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Abstract

We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11year data set
from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no
evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH)

binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB
constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB
signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array
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(PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude
of AGWB<1.45×10−15 at a frequency of f=1yr−1 for a fiducial f−2/3 power-law spectrum and with
interpulsar correlations modeled. This is a factor of ∼2 improvement over the NANOGrav nine-year limit
calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and
cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to
characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of
SMBH binaries, and SMBH–galactic-bulge scaling relationships. We constrain the cosmic-string tension using
recent simulations, yielding an SSE-marginalized 95% upper limit of Gμ<5.3×10−11—a factor of ∼2 better
than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density
of a primordial GWB (for a radiation-dominated post-inflation universe) is ΩGWB( f ) h

2<3.4×10−10.

Key words: ephemerides – gravitational waves – inflation – methods: data analysis – pulsars: general – quasars:
supermassive black holes

1. Introduction

Over the last two years, the gravitational-wave (GW)

community has celebrated the first direct detection of GWs,
generated by the coalescence of two ∼30 Me black holes
(Abbott et al. 2016), as well as the first multimessenger
observation of GWs with panspectral EM radiation, emitted
during and after the final inspiral and merger of two neutron
stars (Abbott et al. 2017). Pulsar-timing arrays (PTAs; Sazhin
1978; Detweiler 1979; Foster & Backer 1990) offer the
opportunity of extending GW observations to the very-low-
frequency spectrum (∼1–100 nHz). The discovery space here
is populated by GWs from supermassive black hole binaries
(SMBHBs) at galactic centers (see, e.g., Sesana et al. 2004;
Sesana 2013), and possibly from more speculative sources of
cosmological origin, such as cosmic strings (Damour &
Vilenkin 2001; Ölmez et al. 2010) and/or a primordial GW
background (GWB) produced by quantum fluctuations of the
gravitational field in the early universe, amplified by inflation
(e.g., Grishchuk 2005; Lasky et al. 2016).

The three major collaborations involved in this effort are the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav; McLaughlin 2013), the European Pulsar
Timing Array (EPTA; Desvignes et al. 2016), and the Parkes
Pulsar Timing Array (PPTA; Hobbs 2013). In addition, the
International Pulsar Timing Array (IPTA; Verbiest et al. 2016)
exists as an umbrella consortium for data sharing, coordinated
timing campaigns, and joint GW analysis. The increasing
sensitivity of PTAs is apparent in the ever-tightening upper
limits (van Haasteren et al. 2011; Demorest et al. 2013;
Shannon et al. 2013; Lentati et al. 2015; Shannon et al. 2015;
Arzoumanian 2016) on the stochastic GWB from the
unresolved superposition of SMBHB signals out to redshift 1.

The road toward detection lies not only through the
accumulation of ever longer and more accurate time-of-arrival
(TOA) data for larger arrays of monitored pulsars, but also
through the development of powerful, robust, and reliable data
analysis methods to demonstrate the presence of GWs in PTA
data. In this article, we report substantial advances along both
avenues. First, we present our stochastic-GW analysis of
NANOGrav’s largest and most sensitive data set so far,
spanning 45 pulsars and 11.4 years. See Section 2 and
Arzoumanian (2018, hereafter NG11) for more on this
“11year” data set. Second, we describe our statistical-inference
framework, which was significantly augmented compared to
our GW study of the nine-year data set (Arzoumanian 2016,
hereafter NG9b). Improvements include a practical strategy
to isolate the expected signature of stochastic GWs in our

data—namely, the emergence of a long-timescale noise process
that is common to all pulsars and the positive detection of
interpulsar spatial correlations with a quadrupolar signature
(Hellings & Downs 1983). This strategy is based on Bayesian
model selection and is extensible to large arrays and data sets.
Indeed, for the first time with a large pulsar array, we are able
to report GW upper limits and GW versus noise (“detection”)
Bayes factors computed with likelihoods that include spatial
correlations—such as the ones predicted by Hellings & Downs
(1983)—a goal that had previously proved computationally
infeasible beyond small arrays (Lentati et al. 2015).
This article also features a more robust, Bayesian–frequentist

hybrid “optimal-statistic” analysis (Anholm et al. 2009;
Demorest et al. 2013; Chamberlin et al. 2015), which
complements our primary Bayesian approach. In addition, we
employ a more flexible end-to-end approach for PTA GW
searches to constrain astrophysical parameters (characterizing
SMBHB populations and environments, as well as cosmic-
string properties). This approach uses a set of GW-spectrum
simulations that span the parameter-space region of interest and
interpolates them by means of GPs (Williams & Rasmussen
2006; Taylor et al. 2017b), resulting in a flexible new model
that is calibrated directly by detailed simulations.
Lastly, but perhaps most importantly, we report on how solar

system ephemeris (SSE) errors can manifest as a false GWB
signal in PTA data, for sufficiently long and high-quality data
sets. The SSE is used to refer TOA measurements to an inertial
frame located at the solar system barycenter (SSB). Previous
GW searches treated the ephemeris as a fixed-parameter model
without uncertainties. However, in the course of analyzing the
11year data set, we discovered that adopting different
ephemerides (among the last few published by the Jet
Propulsion Laboratory (JPL); see Folkner et al. 2009, 2014,
2016; Folkner & Park 2016) leads to significantly different
upper-limit and model-comparison statistics. As PTA data sets
become larger, longer, and more precise, our GW searches will
continue to uncover systematic effects that will limit our
sensitivity unless handled appropriately. To this end, we have
developed a physical model of ephemeris uncertainties, and we
demonstrate that it makes our analysis insensitive to the choice
among recent ephemerides.
This paper is laid out as follows: methodological advances are

discussed in Section 3. In Sections 4 and 5, we report GW upper
limits and detection Bayes factors based on the 11year data set,
as well as new constraints on astrophysical and cosmological
sources of low-frequency GWs. In Section 6, we present our
conclusions and discuss prospects for future observations.
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For the busy reader, the following summarizes the most
consequential results:

1. Once we take ephemeris uncertainty into account, we find
Bayesian model comparison to be inconclusive on the
presence of a GWB-like signal in the data (with signal-
versus-noise and spatial-correlation Bayes factors both
∼1). Adopting one of the fixed JPL ephemerides leads to
signal-versus-noise Bayes factors as high as 26±2 in
favor of a GWB-like signal (for JPL ephemeris DE430),
suggesting that systematic ephemeris errors can masquer-
ade as GWs—and conversely that modeling these errors
can subtract power from a putative GWB signal. This
degeneracy will be resolved over the next few years as we
collect longer and larger data sets, and as ephemeris
accuracy improves with data from current NASA missions.

2. Accounting for ephemeris uncertainty, the 95% Bayesian
upper limit on a fiducial f−2/3 GW spectrum from
SMBHBs is = ´ -( )A 1.45 2 10GW

95% 15 at f=1 yr−1

(when modeling spatial correlations; 1.34(1)×10−15

when omitting them). This value is modestly improved
from the nine-year result of = ´ -A 1.5 10GW

95% 15, which
omitted correlations, and assumed JPL ephemeris DE421
as a fixed-parameter model without uncertainties. Note,
however, that reprocessing the nine-year data set
accounting for ephemeris uncertainties leads to =AGW

95%

´ -( )2.91 2 10 15 (when modeling spatial correlations;
2.67(2)×10−15 omitting them). We expect that recently
published limits from other PTAs (such as Shannon et al.
2015) would be likewise revised upwards. Our 11year
upper limits assuming individual fixed-model ephemer-
ides range from 1.53 to 1.78×10−15 (when modeling
spatial correlations), again suggesting that ephemeris
errors can mimic GW-like signals.

3. We place the first joint constraints on the galaxy
properties and binary evolution parameters with the
greatest impact on the spectral shape and amplitude of the
GWB from SMBHBs. Previous work, such as that
undertaken in NG9b, has always utilized an amplitude
or spectral shape assumption before inferring any
astrophysical constraints. This improved methodology
allows for the first robust PTA limits on the MBH–Mbulge

relation and shows that the NANOGrav 11year data set
prefers a relation that is lower (in terms of the relation’s
y-intercept) than that reported in Kormendy & Ho (2013).

