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Abstract

When a gravitational wave is detected by Advanced LIGO/Virgo, sophisticated 

parameter estimation (PE) pipelines spring into action. These pipelines 

leverage approximants to generate large numbers of theoretical gravitational 

waveform predictions to characterize the detected signal. One of the most 

accurate and physically comprehensive classes of approximants in wide use 

is the ‘spinning effective one body-numerical relativity’ (SEOBNR) family. 

Waveform generation with these approximants can be computationally 

expensive, which has limited their usefulness in multiple data analysis contexts. 

In prior work we improved the performance of the aligned-spin approximant 

SEOBNR version 2 (v2) by nearly 300×. In this work we focus on optimizing 

the full eight-dimensional, precessing approximant SEOBNR version 3 (v3). 

While several v2 optimizations were implemented during its development, 

v3 is far too slow for use in state-of-the-art source characterization efforts 

for long-inspiral detections. Completion of a PE run after such a detection 

could take centuries to complete using v3. Here we develop and implement 

a host of optimizations for v3, calling the optimized approximant v3_Opt. 

Our optimized approximant is about 340×  faster than v3, and generates 

waveforms that are numerically indistinguishable.

Keywords: SEOBNR, EOBNR, effective-one-body, parameter estimation, 

numerical relativity, optimization
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1. Introduction

With its �rst detections of gravitational waves [1–6], the advanced Laser Interferometer 

Gravitational-Wave Observatory (Advanced LIGO) has provided a fundamentally new means 

of observing the Universe. At the heart of each of these detections was a merger of compact 

binaries. In such binaries, each compact object possesses four intrinsic parameters: mass, and 

the three components of the spin vector. Inferring all eight intrinsic parameters4 from a gravi-

tational wave observation, which analysis is part of the more general parameter estimation 

(PE), remains a challenging and computationally expensive enterprise.

The LIGO/Virgo Scienti�c Collaboration (LVC) performs PE in a Bayesian framework, 

implemented within the lalinference software package that is part of the larger open-source 

software framework LALSuite [7]. In such a framework, we sample the posterior distribu-

tion by repeatedly calculating the likelihood that a particular waveform matches the data and 

applying Bayes’ theorem. Evaluating the likelihood requires the rapid, sequential generation 

of as many as ∼108 theoretical gravitational wave predictions [8]. Generating so many predic-

tions via a full solution of the general relativistic �eld equations (using the tools of numerical 

relativity) would be far too computationally expensive. Thus theoretical models adopted for 

PE generally employ approximate solutions called approximants. State-of-the-art approxim-

ants adopt post-Newtonian techniques for evaluating the gravitational waveform throughout 

most of the inspiral and ringdown, and inject information from numerical relativity calcul-

ations for the late inspiral and merger.

One such gravitational wave approximant is the spinning effective one  body-numerical 

relativity (SEOBNR) algorithm. This algorithm marries an effective-one body inspiral 

gravitational waveform approximation—with unknown higher-order terms �t to numerical 

relativity-generated gravitational wave predictions—to a black hole ringdown model [9]. 

In particular, SEOBNR starts with the effective one body (EOB) approach to non-spinning 

binary modeling [10] by mapping the dynamics of the two-body system to the dynamics of an 

effective particle moving in a deformed Schwarzschild metric. This work was then extended 

to include the effects of spinning, precessing binaries [11]. Implemented numerically, this 

spinning EOB procedure adopts a precessing source frame in which precession-induced vari-

ations in amplitude and phase are minimized during inspiral, and a source frame aligned with 

the spin of the �nal body for matching the inspiral to the merger-ringdown [9].

The other widely adopted approximant within the LVC for PE is the Phenom series of phe-

nomenological waveform models. These waveform models are based on the combination of 

accurate post-Newtonian inspiral models with late-inspiral and merger phenomenological �ts 

to suites of numerical relativity simulations [12]. More recently, Phenom models have been 

built to include the effects of precession [13]. In particular, precession effects are included by 

using post-Newtonian methods to compute precession angles and then ‘twisting’ the underly-

ing non-precessing model [13–15]. Phenom models are simulated completely in the frequency 

domain, and therefore simplify some aspects of analysis. The only Phenom model designed 

to generate gravitational waveform predictions across all eight dimensions of parameter space 

is PhenomP [13], which was extensively used in the �rst six detection papers. We remark that 

Phenom is limited to a relatively small number of numerical relativity simulations against 

4 Intrinsic parameters are fundamental to the underlying physics of the system. In contrast, extrinsic parameters are 

related to the observer (e.g. polarization, sky location, and distance) and are not considered in this paper. Some au-

thors refer to seven intrinsic parameters in the full-dimensional space, which include each spin component and the 

mass ratio of the system. This is because the total mass of the system is simply a scaling factor; we choose to refer 

to eight parameters since the total mass sets the time and frequency scales and therefore must be considered in PE.

