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Abstract

When a gravitational wave is detected by Advanced LIGO/Virgo, sophisticated
parameter estimation (PE) pipelines spring into action. These pipelines
leverage approximants to generate large numbers of theoretical gravitational
waveform predictions to characterize the detected signal. One of the most
accurate and physically comprehensive classes of approximants in wide use
is the ‘spinning effective one body-numerical relativity’ (SEOBNR) family.
Waveform generation with these approximants can be computationally
expensive, which has limited their usefulness in multiple data analysis contexts.
In prior work we improved the performance of the aligned-spin approximant
SEOBNR version 2 (v2) by nearly 300 . In this work we focus on optimizing
the full eight-dimensional, precessing approximant SEOBNR version 3 (v3).
While several v2 optimizations were implemented during its development,
v3 is far too slow for use in state-of-the-art source characterization efforts
for long-inspiral detections. Completion of a PE run after such a detection
could take centuries to complete using v3. Here we develop and implement
a host of optimizations for v3, calling the optimized approximant v3_Opt.
Our optimized approximant is about 340x faster than v3, and generates
waveforms that are numerically indistinguishable.

Keywords: SEOBNR, EOBNR, effective-one-body, parameter estimation,
numerical relativity, optimization
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1. Introduction

With its first detections of gravitational waves [1-6], the advanced Laser Interferometer
Gravitational-Wave Observatory (Advanced LIGO) has provided a fundamentally new means
of observing the Universe. At the heart of each of these detections was a merger of compact
binaries. In such binaries, each compact object possesses four intrinsic parameters: mass, and
the three components of the spin vector. Inferring all eight intrinsic parameters* from a gravi-
tational wave observation, which analysis is part of the more general parameter estimation
(PE), remains a challenging and computationally expensive enterprise.

The LIGO/Virgo Scientific Collaboration (LVC) performs PE in a Bayesian framework,
implemented within the LALINFERENCE software package that is part of the larger open-source
software framework LALSuite [7]. In such a framework, we sample the posterior distribu-
tion by repeatedly calculating the likelihood that a particular waveform matches the data and
applying Bayes’ theorem. Evaluating the likelihood requires the rapid, sequential generation
of as many as ~ 10® theoretical gravitational wave predictions [8]. Generating so many predic-
tions via a full solution of the general relativistic field equations (using the tools of numerical
relativity) would be far too computationally expensive. Thus theoretical models adopted for
PE generally employ approximate solutions called approximants. State-of-the-art approxim-
ants adopt post-Newtonian techniques for evaluating the gravitational waveform throughout
most of the inspiral and ringdown, and inject information from numerical relativity calcul-
ations for the late inspiral and merger.

One such gravitational wave approximant is the spinning effective one body-numerical
relativity (SEOBNR) algorithm. This algorithm marries an effective-one body inspiral
gravitational waveform approximation—with unknown higher-order terms fit to numerical
relativity-generated gravitational wave predictions—to a black hole ringdown model [9].
In particular, SEOBNR starts with the effective one body (EOB) approach to non-spinning
binary modeling [10] by mapping the dynamics of the two-body system to the dynamics of an
effective particle moving in a deformed Schwarzschild metric. This work was then extended
to include the effects of spinning, precessing binaries [11]. Implemented numerically, this
spinning EOB procedure adopts a precessing source frame in which precession-induced vari-
ations in amplitude and phase are minimized during inspiral, and a source frame aligned with
the spin of the final body for matching the inspiral to the merger-ringdown [9].