4. Using a model of cosmic-string-generated GW spectra
that interpolates among extensive string-network simula-
tions (Blanco-Pillado & Olum 2017), we place a 95%
upper limit of 5.3(2)×10−11 on the string tension Gμ/c2

for a reconnection probability p=1. This result is
marginalized over ephemeris uncertainties, but ignores
interpulsar spatial correlations. (Including these is still too
taxing computationally; however, we argue that our upper
limits assuming a variable power-law exponent,
described in Section 4.1, are affected modestly by
correlations, and so should be the cosmic-string result.)
Previous studies reported limits of 1.3×10−10 (NG9b)
and 8.6×10−10 (Lentati et al. 2015), although different
prior assumptions and the lack of ephemeris modeling
preclude a direct comparison.

5. Lastly, we can interpret power-law GWBs with different
fixed exponents as a primordial background amplified
through inflation, with post-inflationary eras characterized

by different equations of state. Assuming a radiation-
dominated post-inflation universe and a tensor index
nt=0 (corresponding to a scale-invariant spectrum) leads
to a 95% upper limit of 3.4(1)×10−10 on the GW energy
density ΩGW( f )h2 at f=1 yr−1, again marginalizing over
ephemeris uncertainty but ignoring interpulsar spatial
correlations.

2. The 11Year Data Set

Our analyses throughout this paper make use of the
NANOGrav 11year data set, which consists of the TOA data
and pulsar-timing models recently presented in NG11 and is
publicly available online.42 This data set is derived from timing
observations of 45 millisecond pulsars between 2004 July 30 to
2015 December 31. The first five years of data on 17 pulsars
constituted the NANOGrav five-year data set, which we
previously published in NG5. The five-year data set was
augmented by four years of data, reported as the nine-year data
set in Arzoumanian et al. (2015, hereafter NG9a), which came
with the substantial improvements of the new broadband
instrumentation, a nearly twofold increase in the timing
baseline for the original 17 pulsars, and a more than twofold
increase in the total number of observed sources to 37 pulsars.
The present extension of the nine-year data set is composed of
two years of data that were observed and processed in a nearly
identical fashion to the previous augmentation, with the
addition of nine pulsars and the removal of one (see NG11
for full details). Here we briefly review the instrumentation,
observations, and basic data reduction of the entire data set,
referring the reader to NG11, NG9a, and references therein for
a thorough description. A sky map of the pulsars in this data set
is shown in Figure 1, with indicators of the time span and data
volume for each pulsar.

2.1. Observations

We obtained all data using the 100m Robert C. Byrd Green
Bank Telescope (GBT) of the Green Bank Observatory43 and
the 305m William E. Gordon Telescope (Arecibo) of Arecibo
Observatory.44 Sources within Arecibo’s declination range
(0°<δ<39°) were observed there due to its superior
sensitivity, and only pulsars J1713+0747 and B1937+21 were
observed at both telescopes. Excluding early portions from the
five-year data set, we observed each source roughly once a
month for the entire data set. In addition, some pulsars have
been observed weekly in a campaign to increase our sensitivity
to individual sources of GWs (Arzoumanian et al. 2014,
Section 6.1). Specifically, two pulsars have been observed
weekly at the GBT since 2013 (PSRs J1737+0747 and J1909
−3744), and five pulsars have been observed weekly at
Arecibo since 2015 (PSRs J0030+0451, J1640+2224, J1713
+0747, J2043+1711, and J2317+1439).
During most epochs,45 we observed sources in two widely

separated frequency bands in order to accurately remove
the frequency-dependent dispersion delay introduced by
the ionized interstellar medium (ISM). At the GBT, we used

42 data.nanograv.org
43 greenbankobservatory.org/telescopes/gbt/
44 http://outreach.naic.edu/ao/
45 This excludes the weekly observations, which were performed at 1.4 GHz
only, as well as epochs for which receivers were unavailable for technical
reasons.
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the 820MHz and 1.4GHz receivers for all observations. Since
mechanical and time constraints prohibit alternating continually
between the two receivers, observations in the two bands were
always separated, typically by several days. At Arecibo, we
observed all pulsars at 1.4 GHz, plus a second frequency band
(centered at either 430MHz or 2.3 GHz) chosen depending on
the spectrum and ISM characteristics of each pulsar.46 Pulsars
observed at Arecibo are always observed in the two frequency
bands one after another, separated by a few minutes.

For approximately the first six years, data were acquired with
an identical pair of backend instruments that have since been
decommissioned (GASP at the GBT, ASP at Arecibo). Since
2010 and 2012, respectively, the broadband-capable backend
clones GUPPI (at the GBT) and PUPPI (at Arecibo) have been
used for taking data.

2.2. Processing and TOA Data

The raw data products are folded light curves (average,
uncalibrated flux density as a function of rotational phase,
divided into 2048 phase bins) as a function of time, radio
frequency, and polarization. These data were cleaned of radio-
frequency interference in several steps, polarization-calibrated
according to standard techniques, and averaged in time and
frequency. The final time resolution was either 30 minutes or
2.5% of the binary period, whichever was shorter (approxi-
mately two-thirds of our pulsars are in binary systems). This
length of time corresponds to how long we point our radio
telescopes at each pulsar during a single observation session,
where we fold many individual pulses then convolve with a
pulse-profile template to compute a single TOA. This is
necessary to achieve high timing precisions of ∼100 ns. The
final frequency resolution varied between 1.5 and 12.5MHz,
depending on the receiver–backend combination.

The five-year TOA data set was left mostly untouched as a
subset of the 11year data set, except for reprocessing under
DE436. All of the GUPPI and PUPPI profile data, however,
were reprocessed from scratch to make a consistent set of
TOAs. The TOAs were generated using standard template-
matching cross-correlation methods, using only the total
intensity profiles, producing one TOA per frequency channel
per temporal subintegration. Existing template profiles were
reused for pulsars that were part of the nine-year data set and
created for new pulsars.

An additional set of procedures culled “outlier,” low signal-
to-noise (non-Gaussian distributed), or otherwise corrupt TOAs
from the data set using methods described in Vallisneri & van
Haasteren (2017). The 11year data set comprises a total of
309,201 TOAs. All data reduction was completed using
PSRCHIVE.47 (Hotan et al. 2004) and custom NANOGrav
processing scripts.48

2.3. Timing Models and Noise Analysis

Timing models from the nine-year data set were refit to the
extended data set and updated to include new parameters when
deemed necessary on the basis of statistical significance tests.
We fit timing models for newly added pulsars using a
procedure similar to that described in NG9a. All timing models

were created or updated using the standard timing software
TEMPO49 and TEMPO250 (Edwards et al. 2006; Hobbs et al.
2006), and cross-checked for consistency.
A standard noise model was also fit simultaneously with the

timing model as described in NG9a and NG11. Each pulsar’s
white-noise model includes a scale parameter on the TOA
uncertainties (EFAC), an added variance (EQUAD), and a per-
epoch variance (ECORR) for each observing system (i.e., a unique
combination of backend and receiver). In addition, a red-noise
process for each pulsar was modeled by a power-law spectral
density described by an amplitude and spectral index. The
inclusion of a red process in the noise model was not favored by
all pulsars, but we include it in all subsequent analyses since this
does not affect parameter constraints. In the analyses described in
the subsequent sections, we vary the pulsars’ red-noise parameters
and the parameters of the GWB, but fix the white-noise parameters.
Allowing the white-noise parameters to vary does not alter the
results, but it significantly increases the computation time.
The SSE model used for the original analysis of the five-

year data set (Demorest et al. 2013) was DE405 (Standish
2004), while for the nine-year data set (Arzoumanian
et al. 2015) all data (whether new or from the five-year data
set) was modeled with DE421 (Folkner et al. 2009). For the
11year data set, we use DE436 (Folkner & Park 2016) as the
fiducial SSE under which the data is processed and released.
We do not need separate data set releases for the different SSEs
that we investigate in the following, since our GWB analysis
incorporates marginalization over all affected processes, such
as the individual timing and red-noise models.

3. Data Analysis Methods

Characterizing all deterministic and noise processes in each
pulsar, as well as teasing out a putative GWB signature from the
cross-correlation of large data sets, requires a robust and
sophisticated statistical framework. In the following we describe
the major new features of the NANOGrav PTA analysis
framework, as updated from NG9b. Section 3.1 describes our
use of Bayesian inference as it pertains to computing GWB
upper limits and detection statistics. Section 3.2 outlines how a
GWB manifests in our data as a long-timescale stochastic
process with a distinctive correlation signature between pulsars.
In Section 3.3, we describe how the SSE model appears in our
PTA and our new Bayesian scheme to mitigate its uncertainties.
The structure of our generative signal and noise model is
outlined in Section 3.4, followed in Section 3.5 by the definition
of our frequentist estimator for the GWB amplitude and
significance. Finally, in Section 3.6, we list and provide links
for all open-source software used in our GWB analysis.

