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Abstract

In this paper we introduce a new PYTHON package, the PULSAR SIGNAL SIMULATOR, or PSRSIGSIM, which is
designed to simulate a pulsar signal from emission at the pulsar, through the interstellar medium, to observation by
a radio telescope, and digitization in a standard data format. We use PSRSIGSIM to simulate observations of three
millisecond pulsars, PSRsJ1744-1134, B18554-09, and B1953+29, to explore the covariances between
frequency-dependent parameters, such as variations in the dispersion measure (DM), pulse profile evolution
with frequency, and pulse scatter broadening. We show that PSRSIGSIM can produce realistic simulated data and
can accurately recover the parameters injected into the data. We also find that while there are covariances when
fitting DM variations and frequency-dependent parameters, they have little effect on timing precision. Our
simulations also show that time-variable scattering delays decrease the accuracy and increase the variability of the
recovered DM and frequency-dependent parameters. Despite this, our simulations also show that the time-variable
scattering delays have little impact on the rms of the timing residuals. This suggests that the variability seen in
recovered DMs, when time-variable scattering delays are present, is due to a covariance between the two
parameters, with the DM modeling out the additional scattering delays.

Unified Astronomy Thesaurus concepts: Millisecond pulsars (1062); Interstellar medium (847); Open source

software (1866); Gravitational waves (678); Astronomical simulations (1857)
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1. Introduction

Precision timing of millisecond pulsars (MSPs) has allowed
us to study some of the most extreme astrophysical
phenomena, from the equations of state of neutron stars
(e.g., Antoniadis et al. 2013; Stovall et al. 2018; Cromartie
et al. 2020) to some of the most rigorous tests of general
relativity (e.g., Kramer et al. 2006; Archibald et al. 2018; Zhu
et al. 2019). MSPs have also been used to study the properties
and dynamics of the interstellar medium (ISM; e.g., Levin
et al. 2016; Jones et al. 2017; Lam et al. 2019; Shapiro-Albert
et al. 2020). Pulsar timing arrays (PTAs) made up of MSPs
are used by the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav; McLaughlin 2013), the
European Pulsar Timing Array (EPTA; Kramer & Champion
2013), and the Parkes Pulsar Timing Array (PPTA; Hobbs
2013) to search for gravitational waves (GWs) from super-
massive black hole binary systems (e.g., Shannon et al.
2013, 2015; Zhu et al. 2014; Lentati et al. 2015; Arzoumanian
et al. 2016, 2018a, 2020b, 2020a; Babak et al. 2016; Verbiest
et al. 2016; Aggarwal et al. 2019).

For experiments focused on GW detection and characteriza-
tion, the characterization of noise in the detector is critical
(Cordes & Shannon 2010; Cordes 2013; Lam 2018; Hazboun
et al. 2019). There are many sources that may contribute to the
uncertainty of a pulse time of arrival (TOA), making these
detections challenging (e.g., Lam 2018). In particular, various
frequency-dependent effects due to both the ISM and the
emission at the MSP may increase the uncertainty of a pulse
TOA. These include variations in the dispersion measure (DM),
which is, the integrated column density of free electrons along
the line of sight. Time delays due to dispersion are proportional

to DM x v, where v is the frequency of the radio emission;
these variations may result in excess noise if they are not
modeled appropriately (e.g., Jones et al. 2017; Lam et al.
2018). Similarly, pulse scatter broadening due to inhomogene-
ities in the ISM will also cause time-variable delays. Scattering
delays are expected to be proportional to v~ (e.g., Shannon &
Cordes 2012; Lam et al. 2019) and will also result in excess
noise if not modeled or mitigated. Finally, evolution of the
pulse shape with frequency may also increase the uncertainty of
the pulse TOAs if it is not well modeled (e.g., Kramer et al.
1998; Pennucci et al. 2014).

In pulsar timing, the time variations in pulsar DMs are often
modeled by fitting for a ADM as an epoch-dependent offset
from a fiducial DM value. The model for DM variations used in
NANOGrav data sets is a piecewise-constant set of offsets,
referred to as “DMX,” with a value for each observing epoch
(e.g., Arzoumanian et al. 2016; Jones et al. 2017; Arzoumanian
et al. 2018b). However, accounting for effects such as
scattering and profile evolution is more difficult. To account
for profile evolution, Frequency-Dependent (FD) parameters,
polynomial coefficients in log-frequency space, along with a
JUMP parameter, which accounts for additional unmodeled
profile evolution and other effects between low- and high-
frequency data, are typically added to the pulsar timing model
(Zhu et al. 2015; Arzoumanian et al. 2016).

The number of FD parameters that are fit varies for each MSP
(Arzoumanian et al. 2016), but all terms are expected to be
covariant with any other frequency-dependent timing para-
meters, including DMX and the JUMP parameter. While it is
generally assumed that the largest component of the frequency-
dependent time delay accounted for by FD parameters is due to
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intrinsic pulse profile evolution with frequency (Zhu et al. 2015),
FD parameters will also account for the average scattering
broadening over the course of a data set.

Here we present an analysis of the covariance between the
DMX and FD parameters, as well as of the contributions of
non-v 2 effects to both the FD and DMX parameters using
simulated data generated with the PULSAR SIGNAL SIMU-
LATOR® (PSRSIGSIM) PYTHON package (Hazboun et al. 2021).
The PSRSIGSIM allows us to directly simulate variations
in DM, frequency-dependent pulse profile evolution, and pulse
scatter broadening to directly quantify how each of these
contributions affects the recovered timing model parameters.
Using simulated data allows us to constrain the impacts of any
simulated effects on timing model parameters, precision pulsar
timing, and the covariances between the frequency-dependent
effects.

We briefly describe the PSRSIGSIM package in Section 2. In
Section 3 we describe our data analysis pipeline. Our various
simulated data sets are described in Section 4, and the results
and analysis of the simulated data are presented in Section 5.
The implications of our results on precision pulsar timing are
presented in Section 6. Finally, we present concluding remarks
and future work in Section 7.

2. PsrSigSim Description

The PSRSIGSIMis a PYTHON-based package designed to
simulate a realistic pulsar signal including emission at the
pulsar, transmission through the ISM, observation by a radio
telescope, and output of a data file (Hazboun et al. 2021).
Simulations are run on an observation-by-observation basis and
can be run multiple times to create multiple epochs of data.
PSRSIGSIM has a variety of uses for educational purposes
(Gersbach & Hazboun 2019), but here we focus on its use as a
scientific simulation tool.

The package includes modules for various signal classes that
define attributes of the signal and observation, such as the
center frequency, bandwidth, number of frequency channels,
and, for the FILTERBANKSIGNAL class that is used in this work,
the number of subintegrations and their length. All SIGNAL
classes also have an option for the number of polarizations, but
PSRSIGSIM currently only supports total intensity signals,
assumed to be the sum of two polarizations. PSRSIGSIM also
enables single-pulse simulations using the FILTERBANKSIGNAL
class, though it is not used for this work.

The PULSAR class is used to define the properties intrinsic to
the pulsar, such as the period (P), the mean flux (Spean) and its
reference frequency, and the spectral index («). In order to
define a pulse profile, the PULSAR class makes use of either a
PROFILE class, for a single profile to be used at all frequency
channels, or a PORTRAIT class, for a 2D, frequency-dependent
pulse-profile array. The profiles can be defined in these classes
either through the amplitude, position, and width of any
number of Gaussians, by defining a function that describes the
profile shape as a function of phase, or by supplying a data
array representative of the pulse shape. To define the pulse
profile, the PULSAR class takes one of these PROFILE or
PORTRAIT classes.

The ISM class is used to model the effects of the ISM on the
pulsar signal and also account for intrinsic profile evolution. It
includes attributes such as DM, FD parameters, and scattering

6 https: //github.com/PsrSigSim/PsrSigSim

Shapiro-Albert et al.

timescale. The ISM class enables various signal processing
techniques, for example, the shift theorem, to add radio-
frequency-dependent delays. PSRSIGSIM adds these delays to
the pulses at specific points of the simulation dependent on
astrophysical and efficiency considerations. Use of Fourier-
based techniques allows the PSRSIGSIMto account for time
delays that have time shifts which are fractional in phase bins.
In the case of scatter broadening, the input scattering timescale
is scaled as a function of frequency based on both a user-input
reference frequency and a scaling-law exponent. The PSRSIGSIM
then shifts the profiles directly in time by the resulting delay or
convolves an exponential scattering tail with the input profiles
chosen by a user-set flag within the function.

