇F̃ (x)

=
m∑
i=1

(pi − wi)∇Fi(x) (54)

=

m∑
i=1

pi − wi√
wi

· √wi

(
∇Fi(x)−∇F̃ (x)

)
. (55)

Applying Cauchy-Schwarz inequality, it follows that∥∥∥∇F (x)−∇F̃ (x)
∥∥∥2

≤
[

m∑
i=1

(pi − wi)
2

wi

][
m∑
i=1

wi

∥∥∥∇Fi(x)−∇F̃ (x)
∥∥∥2] (56)

≤ χ2
p‖w

[
(β2 − 1)

∥∥∥∇F̃ (x)
∥∥∥2 + κ2

]
. (57)

where the last inequality uses Assumption 3. �
Note that

‖∇F (x)‖2 ≤ 2
∥∥∥∇F (x)−∇F̃ (x)

∥∥∥2 + 2
∥∥∥∇F̃ (x)

∥∥∥2 (58)

≤ 2
[
χ2
p‖w(β2 − 1) + 1

] ∥∥∥∇F̃ (x)
∥∥∥2

+ 2χ2
p‖wκ2. (59)

As a result, we obtain

1

T

T−1∑
t=0

∥∥∥∇F (x(t,0))
∥∥∥2

≤ 2
[
χ2
p‖w(β2 − 1) + 1

] 1

T

T−1∑
t=0

∥∥∥∇F̃ (x(t,0))
∥∥∥2 + 2χ2

p‖wκ2

≤ 2
[
χ2
p‖w(β2 − 1) + 1

]
εopt + 2χ2

p‖wκ2 (60)

where εopt denotes the optimization error.

B. Constructing a Lower Bound

In this subsection, we are going to construct a lower bound
of E‖∇F (x(t,0))‖2, showing that (13) is tight and the non-
vanishing error term in Theorem 2 is not an artifact of our
analysis.

Lemma 5: One can manually construct a strongly convex
objective function such that FEDAVG with heterogeneous local
updates cannot converge to its global optimum. In particular,
the gradient norm of the objective function does not vanish as
learning rate approaches to zero. We have the following lower
bound:

lim
T→∞

E

∥∥∥∇F (x(T,0))
∥∥∥2 = Ω(χ2

p‖wκ2) (61)

where χ2
p‖w denotes the chi-square divergence between weight

vectors and κ2 quantifies the dissimilarities among local objec-
tive functions and is defined in Assumption 3.

Proof: Suppose that there are only two clients with local
objectives F1(x) =

1
2 (x− a)2 and F2(x) =

1
2 (x+ a)2. The

global objective is defined as F (x) = 1
2F1(x) +

1
2F2(x). For
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any set of weights w1, w2, w1 + w2 = 1, we define the surro-
gate objective function as F̃ (x) = w1F1(x) + w2F2(x). As a
consequence, we have

m∑
i=1

wi

∥∥∥∇Fi(x)−∇F̃ (x)
∥∥∥2 = 2w1w2a

2 (62)

Comparing with Assumption 3, we can define κ2 = 2w1w2a
2

and β2 = 1 in this case. Furthermore, according to the deriva-
tions in Section VIII-A, the iterate of FEDAVG can be written as
follows:

lim
T→∞

x(T,0) =
τ1a− τ2a

τ1 + τ2
. (63)

In this case, w1 = τ1/(τ1 + τ2), w2 = τ2/(τ1 + τ2). As a re-
sults, we have

lim
T→∞

∥∥∥∇F (x(T,0))
∥∥∥2

= lim
T→∞

[
1

2
(x(T,0) − a) +

1

2
(x(T,0) + a)

]2
=

(
τ1 − τ2
τ1 + τ2

)2

a2

=
(τ2 − τ1)

2

2τ1τ2
κ2 = Ω(χ2

p‖wκ2). (64)

where χ2
p‖w =

∑m
i=1(pi − wi)

2/wi = (w1 − 1/2)2/w1 +

(w2 − 1/2)2/w2 = (τ2 − τ1)
2/(2τ1τ2). �

C. Proof of Theorem 3

The main part of the proof is nearly the same as the proof
of Theorem 1, except for a few initial steps. According to the
Lipschitz-smooth assumption, it follows that

E

[
F̃ (x(t+1,0))

]
− F̃ (x(t,0))