3.1. Bayesian Methods

We primarily employ Bayesian inference (see, e.g., Gregory
2005) to extract physical information from our data, deriving
marginalized posterior distributions and credible regions,
basing upper limits on credible intervals, and relying on ratios
of evidences (a.k.a. Bayes factors) to compare models with
different assumptions and parametrizations. We explore our
high-dimensional parameter space stochastically using the
parallel-tempering Markov Chain Monte Carlo (MCMC)46 Pulsar J2317+1439 was originally observed with the 327 and 430MHz

receivers, but in 2014 we replaced the former with the 1.4GHz receiver.
47 psrchive.sourceforge.net
48 github.com/demorest/nanopipe

49 tempo.sourceforge.net
50 bitbucket.org/psrsoft/tempo2.git
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sampler (Ellis & van Haasteren 2017b) described in the
appendices of Arzoumanian et al. (2014).

To place upper limits on the GWB amplitude AGWB, we
compute its posterior density distribution ( ∣ )p AGWB (with 
the data) by giving AGWB a uniform prior distribution that
encloses the support of the likelihood, and we estimate the 95%
quantile by means of the empirical cumulative-distribution

function estimator ÂGWB

95%
(Wilcox 2016). We approximate the

standard error of ÂGWB

95%
as



-

=

( )

( ˆ ∣ )
( )

x x N

p A A

1
, 1

GWB GWB

95%

with x=0.95 and N the number of (quasi-)independent
samples51 in the chain.

As our PTA data set becomes longer and more sensitive, we
expect that evidence for the presence of GWs will emerge in
two phases: first as red-spectrum processes with the same
amplitude in each pulsar and with spectral slope consistent with
an SMBHB population; later (perhaps several years), and
conclusively, as Hellings–Downs spatial correlations predicted
for an isotropic GWB. We note that anisotropic GWBs will
have different (but predictable) spatial correlations (Mingarelli
et al. 2013; Taylor & Gair 2013; Gair et al. 2014; Mingarelli &
Sidery 2014).

Correspondingly, we characterize evidence for a GWB in the
11year data set in two steps. We first obtain the Bayes factor
for a data set model that includes a red-spectrum process with
common statistical properties in all pulsars (but is uncorrelated
between them) against a model with only per-pulsar noise
processes. This is signal-versus-noise model selection. We then
obtain the Bayes factor for Hellings–Downs interpulsar spatial
correlations versus no correlations at all. This is spatial-
correlation model selection, which we consider the definitive
scheme for GWB detection. We also perform variants of these
comparisons—for instance, we compare the Hellings–Downs
and uncorrelated process against processes with monopolar
(akin to long-timescale clock errors) and dipolar (akin to SSE
errors) spatial correlations.

In all cases, we adopt bounded log-uniform priors for AGWB

and all other red-process amplitudes. We adopt two different
techniques to compute Bayes factors according to the relation
between the models in the comparison.

For nested models (in our case, a signal-plus-noise model1

and a noise-only model 0 obtained by fixing the GW
amplitude to 0), we employ the Savage–Dickey formula
(Dickey 1971)






 

º =
=
=

[ ]

[ ]

( ∣ )

( ∣ )
( )

p A

p A

evidence

evidence

0

0 ,
, 210

1

0

GWB 1

GWB 1

where the numerator and denominator are, respectively, the
prior and posterior probability density of AGWB=0 in the
embedding model 1. We generate a sampling of

 ( ∣ )p A ,GWB 1 via MCMC, and we approximate =(p AGWB

 ∣ )0 , 1 as the normalized fraction of samples in the lowest-
amplitude bin, averaging the estimate over a range of bin sizes.
The standard error of this average yields an estimate of
uncertainty for the Bayes factor.

For disjoint models (in our case, a model consisting of a
Hellings–Downs-correlated red process plus pulsar noise
versus a model consisting of a common-amplitude, spatially
uncorrelated red process plus pulsar noise) we use a product-
space method (Carlin & Chib 1995; Godsill 2001; Hee et al.
2016). In this method, we define a super-model that contains all
parameters from all models under consideration, as well as an
additional model-indexing variable that determines which
model is “active” and used to evaluate the likelihood.52 (In
our example, where the parameters are actually the same in
both models, the index variable would simply toggle Hellings–
Downs correlations in the evaluation of the likelihood.) The
ratios of posterior probabilities for two model indices
approximate the corresponding Bayes factor. We follow
Cornish & Littenberg (2015) to estimate Bayes-factor
uncertainties.
Evaluating the multipulsar likelihood is very computation-

ally expensive when we account for interpulsar spatial
correlations. In that case, we accelerate inference by running
at least 10 parallel copies of each spatially correlated analysis.
These subchains can then be concatenated to form a much
larger chain. Each subchain is analyzed to determine that it has
“burned in”53 before combining it with others. To derive upper
limits and Savage–Dickey Bayes factors, we simply append the
subchains together and proceed as described above. For
product-space Bayes factors, we obtain the factor itself from
the combined subchains, but we estimate uncertainties in each
subchain separately, then add them in quadrature (Cornish &
Littenberg 2015).
Arbitrary rules of thumb have been given to interpret the

statistical significance of Bayes factors of different magnitudes
(see, e.g., Jeffreys 1961; Kass & Raftery 1995), but it is hard to
find agreement beyond the trivial statement that factors ∼1 are
inconclusive, while very large or small factors point to a strong
preference for either model. In the context of a detection
scheme, it seems appropriate to examine the frequentist
distribution of the Bayes factor and to set detection thresholds
as a function of false-alarm probability (Vallisneri 2012). The
sky-scramble and phase-shift methods (Cornish & Sampson
2016; Taylor et al. 2017a) have been proposed to produce a
background distribution of the Bayes factor for which spatial
correlations are effectively removed from the data. By contrast,
we currently lack a practical approach to establish the
significance of a common uncorrelated process; such an
approach would likely involve a combination of inference
runs on simulated data and cross-validation experiments, such
as comparing results for subsets of the data set. As we shall see,
all the ephemeris-marginalized Bayes factors obtained in this
paper are close to unity and can be deemed inconclusive
without a frequentist analysis.

3.2. Gravitational-wave Strain Spectrum

The observed timing residuals due to a GWB with
characteristic strain hc( f ) are described by the cross-power

51 Quasi-independence here refers to samples separated by one autocorrelation
chain length.

52 This variable is technically discrete, but it can be sampled continuously and
cast to an integer to choose the active model.
53 In MCMC analysis, some early sampled points must be disregarded before
the chain can be considered to be sampling from the true posterior probability
distribution. The disregarded early portion of the chain is called the “burn in”
stage.
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spectral density

p
= G( ) ( )

( )
( )S f f

h f

f12
, 3ab ab

c
2

2 3

where Γab is the overlap reduction function (ORF), which
describes correlations between pulsars a and b in the array. In
the case of an isotropic background from SMBHBs, the ORF is
given by Hellings & Downs (1983; hereafter referred to as
H.–D. correlations). Other correlated effects such as systematic
errors in the SSE or clocks can also be described by a timing-
residual spectrum that includes a different ORF.