T D Knowles et alClass. Quantum Grav. 35 (2018) 155003
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which it has been calibrated, and it is dif�cult to determine the degree of systematic uncer-

tainty in the model without appealing to another model for comparison.

Evaluating the systematic uncertainties of the Phenom model requires construction of an 

independent gravitational waveform model with independent systematics, and the SEOBNR 

family of models is a good candidate for this task. The only SEOBNR model capable of gener-

ating theoretical gravitational waveform predictions in all eight intrinsic dimensions of param-

eter space is the third version of the model, v3; the �rst and second versions were restricted to 

aligned-spin cases. In particular, v3 was built to accommodate arbitrary mass ratios, spin mag-

nitudes, and spin orientations and has been calibrated and validated against a variety of numer-

ical relativity simulations [16]. Thus v3 is vital for precessing compact binary merger PE.

Unfortunately, v3 is too currently too slow for PE. A single waveform generation across 

the LIGO band for, say, a black hole-neutron star system using v3 can take as long as an hour 

on a modern desktop computer. If LIGO observed a black hole-neutron star system merge, a 

sequential-gravitational-wave-generation PE would take thousands of years. Attempts to over-

come the computational challenge of generating such time-consuming gravitational wave-

forms include the construction of reduced order model (ROM) approximants. ROMs make use 

of multidimensional interpolations between sampled points in another underlying approxim-

ant. For example, a ROM based on the aligned-spin SEOBNR version 2 (v2) approximant [17, 

18] is constructed by �rst generating an extensive collection of waveform predictions using 

v2 that adequately samples the 4D parameter space reliably covered by v2. Then to obtain the 

gravitational waveform at any desired point in parameter space, the ROM simply interpolates 

within the four dimensions of sampled parameter space. A ROM version of v2 can generate 

waveforms up to ∼3000×  faster than v2 directly [17], which explains in part why ROMs 

enjoy such widespread use within the LVC for data analysis applications.

While ROMs have been constructed with favorable performance characteristics in aligned-

spin situations, the cost of generating a ROM grows exponentially with the dimension of the 

ROM (though see [19] for ideas on combating this using a reduced basis approach). No strategy 

yet exists that can perform the 8-dimensional (8D) interpolations faster than the 8D approximant; 

until such a strategy is invented, the most promising way to improve the performance of theor-

etical waveform generation in the full 8D parameter space will be to optimize the approximant 

directly. As a proof-of-principle, we demonstrated that such an approach is capable of improving 

the performance of the aligned-spin v2 approximant by a typical factor of ∼280×  [20]. We call 

our optimized v2 approximant v2_opt. The precessing (8D) v3 approximant was in development 

as we independently prepared v2_opt, and thus originally contained all the same inef�ciencies as 

v2. This suggests that if the full suite of optimizations we implemented in v2 were incorporated 

into v3, v3-based PE timescales might drop by two orders of magnitude at least.

This paper documents our incorporation of applicable v2 optimizations into v3, as well as 

our implementation of innovative new optimization ideas, which together act to speed up v3 

by ∼340×. Optimization strategies are summarized in section 2. Section 3 presents code vali-

dation tests that demonstrate roundoff-level agreement between v3 and our latest optim ized 

version of v3, designated v3_Opt, along with benchmarks providing an overview of perfor-

mance gains across parameter space in v3_Opt. For convenience, table 1 de�nes all SEOBNR 

approximants referenced in this paper.

2. SEOBNRv3_opt: optimizations migrated from v2_opt

Optimizations to v3 were performed in two phases. In the �rst phase, described in section 2.1, 

we migrated to v3 all applicable optimizations developed during the preparation of v2_opt. 

T D Knowles et alClass. Quantum Grav. 35 (2018) 155003
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Sections 2.2 and 2.3 detail the second phase of optimization, outlining new strategies incor-

porated into v3_Opt.