The other widely adopted approximant within the LVC for PE is the Phenom series of phe-
nomenological waveform models. These waveform models are based on the combination of
accurate post-Newtonian inspiral models with late-inspiral and merger phenomenological fits
to suites of numerical relativity simulations [12]. More recently, Phenom models have been
built to include the effects of precession [13]. In particular, precession effects are included by
using post-Newtonian methods to compute precession angles and then ‘twisting’ the underly-
ing non-precessing model [13—15]. Phenom models are simulated completely in the frequency
domain, and therefore simplify some aspects of analysis. The only Phenom model designed
to generate gravitational waveform predictions across all eight dimensions of parameter space
is PhenomP [13], which was extensively used in the first six detection papers. We remark that
Phenom is limited to a relatively small number of numerical relativity simulations against

4 Intrinsic parameters are fundamental to the underlying physics of the system. In contrast, extrinsic parameters are
related to the observer (e.g. polarization, sky location, and distance) and are not considered in this paper. Some au-
thors refer to seven intrinsic parameters in the full-dimensional space, which include each spin component and the
mass ratio of the system. This is because the total mass of the system is simply a scaling factor; we choose to refer
to eight parameters since the total mass sets the time and frequency scales and therefore must be considered in PE.
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which it has been calibrated, and it is difficult to determine the degree of systematic uncer-
tainty in the model without appealing to another model for comparison.

Evaluating the systematic uncertainties of the Phenom model requires construction of an
independent gravitational waveform model with independent systematics, and the SEOBNR
family of models is a good candidate for this task. The only SEOBNR model capable of gener-
ating theoretical gravitational waveform predictions in all eight intrinsic dimensions of param-
eter space is the third version of the model, v3; the first and second versions were restricted to
aligned-spin cases. In particular, v3 was built to accommodate arbitrary mass ratios, spin mag-
nitudes, and spin orientations and has been calibrated and validated against a variety of numer-
ical relativity simulations [16]. Thus v3 is vital for precessing compact binary merger PE.

Unfortunately, v3 is too currently too slow for PE. A single waveform generation across
the LIGO band for, say, a black hole-neutron star system using v3 can take as long as an hour
on a modern desktop computer. If LIGO observed a black hole-neutron star system merge, a
sequential-gravitational-wave-generation PE would take thousands of years. Attempts to over-
come the computational challenge of generating such time-consuming gravitational wave-
forms include the construction of reduced order model (ROM) approximants. ROMs make use
of multidimensional interpolations between sampled points in another underlying approxim-
ant. For example, a ROM based on the aligned-spin SEOBNR version 2 (v2) approximant [17,
18] is constructed by first generating an extensive collection of waveform predictions using
v2 that adequately samples the 4D parameter space reliably covered by v2. Then to obtain the
gravitational waveform at any desired point in parameter space, the ROM simply interpolates
within the four dimensions of sampled parameter space. A ROM version of v2 can generate
waveforms up to ~3000x faster than v2 directly [17], which explains in part why ROMs
enjoy such widespread use within the LVC for data analysis applications.

While ROMs have been constructed with favorable performance characteristics in aligned-
spin situations, the cost of generating a ROM grows exponentially with the dimension of the
ROM (though see [19] for ideas on combating this using a reduced basis approach). No strategy
yet exists that can perform the 8-dimensional (8D) interpolations faster than the 8D approximant;
until such a strategy is invented, the most promising way to improve the performance of theor-
etical waveform generation in the full 8D parameter space will be to optimize the approximant
directly. As a proof-of-principle, we demonstrated that such an approach is capable of improving
the performance of the aligned-spin v2 approximant by a typical factor of ~280x [20]. We call
our optimized v2 approximant v2_opt. The precessing (8D) v3 approximant was in development
as we independently prepared v2_opt, and thus originally contained all the same inefficiencies as
v2. This suggests that if the full suite of optimizations we implemented in v2 were incorporated
into v3, v3-based PE timescales might drop by two orders of magnitude at least.

This paper documents our incorporation of applicable v2 optimizations into v3, as well as
our implementation of innovative new optimization ideas, which together act to speed up v3
by ~340x. Optimization strategies are summarized in section 2. Section 3 presents code vali-
dation tests that demonstrate roundoff-level agreement between v3 and our latest optimized
version of v3, designated v3_Opt, along with benchmarks providing an overview of perfor-
mance gains across parameter space in v3_Opt. For convenience, table 1 defines all SEOBNR
approximants referenced in this paper.

2. SEOBNRv3_opt: optimizations migrated from v2_opt

Optimizations to v3 were performed in two phases. In the first phase, described in section 2.1,
we migrated to v3 all applicable optimizations developed during the preparation of v2_opt.