In this paper, we consider four models of the GWB
spectrum:

Power-law spectrum: A population of inspiraling SMBHBs
in circular orbits, evolving by GW emission alone, produces
a characteristic GW-strain spectrum, expressed as

=
a

-

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )h f A

f

yr
4c GWB 1

with α=−2/3 (Phinney 2001). Different spectral slopes can
be used to model relic radiation from the early universe, under
different assumptions for the equation of state of the universe
post-inflation/pre-big bang nucleosynthesis (see Section 5.3).
We find it expedient to perform our analysis in terms of the
timing-residual spectral index γ=3−2α, such that

p
= G

g

-

-⎛

⎝
⎜
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A f
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yr . 5ab ab

GWB
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3

The fiducial SMBHB α=−2/3 then corresponds to
γ=13/3.
Broken power-law spectrum:If SMBHBs remain coupled to
the dynamics of their galactic environments as they evolve
into the nanohertz band, the nanohertz GW-strain spectrum
will be more complex than described by Equation (4). This
may be the case if three-body scattering of stars from the
galactic-center loss cone (e.g., Quinlan 1996; Sesana et al.
2006) or interaction with a viscous circumbinary disk (e.g.,
Haiman et al. 2009; Kocsis & Sesana 2011) is a stronger
dynamical influence than GW emission at wide orbital
separations. When the binary reaches milliparsec separations,
GW emission will always be dominant. Sampson et al.
(2015) introduced a broken power-law model,

=
+

a

k

-
( )

( )

( ( ) )
( )h f A

f

f f

yr

1
, 6c GWB

1

bend
1 2

to model such spectra, where the slope transitions from positive
at low frequencies to the canonical −2/3 at higher frequencies.
The frequency at which the transition occurs encodes
information about the typical binary’s orbital evolution and
astrophysical environment.
Free spectrum:To characterize the GW-strain sensitivity of
our data set as a function of frequency, we adopt independent
uniform priors for the dimensionless strain amplitudes of
each sine–cosine pair of red-process Fourier components (see
Section 3.4), corresponding to frequencies k/T, with k=1,
K, N, where T is the longest time span in the combined data

set and N (set to 50 in this paper) is the number of Fourier
component pairs. We then derive a joint posterior for all
amplitudes.
GP spectrum emulation: This model was introduced by
Taylor et al. (2017b) as a way to perform searches that are
directly informed by detailed source-astrophysics simulations
and to sample the posteriors of the binary environment and
dynamics parameters that affect the GW spectrum without
generating a new simulation for each likelihood evaluation.
In practice, we perform simulations over a grid in the
parameter space of interest, and for each simulation we
compute the GW characteristic strain spectrum. We then
train a GP (Williams & Rasmussen 2006) to interpolate over
all spectra in parameter space, allowing spectral amplitudes
to be predicted at any other point with an associated normal
uncertainty. We then use these predictions and uncertainties
as priors on the strain amplitude at each frequency within the
free-spectrum model.

3.3. SSE Errors and Uncertainties

An SSE is used in pulsar timing to convert observatory
TOAs to an inertial frame centered at the solar system
barycenter, factoring out all effects due to Earth’s motion.
The dominant correction to the TOAs is the Roemer delay—the
classical light-travel time between the geocenter and the solar
system barycenter. Pulsar-timing studies have typically relied
on the latest SSE released by JPL, adopting it as a model with
fixed parameters—that is, without including any SSE parameter
uncertainties or corrections in timing-model fits. In the early
stages of our analysis of the NANOGrav 11year data set, we
became aware that the choice of SSE among the latest few
released by JPL has a measurable impact on our GWB upper
limits and model-comparison Bayes factors. Indeed, the
abundance and precision of NANOGrav’s measurements are
now such that the accuracy to which we can estimate the
Earth’s orbit around the SSB limits our sensitivity to GWs. SSE
errors have been speculated as a source of potential bias in PTA
GW detection efforts (Tiburzi et al. 2016), but this paper marks
the first time that this effect has been rigorously studied with
real data sets.
The JPL SSEs,54 as well as the French INPOP,55 fit the orbits

and masses of a large set of solar system bodies to a
heterogeneous data set collected over the last few decades,
using spacecraft ranging, direct planetary radar ranging, space-
craft VLBI, and (for the Moon) laser ranging of retroreflectors
left by the Apollomissions. The orbits are integrated numerically
from initial conditions (“epoch” positions and velocities), which
are the parameters that are fit for, together with other quantities
such as the masses of minor solar system bodies (but not planet
masses, which are estimated separately from observed motions
in planetary systems; Folkner et al. 2009). The resulting SSEs
are distributed as Chebyshev polynomials over a range of dates;
notably, they do not include estimates of orbit uncertainties and
of possible systematics.
To investigate the effects of SSE errors, we repeated all

upper-limit and model-comparison analyses in this paper using
the four most recent JPL SSEs: DE421, released in 2008
(Folkner et al. 2009); DE430 (Folkner et al. 2014); DE435

54 https://ssd.jpl.nasa.gov/?ephemerides
55 https://www.imcce.fr/inpop
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(Folkner et al. 2016); and DE436 (Folkner & Park 2016)); for
the simplest analysis, we used also the French INPOP13c
(Fienga et al. 2014). The orbit of Earth relative to the Sun is
consistent at the 10m level across these ephemerides, after
accounting for an overall rotation w.r.t. the International
Celestial Reference Frame, which originates from updated
very-long-baseline-interferometry observations of spacecraft at
Mars. However, the orbit of the Sun w.r.t. the SSB and
(therefore) the orbit of the Earth w.r.t. the SSB match only at
the 100m level. This discrepancy is attributed to differences in
the estimated masses and positions of Jupiter, Uranus, and
Neptune. Hence, our GW analysis shows significant systematic
differences among the upper limits and Bayes factors computed
using different ephemerides. Near-future efforts may lead to
improvements in the ephemeris accuracy that are appropriate
for pulsar timing, namely (i) estimates of Jupiter’s orbit will be
improved by including Juno spacecraft data in the SSE fit,
(ii) ranging data from Cassini may better estimate the mass of
Uranus, (iii) Gaia data may improve orbit estimates for Uranus
and Neptune, and finally, (iv) pulsar-timing data may be used
to improve the estimate of Neptune’s mass.

We account for the differences between SSEs by developing
a physical model (BAYESEPHEM) that corrects Earth’s
tabulated orbit using 11 parameters. Four of these correspond
to perturbations in the masses of the outer planets and generate
corrections d-( ) ( )rM M ti itot , where δMi is the outer planet’s
mass correction, Mtot is the total mass of the Solar System, and
ri(t) is the outer planet’s orbit. One parameter describes a
rotation rate about the ecliptic pole: this accounts for
differences in the estimated semimajor axis of the Earth–
Moon-barycenter orbit, which gives rise to a linear rate in
estimated ecliptic longitude. Since the orbit of the Sun about
the SSB is largely influenced by Jupiter, and since the Jovian
period is comparable to the span of our data set, we also
include corrections to Earth’s orbit generated by perturbing
Jupiter’s average orbital elements. These corrections have the
form d- ¶ ¶ m m( ) ( ( ) )rM M t a aJ J J Jtot , where the partial deriva-
tives encode the changes in Jupiter’s orbit as we change the
orbital elements, and where the six d maJ are the orbital-element
perturbations (which we define using Brouwer & Clemence’s
1961 “set-III” parameters). By contrast, Saturn’s orbit is
constrained more strongly by available data, while Uranus
and Neptune have large orbit uncertainties but very long
periods, so they can only generate linear-in-time Roemer biases
that are absorbed by fitting pulsar periods.

Thus, we present GW upper limits and model-comparison
Bayes factors that are marginalized over these SSE uncertainty
parameters. We regard these BAYESEPHEM limits and Bayes
factors as our fiducial results in this paper. To derive them, we
constrain the outer-planet masses using the current IAU best
estimates (Jacobson et al. 2000, 2006; Jacobson 2009, 2014;
IAU 2017) and use IAU uncertainties to set Gaussian priors. The
rate of rotation about the ecliptic pole is left unconstrained. We
experimented with setting priors for Jupiter’s orbital elements
using estimated uncertainties,56 but we find better results using
uninformative priors. This is not surprising, because Jupiter’s
orbital elements are highly correlated with those of the other
planets, and our linearized correction of Jupiter’s orbit cannot
account for those correlations. Nevertheless, the resulting

variations of Earth’s orbit are comparable with the systematic
differences that we observe across JPL SSEs, which we take as
evidence that the BAYESEPHEM uncertainty parameters are
representative of true SSE uncertainties.
Our Bayesian-inference studies produce orbital-element

posteriors for Jupiter corresponding to position offsets at the
level of ∼100 km. We defer the full details of our investiga-
tions of SSE uncertainties and systematics to an upcoming
paper, where we compare reconstructed Jupiter orbits from our
analysis to those from the JPL ephemerides and discuss
potential modeling improvements to BAYESEPHEM.