The TELESCOPE class encodes the properties of the desired
telescope necessary to compute the radiometer noise and other
effects specific to the observing site. A user is able to supply
telescope specifications, like the effective area and system
temperature. Telescope systems can also be defined with
specific BACKEND and RECEIVER classes. The RECEIVER
class is currently primarily responsible for defining a
bandpass response and calculating the radiometer noise. The
BACKEND class is currently primarily used to inform on
the maximum sampling rate of the telescope backend. As
more features are added to the PSRSIGSIM, such as baseband
signal simulation, more features may be added to the BACK-
END class as well, such as simulating a polyphase filterbank.
The PSRSIGSIM comes equipped with predefined Arecibo and
Green Bank Telescope systems, but additional systems may
be added to these, or a new telescope can easily be defined by
the user.

The native output of PSRSIGSIM is a simulated pulsar signal
in the form of a NUMPY array (Van Der Walt et al. 2011).
However, for this work, output in the PSRFITS standard was
needed in order for software downstream in the analysis
pipeline, such as PSRCHIVE, to accept and process the files
(Hotan et al. 2004; van Straten et al. 2012). To do this, we
utilize the PULSAR DATA TOOLBOX’ (PDAT) PYTHON package
(Hazboun 2020). While PDAT is not a part of PSRSIGSIM, we
include an IO class in the PSRSIGSIM that contains a number of
convenience functions. These use existing PSRFITS files as
templates to make new files. Currently, the size of the data
array within the template PSRFITS file is changed to match the
size of the simulated data array, and subsequent metadata, such
as the chosen value of DM, is also edited.

The PSRSIGSIM is designed to simulate one observing epoch
of data at a time; by iterating over sets of input parameters, it is
possible to produce phase-coherent data sets containing
multiple observing epochs. This phase connection is performed
by utilizing the PINT ® pulsar timing software (Luo et al. 2020)
and an input pulsar ephemeris to replace the polynomial
coefficient (POLYCO) values, which predict the pulsar’s phase
and period using polynomial expansion over a defined time
period. We also note that no binary parameters or delays are
currently included in any delay classes or in the creation of the
POLYCOs. If a user desires to create a new PSRFITS file from
scratch to contain the simulated data, this can be done with a
number of currently existing software packages outside of
PSRSIGSIM, such as PDAT (Hazboun 2020), ASTROPY.IO.FITS’

7 https://github.com/Hazboun6 /PulsarDataToolbox

& hups: //github.com/nanograv/PINT
° https: //docs.astropy.org/en/stable/io /fits/
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Table 1
Simulated Pulsar Parameters

Parameter J1744—1134 B1855+09 B1953+29
Period (ms) 4.075 5.362 6.133
DM (pc cm ™) 3.09 13.30 104.5
FD1 (us) —383.4 +88.5 128.7 + 24 139.5 £ 7.8
FD2 (us) 395.6 + 89.5 —147.5+29 —61.0+£ 7.8
FD3 (us) —241.1 £60.2 81.6 +18
FD4 (us) 98.9 +23.3

S430 (mJy) 14.56 10.77
Sg20 (mly) 2.93
S1400 (mJy) 0.98 2.13 0.69

« —-1.77 —1.45 -2.16
74 (n8) 33+1.6 8.1+t44 55.3 (£11.1)

Note. Parameters describing the three MSPs that were used in these
simulations. Period, DM, and FD1—4 values are from the NANOGrav 11-yr
data set (Arzoumanian et al. 2018b). Flux (S) and spectral index («) values are
from Alam et al. (2021b). Scattering timescales 74 are all referenced to
1500 MHz and for PSRs J1744—1134 and B1855+4-09 come from Turner et al.
(2020), and for PSR B1953+29 from Levin et al. (2016). All uncertainties are
1o, with the uncertainties on scattering delay defined as the rms variation over
the data set. No variation on 74 for PSR B1953+29 was reported in Levin et al.
(2016), so we define it to be 20% of the measured value.

(Astropy Collaboration et al. 2013; Price-Whelan et al. 2018),
or FITSIO."”

More detailed descriptions as well as examples can be found
on the READTHEDOCS'' page of PSRSIGSIM and in Hazboun
et al. (2021).

3. Methods

Here we will describe the general methods used to make and
analyze our simulated data. The details of each set of simulated
data appear in Section 4, while here we cover general processes
used to produce the data and simulate each of the effects used.
We discuss first the methods used to simulate the data with
PSRSIGSIM'* and then the methods used to obtain TOAs and fit
the different timing parameters.

3.1. Generating Simulated Data

All of our data are simulated using the PSRSIGSIM PYTHON
package described in Section 2. For this work, we look at
three different MSPs that are part of the NANOGrav
pulsar timing array experiment (Arzoumanian et al. 2018b),
PSRs J1744-1134, B1855+09, and B1953+29. These MSPs
span a range of DMs, potentially allowing us to look at the
covariances between DMX and FD parameters as a function of
mean DM and/or number of FD parameters. Additionally,
they all have notable profile evolution (Alam et al. 2021a),
rather long timing baselines (Arzoumanian et al. 2018b),
and significant DM variations (Jones et al. 2017). For each
simulation, we have a set of defined pulsar and observation
parameters listed in Tables 1 and 2. These include the pulsar’s
name, period, DM, mean flux, spectral index, the desired
bandwidth of the observation, number of frequency channels,
center observing frequency, the observation length, and the
telescope name. To simulate DM variations, we determine the

10 https://github.com/esheldon/fitsio
' hitps: //psrsigsim.readthedocs.io /en /latest,/readme.html
12 pSRSIGSIM version 1.0.0 is used throughout this work.
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individual DMX injected at each epoch using the trends from
Jones et al. (2017), shown in Table 3. We use the DM reported
in Table 1 as a reference DM where the injected DMX is zero.
This reference DM is taken to be the value at the center epoch
of the simulations, and when sinusoidal trends are added it is
the value at phase zero. No additional noise is added to the
predictions by these trends. If any other parameters are desired,
such as FD parameters or scattering timescale (74), these may
also be defined and used in the simulation.

We define a pulse shape to be input into the PSRSIGSIM for
each observation depending on the simulated backend and
receiver combination to mimic the standard timing procedure
described in Demorest et al. (2013) and Arzoumanian et al.
(2016). For this work, each set of pulse profiles is defined as a
2D array in frequency and pulse phase, where we use 2048
phase bins. While the real NANOGrav observations record a
different number of frequency channels depending on the
receiver—backend combination, either 64, 128, or 512, all
are eventually folded down to 64 frequency channels
(Arzoumanian et al. 2018b). As we can simulate any number
of initial frequency channels, we simulated all of our initial
observations with 64 frequency channels to avoid needless
postprocessing. For similar reasons, we also simulate all of our
data with just a single subintegration of length equal to the total
observing length. If no profile evolution with frequency is
desired, we use the NANOGrav 11-yr profile template defined
at the appropriate center frequency for the pulse profile. This is
input to the PSRSIGSIM as a 1D array DATAPROFILE object,
which is then tiled within the PSRSIGSIM so that the profile is
the same in every frequency channel. An example is shown in
the top panel of Figure 1.

When a 2D array of frequency-dependent profiles is desired
as the input to the PSRSIGSIM, we create them by starting with a
postprocessed, high signal-to-noise ratio NANOGrav observa-
tion with 64 frequency-channel-dependent profiles. This is
done to be sure that all radio frequency interference (RFI) has
been removed and the data have been properly calibrated,
though each observation was inspected by eye to confirm this.
We then smoothed this data using the PSRSMOOTH function of
the PSRCHIVE data processing package (Hotan et al. 2004; van
Straten et al. 2012). These smoothed profiles are then formatted
into a 2D PYTHON data array in frequency and pulse phase,
as described above, using the PYPULSE'® PYTHON package
(Lam 2017). Only one set of model profiles was used for each
receiver—-backend combination. For example, if we simulate
multiple observations at 1400 MHz, the noise-free profiles used
at every simulated observing epoch will be the same, though
the pulse shape may change with the observing frequency.
However, the white noise that is added to the simulations will
vary from epoch to epoch.