2.1. Migrated optimizations

Here we summarize the optimizations to v2 which were migrated to v3 and thus implemented 

in v3_opt.

 •  Switching compilers. Switching from the GNU Compiler Collection (gcc) [22] 

C compiler to the Intel Compiler Suite (icc) [23] C compiler improves perfor-

mance by roughly a factor of 2×. It is well-known that the icc compiler often produces 

more ef�cient executables than the gcc compiler5.

 •  Minimize transcendental function evaluations. The EOB Hamiltonian equations  of 

motion were hand-optimized by minimizing calls to some expensive transcendental func-

tions such as exp(), log(), and pow().

 •  Replacing �nite difference with exact derivatives. When solving the EOB Hamiltonian 

equations  of motion, v3 computes partial derivatives of the Hamiltonian using �nite 

difference approximations. We replaced these with exact, Mathematica-generated 

expressions for the derivatives, using Mathematica’s code generation facilities—which 

includes common subexpression elimination (CSE)—to generate the C code [24]. 

Although this alone acts to signi�cantly speed up v3, in this work we further optimize 

these Mathematica-generated derivatives.

 •  Increasing the order of the ODE solver. v3 solves the EOB Hamiltonian equations of 

motion via a Runge–Kutta fourth order (RK4) ODE solver. After implementing exact 

derivatives, we noticed that the number of RK4 steps needed dropped signi�cantly— 

Table 1. Approximant naming conventions. These conventions apply throughout this 
paper.

Base approximant Approx. name Description

SEOBNRv2 (spin-aligned) v2 Initial SEOBNRv2 implementationa; see [21]

v2_opt Optimized v2a; see [20]

SEOBNRv3 (precessing) v3_preopt Initial SEOBNRv3 implementationb; see [9]

v3 Partially optimized v3_preopt with bug �xesc

v3_pert v3 with machine-ε mass perturbationc

v3_opt v3 optimized similarly to v2_optc

v3_Opt v3_opt with new optimization strategiesd

v3_Opt_rk4 v3_Opt implementing RK4 rather than RK8d

a As of publication, the most recent updates to v2/v2_opt are found on commit ID 2cce415 in the LALSuite 

master branch.
b To generate a waveform with v3_preopt, download LALSuite from the archived repository page https://

git.ligo.org/lscsoft/lalsuite-archive/tree/14414694698a2f18c9135445003cade805

ad2096 and use approximant tag SEOBNRv3.
c As of publication, the most recent updates to v3 and v3_opt are found on commit ID 19e95b4 in the LALSuite 

master branch.
d Approximants v3_opt and v3_opt_rk4 were updated to run v3_Opt and v3_Opt_rk4, respectively, on commit ID 

1391f77 in the LALSuite master branch.

5 We used the following compiler �ags when compiling with icc: -xHost, -O2, and -fno-strict-alias-

ing.
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presumably due to the effective removal of high numerical noise intrinsic to �nite-

difference derivatives. We then found that adopting a Runge–Kutta eighth order (RK8) 

ODE solver resulted in 2×  larger timesteps, so an even larger speed-up was observed.

 •  Reducing orbital angular velocity calculations. The orbital angular velocity ω was cal-

culated for each (ℓ, m) mode (as de�ned in [9]) inside the ODE solver. As ω exhibits no 

dependence on ℓ or m, this expensive recalculation was unnecessary and needs only be 

performed once.

For more details about these optimizations see our v2 optimization paper [20].

2.2. Guided automatic differentiation: a more efficient way of generating symbolic derivatives 

of the Hamiltonian

After migrating the v2 optimizations described in section 2.1 to v3, pro�ling analyses indicated 

that approximately 75% of v3_opt’s total runtime was spent computing the v3 Hamiltonian 

[9] and its partial derivatives with respect to the twelve degrees of freedom (consisting of three 

spatial degrees {x, y, z}, three momentum degrees { px, py, pz}, and three spin degrees for each 

of the two binary components i ∈ {1, 2}: {sx
i , s

y

i , sz
i}).

In v3, the ODE solver computes these partial derivatives by direct evaluations of the 

Hamiltonian itself via �nite difference techniques [21]. In v3_opt, these numerical derivatives 

were replaced with Mathematica-generated exact derivatives. Although these exact deriva-

tives unlock signi�cant performance gains, the Mathematica-generated C code was neither 

par ticularly human-readable (comprising thousands of lines of code output by Mathematica’s 

CSE routines) nor particularly well-optimized (common patterns were still visible and recom-

puted in the C code). Attempts to gain performance through consolidation of all derivatives—

as was possible in our optimizations of v2—proved beyond Mathematica’s capabilities when 

differentiating the v3 Hamiltonian on our high-performance workstations. Therefore, C codes 

for all twelve exact derivatives needed to be output separately, resulting in a signi�cant num-

ber of unnecessary re-computations.