3.4. Data Model and Likelihood

Except for GP spectrum emulation and for the treatment of
SSE errors, the data model used in this paper matches that
of NG9b closely, so we refer the reader to that publication for
an overview of noise modeling, marginalization over timing-
model parameters, our rank-reduced formalism for time-
correlated processes (e.g., timing noise or GWB), and the
PTA likelihood.
The rank-reduced formalism refers to the expansion of

processes on a sine–cosine Fourier basis with frequencies k/T,
where T is the span between the minimum and maximum
TOAs in the array. The number of basis vectors is chosen to be
high enough that inference results are insensitive to adding
more: we use 30 for all applications except for the free-
spectrum GWB model, for which we use 50.
As for the PTA likelihood, we introduced a significant

change compared to NG9b. “ECORR” (jitter-like) noise is fully
correlated for simultaneous observations at different observing
frequencies, but fully uncorrelated in time. In NG9b, we treated
ECORR degrees of freedom by assigning them “exploder”
basis vectors and then analytically marginalizing their
coefficients simultaneously with timing-model, red-noise, and
GWB coefficients. Doing so becomes computationally prohi-
bitive when H.–D. correlations are included. In this paper, we
include ECORR noise as block-diagonal entries (one block per
epoch per backend–receiver system) in the otherwise diagonal
white-noise covariance matrix and invert the matrix using the
fast Sherman & Morrison (1950) formula. Doing so eliminates
a significant computational bottleneck.
As in NG9b, computational efficiency is also helped by

fixing all white-noise parameters to their 1D maximum
a posteriori values from single-pulsar noise studies. This
choice is justified empirically by the very small variance of
white-noise parameters.
Our upper-limit and model-comparison studies are per-

formed under a variety of assumptions about the presence of
red-spectrum processes: in addition to individual red-spectrum
timing noise for each pulsar, we model the GWB as a spatially
uncorrelated common process (a computational simplification
appropriate in the weak-GWB limit, used in NG9b) and as an
H.–D.-correlated common process (our fiducial GWB model);
we also consider common processes with different correlations
(dipolar, as appropriate for SSE errors, and monopolar, as
appropriate for long-timescale clock errors). Table 1 describes
the nine models used in this paper, which are labeled 1, 2A–D,
and 3A–D. In model-class 1, only intrinsic pulsar noise
processes are included; in model-class 2, there are intrinsic
pulsar noise processes as well as non-GW noise processes that
induce interpulsar spatial correlations (such as clock and SSE
errors); in model-class 3, we include a GWB signal. The roman

56 W. M. Folkner & R. S. Park (2017, private communication) estimate
uncertainties in Jupiter and Saturn orbits by comparing fits that use independent
subsets of the data for each planet.
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characters given after the model-class number indicate the
specific combination of noise and signal processes forming the
model.

We perform each analysis by adopting each of the DE421,
DE430, DE435, and DE436 (and occasionally INPOP13c)
ephemerides as fixed-parameter models and by marginalizing
over SSE uncertainties using BAYESEPHEM. Our Bayesian
priors for all parameters are described in Table 2.

3.5. Optimal Statistic

As in NG9b, we perform a frequentist GWB analysis using

the optimal statistic ÂGWB

2
, a point estimator for the amplitude

of an isotropic GW stochastic background (Anholm et al. 2009;
Chamberlin et al. 2015). This statistic accounts implicitly for
interpulsar spatial correlations. The estimator is derived by
maximizing the PTA likelihood analytically, and it can be
written as

å
å

d d
=
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- -
ˆ

˜
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t P S P t
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where dta is the vector of timing residuals for pulsar a,
d d= á ñP t ta a a

T is the autocovariance matrix of the residuals, and

d d= = á ñ ¹ˆ ˜ ∣S S t tA ab ab a b
T

a bgw

2
is the cross-covariance matrix

between the residuals for pulsars a and b. The average signal-
to-noise ratio (S/N) of the optimal statistic is

årá ñ = - -
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⎣
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ab
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which is a measure of the significance of interpulsar spatial
correlations. When drawing comparisons between results
produced using this frequentist technique and our Bayesian
techniques, the relevant model selection is between models 3A
and 2A.

We use two procedures to compute ÂGWB

2
. In the more

conventional fixed-noise analysis, we compute ÂGWB

2
at fixed

values of the pulsar red-noise parameters Ared and γred. The red-
noise parameters are the values that jointly maximize the

likelihood, as found in a Bayesian parameter-estimation study
that includes pulsar red-noise and a common red-noise process.
In the newer noise-marginalized analysis (S. J. Vigeland et al.
2017, in preparation), we use posterior samples from a Bayesian
study to marginalize the optimal statistic over pulsar red-noise

parameters. This results in distributions for both ÂGWB

2
and the

S/N, rather than a single value of ÂGWB

2
and a corresponding

S/N. In both cases, pulsar white-noise parameters are fixed to
their maximum-likelihood values, as determined individually
for each pulsar with Bayesian inference. As discussed in
S. J. Vigeland et al. (2017, in preparation), simulations show
that the noise-marginalized technique produces more accurate
estimates of AGWB compared to the fixed-noise technique. This
is because the pulsar red-noise parameters are highly covariant
with common-process red-noise parameters, so the fixed-noise
analysis tends to systematically underestimate the amplitude and
significance of common signals.

3.6. Software

We generated most of the results in this paper using the
open-source software package NX01

57, which implements the
PTA likelihood and priors. NX01 was validated on a
wide range of problems, including several 11year analyses,
by cross-comparison with the well-established PAL2

58
(Ellis

& van Haasteren 2017a) and with NANOGrav’s new flagship
package, enterprise

59. We perform MCMC using
PTMCMCSampler

60
(Ellis & van Haasteren 2017b), which

implements a variety of proposal schemes (adaptive Metro-
polis, differential evolution, parallel tempering, etc.), which
can be used together in the same run.
As a companion to this paper, we are releasing a Docker61

image that contains a full stack of our software (including all
required libraries) and that can be used to reproduce the upper
limits, Bayes factors, as well as many of the figures of this
paper, using enterprise.

4. Results

All results in this paper are based on a subset of the full
11year data release, which includes the 34 pulsars with a
timing baseline greater than three years. This restriction is
justifiable since we do not expect any detectable GW signal to
be present at frequencies  -3 yr 1, and it has the advantage of
making our spatially correlated analysis—required to search for
H.–D. correlations in the residuals—more computationally
tractable, since the computational cost scales roughly as the
cube of the number of pulsars. Table 3 lists the 34 pulsars with
their epoch-averaged rms residuals, number of epochs and
TOAs, and timing baselines.
As discussed in Section 3.4, we perform analyses for

variants of our data model that reflect different assumptions
about common red-spectrum processes, as listed in Table 1,
and under four JPL ephemerides as well as BAYESEPHEM (in
select cases we include also the French INPOP13, which yields
results broadly similar to DE430).

Table 1

Spatially Correlated Red-noise Processes Used in Our Analysis

Model

Red-noise Process 1 2A 2B 2C 2D 3A 3B 3C 3D

Intrinsic (per
pulsar)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Uncorr. common ✓

H.-D. corr.
common

✓ ✓ ✓ ✓

Dipole corr.
common

✓ ✓ ✓ ✓

Monopole corr.
common

✓ ✓ ✓ ✓

Note. All models include intrinsic white-noise and red-noise processes in each
pulsar; additional common processes (with the same characteristic amplitude
and spectrum in every pulsar) can be uncorrelated or have Hellings–Downs
(GW-like), dipolar (ephemeris-error-like), and monopolar (clock-error-like)
spatial correlations. Model 2A (uncorrelated common process) was used to
derive the main results of NG9b; model 3A (Helling–Downs-correlated common
process) is the fiducial model used to constrain the GWB in this publication.

57 https://github.com/stevertaylor/NX01
58 https://github.com/jellis18/PAL2
59 https://github.com/nanograv/enterprise
60 https://github.com/jellis18/PTMCMCSampler
61 https://github.com/nanograv/11yr_stochastic_analysis
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Table 2

Prior Distributions Used in All Analyses Performed in This Paper

Parameter Description Prior Comments

White Noise
Ek EFAC per backend/receiver system Uniform [0, 10] Single-pulsar analysis only
Qk [s] EQUAD per backend/receiver system Log-uniform [−8.5, − 5] Single-pulsar analysis only
Jk [s] ECORR per backend/receiver system Log-uniform [ −8.5, − 5] Single-pulsar analysis only

Red Noise
Ared Red-noise power-law amplitude Uniform [10−20, 10−11] (upper limits)

log-uniform [−20, − 11] (model comparison) One parameter per pulsar
γred Red-noise power-law spectral index Uniform [0, 7] One parameter per pulsar

BAYESEPHEM

zdrift [rad yr
−1
] Drift rate of Earth’s orbit about the ecliptic z-axis Uniform [−10−9, 10−9] One parameter for PTA

DMJupiter [Me] Perturbation to Jupiter’s mass  ´ -( )0, 1.55 10 11 One parameter for PTA

ΔMSaturn [Me] Perturbation to Saturn’s mass  ´ -( )0, 8.17 10 12 One parameter for PTA