Since we have chosen to model our frequency-dependent
profiles using real pulsar data for this work, we must also
account for the effects of a pulsar’s spectral index (e.g.,
Jankowski et al. 2018) and scintillation due to the ISM. Both of
these effects are present in all pulsar observations and, if
uncorrected, will change the pulse flux as a function of
observing frequency in a non-user-defined way. To remove
these intrinsic effects, the pulse profiles were normalized such
that all profiles have a peak flux of one in arbitrary flux units.
However, to make our simulated data as realistic as possible, a

13 https: //github.com/mtlam/PyPulse
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Figure 1. Injected pulse profiles for PSR B1855+4-09 used for this work. No additional scattering has been injected, and all peaks are normalized to an arbitrary
intensity of one. Top: The same pulse profile, here the NANOGrav 11-yr profile for PSR B1955+09, is used for every frequency channel if no frequency-dependent
pulse profile evolution is desired. Bottom: frequency-dependent pulse profiles obtained from modeling a single real observation of PSR B1855+4-09. No apparent
scintillation or spectral index effects remain after following the process detailed in Section 3.1, and the frequency-dependent variations are clearly shown. Some
channels have been removed because of contamination by radio frequency interference.

Table 2
Description of Backend and Receiver Parameters

PSR Backend Receiver MIJD Range Center Frequency Bandwidth Frequency Channels Observation Length
(MHz) (MHz) (s)
J1744—1134 GUPPI 820 53217-57369 820 200 64 1578
J1744—1134 GUPPI L-wide 53216-57367 1500 800 64 1742
B1855+09 PUPPI 430 53358-57375 430 100 64 1204
B1855+09 PUPPI L-wide 53358-57375 1380 800 64 1270
B1953+29 PUPPI 430 55760-57348 430 100 64 1443
B1953+29 PUPPL L-wide 55760-57376 1380 800 64 1440

Note. Parameters used for each simulated backend. MJD ranges, center frequencies, and bandwidths are taken from the NANOGrav 11-yr data set (Arzoumanian et al.
2018b). All simulated observations were simulated with 64 frequency channels. Observation lengths are from the observations that were used to obtain pulse profile

templates with high signal-to-noise ratio.

user-defined spectral index, reported in Table 1, is added back
into the simulated data when the pulses are created. To do this,
each normalized profile is multiplied by a frequency-dependent
constant such that

Smean(l/) = Smean(Vref)(L) . (1)

Vref
Here, Siean(Vret) 18 the user-input mean flux referenced to some
frequency, v, v is the center frequency of each frequency
channel for each profile, « is the user-input spectral index, and
Smean(¥) 1s the new mean flux of the spectral index adjusted
profile at a frequency v.

Since our frequency-dependent profiles were created from
real, postprocessed observations, profiles at some frequency
channels had been removed because of contamination by RFI.
Since we cannot realistically model profiles in the frequency
channels that have been removed, we instead replace them with

Table 3
DM Variation Parameters
PSR DM Slope DM Amplitude DM Period
103 pc cm yr’l) ao— pc cm ™) (days)
J1744—1134 —0.069 0.4 383
B1855+409 0.382 0.5 364
B1953+29 —-1.3 3.0 356

Note. Slope, amplitude, and period of the DM variations used for each pulsar
that was simulated as derived by Jones et al. (2017).

a profile of zeros. When creating TOAs from these profiles, all
channels that were replaced with zeros in this way were
removed as well and are not included in any pulsar timing
model fitting (described in Section 3.2). This 2D array of
frequency-dependent profiles is then input into the PSRSIGSIM
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as a DATAPORTRAIT object, and an example is shown in the
bottom panel of Figure 1. We note these were all choices made
for this work, and that PSRSIGSIM is capable of using any set of
1D or 2D user-generated pulse profiles.

While there is some inherent scatter broadening already
contained within the real data used for our model frequency-
dependent profiles, we do not know a priori how much the
profiles have been scatter broadened, and hence we cannot
separate this effect from intrinsic profile evolution. In some of
our simulations (described in Section 4), however, we simulate
pulse scatter broadened using the ISM class by defining a single
input 74, referenced to an initial input frequency, for each
simulated epoch. Within PSRSIGSIM, 74 is scaled for each
frequency channel as

v; g
T4, = Td( : ) . ()

Vref

Here, v, is the reference frequency of the input 74, v; is the
center frequency of the ith frequency channel, and 3 is the
scaling-law exponent. The exponential scattering tail for each
frequency channel is then calculated as exp(—1t/7q,), where ¢ is
the fractional time of each profile bin. The resulting frequency-
dependent exponential scattering tails are then convolved with
the pulse profiles. For our simulations, we assume a
Kolmogorov medium, so §= —4.4, though [ can also be set
by the user within PSRSIGSIM. While it has been found that
measurements of 3 deviate from a Kolmogorov medium (e.g.,
Levin et al. 2016; Turner et al. 2020), we have chosen to use a
constant value to minimize the number of variables that affect
the covariance between DMX, FD, and 74. While studying how
varying 3 may affect these covariances is certainly of interest,
this added complexity is beyond the scope of this work.

For this work, we have chosen to run simulations with both a
single value of 74 across all epochs and a time-varying 74. In
the case of a time-varying 74, we have chosen input values of
T4 by randomly sampling a Gaussian distribution with the mean
and lo variation reported in Table 1 and then taking the
absolute value of the sampled 74. However, for PSR B1953
429, no rms variation for 74 was reported by Levin et al.
(2016), so we use a 1o variation of 20% of the mean value. A
different value of 74 is then input for every simulated epoch of
observations. We note that because PSRSIGSIM simulates just a
single epoch at a time, a user may choose input values for 74
using any method.

After the pulses are simulated, they are dispersed with the
ISM class. This is done by calculating the time delay due to
dispersion,

DM v Y2
Atpy = 241 x 1074 s] ——— ( ) , 3
oM (pc cm3) MHz 2

in each frequency channel with respect to infinite frequency.
Here, v is the center frequency of each frequency channel. The
pulses are then shifted in Fourier space (Bracewell 1999) to
account for time shifts that are fractional sizes of the discrete
time bins. For this work, the DM used is the sum of the base
value reported in Table 1 and the individual DMX determined
at each epoch as described above. However, we note that, in
general, the user may input any desired DM into PSRSIGSIM.

Shapiro-Albert et al.

Nondispersive frequency-dependent time delays are also
simulated. In particular, we directly shift the pulses in time to
simulate the “FD” model for frequency-dependent pulse
profiles. To do this, we calculate Atgp as (Zhu et al. 2015;
Arzoumanian et al. 2016)

n v i
Al = iln . 4
=) (IGHZ) (€))

i=1

Here, ¢; are the polynomial coefficients in time units, more
often referred to as the FD parameters, such that ¢; = FD1 and
so on, n is the number of coefficients, and v is the center
frequency of each frequency channel. The pulses are then
shifted in Fourier space as with Afpy. Within PSRSIGSIM, the
FD parameters are input in units of seconds. We report the
number and value of each FD parameter used for each
simulated pulsar in this work in Table 1, though in general
the user may input any number of FD parameters with any
value into the PSRSIGSIM.

Once these delays are added, we then define the TELESCOPE
used in this work as either the 305 m William E. Gordon
Telescope of the Arecibo Observatory or the 100 m Green
Bank Telescope (GBT) of the Green Bank Observatory. We do
this using the default ARECIBO or GBT definition in PSRSIGSIM,
though a user may define any telescope system they wish for
their own simulations. Radiometer noise is then added to the
simulated data based on the desired receiver—backend config-
uration. The noise is sampled from a chi-squared distribution
with the number of degrees of freedom equal to the number of
single pulses in each subintegration. This is then multiplied
by the noise variance (o), calculated as defined in Lorimer &
Kramer (2012),

T.;ys + ];ky
G Jny dt BWinan

where Ty, is the system temperature, Tgy is the sky
temperature, G is the telescope gain, n, is the number of
polarizations, dt is the length of each phase bin or 1/(sample
rate), and BW,,, is the bandwidth of a frequency channel.
Currently, the simulator does not model the sky temperature, so
we take Ty, =0 for all simulations. Since only total-intensity
signals are supported at this time, we assume that the total
intensity is the sum of two intensities, so n,=2 for all
simulations.

Since the user-input profiles are normalized within the
PSRSIGSIM, as they may be input with arbitrary units, this is
then scaled by the maximum flux, Sp.x, calculated from the
mean flux:

&)

o5 =

Stax = Sm*l::)m- (6)
Zi:lpi

Here, ny;,s are the number of phase bins per profile (2048 in
all of the simulations in this work), and p; is the intensity of
the model profile at the ith phase bin. If using frequency-
dependent pulse profiles, the profile with the maximum
integrated flux (in arbitrary units) is used. This radiometer
noise is then further scaled by a normalization coefficient,
Uscales since, as mentioned above, the model profiles are
normalized within the PULSAR class. This constant is
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calculated as defined in Lam (2018),

1.0

(Z:l:rpi)/nbins ,

where again the profile used is from the frequency channel that
results in the maximum integrated flux.