3
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Table 1. Approximant naming conventions. These conventions apply throughout this

paper.

Base approximant Approx. name Description

SEOBNRV2 (spin-aligned) v2 Initial SEOBNRvV2 implementation®; see [21]
v2_opt Optimized v2?; see [20]

SEOBNRV3 (precessing) v3_preopt Initial SEOBNRv3 implementation®; see [9]
v3 Partially optimized v3_preopt with bug fixes®
v3_pert v3 with machine-e mass perturbation®
v3_opt v3 optimized similarly to v2_opt®
v3_Opt v3_opt with new optimization strategies?
v3_Opt_rk4 v3_Opt implementing RK4 rather than RK8¢

# As of publication, the most recent updates to v2/v2_opt are found on commit ID 2cce415 in the LALSuite
master branch.

®To generate a waveform with v3_preopt, download LALSu1i te from the archived repository page https://
git.ligo.org/lscsoft/lalsuite-archive/tree/14414694698a2£18c9135445003cade805
ad2096 and use approximant tag SEOBNRv3.

¢ As of publication, the most recent updates to v3 and v3_opt are found on commit ID 19e95b4 in the LALSuite
master branch.

4 Approximants v3_opt and v3_opt_rk4 were updated to run v3_Opt and v3_Opt_rk4, respectively, on commit ID
1391£77inthe LALSuite master branch.

Sections 2.2 and 2.3 detail the second phase of optimization, outlining new strategies incor-
porated into v3_Opt.

2.1. Migrated optimizations

Here we summarize the optimizations to v2 which were migrated to v3 and thus implemented
in v3_opt.

e Switching compilers. Switching from the GNU Compiler Collection (gcc) [22]
C compiler to the Intel Compiler Suite (icc)[23] C compiler improves perfor-
mance by roughly a factor of 2x. It is well-known that the i cc compiler often produces
more efficient executables than the gcc compiler’.

o Minimize transcendental function evaluations. The EOB Hamiltonian equations of
motion were hand-optimized by minimizing calls to some expensive transcendental func-
tions such as exp (), Log (), and pow ().

e Replacing finite difference with exact derivatives. When solving the EOB Hamiltonian
equations of motion, v3 computes partial derivatives of the Hamiltonian using finite
difference approximations. We replaced these with exact, Mathematica-generated
expressions for the derivatives, using Mathematica’s code generation facilities—which
includes common subexpression elimination (CSE)—to generate the C code [24].
Although this alone acts to significantly speed up v3, in this work we further optimize
these Mathematica-generated derivatives.

e [ncreasing the order of the ODE solver. v3 solves the EOB Hamiltonian equations of
motion via a Runge—Kutta fourth order (RK4) ODE solver. After implementing exact
derivatives, we noticed that the number of RK4 steps needed dropped significantly—

> We used the following compiler flags when compiling with icc: -xHost, 02, and ~fno-strict-alias-
ing.
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presumably due to the effective removal of high numerical noise intrinsic to finite-
difference derivatives. We then found that adopting a Runge—Kutta eighth order (RKS8)
ODE solver resulted in 2 x larger timesteps, so an even larger speed-up was observed.

® Reducing orbital angular velocity calculations. The orbital angular velocity w was cal-
culated for each (¢, m) mode (as defined in [9]) inside the ODE solver. As w exhibits no
dependence on £ or m, this expensive recalculation was unnecessary and needs only be
performed once.

For more details about these optimizations see our v2 optimization paper [20].

2.2. Guided automatic differentiation: a more efficient way of generating symbolic derivatives
of the Hamiltonian

After migrating the v2 optimizations described in section 2.1 to v3, profiling analyses indicated
that approximately 75% of v3_opt’s total runtime was spent computing the v3 Hamiltonian
[9] and its partial derivatives with respect to the twelve degrees of freedom (consisting of three
spatial degrees {x, y, z}, three momentum degrees { p, py, p. }, and three spin degrees for each
of the two binary components i € {1,2}: {s7, s}, s¢}).