ΔMUranus [Me] Perturbation to Uranus’ mass  ´ -( )0, 5.72 10 11 One parameter for PTA

ΔMNeptune [Me] Perturbation to Neptune’s mass  ´ -( )0, 7.96 10 11 One parameter for PTA

PCAi ith PCA component of Jupiter’s orbit Uniform -[ ]0.05, 0.05 Six parameters for PTA

Monopole-correlated Clock-error Signal, Power-law Spectrum
Amono Equivalent strain amplitude Uniform [10−18, 10−11] (upper limits)

Log-uniform [−18, −14] (model comp., γ = 13/3) One parameter for PTA
Log-uniform [−18, −11] (model comp., γ varied) One parameter for PTA

gmono GWB power-law spectral index Delta function Fixed, depends on analysis

Dipole-correlated SSE error Signal, Power-law Spectrum
Adip Equivalent strain amplitude Uniform [10−18, 10−11] (upper limits)

Log-uniform [−18, −14] (model comp., γ = 13/3) One parameter for PTA
Log-uniform [−18, −11] (model comp., γ varied) One parameter for PTA

gdip GWB power-law spectral index Delta function Fixed, depends on analysis

GWB, Power-law Spectrum
AGWB GWB strain amplitude Uniform [10−18, 10−11] (upper limits)

Log-uniform [−18, −14] (model comp., γGWB = 13/3) One parameter for PTA
Log-uniform [−18, −11] (model comp., γGWB varied) One parameter for PTA

γGWB GWB power-law spectral index Delta function Fixed, depends on analysis

GWB, Free Spectrum
ρi [s

2
] GWB power-spectrum coefficients at f=i/T Uniform in r

i
1 2 [10−18, 10−8]a One parameter per frequency

GWB, Broken Power-law Spectrum
AGWB GWB broken power-law amplitude Log-normal One parameter for PTA

 -( )14.4, 0.26 MOP14

 -( )15, 0.22 S13

 -( )14.95, 0.12 Simon & Burke-Spolaor
(2016) b

 -( )14.82, 0.08 Simon & Burke-Spolaor
(2016) c

γGWB GWB power-law spectral index Delta function fixed to 13/3
κ GWB broken power-law low-freq. spectral index Uniform [0,7] One parameter for PTA
fbend [Hz] GWB broken power-law bend frequency Log-uniform [−9,−7] One parameter for PTA

GWB, Gaussian-process-interpolated Spectrum
ρi [s

2
] GWB power-spectrum coefficients at f=i/T  a r( ( ))V e0, , ,BH stars 0 One parameter per frequency

αBH y-intercept of MBH–Mbulge relation Uniform [7, 9] One parameter for PTA
ρstars

-
[ ]M pc 3 Mass density of galactic-core stars Log-uniform [1, 4] One parameter for PTA

e0 Binary eccentricity at formation Uniform [0, 0.95] One parameter for PTA

Notes.
a The uniform ρi

1/2 prior is chosen to be consistent with the uniform AGWB prior for the power-law model, since j µ Aii GWB
2 .

b Uses the McConnell & Ma (2013) MBH–Mbulge relation.
c Uses the Kormendy & Ho (2013) -M MBH bulge relation.
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4.1. Bayesian Upper Limits

Following NG9b, we present upper limits on the strain
amplitude of a GWB modeled as a power law and as a free
spectrum (see Section 3.2).

We first discuss our limit on the GWB from a population of
GW-driven SMBHB inspirals, as represented by Equation (5)
for γ=13/3. Adopting each of the JPL ephemerides as fixed-
parameter models and including H.–D. interpulsar correlations
in the likelihood (model 3A), the 95% upper limit on AGWB

ranges from 1.53(1)×10−15 for DE421 to 1.78(1)×10−15

for DE430, where the digits in parentheses give 1σ uncertain-
ties (see the third bolded column of Table 4). Indeed, the choice
of ephemeris leads to systematic biases that are larger than the
statistical uncertainty of the limits. Furthermore, the limits do
not evolve monotonically with later ephemerides, suggesting
that even DE436, the most recent ephemeris based on the most
data, is still measurably displaced from truth for the purposes of
our analysis.

We therefore chose to marginalize the AGWB posterior over
ephemeris uncertainties, using the BAYESEPHEM model
described in Section 3.3. Doing so yields our fiducial 11year
upper limit of ´ -( )1.45 2 10 15. This value is the same, within

sampling error, no matter which ephemeris we take as a starting
point for BAYESEPHEM, demonstrating that we have success-
fully “bridged” the individual ephemerides.
Comparing the columns of Table 4 shows how the upper

limits vary under different assumptions on the presence of
spatially correlated common processes in the data. The limits
are slightly more stringent if we model the GWB as a spatially
uncorrelated common process (model 2A in the second
column), indicating that H.–D. correlations help the likelihood
isolate a GW-like signal (whether real or due to random noise
fluctuations). Introducing additional spatially correlated pro-
cesses (with ephemeris-error-like dipolar correlations, clock-
error-like monopolar correlations, or both, corresponding to
models 3B, 3D, and 3C) reduces upper limits for the individual
ephemerides but not for BAYESEPHEM, suggesting that the
same realization of interpulsar signal correlations can be picked
up by different ORFs, and that dipole and monopole processes
can absorb some, but not all, of the systematic bias caused by
ephemeris error.
In Figure 2 we show the 95% upper limit for the amplitude

of an uncorrelated common process (model 2A) as a function
of γ. In the absence of red noise, and if the lowest sampling
frequency (1/T) dominated our sensitivity, we would expect
these constraints to scale as µ g-T 2, where T is the longest
timing baseline across the entire PTA. We find the actual
scaling to be closer to µ g-T 0.4 , indicating that red noise is
present and that more than one frequency component
contributes to the likelihood.
In the top panel of Figure 3, we show 95% upper limits for

free-spectrum amplitudes (jagged black line), which are
diagnostics of the sensitivity of our data set to individual
monochromatic GW signals. In the same plot we show also the
g = 13 3 (α=−2/3) power-law limit (straight black line).
The thickness of the lines indicates the spread of results over
ephemeris choices. Sensitivity is inhibited at lower frequencies
by fitting pulsar spin-down parameters and is dominated at
higher frequencies by white noise, matching the expected f

3/2

expected slope shown as the dashed–dotted line. Sensitivity is
also noticeably lost at f=yr−1 by fitting pulsar positions. The
colored dashed lines and bands display a representative
selection of theoretical expectations for the SMBHB GWB:
McWilliams et al. (2014, hereafter MOP14), Simon & Burke-
Spolaor (2016), and Sesana et al. (2016, hereafter S16). The
models in Simon & Burke-Spolaor (2016) and S16 are broadly
similar, differing predominantly in the choice of SMBH–host-
galaxy mass relationship, where S16 factors in potential
selection biases in dynamically measured SMBH masses
(Shankar et al. 2016). These same results and theoretical
expectations are shown in the bottom panel of Figure 3 in terms
of the stochastic GWB energy density (per logarithmic
frequency bin) in the universe as a fraction of closure density,
W ( )f hGWB

2, where the scaling by h2 makes the results agnostic
of the specific value of the Hubble constant. The fractional
energy density scales as W µ ( )h f h fcGWB

2 2 2. In Section 5.1
below we present an astrophysical discussion of our results.