The final simulated data are contained within a NUMPY array
(Van Der Walt et al. 2011). However, for this work, since we
require the use of the PSRCHIVE software, we have used the
convenience functions provided in the IO class and described in
Section 2 to save the full simulated data array as a PSRFITS file
(Hotan et al. 2004), as described in Section 2.

Uscale = (7)

3.2. TOAs and Residuals

Once the data have been simulated in PSRFITS file format,
they are analyzed with both PSRCHIVE and PINT.'* The data are
simulated such that all observations match the postprocessed
NANOGrav standard timing methods (Demorest 2018), with a
single subintegration and 64 frequency channels. For simulated
Arecibo data, this results in frequency channels with widths of
1.5625 and 12.5 MHz at 430 and 1400 MHz, respectively. For
simulated GBT data, this results in frequency channels with
widths of 3.125 and 12.5MHz at 820 and 1400 MHz,
respectively.

TOAs are obtained from the simulated data with the PAT
function in PSRCHIVE. We use the corresponding NANOGrav
11-yr pulse profile templates for the template matching process.
This method employs a constant template profile at the
appropriate frequency bands regardless of whether frequency-
dependent profiles were used in the simulations to better match
the standard template-fitting methods used by NANOGrav
(Taylor 1992; Demorest 2018).

Normally, certain frequency channels are ignored in the
NANOGrav timing pipeline as they are highly contaminated by
RFI (Arzoumanian et al. 2016; Demorest 2018). While we
generate no RFI in our simulated data, we mimic this loss in
sensitivity by removing all TOAs from these ranges in all
simulation analyses. This includes channels where no
frequency-dependent profile model has been generated, as
described above and shown in Figure 1. For simulated Arecibo
data, the removed ranges are 380423, 442-480, 980-1150,
and 1618-1630 MHz. For simulated GBT data, the removed
ranges are 794.6-798.6, 814.1-820.7, 1100-1150, 1250-1262,
1288-1300, 1370-1385, 1442-1447, 1525-1558, 1575-1577,
and 1615-1630 MHz.

We then calculate the timing residuals using the PINT pulsar
timing package (Luo et al. 2020). Each pulsar timing model is
extremely simple and includes only the position, period, DM,
DMX, the number of FD parameters equal to that listed in
Arzoumanian et al. (2018b), and one JUMP parameter to
account for unmodeled profile evolution and other effects
between the low- and high-frequency simulated data. Of these,
we fit only combinations of DMX, FD, and JUMP parameters,
holding all other values fixed. Since we have not included any
motions of the Earth, we assume that all TOAs that we have
obtained are already barycentered. We do not include any
effects such as parallax, proper motion, or binary motion and
therefore do not fit for these in our timing model.

14 PINT version 0.7.0 is used throughout this work.
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When fitting the different DMX values for each simulation,
we follow Arzoumanian et al. (2016, 2018b) and bin our
simulated TOAs in groups of 15days for simulated epochs
before MJD 56000 and in groups of 6 days after MJD 56000.
The adjustment in binning comes from the less-frequent
observations that occurred early on in the NANOGrav timing
program (Arzoumanian et al. 2018b). We then fit our timing
model parameters using the generalized least-squares fitter in
PINT and compare the fit values of DMX and the FD parameters,
which we will denote as DMX and FD, to the injected values.

4. Simulated Data

The parameters that were used to make the simulated data for
PSRs J1744-1134, B1855+09, and B1953+29 are shown in
Table 1. We note that while real pulsars have many additional
timing parameters (e.g., spin down, proper motions, etc.), we
do not simulate these effects in any of our data sets presented
here. Our simulated data therefore represent barycentered
observations that have had all non-frequency-dependent delays
removed. '

The simulated data sets for each pulsar are split into two sets
of simulations. The first set consists of simulations where the
pulse profile is independent of frequency for a given observing
band. The recovered parameters generally match the injected
parameters in this set and are used primarily for comparison.
The second set uses realistic, frequency-dependent pulse
profiles as described in Section 3.1. In total, we simulated
nine different data sets with different injections for each pulsar.
Five of them used frequency-independent pulse profiles for
comparison purposes, and the other four were used to analyze
the covariances between the frequency-dependent parameters.
The basic injections and values used for each simulation can be
found in Table 4.

All simulations span the same length as the observations of
each pulsar using the NANOGrav observing epochs from
Arzoumanian et al. (2018b). While it is not necessary to
simulate a full data set like this to explore the covariances
between these parameters, we do this in part to demonstrate
that PSRSIGSIM can simulate long sets of unevenly sampled
observing epochs while maintaining a precise phase connec-
tion. In addition, it demonstrates the efficiency of the
PSRSIGSIM, as the total run time for each of the nine
simulations for the two longer data sets, those of
PSRs J1744-1134 and B1855+09, was ~5 minutes on an Intel
Xeon CPU E5-2630 0 @ 2.30 GHz with 24 processors and
64 GB of RAM. In addition to using realistic observing epochs
as a benchmarking test for the PSRSIGSIM, having many DMX
bins better quantifies the variations that may be seen in DMX
due to profile evolution or scatter broadening. Finally, as the
FD parameters are fit globally over the entire data set, their fit
values are sensitive to the length and number of observations in
the simulated data set.

For simulated observations using the Arecibo telescope, we
simulate only data from the PUPPI backend (Ford et al. 2010),
and for observations simulated using the GBT, we simulate
only data using the GUPPI backend (DuPlain et al. 2008).
While many of the early observations of these MSPs were
done with the GASP or ASP backend (Demorest 2007), there
are additional systematics introduced into the pulsar timing

!5 The inclusion of additional timing parameters and the covariances between
them is generally of interest and is a topic for future work.
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Figure 2. Resulting ADM values for all three simulated pulsars for simulations where no frequency-dependent pulse profiles were used (described in Section 4.1)
when fitting for DMX, all FD parameters, and a JUMP. Different symbols are used for each pulsar. The black dashed lines represent the zero lines. All points for each
pulsar and each simulation are scattered around this zero line, showing that they are being appropriately recovered and fit for.

Table 4
Description of Simulated Data Sets
Constant Scatter Time-variable Scatter

Simulation Name DM Variations  FD Injection  Profile Evolution  Broadening Broadening
No Variations N N N N N

DM Variations Y N N N

FD Injections N Y N N N
Time-variable Scatter Broadening w/Con- N N N N Y

stant DM

DM and FD Injections Y Y N N N

Profile Evolution N N Y N N

DM and Profile Evolution Y N Y N N

Scatter Broadening Y N Y Y N
Time-variable Scatter Broadening Y N Y N Y

Note. Description of parameters included in each simulated data set. A “°Y”” means the parameter was injected into the simulation, while “N” means it was not injected.
If DM variations are included, the slope, amplitude, and period of the DM variations are presented in Table 3. If FD injection is included, the profiles used do not vary
in frequency and are instead directly shifted in time by the delay described in the NANOGrav 11-yr FD parameters. If profile evolution is used, then frequency-
dependent profile models based on actual observations of each pulsar are used for the injected pulse profiles. If scatter broadening is used, then the injected profiles are
convolved with an exponential described by a scattering timescale, 74. If constant, then each epoch uses the mean value of 74 from Table 1; if time-variable, 74 is
drawn from a Gaussian distribution with a mean and standard deviation from Table 1.

when switching between backends that are beyond the scope 4.1. Frequency-independent Pulse Profile Simulations
of this work. The observing frequencies of each pulsar, either
430 MHz or 1400 MHz at Arecibo or 820 MHz or 1400 MHz
at the GBT, are the same as in Arzoumanian et al. (2018b).
The parameters for each receiver—backend combination
are reported in Table 2. The observation lengths, the time of
each simulated observing epoch, come from the length of the

The first simulation in this set was the “No Variation”
simulation. Every simulated epoch used a constant value of
DM (e.g., all DMXvalues were zero) and included no
additional time delays (e.g., from FD parameters or scatter
broadening). The purpose of this was to test the simplest case

actual observation that was used to generate the frequency- simulation and provide a baseline to compare to other
dependent pulse profiles. These lengths represent a typical simulations with additional injected effects. For each observa-
observing length for each pulsar as observed by NANOGrav, tion, we determine ADM, the recovered DMX minus the
though they are kept constant for each simulated observing injected DMX, ADM = DMX — DMX. This is shown in red
epoch. at every simulated observing epoch for all three simulated
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Figure 3. Upper left: resulting AFD parameters for five different simulated data sets spanning 11 years where no frequency-dependent pulse profiles were used for
PSR J1744-1134 (described in Section 4.1). All recovered values come from fitting for DMX, all FD parameters, and a JUMP. The recovered parameters match well
with the injected parameters. Upper right: same as upper left but showing the delay curve across frequency space defined by the AFD parameters shown in the upper
left plot. Shaded regions represent the 1o recovered errors. Lower left: same as upper left, but for four different simulations where frequency-dependent pulse profiles
were used (described in Section 4.2). Lower right: same as upper right, but for the simulations listed in the lower left.

pulsars in Figure 2. We note that the DMX values have been
mean-subtracted as (DMX; — <]ﬁ\/I\X>) for each DMX epoch i,
and the error bars shown represent the errors on the mean-
subtracted value. This is done because it allows us to separate
the uncertainty of each DMX measurement from that of the
mean DM, since there is a large covariance between these
parameters (Arzoumanian et al. 2016, 2018b).