≤ E

⎡⎣〈∇F̃ (x(t,0)),

q∑
j=1

Δ
(t)
lj

q

〉⎤⎦
︸ ︷︷ ︸

T3

+
L

2
E

⎡⎣∥∥∥∥∥∥
q∑

j=1

Δ
(t)
lj

q

∥∥∥∥∥∥
2⎤⎦

︸ ︷︷ ︸
T4

(65)

where the expectation is taken over randomly selected indices
{lj} as well as mini-batches ξ

(t,k)
i , ∀i ∈ {1, 2, . . . ,m}, k ∈

{0, 1, . . . , τi − 1}.
For the first term in (65), we can first take the expectation over

indices and obtain

T3 = E

[〈
∇F̃ (x(t,0)),

m∑
i=1

piΔ
(t)
i

〉]
(66)

= − τeffηE

[〈
∇F̃ (x(t,0)),

m∑
i=1

wid
(t)
i

〉]
(67)

where τeff =
∑m

i=1 pi‖ai‖1, wi = pi‖ai‖1/
∑m

i=1(pi‖ai‖1).
This term is exactly the same as the first term in (35). We
can directly reuse previous results in the proof of Theorem 1.
Comparing with (44), we have

T3 ≤ − τeffη

2

∥∥∥∇F̃ (x(t))
∥∥∥2 − τeffη

2
E

⎡⎣∥∥∥∥∥
m∑
i=1

wih
(t)
i

∥∥∥∥∥
2
⎤⎦

+
τeffη

2

m∑
i=1

wiE

[∥∥∥∇Fi(x
(t,0))− h

(t)
i

∥∥∥2] . (68)

For the second term in (65), we have

T4 = η2τ2effE

⎡⎣∥∥∥∥∥∥1q
q∑

j=1

wlj

plj
d
(t)
lj

∥∥∥∥∥∥
2⎤⎦ (69)

= η2τ2effE

⎡⎣∥∥∥∥∥∥1q
q∑

j=1

wlj

plj
h
(t)
lj

∥∥∥∥∥∥
2⎤⎦

+ η2τ2effE

⎡⎣∥∥∥∥∥∥1q
q∑

j=1

wlj

plj
(d

(t)
lj

− h
(t)
lj
)

∥∥∥∥∥∥
2⎤⎦ (70)

≤ η2τ2eff E

⎡⎣∥∥∥∥∥∥1q
q∑

j=1

wlj

plj
h
(t)
lj

∥∥∥∥∥∥
2⎤⎦

︸ ︷︷ ︸
T5

+
1

q

m∑
i=1

w2
i σ

2

pi

‖ai‖22
‖ai‖21

(71)

where the last inequality follows Assumption 2. Additionally,
for the term T5, we can bound it as follows:

T5 ≤ 3E

∥∥∥∥∥∥1q
q∑

j=1

wlj

plj
(h

(t)
lj

−∇Flj (x
(t,0)))

∥∥∥∥∥∥
2

+ 3E

∥∥∥∥∥∥1q
q∑

j=1

wlj

plj
∇Flj (x

(t,0))−∇F̃ (x(t,0))

∥∥∥∥∥∥
2

+ 3
∥∥∥∇F̃ (x(t,0))

∥∥∥2
≤ 3r

m∑
i=1

wi

∥∥∥h(t)
i −∇Fi(x

(t,0))
∥∥∥2

+ 3

(
1 +

rβ2

q

)∥∥∥∇F̃ (x(t,0))
∥∥∥2 + 3rκ2 (72)

where r is defined asmaxi wi/pi. The derivation of (72) is based
on the fact that

∑m
i=1 pi‖wi∇Fi/pi‖2 ≤ r

∑m
i=1 wi‖∇Fi‖2

and Assumption 3. SubstitutingT3, T4, T5 into (65) and applying
Lemma 3, one can complete the proof.

D. Proof of Theorem 4

Since each local objective is c-strongly convex, their weighted
summation F̃ (x) =

∑m
i=1 wiFi(x) is also c-strongly convex

and satisfies the PL condition. Substituting the PL condition
into (48), we have

E[F̃ (x(t+1,0))]− F̃ (x(t,0))

ητeff

≤ −c[F̃ (x(t,0))− F̃inf]

2
+

ηLσ2A

m

+
3

2
η2L2σ2B + 3η2L2κ2C. (73)
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After minor rearranging, we obtain

E[F̃ (x(t+1,0))]− F̃inf ≤
(
1− ητeffc

2

)
[F̃ (x(t,0))− F̃inf]

+
η2τeffLσ

2A

m
+

3

2
η3τeffL

2σ2B

+ 3η3τeffL
2κ2C. (74)