4.2. Bayesian Model-comparison Evidence for GWs

In Tables 5 and 6 and in Figure 4, we show Bayes factors for
two sets of model comparisons performed on the 11year data
set to quantify the statistical evidence for a stochastic GWB and
for coherent sources of systematic errors that lead to spatially
correlated residuals. The first four columns of Table 5 and the

Table 3

Pulsars Used in Our GWB Analysis (see NG11 for Full Details of Pulsar
Properties)

PSR Name rms (μs) #Epochs #TOAs Baseline (yr)

J0023+0923 0.361 415 8217 4.4
J0030+0451 0.691 268 5699 10.9
J0340+4130 0.454 127 6475 3.8
J0613−0200 0.422 324 11566 10.8
J0645+5158 0.178 166 6370 4.5
J1012+5307 1.07 493 16782 11.4
J1024−0719 0.323 194 8233 6.2
J1455−3330 0.672 277 7526 11.4
J1600−3053 0.23 275 12433 8.1
J1614−2230 0.199 241 11173 7.2
J1640+2224 0.426 323 5982 11.1
J1643−1224 3.31 298 11528 11.2
J1713+0747 0.108 789 27571 10.9
J1738+0333 0.52 208 4881 6.1
J1741+1351 0.128 134 3047 6.4
J1744−1134 0.842 322 11550 11.4
J1747−4036 3.59 113 6065 3.8
J1853+1303 0.239 107 2514 4.5
B1855+09 0.809 296 5634 11.0
J1903+0327 3.65 112 3326 6.1
J1909−3744 0.148 451 17373 11.2
J1910+1256 0.544 130 3563 6.8
J1918−0642 0.322 364 12505 11.2
J1923+2515 0.229 87 1954 4.3
B1937+21 1.57 460 14217 11.3
J1944+0907 0.352 104 2850 4.4
B1953+29 0.377 88 2331 4.4
J2010−1323 0.257 222 10844 6.2
J2017+0603 0.11 102 2359 3.8
J2043+1711 0.12 197 3262 4.5
J2145−0750 0.968 258 10938 11.3
J2214+3000 1.33 176 4569 4.2
J2302+4442 1.07 138 6549 3.8
J2317+1439 0.271 395 5958 11.0

Note.The second column shows the weighted root mean square epoch-
averaged post-fit timing residuals (see NG9a for a definition of this quantity).

10

The Astrophysical Journal, 859:47 (22pp), 2018 May 20 Arzoumanian et al.



graph on the left of Figure 4 are diagnostics of the multilevel
decision scheme outlined above in Section 3.1. Adopting the
JPL ephemerides as fixed-parameter models, the data favor the
presence of a common uncorrelated process in all pulsars to
various degrees and especially so for DE430, and they favor

slightly the presence of H.–D. interpulsar correlations. How-
ever, this preference disappears if we marginalize over the
ephemeris uncertainties.
The effects of ephemeris errors are also apparent in the upper

plot of Figure 5, which shows the posterior distribution of
log10AGWB under the log-uniform prior used to compute Bayes
factors, for γ=13/3, and ignoring H.–D. correlations. The
dashed lines show the posterior obtained by taking each
ephemeris as fixed-parameter models without uncertainties; the

Table 4

GWB Amplitude 95% Upper Limits for the NANOGrav 11year Data Set, Computed for a Power-law Spectrum with γ=13/3, and with Uniform Prior on AGWB (see
Equations (4) and (5))

95% Upper Limit on AGWB [×10−15], γ=13/3 Power Law

JPL Ephemeris Uncorrelated Common Process (2A)
H.–D. Correlated Common Process

Alone (3A) + Dipole (3B) + Monopole, Dipole (3C) + Monopole (3D)

DE421 1.505(8) 1. 53(1) 1.478(8) 1.487(8) 1.53(3)
DE430 1.76(2) 1. 79(1) 1.698(9) 1.676(9) 1.74(2)
DE435 ( )1.57 3 1. 60(1) 1.555(8) ( )1.55 1 1.58(2)

DE436 ( )1.61 2 1. 67(1) 1.594(9) ( )1.56 1 1.60(2)

INPOP13c ( )1.74 3 L L L L

BAYESEPHEM ( )1.34 1 ( )1.45 2 ( )1.52 3 ( )1.49 3 1.48(4)

Note. We report limits for an uncorrelated common process (as in NG9b) and for a Hellings–Downs spatially correlated process, either alone (in bold, our fiducial
result) or in the presence of additional correlated processes with different ORF. “L” indicates that analyses for these numbers were not performed.

Figure 1. Sky positions of all 45 pulsars in the NANOGrav 11year data set.
The area of each circle is indicative of the number of TOAs, while the color
scale indicates the observational baseline. The 34 pulsars whose baselines are
longer than three years are indicated with solid red edges. The Milky Way
plane is shown behind as a blue band (thickness is not indicative of Galactic
scale height), with the Galactic center shown as a blue star. The longest
baseline is given by J1744–1134 with 11.37 years, while the largest data set is
given by J1713+0747 with 27,571 TOAs.

Figure 2. GWB amplitude 95% upper limit for an uncorrelated common
process (model 2A) as a function of spectral index γ (see Equation (5)) for the
JPL ephemerides and for BAYESEPHEM. The dotted curve shows a power-law
fit to the BAYESEPHEM curve, which is consistent with a similar fit in NG9b.

Figure 3. Top panel:GWB amplitude 95% upper limits for an uncorrelated
common process with a γ=13/3 power law (straight black line) or with
independently determined free-spectrum components (jagged black line). The
thickness of the lines spans the spread of results over different ephemerides.
The dashed–dotted line shows the expected sensitivity scaling behavior for
white noise. The colored dashed lines and bands show the median and one-
sigma ranges for the GWB amplitudes predicted in MOP14 (green), Simon &
Burke-Spolaor (2016; orange), and S16 (blue). Bottom panel:as in the top
panel, except showing the results in terms of the stochastic GWB energy
density (per logarithmic frequency bin) in the universe as a fraction of closure
density, ΩGWB( f )h

2. The relationship between hc( f ) and ΩGWB( f )h
2 is given

in Equation (10).
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solid lines show the posteriors obtained by marginalizing over
ephemeris uncertainties, starting with each ephemeris in turn.
Although the dashed curves agree roughly in their modes, they
have surprisingly different widths and contrast, which we may
define as the ratio of the peak posterior to its value in the
lowest-amplitude (leftmost) bin; the latter appears in the
denominator of the Savage–Dickey estimate (Equation (2)) of
the signal-versus-noise Bayes factor.

The convergence of the solid lines to a flatter common shape
demonstrates that our modeling of ephemeris uncertainties
bridges the four ephemerides successfully, removing spurious
evidence for GWs, or potentially absorbing a true GW signal.
However, if a true GW signal is present, it happens to be
significantly covariant with the systematic differences in the
Roemer delays induced by the last few ephemerides;
furthermore, the signal appears to weaken as we shift from
older (DE421, DE430) to newer, plausibly more accurate
ephemerides (DE435, DE436), although this trend is not
entirely consistent. In this paper, we do not attempt to quantify
whether these circumstances are realized often in the ensemble
of possible data sets similar to ours; nevertheless, these
circumstances motivate our choice of marginalizing over
ephemeris uncertainties as the principled Bayesian strategy
for our analysis.

The six rightmost columns of Table 5, as well as Table 6 and
the graph on the right of Figure 4, document the degree to
which the data favor the presence of timing-residual compo-
nents with different spatial correlations. Components with both
dipolar (ephemeris-error-like) and monopolar (clock-error-like)
correlations are disfavored, although this conclusion is
significantly weakened if we marginalize over ephemeris
uncertainties. At the same time, the evidence for quadrupolar
(GWB-like) correlations is weakened when the model allows
for other spatially correlated processes. This is not unexpected,
since spatial correlations with different multipolar structures
only become truly orthogonal in the limit of many equally low-
noise pulsars.

Indeed, discrimination of monopolar, dipolar, and quad-
rupolar correlation signatures will improve as our data sets gain
more and more pairs of high-timing-precision pulsars with a
broad distribution of angular separations. We plan to
characterize discrimination requirements (on pulsar number,
timing quality, and sky position) in our upcoming paper on
SSE error modeling.

Impact of SSE Error Modeling on GW Detection—We
performed a small number of simulations to test the impact of
BAYESEPHEM on our GWB detection prospects over the next
few years. To this end, we produced realistic 15year data
sets62 using DE436 and injecting GWBs of various amplitudes,
and we analyzed the full data sets, as well as their 11.4 year
“slices,” using DE430 and BAYESEPHEM. We chose DE430
because it led to the highest signal-versus-noise Bayes factor
(model 2A-versus-1) and upper limits for the actual data.
For a noise-only simulation, we find that unmodeled

systematic offsets between DE436 and DE430 are interpreted
as a common red-spectrum process with a signal-versus-noise
Bayes factor (model 2A-versus-1) of ∼2 in 11.4 years of data
and ∼20 in 15 years of data. By contrast, BAYESEPHEM is able
to account for the offsets, reducing Bayes factors to levels
consistent with noise fluctuations. As we increase the injected
GWB amplitude, model 2A-versus-1 Bayes factors remain low
for 11.4 years of data, even for amplitudes comparable to our
fiducial upper limits. The same is true for model 3A-versus-2A
Bayes factors (the definitive spatial-correlation test for GWBs),
which are plotted in Figure 6.
For 15 years of data, the scaling of Bayes factors with

injected GWB amplitude is comparable, for both DE430 and
BAYESEPHEM. Remarkably, the potential covariance of
BAYESEPHEM parameters with GWB amplitude does not
inhibit signal detection in the near future, even at astrophysi-
cally pessimistic levels (∼5× 10−16, consistent with Sesana
et al. 2016). Thus, while SSE errors may spuriously produce
early signs of a GWB (i.e., a common red-spectrum process),
their mitigation with BAYESEPHEM will not impair prospects
for near-future GWB detection. We regard our simulations as
conservative, since additional pulsars, as well as improved
timing precision and SSE accuracy, will accelerate progress
toward detection.