We similarly determine AFD parameters, the recovered
FD parameter minus injected FD parameter, AFD; = FD; — FD;,
for each individual FD parameter i. For this simulation, these are
shown in red in the two upper panels of Figures 3-5 for each
pulsar. All of the recovered ADM and AFD parameters for these
simulations are shown in the same panels of the same figures,
though with different colors. All recovered values, DMX and
FD, shown in these figures were determined by fitting for all
parameters: DMX, all FD parameters, and a single JUMP
parameter.

The second simulation is the “DM Variations” simulation.
Here the total injected DM is the initial value given in Table 1
plus a small variation added based on the parameters given in
Table 3. The variations for all simulated pulsars had both a
linear and a sinusoidal trend with slope, amplitude, and period
as determined by Jones et al. (2017). The resulting ADM and
AFD parameters, similar to that shown for the “No Variations”
simulation, are shown in purple.

The third simulation in this set is the “FD Injection.” While
the physical process that FD parameters describe is mainly
attributed to pulse profile evolution in frequency (Zhu et al.
2015), they define a time delay directly given by Equation (4).
To provide a baseline for recovering the injected
FD parameters, we directly shift the simulated pulses in time
based on the FD parameters listed in Table 1. We do this
instead of varying the profiles directly because we do not know
a priori what the shifts due to profile evolution are, so we can
only fit them empirically. The resulting ADM and AFD
parameters for this simulation are shown in orange.

The fourth simulation here is “Time-variable Scattering with
Constant DM.” Here we again use a constant value of DM, but
also inject time-variable values of 74 on a per-epoch basis,
selected as described in Section 3.1. This gives us a baseline to
compare how DMX is affected by this time-variable scattering
in more complex simulations. The resulting ADM and AFD
parameters for this simulation are shown in light green.

Our final initial simulation, “DM and FD Injections,” is a
combination of the second and third initial simulations. This
was done to provide a baseline for the accuracy of DMX and
FD since they are both dependent on the emission frequency.
The resulting ADM and AFD parameters for this simulation
are shown in light blue.

While all of the recovered values shown in Figures 2-5 come
from fitting for all parameters, DMX, all FD parameters, and a
JUMP, we also fit each of these simulations using just a single
JUMP, just DMX and a single JUMP, and just all applicable
FD parameters and a single JUMP (for a total of four different
fits for each simulation). We report the rms of the timing
residuals (Rms), reduced chi-squared (xf) of the fit timing

model, the rms of the ADM values (DMX — DMX), ADMys,
the rms of the AFD parameters (FD; — FD;), AFD,,,, and the
fit value of the JUMP, for each of these fits per simulation per
pulsar in Tables 5-7, respectively.

4.2. Frequency-dependent Pulse Profile Simulations

Next we use a different set of frequency-dependent profiles,
one for each different receiver—backend combination for each
pulsar, as described in Section 3. As noted in Section 3.1, we
use only one set of frequency-dependent profiles for each
receiver—backend combination. Since there are no variations in
the profile evolution in time, for example, due to scintillation
(Cordes 1986), we do not expect to recover exactly the same
FD parameters as reported in Table 1. We do, however, expect
similar FD parameters, with the same signs and orders of
magnitude.
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Figure 4. Upper left: resulting AFD parameters for five different simulated data sets spanning 11 years where no frequency-dependent pulse profiles were used for
PSR B1855+4-09 (described in Section 4.1). All recovered values come from fitting for DMX, all FD parameters, and a JUMP. The recovered parameters match well
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Figure 5. Upper left: resulting AFD parameters for five different simulated data sets spanning 11 years where no frequency-dependent pulse profiles were used for
PSR B1953+-29 (described in Section 4.1). All recovered values come from fitting for DMX, all FD parameters, and a JUMP. The recovered parameters match well

with the injected parameters. Upper right: same as upper left but showing the del

lay curve across frequency space defined by the AFD parameters shown in the upper

left plot. Shaded regions represent the 1o recovered errors. Lower left: same as upper left, but for four different simulations where frequency-dependent pulse profiles
were used (described in Section 4.2). Lower right: same as upper right, but for the simulations listed in the lower left.

To determine the contribution of the frequency-dependent
profiles to the FD parameters, our first simulation in this set,
labeled “Profile Evolution,” uses a constant DM such that all
injected DMX values are zero and it includes only the
frequency-dependent profile. This allows us to determine the
expected contribution of the chosen set of frequency-dependent
profiles and helps to quantify any deviations in FD as more
frequency-dependent effects are added. The resulting ADM
values, similar to those shown for the previous set of
simulations, are shown in blue in Figure 6, and the resulting
AFD parameters for this simulation, also in blue, are shown in

the two lower panels of Figures 3-5 for each pulsar. All values
of ADM and AFD parameters for these simulations are shown
in the same panels of the same figures, though with different
colors. The resulting AFD parameters for this simulation have
values of zero with an associated error bar, since we do not
know their value a priori. For this simulation, FD are used as
the baseline for all other simulations in this set.

The second simulation, “DM and Profile Evolution,” uses
both the frequency-dependent profiles and the DM variations
that were used in the initial simulations described in
Section 4.1. This simulation allows us to explore the
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Table 5
J1744—1134 Fitting Results
Fit Parameters Roms v ADM 5 AFDyyng JUMP
(ns) (107°pcem™) (ps) (us)
Jump 0.14 1.01 6+0
DMX and Jump 0.14 1.01 2.4 6+0
FD and Jump 0.14 1.01 0.2 6+0
DMX and FD and Jump 0.14 1.01 24 5.0 6+0

Simulation: DM Variations

Jump 0.33 10.87 7+0
DMX and Jump 0.14 1.03 2.8 6+0
FD and Jump 0.21 4.37 2.4 6+0
DMX and FD and Jump 0.14 1.03 2.8 14.9 6+0

Simulation: FD Injection

Jump 33.01 114349.42 197 +0
DMX and Jump 0.56 11.80 19.1 540
FD and Jump 0.14 1.01 0.4 6+0
DMX and FD and Jump 0.14 1.01 2.7 5.1 6+0

Simulation: Time-variable Scattering w/Constant DM

Jump 0.14 1.02 6+0
DMX and Jump 0.14 1.02 34.1 6+0
FD and Jump 0.14 1.02 0.7 6+0
DMX and FD and Jump 0.14 1.02 34.1 4.6 6+0

Simulation: DM and FD Variations

Jump 33.27 116254.67 198 £0
DMX and Jump 0.56 11.88 17.9 540
FD and Jump 0.21 4.34 23 6+0
DMX and FD and Jump 0.14 1.01 2.5 20.0 6+0

Simulation: Profile Evolution

Jump 1.53 79.40 7+£0
DMX and Jump 1.19 24.20 9.6 1+0
FD and Jump 1.18 21.42 24+0
DMX and FD and Jump 1.15 21.30 3.8 1+0

Simulation: Profile and DM Variations

Jump 1.70 112.07 9+0
DMX and Jump 1.19 24.09 9.7 1£0
FD and Jump 1.18 22.93 2.5 24+0
DMX and FD and Jump 1.14 21.19 3.1 7.0 1+0

Simulation: Constant Scatter Broadening

Jump 1.70 111.96 9+0
DMX and Jump 1.19 24.11 10.5 1+£0
FD and Jump 1.19 22.95 23 2+0
DMX and FD and Jump 1.15 21.23 3.2 10.8 1+0

Simulation: Time-variable Scatter Broadening

Jump 1.70 111.94 9+0
DMX and Jump 1.19 23.99 10.1 1£0
FD and Jump 1.18 22.82 2.4 2+0
DMX and FD and Jump 1.14 21.11 3.3 3.5 1+0

Note. Results of fitting the seven different simulations of PSR J1744—1134 fitting for different parameters, either just a JUMP, ADM (DMX) and a JUMP, all FD
parameters and JUMP, or ADM, all FD parameters, and a JUMP. For each of these four different fits to the seven simulations, we report five quantifiers of the fit, the
rms of the resulting timing residuals, R s, Where values closer to zero indicate a better fit, the reduced chi-squared of the fit, Xf, where values closer to one indicate a
better fit for the number of parameters used in the fit, the rms of the ADM values, ADM,,,,s, where smaller values indicate that the fit is more accurately recovering the
injected values of ADM, the rms of the AFD values, AFD,,,;, where smaller values indicate that the fit is more accurately recovering the injected FD parameters, and
the value of the JUMP that is fit in each case.