In v3, the ODE solver computes these partial derivatives by direct evaluations of the
Hamiltonian itself via finite difference techniques [21]. In v3_opt, these numerical derivatives
were replaced with Mathematica-generated exact derivatives. Although these exact deriva-
tives unlock significant performance gains, the Mathematica-generated C code was neither
particularly human-readable (comprising thousands of lines of code output by Mathematica’s
CSE routines) nor particularly well-optimized (common patterns were still visible and recom-
puted in the C code). Attempts to gain performance through consolidation of all derivatives—
as was possible in our optimizations of v2—proved beyond Mathematica’s capabilities when
differentiating the v3 Hamiltonian on our high-performance workstations. Therefore, C codes
for all twelve exact derivatives needed to be output separately, resulting in a significant num-
ber of unnecessary re-computations.

We present here our new strategy for computing partial derivatives of the Hamiltonian,
called guided automatic differentiation (GAD), which results in a significant reduction in
computational cost while ensuring the resulting code is highly human-readable. GAD is based
on forward accumulation automatic differentiation, with the advantage of the subexpressions
being chosen by hand to minimize the overall number of floating point operations.

The following describes the process of computing a partial derivative of the v3 Hamiltonian
H with respect to an arbitrary independent variable x; using GAD. We may write H in the
following form, where [ is a set of input quantities:

vi = fi(I)
Vo = fo(vi, 1)
vz = f3(vi,va,1)

H = fy(vi,va2,v3,....1).

Here fy is the (th function of the set of input quantities / and previously computed subexpres-
sions {vo, vi, ..., ve—1}. Although N = 200 for v3, for the sake of example we suppose N = 3,
1= {xl,xg}, and
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Table 2. Step-by-step GAD code evolution.

Step 1: Convert C to Mathematica Step 2: Parameterize subexpressions

vl =Sqgrt[xl] + a*xl vl =Sgrt[xl[x]] + a*xl[x]

v2 = Sgrt[x2] 4+ a*x2 v2 = Sqgrt[x2] 4+ a*x2

v3= (vl +v2)/ (v1*v2) v3= (vl[x] +v2([x])/ (vl[x]*v2[x])
H=v3xv3 H=v3[x]*v3[x]

Step 3: Utilize Mathematica to compute derivatives

vl =x1"[x]/(2%¥Sgrt[x1[x]]) + a*x1’[x]

v2'=0

v3’ (vI[x]*v2 [x]x(v1' [x] +v2 [x])-((v1[x] +Vv2[x])*(v]l [x]*v2[x]
+vl[x]*v2' [x]))/ (v1[x]*v]l [x]*v2[x]*v2[x])

H =2%xv3 [x]*v3[x]

Step 4: Convert Mathematica to C; prime notation becomes a protected prm suffix

viprm = xlprm/ (2%xsqrt (xi)) + a*xlprm

v2prm =0

v3prm= (vlxv2x (vliprm+ v2prm) - ( (vl +v2) *x (viprms«v2 + v1ikv2prm) ) / (vIkv1kv2%v2)
Hprm = 2*v3prmv3

Step 5: Replace x1prm with 1 and remove terms equaling 0
viprm=1./(2*%sqrt(x1l)) + a

v3prm = (vlxv2xvlprm— (vl 4+ v2)xviprmxv2) / (v1sv1sv2*v2)
Hprm = 2*v3prmv3

Vi = /X1 + ax;

Vi =1 +ax
vy = (vi +v2)/(vivp)
H= v%.

We demonstrate GAD by taking a partial derivative of H with respect to the independent input
variable x;. Table 2 displays the evolution of this example code under the GAD scheme, which
proceeds as follows:

1. We begin with a list of variables and subexpression computations for the Hamiltonian,
and translate this C code into the Mathematica language.

2. We parameterize the terms of each subexpression according to their dependence on x;.

3. Mathematica computes derivatives of each subexpression.

4. We convert the Mathematica output into C code.

5. We replace each occurrence of x| with 1 and remove terms equal to 0.

The resulting C code is short, optimized, and human readable. Furthermore, any terms that are
common to all derivative expressions are computed and saved before computing the partial
derivatives, further reducing the computational cost.