We present here our new strategy for computing partial derivatives of the Hamiltonian, 

called guided automatic differentiation (GAD), which results in a signi�cant reduction in 

computational cost while ensuring the resulting code is highly human-readable. GAD is based 

on forward accumulation automatic differentiation, with the advantage of the subexpressions 

being chosen by hand to minimize the overall number of �oating point operations.

The following describes the process of computing a partial derivative of the v3 Hamiltonian 

H with respect to an arbitrary independent variable x1 using GAD. We may write H in the 

following form, where I is a set of input quantities:

v1 = f1(I)

v2 = f2(v1, I)

v3 = f3(v1, v2, I)

.

.

.

H = fN(v1, v2, v3, ..., I).

Here fℓ is the ℓth function of the set of input quantities I and previously computed subexpres-

sions {v0, v1, . . . , vℓ−1}. Although N ≈ 200 for v3, for the sake of example we suppose N  =  3, 

I = {x1, x2}, and

T D Knowles et alClass. Quantum Grav. 35 (2018) 155003
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v1 =
√

x1 + ax1

v2 =
√

x2 + ax2

v3 = (v1 + v2)/(v1v2)

H = v
2

3
.

We demonstrate GAD by taking a partial derivative of H with respect to the independent input 

variable x1. Table 2 displays the evolution of this example code under the GAD scheme, which 

proceeds as follows:

 1.  We begin with a list of variables and subexpression computations for the Hamiltonian, 

and translate this C code into the Mathematica language.

 2.  We parameterize the terms of each subexpression according to their dependence on x1.

 3.  Mathematica computes derivatives of each subexpression.

 4.  We convert the Mathematica output into C code.

 5.  We replace each occurrence of x′
1
 with 1 and remove terms equal to 0.

The resulting C code is short, optimized, and human readable. Furthermore, any terms that are 

common to all derivative expressions are computed and saved before computing the partial 

derivatives, further reducing the computational cost.

Since each vℓ is merely an intermediate of H, there is signi�cant freedom in our choice 

of the set of subexpressions V ≡ {v1, v2, . . . , vN−1}. Our choices do, however, have a direct 

effect on the number of calculations necessary to compute ∂x1
H , which we measure in �oating 

Table 2. Step-by-step GAD code evolution.

Step 1: Convert C to Mathematica Step 2: Parameterize subexpressions

v1  =  Sqrt[x1]  +  a∗x1 v1  =  Sqrt[x1[x]]  +  a∗x1[x]

v2  =  Sqrt[x2]  +  a∗x2 v2  =  Sqrt[x2]  +  a∗x2

v3  =  (v1  +  v2)/(v1∗v2) v3  =  (v1[x]  +  v2[x])/(v1[x]∗v2[x])

H  =  v3∗v3 H  =  v3[x]∗v3[x]

Step 3: Utilize Mathematica to compute derivatives

v1’  =  x1’[x]/(2∗Sqrt[x1[x]])  +  a∗x1’[x]

v2’  =  0

v3’  =  (v1[x]∗v2[x]∗(v1’[x]  +  v2’[x])-((v1[x]  +  v2[x])∗(v1’[x]∗v2[x]

  +  v1[x]∗v2’[x]))/(v1[x]∗v1[x]∗v2[x]∗v2[x])

H’  =  2∗v3’[x]∗v3[x]

Step 4: Convert Mathematica to C; prime notation becomes a protected prm suf�x

v1prm  =  x1prm/(2∗sqrt(xi))  +  a∗x1prm

v2prm  =  0

v3prm  =   (v1∗v2∗(v1prm  +  v2prm)-((v1  +  v2)∗(v1prm∗v2  +  v1∗v2prm))/(v1∗v1∗v2∗v2)

Hprm  =  2∗v3prm∗v3

Step 5: Replace x1prm with 1 and remove terms equaling 0

v1prm  =  1./(2∗sqrt(x1))  +  a

v3prm  =  (v1∗v2∗v1prm-(v1  +  v2)∗v1prm∗v2)/(v1∗v1∗v2∗v2)

Hprm  =  2∗v3prm∗v3

T D Knowles et alClass. Quantum Grav. 35 (2018) 155003
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point operations (FLOPs6.) Our goal in GAD, therefore, is to choose V  to minimize the num-

ber of FLOPs needed to compute ∂x1
H .