For ease of writing, we define η̃(t) = η(t)τ , s = τeff/τ ,D =
sLσ2A/(τm) and E = 3sL2σ2B/(2τ2) + 3sL2κ2C/τ2. Let
us first prove by induction that, for any t ≥ 0, E[F̃ (x(t,0))]−
F̃inf ≤ η̃(t)βD + [η̃(t)]2βE. We assume this holds for t > 0.
According to (73), we have

E[F̃ (x(t+1,0))]− F̃inf

≤
(
1− η̃(t)sc

2

)(
η̃(t)βD + [η̃(t)]2βE

)
+ [η̃(t)]2D + [η̃(t)]3E

=

[
β

(
1− η̃(t)sc

2

)
+ η̃(t)

] [
η̃(t)D + [η̃(t)]2E

]
. (75)

Let us setβ = 6
sc and η̃(t) = 6

sc(t+γ) . After some manipulations,
one can show that[

β

(
1− η̃(t)sc

2

)
+ η̃(t)

]
η̃(t) ≤ βη̃(t+1), (76)[

β

(
1− η̃(t)sc

2

)
+ η̃(t)

]
[η̃(t)]2 ≤ 216

s3c3
1

(t+ 1 + γ)2

= β[η̃(t+1)]2 (77)

Substituting (76) and (77) into (75), we have

E[F̃ (x(t+1,0))]− F̃inf ≤ βη̃(t+1)D + β[η̃(t+1)]2E. (78)

When t = 0, all the hyper-parameters should satisfy

F̃ (x(0,0))− F̃inf ≤ 36

c2γ

Lσ2A

τeffm

+
216

c3γ2

(
3L2σ2B

2τ2eff
+

3L2κ2C

τ2eff

)
. (79)

Substituting the definition of A into (79),

F̃ (x(0,0))− F̃inf ≤ 36Lσ2

c2γ

m∑
i=1

w2
i ‖ai‖22
‖ai‖21

+
648L2(σ2B + κ2C)

c3γ2τ2eff

≤ 36Lσ2

c2γ
+

648L2(σ2B + κ2C)

c3γ2τ2eff
. (80)

After minor rearranging, we get the constraint on τeff as follows:

τ2eff ≤
648L2(σ2B + κ2C)

c3γ2[F̃ (x(0,0))− F̃inf]− 36cγLσ2
(81)

When we set γ = L/(νc), it follows that

τ2eff ≤
648ν2(σ2B + κ2C)

cL2[F̃ (x(0,0))− F̃inf]− 36νL2σ2
. (82)

After a total of T communication rounds,

F̃ (x(T,0))− F̃inf

≤ 36

sc2
Lσ2A

(T + γ)τm
+

216

s2c3(T + γ)2τ2

(
3L2σ2B

2
+ 3L2κ2C

)
= O

(
L

sc2
σ2A

mTτ

)
+O

(
L2

s2c3
σ2B + κ2C

T 2τ2

)
. (83)

E. Proof of Theorem 5

In the case of FEDNOVA, the aggregated weights wi equals to
pi. Therefore, the surrogate objective F̃ (x) =

∑m
i=1 wiFi(x)

is the same as the original objective function F (x) =∑m
i=1 piFi(x). We can directly reuse the intermediate results

in the proof of Theorem 1. According to (48), for the t-th round,
we have

E[F (x(t+1,0))]− F (x(t,0))

ητeff

≤ −1

4

∥∥∥∇F (x(t,0))
∥∥∥2 + ηLσ2A(t)

m

+
3

2
η2L2σ2B(t) + 3η2L2κ2C(t) (84)

where quantities A(t), B(t), C(t) have the same definitions as
(10) to (12), except replacing ai with a

(t)
i . Then, taking the

total expectation and averaging over all rounds, it follows that

E[F (x(T,0))]− F (x(0,0))

ητeffT

≤ − 1

4T

T−1∑
t=0

E

∥∥∥∇F (x(t,0))
∥∥∥2 + ηLσ2Ã

m

+
3

2
η2L2σ2B̃ + 3η2L2κ2C̃ (85)

where Ã =
∑T−1

t=0 A(t)/T, B̃ =
∑T−1

t=0 B(t)/T , and C̃ =∑T−1
t=0

C(t)/T . Finally, repeating the same procedure in the proof of
Theorem 1, we complete the proof.