10
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Table 6
B1855+09 Fitting Results
Fit Parameters Rome v ADM 5 AFD, 6 JUMP
(1) (10 pcem™) (ps) (1)
Jump 0.05 1.49 120+ 0
DMX and Jump 0.05 1.48 1.0 120+ 0
FD and Jump 0.05 1.49 0.1 120+ 0
DMX and FD and Jump 0.05 1.48 1.0 23 121 £0
Simulation: DM Variations
Jump 1.55 3652.14 83+0
DMX and Jump 0.05 1.53 0.9 120+ 0
FD and Jump 1.20 2872.38 18.2 125+0
DMX and FD and Jump 0.05 1.53 0.9 1.6 120+ 0
Simulation: FD Injection
Jump 7.02 37645.77 —167+0
DMX and Jump 0.38 118.13 14.0 93+0
FD and Jump 0.05 1.44 0.1 120+ 0
DMX and FD and Jump 0.05 1.43 1.3 1.2 121+£0
Simulation: Time-variable Scattering w/ Constant DM
Jump 0.33 109.48 121+0
DMX and Jump 0.13 15.43 123.4 120+ 0
FD and Jump 0.33 108.34 1.2 119+0
DMX and FD and Jump 0.13 14.57 1233 23 120+ 0
Simulation: DM and FD Variations
Jump 8.09 52073.18 —204+0
DMX and Jump 0.38 117.69 13.0 93+0
FD and Jump 1.20 2871.78 18.2 125+0
DMX and FD and Jump 0.05 1.48 1.4 0.2 121+£0
Simulation: Profile Evolution
Jump 1.90 19.04 117+0
DMX and Jump 1.69 14.28 24 88+ 0
FD and Jump 1.47 12.31 35+1
DMX and FD and Jump 1.48 12.43 1.6 67+2
Simulation: Profile and DM Variations
Jump 2.06 22.67 79+0
DMX and Jump 1.69 14.25 2.7 88+ 0
FD and Jump 1.90 20.36 18.2 40+ 1
DMX and FD and Jump 1.48 12.41 1.7 2.0 67 £2
Simulation: Constant Scatter Broadening
Jump 2.08 22.62 80+ 0
DMX and Jump 1.70 14.25 32 89+0
FD and Jump 1.90 20.10 16.8 38£1
DMX and FD and Jump 1.47 12.17 1.6 4.1 66 +2
Simulation: Time-variable Scatter Broadening

Jump 2.05 22.15 80+ 0
DMX and Jump 1.71 14.34 26.0 89+0
FD and Jump 1.87 19.65 16.9 38£1
DMX and FD and Jump 1.48 12.28 259 3.7 66 £ 2

Note. Results of fitting the nine different simulations of PSR B1855+09 fitting for different parameters, either just a JUMP, ADM (DMX) and a JUMP, all FD
parameters and JUMP, or ADM, all FD parameters, and a JUMP. For each of these four different fits to the nine simulations, we report five quantifiers of the fit: the
rms of the resulting timing residuals, R s, Where values closer to zero indicate a better fit, the reduced chi-squared of the fit, Xf, where values closer to one indicate a
better fit for the number of parameters used in the fit, the rms of the ADM values, ADM,,,,s, where smaller values indicate that the fit is more accurately recovering the
injected values of ADM, the rms of the AFD values, AFD,,,;, where smaller values indicate that the fit is more accurately recovering the injected FD parameters, and
the value of the JUMP that is fit in each case.
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Table 7
B1953+4-29 Fitting Results
Fit Parameters Rooms \? ADM s AFD, JUMP
(ps) (107° pc cm ™) (1) (ps)
Jump 0.18 1.14 —455+£0
DMX and Jump 0.18 1.13 3.7 —455+0
FD and Jump 0.18 1.14 0.1 —455+0
DMX and FD and Jump 0.18 1.13 3.7 0.2 —455+0

Simulation: DM Variations

Jump 4.20 9668.28 —411+£0
DMX and Jump 0.18 1.21 6.0 —455+0
FD and Jump 4.05 9493.81 35.5 —472+0
DMX and FD and Jump 0.18 1.21 6.1 0.1 —455+0

Simulation: FD Injection

Jump 11.08 4592.29 —650£0
DMX and Jump 6.82 1734.07 348.3 —477+0
FD and Jump 0.18 1.20 0.1 —455+0
DMX and FD and Jump 0.18 1.19 4.8 0.2 —455+0
Simulation: Time-variable Scattering w/ Constant DM
Jump 1.08 614.52 —443 £ 0
DMX and Jump 0.56 12.98 432.4 —463 £0
FD and Jump 1.08 580.55 18.0 —472+0
DMX and FD and Jump 0.27 333 4333 11.5 —460+0
Simulation: DM and FD Variations
Jump 10.78 12816.39 —606+0
DMX and Jump 6.83 1739.88 343.5 —476 £ 0
FD and Jump 4.05 9491.51 35.5 —472£0
DMX and FD and Jump 0.19 1.23 5.9 0.1 —455+£0
Simulation: Profile Evolution
Jump 44.50 4657.17 —443 £0
DMX and Jump 6.22 127.85 208.6 1163+ 0
FD and Jump 7.28 136.28 1205 £ 1
DMX and FD and Jump 2.30 20.27 7.6 1007 £ 1
Simulation: Profile and DM Variations
Jump 43.55 4514.72 —398+0
DMX and Jump 6.23 128.29 208.3 1163 £ 0
FD and Jump 8.09 228.31 29.8 1197 £1
DMX and FD and Jump 2.30 20.26 6.6 0.9 1007 £ 1
Simulation: Constant Scatter Broadening
Jump 43.43 4438.66 —386+0
DMX and Jump 6.47 137.58 2134 1166 £ 0
FD and Jump 7.88 217.56 475 1179 £ 1
DMX and FD and Jump 2.30 20.02 7.2 11.1 1000 £ 1
Simulation: Time-variable Scatter Broadening
Jump 43.46 4450.10 —386+0
DMX and Jump 6.47 137.85 2343 1167+ 0
FD and Jump 8.02 231.50 48.0 1179 £1
DMX and FD and Jump 2.31 20.09 99.2 11.5 1001 £ 1

Note. Results of fitting the nine different simulations of PSR B1953+29 fitting for different parameters, either just a JUMP, ADM (DMX) and a JUMP, all FD
parameters and JUMP, or ADM, all FD parameters, and a JUMP. For each of these four different fits to the nine simulations, we report five quantifiers of the fit: the
rms of the resulting timing residuals, R s, Where values closer to zero indicate a better fit, the reduced chi-squared of the fit, X,z-’ where values closer to one indicate a
better fit for the number of parameters used in the fit, the rms of the ADM values, ADM,,,s, where smaller values indicate that the fit is more accurately recovering the
injected values of ADM, the rms of the AFD values, AFD,,,,, where smaller values indicate that the fit is more accurately recovering the injected FD parameters, and
the value of the JUMP that is fit in each case.
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Figure 6. Resulting ADM values for all three simulated pulsars for simulations where frequency-dependent profile evolution was modeled (described in Section 4.2)
when fitting for DMX, all FD parameters, and a JUMP. Different symbols are used for each pulsar. The black dashed lines represent the zero lines. All points for each
pulsar and each simulation are scattered around this zero line, showing that they are being appropriately recovered and fit for.

covariances between DMX and profile evolution and compare
them to the covariances when FD parameters are directly
injected via time shift. The resulting ADM and AFD
parameters for this simulation are shown in yellow.

The third simulation, “Scatter Broadening,” is the same as
“DM and Profile Evolution,” but here the frequency-dependent
profiles have been convolved with an exponential defined by a
single mean scattering timescale, given in Table 1. As pulse
scatter broadening is also a frequency-dependent effect, we
expect it to have some small effect on DMX and FD
(Rickett 1977; Levin et al. 2016). However, since for this
simulation only a constant value of 74 is injected, we expect the
FD parameters to account for most, if not all, of this variation
(Zhu et al. 2015; Arzoumanian et al. 2016). The resulting
ADM and AFD parameters for this simulation are shown in
dark blue.