In general, the largest contributor to FLOPs is the product rule. If there are M different sub-

expressions multiplied together in a given expression, computing the derivative will require 

O(M2) FLOPs. If we therefore choose V  such that each vℓ contains no more than two previ-

ous subexpressions multiplied together, we should minimize the overall cost. We expect a 

signi�cant reduction in FLOPs to correspond to a signi�cant reduction in the time to generate 

a waveform.

We estimated the number of FLOPs based on benchmarks provided in [25] for CPUs corre-

sponding to the CPU family in our workstations (Intel Core i7-6700) and generated table 3. 

We emphasize that the values listed in table 3 are truly rough estimates, used only to provide 

us general direction as we seek an optimal V .

Table 4 compares the number of Hamiltonian derivative FLOPs under GAD to the num-

ber in the exact derivatives (EDs) generated by Mathematica’s CSE code generation algo-

rithm. In principle, the difference in FLOPs between ED and GAD schemes may be used 

to predict the waveform generation speedup factor. A direct comparison from table 4 indi-

cates a 3.6×  reduction in FLOPs when using GAD. For a double neutron star coalescence, 

Hamiltonian derivative computations constitute about 80% of waveform generation time. This 

suggests a speedup factor of 2.3×. Waveform generation times for three scenarios comparing 

ED and GAD implemented in v3_opt are shown in table 5, and demonstrates a speedup factor 

of about 1.7×. We emphasize again that counting FLOPs using the relative values of table 3 

Table 3. Relative FLOPs count of the mathematical operations.

a  +  b a  −  b a ∗ b a  =  b a/b sqrt(a) log(a) pow(a, b)

1 1 1 1 3 3 24 24

Table 4. Number of FLOPs using ED versus GAD methods.

Derivative 
scheme

Space derivative 
(FLOPs)

Momentum derivative 
(FLOPs)

Spin derivative 
(FLOPs) Total (FLOPs)

ED 3 × 5073 3 × 2319 6 × 4333 48174

GAD 3 × 1418 3 × 527 6 × 1264 13419

6 Not to be confused with ‘FLOPs per second’ (FLOPS).

Table 5. Benchmark comparison of ED to GAD strategies. In each scenario, we adopt 
a 10 Hz start frequency.

Parameters

v3_opt (s) v3_opt (s)

ED GAD

Neutron star binary 36.75 20.49

1.4M⊙ + 1.4M⊙, s
y

1
= 0.05 ×(1.79)

Black Hole  +  Neutron Star 8.07 4.69

10M⊙ + 1.4M⊙, s
y

1
= 0.4 ×(1.72)

Black hole binary (GW150914-like) 0.64 0.38

36M⊙ + 29M⊙ ×(1.68)

s
y

1
= 0.05, s

z

1
= 0.5, s

y

2
= −0.01, s

z

2
= −0.2

T D Knowles et alClass. Quantum Grav. 35 (2018) 155003
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only provides a rough estimate of the reduction in FLOPs, and the compiler itself rearranges 

arithmetic expressions to minimize FLOPs as well so the gap between our estimated and 

observed speed-ups is not surprising.

2.3. Dense output: a more efficient way of interpolating sparsely-sampled data

An RK4 ODE solver with adaptive timestep control solves the EOB Hamiltonian equations of 

motion in v3; thus solutions are unevenly sampled in time. Subsequent analyses require map-

ping these data into the frequency domain via the fast Fourier transform (FFT), which expects 

evenly-sampled data. Rather than restricting the integration timestep, v3 uses cubic splines 

to interpolate the Hamiltonian solutions after RK4 runs to completion. During optimization 

of v2, the GSL cubic spline interpolation routine was optimized and gave signi�cant perfor-

mance gains. During optimization of v3, it was discovered that third-order Hermite interpola-

tion made v3_Opt more faithful to v3 (see section 3). Hermite interpolation requires only two 

function values and the derivatives at those values, which are available at each step of RK8. 