F. Proof of Lemma 3

Recall the definition of h(t)
i , one can derive that

E

[∥∥∥∇Fi(x
(t,0))− h

(t)
i

∥∥∥2]

= E

⎡⎣∥∥∥∥∥∇Fi(x
(t,0))− 1

ai

τi−1∑
k=0

ai,k∇Fi(x
(t,k)
i )

∥∥∥∥∥
2
⎤⎦ (86)

= E

⎡⎣∥∥∥∥∥ 1

ai

τi−1∑
k=0

ai,k

(
∇Fi(x

(t,0))−∇Fi(x
(t,k)
i )

)∥∥∥∥∥
2
⎤⎦ (87)

≤ 1

ai

τi−1∑
k=0

{
ai,kE

[∥∥∥∇Fi(x
(t,0))−∇Fi(x

(t,k)
i )

∥∥∥2]} (88)

≤ L2

ai

τi−1∑
k=0

{
ai,kE

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]} (89)
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≤ L2Λ

ai

τi−1∑
k=0

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2] (90)

where Λ denotes the upper bound of all elements in the
accumulation vector, (88) uses Jensen’s Inequality again:
‖∑m

i=1 wizi‖2 ≤∑m
i=1 wi‖zi‖2, and (89) follows Assumption

1. Now, we turn to bounding the difference between the server
model x(t,0) and the local model x(t,k)

i . Plugging into the local
update rule and using the fact ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2,

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]

≤ 2η2E

⎡⎣∥∥∥∥∥
k−1∑
s=0

ai,s(k)
(
gi(x

(t,s)
i )−∇Fi(x

(t,s)
i )

)∥∥∥∥∥
2
⎤⎦ (91)

+ 2η2E

⎡⎣∥∥∥∥∥
k−1∑
s=0

ai,s(k)∇Fi(x
(t,s)
i )

∥∥∥∥∥
2
⎤⎦ (92)

Applying Lemma 2 to the first term,

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]

≤ 2η2σ2
k−1∑
s=0

[ai,s(k)]
2 + 2η2E

⎡⎣∥∥∥∥∥
k−1∑
s=0

ai,s(k)∇Fi(x
(t,s)
i )

∥∥∥∥∥
2
⎤⎦

(93)

≤ 2η2σ2
k−1∑
s=0

[ai,s(k)]
2

+ 2η2

[
k−1∑
s=0

ai,s(k)

]
k−1∑
s=0

ai,s(k)E

[∥∥∥∇Fi(x
(t,s)
i )

∥∥∥2] (94)

≤ 2η2σ2
k−1∑
s=0

[ai,s(k)]
2

+ 2η2Λ

[
k−1∑
s=0

ai,s(k)

]
τi−1∑
s=0

E

[∥∥∥∇Fi(x
(t,s)
i )

∥∥∥2] (95)

where (94) follows from Jensen’s Inequality, and (95) uses the
fact ai,s(k) ≤ Λ. Note that

τi−1∑
k=0

[
k−1∑
s=0

[ai,s(k)]
2

]
=

τi−1∑
k=0

‖ai(k)‖22 (96)

=

τi−1∑
k=1

‖ai(k)‖22 ≤ (τi−1) ‖ai‖22 (97)

τi−1∑
k=0

[
k−1∑
s=0

[ai,s(k)]

]
=

τi−1∑
k=0

‖ai(k)‖1 (98)

=

τi−1∑
k=1

‖ai(k)‖1 ≤ (τi − 1) ‖ai‖1 (99)

where the above inequalities uses the fact ‖ai(k)‖ ≤
‖ai(τi)‖ = ‖ai‖. As a result, we have

1

‖ai‖1

τi−1∑
k=0

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]

≤ 2η2σ2 (τi − 1) ‖ai‖22
‖ai‖1

+ 2η2Λ(τi − 1) ‖ai‖1
1

‖ai‖1

τi−1∑
k=0

E

[∥∥∥∇Fi(x
(t,k)
i )

∥∥∥2]
(100)

In addition, we can bound the second term using the following
inequality:

E

[∥∥∥∇Fi(x
(t,k)
i )

∥∥∥2]
≤ 2E

[∥∥∥∇Fi(x
(t,k)
i )−∇Fi(x

(t,0))
∥∥∥2]+2E

[∥∥∥∇Fi(x
(t,0))

∥∥∥2]
≤ 2L2

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]+ 2E

[∥∥∥∇Fi(x
(t,0))

∥∥∥2] .
(101)

Substituting (101) into (95), we get

1

‖ai‖1

τi−1∑
k=0

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]

≤ 2η2σ2 (τi − 1) ‖ai‖22
‖ai‖1

+ 4η2L2Λ(τi − 1) ‖ai‖1
1

‖ai‖1

τi−1∑
k=0

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]