The final simulation of this set, “Time-variable Scatter
Broadening,” is the same as “Scatter Broadening” but here we
have randomly sampled values of 74 to be injected at each
epoch as described in Section 3.1. This simulation represents
the most realistic of our simulations. Since here 74 changes, we
expect DMX to be affected more substantially as the
FD parameters are fit over the entire data set, not epoch to
epoch. The resulting ADM and AFD parameters for this
simulation are shown in magenta.

As with the previous set of simulations, all of the values
shown in Figures 3—6 come from fitting for all parameters:
DMX, all FD parameters, and a JUMP. We report Ry, Xf,
ADM, ., AFD,,..., and the fit value of the JUMP for this set of
fit model parameters, as well as the additional model fitting
done with a single JUMP, just DMX and a single JUMP, and
just all FD parameters and a single JUMP, in Tables 5-7. We
note that for this set of simulations, when computing AFD,,,
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two different sets of FD parameters were used, one set that was
fit for using DMX, FD, and a JUMP, and one where just
FD and a JUMP were used, both sets coming from the “Profile
Evolution” simulation. This is because the FD parameters are
covariant with DMX and the values change slightly depending
on what parameters are fit for.

5. Results

Here we describe the results of the simulations described in
Section 4 for each pulsar. Figures 2-6 show the results of
simulation analyses when we fit for all parameters (DMX, all
FD parameters, and a JUMP). Figures 2 and 6 show the ADM
(the difference between the injected and recovered DM,
DMX — DMX) for each simulated epoch for all MSPs. Each
set of simulations is split into two sets: Figure 2 shows the
simulations described in Section 4.1, and Figure 6 shows the
ADM for the simulations described in Section 4.2. In these
figures, we again note that the ADM values have been mean
subtracted as described in Section 4.1, so we expect all points
to be scattered around a mean of zero. This allows for better
visualization of the spread in ADM between different
simulations, where a tighter spread indicates more precise
recovery of the injected values. We also note that there are a
few ADM values that have particularly large error bars. This is
an artifact of the DMX bin sizes. Points with these larger
uncertainties only have higher frequency 1400 MHz simulated
observations within the 15 or 6 day window, leading to a less
accurate DMX.

Figures 3-5 show the AFD parameters (the >_difference
between the injected and recovered FD parameters, FD; — FD;)
for all simulated MSPs, with the top and bottom sets of panels
broken up by simulation. The left-hand plots in these figures
show AFD for each individual FD parameter in each MSP. The
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right-hand plots show the total time delay described by the
AFD parameters calculated using Equation (4), as a function of
radio frequency. For all simulations without scatter broadening,
when we fit for all parameters, the resulting AFD parameters
are distributed around zero and within 1o of the injected values,
as shown in Figures 2—6.

We also compare how fitting for different combinations of
DMX, FD parameters, and a JUMP affects both the timing
residuals, quantified by R s, and the timing model, quantified
by Xf, as reported in Tables 5-7. These tables also list the
values of ADMy,, and AFDyp,, which are used to determine
how precisely DMX and FD are recovered. A large value
means that the parameters are recovered less precisely, while
smaller values indicate a more precise recovery.

As expected, we see that fitting for additional parameters, for
example, adding FD parameters even when none have been
injected into the simulation, does not negatively impact the
Rims for any simulated data sets. The Xf for each fit also
appears to be generally unaffected by the addition of more
model parameters, but this is due to both the slightly decreased
x* value of these fits and the reporting of Xf to only two
decimal places. Further, when adding additional parameters to
the simulations, for example, DM variations or FD parameters,
the recovered R.,s when all injected parameters are fit for
agree as expected, confirming our methods.

5.1. Discussion of Frequency-independent Profile Simulations

As FD parameters primarily model variations in the pulse
profile with observing frequency (Zhu et al. 2015; Arzoumanian
et al. 2016), we expect that FD should all be consistent with
zero, and AFD,,, should be very small for these simulations.
The exception would be if the profiles are directly shifted in
time or altered in some way (e.g., scatter broadening) as a
function of frequency, as denoted in Table 4. The injected
spectral index does not alter the shape or the profiles and
should not cause additional variations in the FD parameters.
This is indeed what we find, as shown by the upper right panels
of Figures 3-5.

In the “No Variations” simulations, we find that regardless of
what combination of parameters are fit for, we recover almost
the same R.ns. This shows that adding additional parameters
does not negatively impact the precision of our pulsar timing
and confirms that they are not absorbing any additional non-
frequency-dependent (or white) noise in the simulated data.

For the “Time-variable Scatter Broadening w/Constant
DM,” we find that for all simulated pulsars, the R, and Xf
are slightly larger than for the “No Variation” simulation. The
effect of the scattering delays is obvious from the light green
points in Figure 2, where the larger the average value, and
hence spread of 74, the less accurate and more variable the
resulting ADM, and subsequently DMX, is. This is less
obvious in Figure 3, but in Figures 4 and 5, the inability to
recover accurate FD parameters due to larger average injected
T4 values is apparent as the light green curve is not consistent
with zero. This indicates that the DMX and FD parameters
cannot appropriately account for time-variable scattering
delays, though the larger variation in the ADM values suggests
that the additional delays from scattering are absorbed by
DMX, showing a clear covariance between these two
frequency-dependent effects.

For all other simulations in this set, the resulting R s and Xf
show that when the appropriate parameters are fit for, all
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frequency-dependent delays are accounted for, affirming our
expectations. When only FD parameters are injected and all
parameters are fit for, AFD,,,, increases and ADM,,, either
remains constant or decreases. This is indicative of a small
covariance between DMX and the FD parameters and shows
that FD parameters are more susceptible to variations than
DMXis when additional frequency-dependent effects are
present and fit. While this is expected (Zhu et al. 2015), it
increases our confidence that when there is very little or no
scattering, the FD parameters are absorbing very little of the
dispersive delays. In these cases, such as PSR J1744-1134, we
can be reasonably confident that the injected DMis being
recovered.

In real pulsar timing data, both DM variations and additional
non-v~ 2 frequency-dependent effects are present. The results of
this set of simulations show that we can accurately recover the
full injected delay when the scattering timescale is very small
or zero, giving us confidence in both our methods and our
ability to use this set of simulations as a comparison to our
more complex simulations.

5.2. Discussion of Frequency-dependent Profile Simulations

In the “Profile Evolution” simulations, xf is consistent when
fitting for just FD parameters and all parameters, for
PSRs J1744-1134 and B1855+09. However, for PSR B1953
+29, sz is lower when fitting for all parameters compared to
just FD parameters. As PSRB19534-29 has a much higher
DM, this suggests that DMX may absorb more of the delays
from profile evolution at higher DMs. It is possible that this is
because at higher DMs, the profile evolution may be primarily
dominated by scattering. Since scattering scales in a similarly
frequency-dependent way to DM, DMX may absorb the effects
of scatter broadening more at higher DMs. We note, however,
that as we have simulated only three MSPs, it is difficult to
verify this. Fully exploring this relationship would require
additional simulations of comparable length exploring not only
the scale of the DM but also the size of the DM variations and
the number of FD parameters, and as such is beyond the scope
of this work. Additionally, since we recover very similar values
of R and xf for all MSPs using both methods of fitting,

DMX likely fits out very little of this intrinsic profile evolution,
which is expected (Zhu et al. 2015; Arzoumanian et al. 2016).

In all other simulations in this set, we find that the best
values of R and xf occur when we fit for all parameters,
which is consistent with the previous simulations discussed in
Section 5.1. For the “Time-variable Scatter Broadening”
simulation, we note that R s is comparable to those obtained
in the other simulations in this set, despite Figure 6 showing
that when the average 74 is large, DMX is much less accurate
and more variable. This is consistent with the results from the
“Time-variable Scatter Broadening w/ Constant DM” and
suggests that the average scatter broadening is completely fit
out by the FD parameters, while the time variations in the
injected 74 are primarily absorbed by the DMX parameters.
This again shows the clear covariance between DM and
scattering.