Thus we may interpolate the sparsely-sampled data to the desired evenly-sampled data ‘on the 

�y’ during integration. Such an integration routine is called a dense output method [26]. In 

particular, suppose the RK8 integrator computes the solution y(t0) and y(t1) at times t0 and t1 

with timestep h and derivative values y′
0
 y′

1
. Then for any 0 � θ � 1, we have

y(t0 + θh) = (1 − θ)y(t0) + θy(t1) + θ(θ − 1) [(1 − 2θ)y(t1)− y(t0) + (θ − 1)hy′(t0) + θhy′(t1)] .

As this cubic Hermite interpolation routine uses both the solution data and derivative values 

at each point, it therefore requires only the output of the RK8 integration and no further data 

storage or function evaluations.

3. Results

In section 3.1 we establish that v3_Opt produces waveforms which agree with v3 at the level 

of roundoff error. Section 3.2 then describes the process of measuring speedup and demon-

strates the speedup factor achieved.

3.1. Determining faithfulness

Given two waveforms h1(t) and h2(t) (in the time domain), we determine if h1(t) is faithful to 

h2(t) using the LVC’s open-source Pycbc software [27–29]. This computation depends on the 

following de�nitions, which we write in the same form as [30]. The noise-weighted overlap 

between h1 and h2 is de�ned as

(h1|h2) ≡ 4Re

∫ fh

fl

h̃1( f )h̃∗
2
( f )

Sn( f )
df

with h̃i( f ) denoting the Fourier transform of the waveform hi(t), h
∗

i
 denoting the complex con-

jugate of hi, fl and fh denoting the endpoints of the range of frequencies of interest, and Sn( f ) 

denoting the one-sided power spectral density (PSD) of the LIGO detector noise. We chose 

fl  =  20 Hz and Sn( f ) to be Advanced LIGO’s design zero-detuned high-power noise PSD [31]. 

For each waveform, fh is the Nyquist critical frequency [26]. We then de�ne the faithfulness 

between h1 and h2 to be the overlap between the normalized waveforms maximized over rela-

tive time and phase shifts:

T D Knowles et alClass. Quantum Grav. 35 (2018) 155003
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〈h1|h2〉 ≡ max
φc,tc

(h1(φc, tc)|h2)
√

(h1|h1)(h2|h2)
.

Here tc and φc denote the coalescence time and phase, respectively. Note that normalization 

forces 〈h1|h2〉 ∈ [0, 1], with 〈h1|h2〉 = 1 indicating complete overlap (and therefore a perfectly 

faithful waveform) while 〈h1|h2〉 = 0 indicates no overlap (an unfaithful waveform7). For 

each faithfulness test conducted, we generate a waveform with two different approximants 

and the same set of input parameters.

We ran 100 000 faithfulness tests for each set of waveform approximants we wished to com-

pare. The input parameters for each test are randomly chosen by Pycbc with bounds as outlined 

in table 6; these bounds are chosen to capture the relevant parameter space for v3. Note that 

each of the spin parameters sx
i , s

y

i , sz
i  are chosen randomly in (−1, 1) with the constraint

√

(sx
i )

2 + (sy

i )
2 + (sz

i )
2 � 0.99, i ∈ {1, 2}.

The speci�c faithfulness runs we conducted were organized as follows. The approxim-

ant v3_pert is identical to v3 except m1 is replaced with m1

(

1 + 10
−16

)

; such a perturbation 

should result in waveforms that are nearly identical and provides a measure of how sensitive 

v3 is to roundoff error. Thus faithfulness tests comparing v3 and v3_pert provide a ‘con-

trol’ against which we compare the faithfulness of v3_Opt to v3. As another point of com-

parison, we also test v3 (which is RK4-based) against the RK4-based v3_Opt_rk4. For each 

approximant comparison we compare the effect of increasingly stricter ODE solver tolerance. 

By default, v3 sets the ODE solver’s absolute and relative error tolerances to ε ≡ 1 × 10
−8; 

we compare faithfulness at tolerances of ε, ε× 10
−1, ε× 10

−2, ε× 10
−3, and 2ε× 10

−4. 

Finally, we also consider the effect of compiler choice on faithfulness and so conduct faithful-

ness runs using both gcc and icc. Table 7 summarizes the faithfulness tests conducted and 

their results; the rightmost column displays the counting error 
√

n for the number of wave-

forms n with 〈·|·〉 < 0.999.