+ 4η2Λτi(τi − 1)E

[∥∥∥∇Fi(x
(t,0)
i )

∥∥∥2] (102)

After minor rearranging, it follows that

1

‖ai‖1

τi−1∑
k=0

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]

≤ 2η2σ2

1− 4η2L2Λ(τi − 1) ‖ai‖1
(τi − 1) ‖ai‖22

‖ai‖1

+
4η2Λτi(τi − 1)

1− 4η2L2Λ(τi − 1) ‖ai‖1
E

[∥∥∥∇Fi(x
(t,0))

∥∥∥2] .
(103)

Note that ‖ai‖1 ≤ Λτi, we have

L2Λ

‖ai‖1

τi−1∑
k=0

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]

≤ 2η2L2Λσ2

1− 4η2L2Λ2τi(τi − 1)

(τi − 1) ‖ai‖22
‖ai‖1

+
4η2L2Λ2τi(τi − 1)

1− 4η2L2Λ2τi(τi − 1)
E

[∥∥∥∇Fi(x
(t,0))

∥∥∥2] (104)
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Define D = 4η2L2Λ2 maxi τi(τi − 1) < 1. We can simplify
(104) as follows

L2Λ

ai

τi−1∑
k=0

E

[∥∥∥x(t,0) − x
(t,k)
i

∥∥∥2]

≤ 2η2L2Λσ2

1−D

(τi − 1) ‖ai‖22
‖ai‖1

+
D

1−D
E

[∥∥∥∇Fi(x
(t,0))

∥∥∥2] .
(105)

Then, taking the average across all workers and applying As-
sumption 3, one can obtain

1

2

m∑
i=1

wiE

[∥∥∥∇Fi(x
(t,0))− h

(t)
i

∥∥∥2]

≤ Λη2L2σ2

1−D

m∑
i=1

wi
(τi − 1) ‖ai‖22

‖ai‖1

+
D

2(1−D)

m∑
i=1

wiE

[∥∥∥∇Fi(x
(t,0))

∥∥∥2] (106)

≤ Λη2L2σ2

1−D

m∑
i=1

wi
(τi − 1) ‖ai‖22

‖ai‖1

+
Dβ2

2(1−D)
E

[∥∥∥∇F̃ (x(t,0))
∥∥∥2]+ Dκ2

2(1−D)
. (107)

If D ≤ 1
2β2+1 , then it follows that 1

1−D ≤ 1 + 1
2β2 ≤ 3

2 and
Dβ2

1−D ≤ 1
2 . These facts can help us further simplify (107). We

have
m∑
i=1

wiE

[∥∥∥∇Fi(x
(t,0))− h

(t)
i

∥∥∥2]

≤ 1

2
E

[∥∥∥∇F̃ (x(t,0))
∥∥∥2]+ 3

2
η2L2σ2B + 3η2L2κ2C (108)

≤ 1

2
E

[∥∥∥∇F̃ (x(t,0))
∥∥∥2]+ 3η2L2σ2B + 6η2L2κ2C (109)

where B = Λ
∑m

i=1 wi(τi − 1)‖ai‖22/‖ai‖1, C = Λ2 maxi τi
(τi − 1).

APPENDIX B
EXPERIMENTAL SETTINGS

Platform: All experiments in this paper are conducted on a
cluster of 16 machines, each of which is equipped with one
NVIDIA TitanX GPU. The machines communicate (i.e., trans-
fer model parameters) with each other via Ethernet. We treat
each machine as one client in the federated learning setting.
The algorithms are implemented by PyTorch. We run each
experiments for 3 times with different random seeds.

Hyper-parameter Choices: On non-IID CIFAR10 dataset,
we fix the mini-batch size per client as 32. When clients use
momentum SGD as the local solver, the momentum factor is
0.9; when clients use proximal SGD, the proximal parameter μ
is selected from {0.0005, 0.001, 0.005, 0.01}. It turns out that
when Ei = 2, μ = 0.005 is the best and when Ei(t) ∼ U(2, 5),
μ = 0.001 is the best. The client learning rate η is tuned
from {0.005, 0.01, 0.02, 0.05, 0.08} for FEDAVG with each local
solver separately. When using the same local solver, FEDNOVA

uses the same client learning rate as FEDAVG. Specifically, if the
local solver is momentum SGD, then we set η = 0.02. In other
cases, η = 0.05 consistently performs the best. On the synthetic
dataset, the mini-batch size per client is 20 and the client learning
rate is 0.02.
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