For PSR J1744-1134, which has both the lowest DM and
the most FD parameters of our simulated pulsars, we find that
AFD,,,s decreases while ADM,,, stays comparable when
going from a constant to time-varying injected 74. This is in
contrast to both PSRsB1855+4+09 and B1953+29, which
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variable and less accurate, though minimally for small average values of 74.

show an increase in ADM,,,; but a roughly constant AFD,
when 74 varies with time. It is difficult to determine if this
suggests that pulsars with more FD parameters or smaller 74
are less affected by time-varying 74, or if this is an artifact
of the pulsars we have chosen to simulate. In all simulations
in this set for PSR J1744-1134, AFD,, is larger when fitting
for all parameters than just FD parameters, which may
similarly suggest that the covariance between DMX and
the FD parameters is larger for more FD parameters or smaller
DMor DM variations. In either case, a comprehensive
analysis of this potential relationship would involve exploring
a large parameter space, mentioned above, that is beyond the
scope of this work.

The difference between the constant and time-varying scatter
broadening simulations most clearly shows that while there
may be a covariance between DMX and FD parameters, it is
very small. As the FD parameters are fit over the full data set,
the differences in AFD,,,; from a constant to time-varying 74
are much smaller than those of ADM,,,,,. Since the DMX are fit
as a piecewise function over small timescales, they account for
most of the additional time-varying scattering delays. While
this means DMX may not be as accurate, we can see that it
does not seem to have a large effect on Ry, since for both
scattering simulations in this set this value is comparable to the
smallest R, in the baseline ‘“Profile Evolution” simulation.

6. Implications for Precision Pulsar Timing

The results of our simulations and analyses are important
when considering the use of PTAs to detect gravitational waves
(e.g., Hobbs 2013; Kramer & Champion 2013; McLaughlin
2013). In all simulated MSPs, we find that when profile
evolution is present through direct injection or the use of
frequency-dependent profiles, AFD,,s can change by an order
of magnitude when all parameters are fit for, compared to just
FD parameters. In general, this change seems to be an increase
for pulsars with more FD parameters and smaller DMs, and a
decrease for pulsars with larger DMs and fewer FD parameters,
but it is important to note that we have only simulated three
pulsars in this work. Regardless, this is evidence of the
covariance between DMX and FD parameters, especially in
the simulations where no scattering delays are injected, but the
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effect on Ry is negligible, as it is always at a minimum when
all appropriate parameters have been fit for. Additionally, Xf is
almost always closest to one when fitting for all parameters,
showing that the addition of FD parameters does not make the
timing model fit worse.

Additionally, one can see from Figures 2 and 6 that, when no
time-variable scattering delays are injected, as long as the
DMX fit spans both frequency bands, we can recover the
injected DMX, regardless of the DM variations, the nominal
DM value, or the number of FD parameters. This shows that, as
expected (Zhu et al. 2015; Arzoumanian et al. 2016), our
models and fitting are able to, in principle, separate out the
physical variations in DM from any effects modeled out by
FD parameters. We can conclude that although there is a
definitive covariance between DMX and the FD parameters, it
is very small and does not affect the precision of the pulsar
timing.

The most interesting result and impact found in our
simulations is when time-variable 74 are injected. It is apparent
from Figures 2—-6 that these time-variable delays decrease the
accuracy and increase the variability of DMX as well as FD,
and that the level of inaccuracy and variability increases with
larger values of 74. This seems to indicate that the time delays
due to scattering are primarily absorbed by the DMX values,
indicating a clear covariance between the two frequency-
dependent effects. This shows that in real pulsar data, larger
scattering timescales will result in some of the variations in
DMX. However, in our most realistic simulation, “Time-
variable Scatter Broadening,” Rns is within 10ns of the
minimum expected R,y given in our baseline ‘“Profile
Evolution” simulation. So even though the time-variable
scattering clearly changes the DMX and FD, it has a minimal
effect on Ry, at least for the three pulsars simulated in
this work.

Since DMX have a much larger spread with varying 74, we
also look to see if there is a correlation between the two
parameters. The ADM values are plotted against the values of
T4 injected within each DMX epoch in Figures 7-9. In all cases,
we can see that for simulations with time-variable scattering
delays (green and magenta), the larger the average value,
and hence spread of 74, the larger the spread in ADM. For
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Figure 9. ADM value (ﬁ/& — DMX) vs. the injected scattering timescale(s) 74 within each DMX bin for PSR B19534-29. The same number of points are shown
for each simulation. We can see that in the case of time-variable scattering delays, the injected DMX value is recovered less accurately, as shown by the larger spread
in the green and magenta ADM points compared to the blue points. The top histogram shows the distribution of injected 74, while the right histogram shows the
distribution of ADM. We clearly see no correlation between the injected value 74 and the ADM, showing that time-variable scattering only serves to make DMX more

variable and less accurate.

simulations with constant scattering delays (blue), there is very
little variability in ADM. The ADM,,, seems to be larger
when there are no DM variations or frequency-dependent
profiles injected, though the spreads of the resulting ADM
values are roughly the same magnitude between the two
simulations. Most importantly though, there appears to be no
correlation between the injected 74 and DMX. This is likely
because the FD parameters fit out the mean injected 74, so when
the distribution _of injected 74 is more spread out (see top
histograms), DMX must absorb a larger portion of the
scattering delays, resulting in a larger spread in ADM.

The fact that R, appears to be relatively unaffected by
time-variable scattering delays shows that the delays from
frequency-dependent effects are modeled out due to the
covariance between DM and scattering. As GWs are not
dependent on radio frequency, this covariance therefore does
not preclude current PTAs from potential detection, though it
could induce additional red-noise processes in the data.

However, accurate measurements of DMsare extremely
important for precision pulsar timing and for understanding
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noise in the timing data. In particular, for experiments designed
to detect nanohertz GWs, advanced noise modeling techniques
such as those discussed in Arzoumanian et al. (2020a) will
benefit greatly from disentangling the covariances between
DM and scattering where precision down to hundreds of
nanoseconds is required (e.g., Lam 2018; Lam et al
2018, 2019). Techniques such as cyclic spectroscopy (Dolch
et al. 2020; Turner et al. 2020) or alternative methods of
quantifying time-variable scattering such as those described in
Main et al. (2020) will be necessary to break this covariance.

7. Conclusions

Here for the first time we have used PSRSIGSIM to simulate
pulsar data for three different MSPs with DM variations, pulse
profile evolution with frequency, and time-variable scatter
broadening to explore the covariances between these effects.
We show that PSRSIGSIM is able to efficiently simulate large
amounts of unevenly sampled data spanning long timescales,
which can then be processed using other standard pulsar
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software such as PSRCHIVE and PINT to get pulse TOAs as well
as fit timing models. The different delays that were injected into
the simulated data, such as DMX and direct shifts corresp-
onding to the FD parameters, can be accurately recovered using
these softwares. This emphasizes not only the usefulness of the
PSRSIGSIM, but also that the standard timing model fitting
procedures, such as those implemented in PINT, are able to
differentiate between these different frequency-dependent
effects.

As an interesting first use case of the PSRSIGSIM, we
explored the covariance between the DMX and FD parameters
and what, if any, effect this will have on precision pulsar
timing. We find that there is a definite covariance between the
two, as evidenced by the varying values of AFD,,, when
fitting for all parameters. However, in almost all cases, when
fitting for all parameters, R,y Was equivalent to the minimum
expected values. This, combined with the fact that the injected
values of the DM and FD parameters were also recovered,
shows that this covariance is small and has a negligible effect
on the precision of the pulsar timing. While this is expected,
these simulations show that this covariance should have little to
no impact on the pulsar timing.

Our simulations also find that when scatter broadening is
added, the FD parameters are able to fit out the average injected
74. However, when time-variable scattering delays are injected,
both the recovered DM and FD parameters, DMX and 15]3, are
significantly less accurate, increasing with the average injected
T4- We find that most of this additional scattering delay is likely
being absorbed by the DMX parameters, showing the covar-
iance between these effects. While this does not seem to have a
significant impact on Ry, it does imply that some of the
variations in DM seen are due to variable values of 74, and that
additional analysis and new techniques, such as cyclic
spectroscopy (Dolch et al. 2020), will be needed to separate
out these two effects.

These simulations represent just the beginning of what can
be done with PSRSIGSIM. Further studies with PSRSIGSIM may
look at profile evolution in the era of wideband pulsar timing
(Pennucci et al. 2014; Alam et al. 2021a) or explore other
effects not yet incorporated, such as scintillation. Further
improvements to PSRSIGSIMto create realistic data sets
containing GW signals will be critical for confirming future
detection by PTAs. Additionally, PSRSIGSIM offers ways to
explore how future telescope upgrades, such as the ultra-
wideband receiver to be installed at the GBT, will affect our
pulsar timing (Skipper et al. 2019). The ability to simulate
realistic pulsar data in formats commonly used allow for the
potential to test different timing or searching algorithms,
explore the effects of different parameters, and test the recovery
of input signals, such as GWs, in a new, meaningful way.
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