Since each v, is merely an intermediate of H, there is significant freedom in our choice
of the set of subexpressions V = {vi,vs,...,vy_1}. Our choices do, however, have a direct
effect on the number of calculations necessary to compute Oy, H, which we measure in floating
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Table 3. Relative FLOPs count of the mathematical operations.

a+b a—>b axb a=Db alb sqrt(a) log(a) pow(a,b)
1 1 1 1 3 3 24 24

Table 4. Number of FLOPs using ED versus GAD methods.

Derivative Space derivative Momentum derivative Spin derivative

scheme (FLOPs) (FLOPs) (FLOPs) Total (FLOPs)
ED 3 x 5073 3 x 2319 6 x 4333 48174

GAD 3 x 1418 3 x 527 6 x 1264 13419

Table 5. Benchmark comparison of ED to GAD strategies. In each scenario, we adopt
a 10 Hz start frequency.

v3_opt (s) v3_opt (s)

Parameters ED GAD

Neutron star binary 36.75 20.49
L4Mg + 1.4M¢, s = 0.05 % (1.79)
Black Hole + Neutron Star 8.07 4.69
10Mp + 14Mg, s) = 0.4 x(1.72)
Black hole binary (GW150914-like) 0.64 0.38
36M + 29M % (1.68)

s, =005, 5 =05, s, = —001, 55 = —0.2

point operations (FLOPs®.) Our goal in GAD, therefore, is to choose V to minimize the num-
ber of FLOPs needed to compute 0., H.

In general, the largest contributor to FLOPs is the product rule. If there are M different sub-
expressions multiplied together in a given expression, computing the derivative will require
O(M?*) FLOPs. If we therefore choose V such that each v, contains no more than two previ-
ous subexpressions multiplied together, we should minimize the overall cost. We expect a
significant reduction in FLOPs to correspond to a significant reduction in the time to generate
a waveform.

We estimated the number of FLOPs based on benchmarks provided in [25] for CPUs corre-
sponding to the CPU family in our workstations (Intel Core 17-6700) and generated table 3.
We emphasize that the values listed in table 3 are truly rough estimates, used only to provide
us general direction as we seek an optimal V.

Table 4 compares the number of Hamiltonian derivative FLOPs under GAD to the num-
ber in the exact derivatives (EDs) generated by Mathematica’s CSE code generation algo-
rithm. In principle, the difference in FLOPs between ED and GAD schemes may be used
to predict the waveform generation speedup factor. A direct comparison from table 4 indi-
cates a 3.6x reduction in FLOPs when using GAD. For a double neutron star coalescence,
Hamiltonian derivative computations constitute about 80% of waveform generation time. This
suggests a speedup factor of 2.3 x. Waveform generation times for three scenarios comparing
ED and GAD implemented in v3_opt are shown in table 5, and demonstrates a speedup factor
of about 1.7 x. We emphasize again that counting FLOPs using the relative values of table 3

% Not to be confused with ‘FLOPs per second” (FLOPS).
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only provides a rough estimate of the reduction in FLOPs, and the compiler itself rearranges
arithmetic expressions to minimize FLOPs as well so the gap between our estimated and
observed speed-ups is not surprising.

2.3. Dense output: a more efficient way of interpolating sparsely-sampled data

An RK4 ODE solver with adaptive timestep control solves the EOB Hamiltonian equations of
motion in v3; thus solutions are unevenly sampled in time. Subsequent analyses require map-
ping these data into the frequency domain via the fast Fourier transform (FFT), which expects
evenly-sampled data. Rather than restricting the integration timestep, v3 uses cubic splines
to interpolate the Hamiltonian solutions after RK4 runs to completion. During optimization
of v2, the GSL cubic spline interpolation routine was optimized and gave significant perfor-
mance gains. During optimization of v3, it was discovered that third-order Hermite interpola-
tion made v3_Opt more faithful to v3 (see section 3). Hermite interpolation requires only two
function values and the derivatives at those values, which are available at each step of RKS.
Thus we may interpolate the sparsely-sampled data to the desired evenly-sampled data ‘on the
fly’ during integration. Such an integration routine is called a dense output method [26]. In
particular, suppose the RKS8 integrator computes the solution y(#y) and y(#;) at times #y and 7,
with timestep & and derivative values y; yj. Then for any 0 < 6 < 1, we have