We comment on the values in table 7. For a couple of parameters for which 〈·|·〉 < 0.8 

when comparing v3 to v3_Opt compiled with gcc, one author back-traced a signi�cant dif-

ference between v3 and v3_Opt to the ODE stopping condition or the time of maximum 

amplitude being clearly wrong in v3 but not v3_Opt. In particular, there are some algorithms 

within v3 that are fundamentally non-robust, and v3_Opt inherits most of these functions. The 

RK8 integration of v3_Opt should be just as accurate as the RK4 integration of v3_Opt_rk4 

when the tolerances are equal, but the output from RK8 should be much sparser (by more than 

a factor of 2) than RK4. Since we observe worse faithfulness with v3_Opt than v3_Opt_rk4, 

we conclude that most of the truncation error stems from the interpolation of the sparsely-

sampled ODE solution to a uniform timestep.

Table 6. Ranges of values for random input parameters in our faithfulness tests.

Mass of object 1 (solar masses) m1 ∈ [1, 100]

Mass of object 2 (solar masses) m2 ∈ [1, 100]
Spin magnitude of object 1 (dimensionless) |a1| ∈ [0, 0.99]
Spin magnitude of object 2 (dimensionless) |a2| ∈ [0, 0.99]
Binary total mass (solar masses) mtotal ∈ [4, 100]
Starting orbital frequency (Hz) f  =  19

7 Another common measure in faithfulness tests is mismatch, de�ned as 1 − 〈h1|h2〉.
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Most importantly, notice that as we make the ODE solver’s tolerance ε stricter (resulting 

in smaller errors and more �nely sampled output data from the ODE solver), the faithfulness 

between v3 and v3_Opt improves to the level of agreement between v3 and v3_pert. Thus 

we conclude that v3_opt generates roundoff-level agreement in the limit of ε → 0 with errors 

dominated by interpolation otherwise.

3.2. Performance benchmarks

In order to capture the full effect of our optimizations to v3, we compared waveform genera-

tion times of v3_Opt with waveform generation times of v3_preopt. In particular, v3_preopt 

lacks by-hand optimizations of the EOB Hamiltonian implemented in the development of v2_

opt; thus unnecessary computations of transcendental functions pow(), log(), and exp() 

remain therein. All reported benchmarks were completed on a single core of a modern desktop 

computer with an Intel Core i7-7700 CPU and 64 GB RAM.

To highlight cases of interest, table 8 summarizes benchmarks of v3_Opt and v3_Opt_rk4 

in comparison to v3_preopt for a handful of scenarios of interest to LIGO. The speedup fac-

tors are also included, with speedup simply de�ned to be the ratio of time to generate a wave-

form with v3_preopt to the time to generate the same waveform with v3_Opt or v3_Opt_rk4.

To demonstrate that the advertised speedup factors of table 8 apply across the parameter 

space of binaries of interest to the LVC, we completed four benchmark surveys. The �rst 

two concern binary black hole systems, one with varying masses and the other with varying 

spins. The third survey considers mixed binaries (one black hole and one neutron star), and 

the fourth binary neutron stars. The parameters tested in each run are included in table 9. The 

results of these surveys are plotted in �gure 1 and summarized in table 8.

Table 7. Summary of PyCBC faithfulness results. Here ε = 1 × 10
−8 and each row 

reports the results of a run of 100 000 faithfulness tests. icc refers to Intel compiler 
version 15.5.223, while gcc refers to GNU compiler version 4.9.

Comparison Compiler
ODE  
tolerance

Number of waveforms with faithfulness Counting

<0.8 <0.9 <0.95 <0.99 <0.999 Error

v3 versus v3_pert  

(per 105 for 106 tests)

gcc ε 1 5 13 104 399 ±20

icc ε 1.0 4.2 11.5 109.0 398.2 ±6.3

v3 versus v3_Opt gcc ε 5 28 136 1184 5466 ±74

icc ε 5 28 135 1174 5509 ±74

icc ε× 10
−1 2 16 44 327 1510 ±39

icc ε× 10
−2 0 2 12 143 727 ±27

icc ε× 10
−3 1 3 8 80 511 ±23

icc 2ε× 10
−4 1 1 2 60 457 ±21

v3 versus  

v3_Opt_rk4
gcc ε 1 9 35 427 1529 ±39

icc ε 0 9 35 420 1510 ±39

icc ε× 10
−1 1 7 24 223 926 ±30

icc ε× 10
−2 0 0 8 114 585 ±24

icc ε× 10
−3 1 3 8 77 483 ±22

icc 2ε× 10
−4 1 2 3 52 423 ±21
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We would like to measure an average speedup based on the four surveys. As in [20], we 

de�ne an overall speedup factor as a waveform cycle-weighted average

S =

∑
i
SiNi∑
i
Ni

where Si is the speedup factor for generating the ith waveform and Ni is the number of wave-

cycles in the ith waveform. We found S ∼ 340. This reduces the time necessary for a black 

hole binary PE run from ∼100 years (with v3_preopt) to ∼8 months (with v3_Opt). We expect 

lower mass PE runs will be possible on similar timescales with additional optimizations.