Y(to + O0h) = (1= 0)y(to) + Oy(t1) + 0(6 — 1) [(1 = 20)y(11) — ¥(t0) + (0 — Dy’ (1) + Ohy' (11)].

As this cubic Hermite interpolation routine uses both the solution data and derivative values
at each point, it therefore requires only the output of the RKS integration and no further data
storage or function evaluations.

3. Results

In section 3.1 we establish that v3_Opt produces waveforms which agree with v3 at the level
of roundoff error. Section 3.2 then describes the process of measuring speedup and demon-
strates the speedup factor achieved.

3.1. Determining faithfulness

Given two waveforms /() and h,(¢) (in the time domain), we determine if /,(7) is faithful to
hy(1) using the LVC’s open-source PYCBC software [27-29]. This computation depends on the
following definitions, which we write in the same form as [30]. The noise-weighted overlap
between h; and h, is defined as

P in(Om() |

(l’lllhz) = 4RC/ f

o Sa(f)
with ﬁi( f) denoting the Fourier transform of the waveform %,(¢), h} denoting the complex con-
jugate of h;, f; and f;, denoting the endpoints of the range of frequencies of interest, and S,(f)
denoting the one-sided power spectral density (PSD) of the LIGO detector noise. We chose
fi=20Hz and S,(f) to be Advanced LIGO’s design zero-detuned high-power noise PSD [31].
For each waveform, f;, is the Nyquist critical frequency [26]. We then define the faithfulness
between h; and 5, to be the overlap between the normalized waveforms maximized over rela-
tive time and phase shifts:
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Table 6. Ranges of values for random input parameters in our faithfulness tests.

Mass of object 1 (solar masses) m € [1,100]
Mass of object 2 (solar masses) my € [1,100]
Spin magnitude of object 1 (dimensionless) lai| € [0,0.99]
Spin magnitude of object 2 (dimensionless) laz| € [0,0.99]
Binary total mass (solar masses) Myoral € [4, 100]
Starting orbital frequency (Hz) f=19

i |ha) = maxe — G te)l2)
1|1n2) = Serle (hl‘hl)(hﬂhz)'

Here 7. and ¢, denote the coalescence time and phase, respectively. Note that normalization
forces (h|hy) € [0, 1], with (h;|h,) = 1indicating complete overlap (and therefore a perfectly
faithful waveform) while (h;|h;) = 0 indicates no overlap (an unfaithful waveform’). For
each faithfulness test conducted, we generate a waveform with two different approximants
and the same set of input parameters.

We ran 100000 faithfulness tests for each set of waveform approximants we wished to com-
pare. The input parameters for each test are randomly chosen by Pycsc with bounds as outlined
in table 6; these bounds are chosen to capture the relevant parameter space for v3. Note that
each of the spin parameters s, s, 55 are chosen randomly in (—1, 1) with the constraint

V2 4 (812 + (55)2 < 099, i € {12},

The specific faithfulness runs we conducted were organized as follows. The approxim-
ant v3_pert is identical to v3 except m is replaced with m; (1 + 10’16); such a perturbation
should result in waveforms that are nearly identical and provides a measure of how sensitive
v3 is to roundoff error. Thus faithfulness tests comparing v3 and v3_pert provide a ‘con-
trol’ against which we compare the faithfulness of v3_Opt to v3. As another point of com-
parison, we also test v3 (which is RK4-based) against the RK4-based v3_Opt_rk4. For each
approximant comparison we compare the effect of increasingly stricter ODE solver tolerance.
By default, v3 sets the ODE solver’s absolute and relative error tolerances to € = 1 X 108,
we compare faithfulness at tolerances of ¢, € x 107, e x 1072, £ x 1073, and 2¢ x 1074,
Finally, we also consider the effect of compiler choice on faithfulness and so conduct faithful-
ness runs using both gcc and icc. Table 7 summarizes the faithfulness tests conducted and
their results; the rightmost column displays the counting error 1/n for the number of wave-
forms n with (-]} < 0.999.