4. Conclusions and future work

Anticipating the potential detection by Advanced LIGO of signi�cantly precessing compact 

binaries, we have optimized v3 to make costly precessing-waveform-approximant-based data 

Table 8. Benchmarks and speedups of v3_Opt and v3_Opt_rk4 compared to v3.

Physical scenario

v3_preopt v3_Opt_rk4 v3_Opt v3_Opt

gcc, (s) gcc, (s) gcc, (s) icc, (s)

DNS, s
y

2
= 0.05 8618.60 98.51 42.85 21.22

1.3M⊙ + 1.3M⊙ ×(87.49) ×(201.1) ×(406.2)

BHNS, s
y

NS
= 0.05 2760.77 20.75 8.84 4.37

10M⊙ + 1.3M⊙ ×(133.0) ×(312) ×(632)

BHB, s
y

2
= 0.05 127.71 1.70 0.90 0.46

16M⊙ + 16M⊙ ×(75.1) ×(140) ×(280)

BHB, s
y

1
= s

y

2
= 0.9 168.13 1.75 0.91 0.46

16M⊙ + 16M⊙ ×(96.1) ×(180) ×(370)

BHB, s
y

1
= s

z

2
= 0.9 235.53 3.48 1.55 0.76

10M⊙ + 10M⊙ ×(67.7) ×(152) ×(310)

BHB, GW150914-like 31.48 0.75 0.51 0.27

36M⊙ + 29M⊙ ×(42) ×(60) ×(120)

s
y

1
= 0.05, sz

1
= 0.5

s
y

2
= −0.01, sz

2
= −0.2

Table 9. Surveyed parameters: each survey tested 400 parameter combinations, with 
20 evenly-spaced values taken in each range indicated. Here BHBM indicates the black 
hole binary mass survey, BHBS the black hole binary spin survey, BHNS the black hole 

neutron star survey, and DNS the double neutron star survey. We de�ne q ≡
m1

m2

, the 

ratio of the mass of object 1 to the mass of object 2. The dimensionless Kerr spins of 

each object are denoted a1 and a2, respectively. Each waveform generation started with 
a frequency of 10 Hz used a sample rate of 16 384 Hz.

Ranges m1 (M⊙) q (dimensionless) a1 (dimensionless) a2 (dimensionless)

BHBM [16.7, 100.3] [1, 10] 0.0500001 0

BHBS 10 1 [−0.95, 0.95] [−0.95, 0.95]
BHNS [7, 100] M

1.4
[−0.95, 0.95] 0

DNS [1.2, 2.3] M

m∈[1.2,2.3]
0.0500001 0
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analysis applications like PE possible in a reasonable amount of time. If an ef�cient 8D ROM 

is found, such optimizations will make the construction of this ROM faster. After migrating 

v2/v4 optimizations to v3, we further optimized partial derivatives of the Hamiltonian using 

a GAD scheme. This resulted in waveforms that are faithful to v3, as evidenced by faithful-

ness increasing to 1 as ODE tolerance decreases. We achieved an average overall speedup of 

∼340×, ranging from ∼120×  for GW150914-like black hole binaries to ∼630×  for black 

hole-neutron star binaries. We expect that further optimizations are possible, achieving an 

additional speedup factor of at least ∼3×. Future work will focus on transforming Cartesian 

coordinates to spherical coordinates to lower sampling rates even more during ODE solving 

and integration.
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Figure 1. Performance benchmarks: Left panel: plots speedup factor versus number 
of wavecycles in the binary inspiral. Measuring the number of wavecycles allows us to 
compactly display the results of the benchmark tests without explicit reference to mass 
or spin. Right panel: plots the number of wavecycles versus the time taken to output the 
waveform. Note that the speedup factor in the left panel is simply the ratio of the curves 
in the right panel.
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