We comment on the values in table 7. For a couple of parameters for which (-|-) < 0.8
when comparing v3 to v3_Opt compiled with gcc, one author back-traced a significant dif-
ference between v3 and v3_Opt to the ODE stopping condition or the time of maximum
amplitude being clearly wrong in v3 but not v3_Opt. In particular, there are some algorithms
within v3 that are fundamentally non-robust, and v3_Opt inherits most of these functions. The
RKS integration of v3_Opt should be just as accurate as the RK4 integration of v3_Opt_rk4
when the tolerances are equal, but the output from RKS8 should be much sparser (by more than
a factor of 2) than RK4. Since we observe worse faithfulness with v3_Opt than v3_Opt_rk4,
we conclude that most of the truncation error stems from the interpolation of the sparsely-
sampled ODE solution to a uniform timestep.

7 Another common measure in faithfulness tests is mismatch, defined as 1 — {h|h,).

9
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Table 7. Summary of PyCBC faithfulness results. Here € = 1 x 1078 and each row
reports the results of a run of 100000 faithfulness tests. icc refers to Intel compiler
version 15.5.223, while gcc refers to GNU compiler version 4.9.

Number of waveforms with faithfulness Counting

ODE
Comparison Compiler tolerance <0.8 <09 <095 <0.99 <0.999 Error
v3 versus v3_pert gcc € 1 5 13 104 399 +20
(per 105 for 10° tests) icc e 1.0 4.2 11.5 109.0 398.2 +6.3
v3 versus v3_Opt gcc € 5 28 136 1184 5466 +74
icc € 5 28 135 1174 5509 +74
icc ex 10! 2 16 44 327 1510 +39
icc ex1072 0 2 12 143 727 +27
icc ex 1073 1 3 8 80 511 +23
icc 2ex 1074 1 1 2 60 457 +21
V3 versus gcc € 1 9 35 427 1529 +39
v3_Opt_rk4 icc € 0 9 35 420 1510 +39
icc ex10-1 1 7 24 223 926 +30
icc ex 1072 O 0 8 114 585 +24
icc ex 1073 1 3 77 483 +22
icc 2ex 1074 1 2 52 423 +21

Most importantly, notice that as we make the ODE solver’s tolerance ¢ stricter (resulting
in smaller errors and more finely sampled output data from the ODE solver), the faithfulness
between v3 and v3_Opt improves to the level of agreement between v3 and v3_pert. Thus
we conclude that v3_opt generates roundoff-level agreement in the limit of ¢ — 0 with errors
dominated by interpolation otherwise.

3.2. Performance benchmarks

In order to capture the full effect of our optimizations to v3, we compared waveform genera-
tion times of v3_Opt with waveform generation times of v3_preopt. In particular, v3_preopt
lacks by-hand optimizations of the EOB Hamiltonian implemented in the development of v2_
opt; thus unnecessary computations of transcendental functions pow (), 1og (), and exp ()
remain therein. All reported benchmarks were completed on a single core of a modern desktop
computer with an Intel Core 17-7700 CPU and 64 GB RAM.

To highlight cases of interest, table 8§ summarizes benchmarks of v3_Opt and v3_Opt_rk4
in comparison to v3_preopt for a handful of scenarios of interest to LIGO. The speedup fac-
tors are also included, with speedup simply defined to be the ratio of time to generate a wave-
form with v3_preopt to the time to generate the same waveform with v3_Opt or v3_Opt_rk4.

To demonstrate that the advertised speedup factors of table 8 apply across the parameter
space of binaries of interest to the LVC, we completed four benchmark surveys. The first
two concern binary black hole systems, one with varying masses and the other with varying
spins. The third survey considers mixed binaries (one black hole and one neutron star), and
the fourth binary neutron stars. The parameters tested in each run are included in table 9. The
results of these surveys are plotted in figure 1 and summarized in table 8.
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Table 8. Benchmarks and speedups of v3_Opt and v3_Opt_rk4 compared to v3.

v3_preopt v3_Opt_rk4 v3_Opt v3_Opt
Physical scenario gcc, (8) gcc, (s) gcc, (s) icc, (s)
DNS, 5, = 0.05 8618.60 98.51 42.85 21.22
1.3Mg + 1.3Mg % (87.49) x(201.1) % (406.2)
BHNS, s = 0.05 2760.77 20.75 8.84 4.37
10M¢ + 1.3M¢ % (133.0) %x(312) x(632)
BHB, 5} = 0.05 127.71 1.70 0.90 0.46
16Mg + 16M¢ x(75.1) % (140) % (280)
BHB, s} =55 = 0.9 168.13 1.75 0.91 0.46
16M¢g + 16M ¢ %(96.1) % (180) % (370)
BHB, s} =55 = 0.9 235.53 3.48 1.55 0.76
10M + 10M, x(67.7) % (152) % (310)
BHB, GW150914-like 31.48 0.75 0.51 0.27
36M + 29M, X (42) %X (60) % (120)

$, =005 =05
$ = 001,55 = —0.2

Table 9. Surveyed parameters: each survey tested 400 parameter combinations, with
20 evenly-spaced values taken in each range indicated. Here BHB), indicates the black

hole binary mass survey, BHBg the black hole binary spin survey, BHNS the black hole
neutron star survey, and DNS the double neutron star survey. We define ¢ = %, the
ratio of the mass of object 1 to the mass of object 2. The dimensionless Kerr spins of

each object are denoted a; and a,, respectively. Each waveform generation started with
a frequency of 10 Hz used a sample rate of 16384 Hz.

Ranges my (Mg) g (dimensionless) a; (dimensionless) a; (dimensionless)
BHBy [16.7,100.3] [1,10] 0.0500001 0

BHBg 10 1 [—0.95,0.95] [—0.95,0.95]
BHNS [7,100] {‘44 [—0.95,0.95] 0

DNS [1.2,2.3] ﬁ 0.0500001 0

We would like to measure an average speedup based on the four surveys. As in [20], we
define an overall speedup factor as a waveform cycle-weighted average

S = Zi SIN i
ZiN i
where §; is the speedup factor for generating the ith waveform and A; is the number of wave-
cycles in the ith waveform. We found S ~ 340. This reduces the time necessary for a black

hole binary PE run from ~ 100 years (with v3_preopt) to ~8 months (with v3_Opt). We expect
lower mass PE runs will be possible on similar timescales with additional optimizations.

4. Conclusions and future work

Anticipating the potential detection by Advanced LIGO of significantly precessing compact
binaries, we have optimized v3 to make costly precessing-waveform-approximant-based data

1
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Figure 1. Performance benchmarks: Left panel: plots speedup factor versus number
of wavecycles in the binary inspiral. Measuring the number of wavecycles allows us to
compactly display the results of the benchmark tests without explicit reference to mass
or spin. Right panel: plots the number of wavecycles versus the time taken to output the
waveform. Note that the speedup factor in the left panel is simply the ratio of the curves
in the right panel.

analysis applications like PE possible in a reasonable amount of time. If an efficient 8D ROM
is found, such optimizations will make the construction of this ROM faster. After migrating
v2/v4 optimizations to v3, we further optimized partial derivatives of the Hamiltonian using
a GAD scheme. This resulted in waveforms that are faithful to v3, as evidenced by faithful-
ness increasing to 1 as ODE tolerance decreases. We achieved an average overall speedup of
~340x, ranging from ~120x for GW150914-like black hole binaries to ~630x for black
hole-neutron star binaries. We expect that further optimizations are possible, achieving an
additional speedup factor of at least ~3 x. Future work will focus on transforming Cartesian
coordinates to spherical coordinates to lower sampling rates even more during ODE solving
and integration.
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