Table 5

Bayes Factors for Model Comparisons Using NANOGrav’s 11year Data Set, Performed to Examine the Evidence for a GWB

Uncorr. Red Process
Versus Pulsar Noise H.–D. Corr. Red Process Versus Pulsar Noise

JPL Ephemeris (2A–1) (3A–1) With Dipole (3B–2B)

With Dipole, Monopole
(3C–2C)

With Monopole
(3D–2D)

γ=13/3 γ ä [0, 7] γ=13/3 γ ä [0, 7] γ=13/3 γ ä [0, 7] γ=13/3 γ ä [0, 7] γ=13/3 γ ä [0, 7]

DE421 8.28(4) 5.3(2) 11.9(7) 6.5(2) 3.57(5) 2.07(6) 3.20(5) 1.96(5) 7.4(5) 3.7(3)
DE430 18.9(7) 8.7(4) 26(2) 12.8(9) 3.69(4) 2.05(3) 3.94(9) 1.9(1) 12(1) 5.6(4)
DE435 1.82(4) 1.22(1) 2.15(4) 1.69(5) 1.52(2) 1.17(2) 1.35(2) 0.99(2) 1.77(4) 1.43(4)
DE436 4.4(1) 3.5(2) 7.2(4) 4.8(2) 2.17(4) 1.54(3) 2.14(2) 1.34(4) 3.4(1) 2.18(5)
INPOP13c 24.9(7) L L L L L L L L L

BAYESEPHEM 0.884(9) 0.647(7) 1.00(2) 0.70(1) 0.93(2) 0.67(3) 0.98(4) 0.66(2) 0.98(5) 0.70(3)

Note. The digit in parentheses gives the uncertainty on the last quoted digit. All factors were computed with the Savage–Dickey formula (Equation (2)), with the
hyperparameter priors listed in Table 2.

62 To produce the data sets, we used actual observation epochs for the 34
NANOGrav pulsars and set residuals equal to white measurement noise plus
red-spectrum intrinsic noise, at levels consistent with those estimated for the
actual data (NG11). We rescaled TOA uncertainties by a factor of 1.5, which
calibrates the noise-only simulated data set so that its 11.4 year “slice” has the
same (DE436, model 2A) GWB upper limit as the real data. We extended the
data set baseline to 15 years by drawing observation epochs and TOA
measurement errors from distributions of these quantities over the last three
years of real data.

12

The Astrophysical Journal, 859:47 (22pp), 2018 May 20 Arzoumanian et al.



4.3. Optimal Statistic

Table 7 compares the fixed-noise and noise-marginalized
optimal statistic (see Section 3.5) for an H.–D. spatially
correlated common process computed using DE421, DE430,
DE435, and DE436. The noise marginalization was performed
using 10,000 realizations of the noise. Except for DE421, the

fixed-noise analysis systematically underestimates ÂGWB

2
and

S/N compared to the noise-marginalized analysis because of
the covariance between pulsar red-noise parameters and the
common red-noise parameters. Note that, although the optimal
statistic is formulated in terms of the squared amplitude,

negative ÂGWB

2
and S/N values are possible if noise

fluctuations result in negative correlations. In the noise-
marginalized analysis, we find mean S/N <1 for all
ephemerides—there is no appreciable evidence of H.–D.
correlations. These results are consistent with the Bayesian
analysis.

Table 8 compares the noise-marginalized optimal statistic
computed for H.–D. spatial correlations with variants of the
statistic that model dipolar and monopolar correlations. In
addition to computing the optimal statistic using individual
ephemerides, we also use BAYESEPHEM to marginalize over
the ephemeris uncertainty. For all of these analyses, we find no
evidence for a common process with either H.–D., monopolar,
or dipolar spatial correlations.

The upper half of Figure 7 shows the mean noise-margin-
alized cross-correlated power between pulsar pairs as a function
of angular distribution, averaged into 10 degree bins. There is
no evidence of the H.–D. correlations characteristic of isotropic
GWBs. The lower half of the plot shows a histogram of angular
separations for the pulsar pairs in our data set: NANOGrav is
currently most sensitive to angular separations between 30° and
60°, which correspond to the smallest errors in the cross-
correlation plot.

4.4. Comparison of 9 Year and 11Year Results

The nine-year analysis of NG9b adopted DE421 as a fixed-
parameter model without uncertainties and did not include
H.–D. correlations. Thus, a straight comparison can be made
with the 11year DE421 model-2A results: the γ=13/3 upper
limit remains at 1.5×10−15, while the γ=13/3 Bayes factor
versus pulsar noise changes from 0.81 to 8.3; however, this
comparison is not very significant given what we have learned
about ephemeris errors.

Applying BAYESEPHEM to the nine-year data set success-
fully bridges AGWB posteriors (see Figure 8) and yields a
model-2A (uncorrelated) upper limit of 2.67(2)×10−15 and a
model-3A (H.–D.-correlated) upper limit of 2.91(2)×10−15

(both for γ= 13/3). Thus, our fiducial model-3A upper limit
improves by a factor of 2.91/1.45=2.0 in the 11year data
set. This is greater than expected from simple scaling
arguments (Siemens et al. 2013), for which the additional
two years of data should reduce the limit from 2.91×10−15 to
1.85×10−15, i.e., an improvement of ∼1.6. The major cause
of this discrepancy is presumably the longer 11year baseline
being better able to disentangle ephemeris perturbations, which
have typical timescales of the 11.86year Jupiter period.
The model-2A Bayes factors versus pulsar noise are 0.910(7)

for γ=13/3 and 1.210(4) for γä[0, 7], while they are 1.27
(1) and 2.29(3) for model 3A. All Bayes factors under
BAYESEPHEM are comparably uninformative for the nine-year
and 11year data sets.
We also reproduce the spectral-turnover analysis of NG9b,

which models the GWB with a broken power-law spectrum
(Equation (6), following Sampson et al. 2015). Figure 9,
obtained with AGWB priors from MOP14, Simon & Burke-
Spolaor (2016), and S16 (using BAYESEPHEM and ignoring
H.–D. correlations) can be contrasted with Figure 5 of NG9b.
In both figures, models that infer larger GWB levels require
turnovers at higher GW frequencies to be consistent with the
data: the MOP14 prior gives a median value of fbend at
3.83×10−8Hz, while the S16 prior gives a value of
1.09×10−8Hz, a difference of more than a factor of three.
This analysis is a useful tool in broadly understanding various
models’ consistency with PTA limits. However, it is limited by
attributing a single value of κ (see Equation (6)) to the entire
population of SMBHBs, and it is unable to incorporate
eccentricity, which flattens out the turnover and skews toward
higher GW frequencies. In Section 5, we present results
incorporating a more sophisticated approach (Taylor et al.
2017b), allowing us to confront astrophysical population
models directly.

5. Limits on Astrophysical Models

Some of the most exciting science made possible by the
NANOGrav data is realized when we use the GWB constraints
to confront the astrophysics of various source populations.
Now, the most likely source population for PTAs is SMBHBs.
In NG9b, we introduced simple PTA constraints on SMBHB
population parameters, but due to methodological limitations

Table 6

Bayes Factors for Model Comparisons Using NANOGrav’s 11Year Data Set, Performed to Examine the Evidence for Spatial Correlations with Different ORF

3A–2A: H.-D. Corr. Red Process 2B–2A: Dipole Corr. Red Process
2D–2A: Monopole Corr. Red

Process

JPL Ephemeris Versus Uncorrelated Red Process

γ=13/3 γ ä [0,7] γ=13/3 γ ä [0,7] γ=13/3 γ ä [0,7]

DE421 1.34(7) 1.53(8) 0.46(3) 0.60(3) 0.18(1) 0.21(1)
DE430 1.44(8) 1.7(1) 0.46(3) 0.94(6) 0.106(9) 0.21(2)
DE435 1.24(6) 1.42(7) 0.55(3) 0.85(4) 0.54(3) 0.55(3)
DE436 1.45(8) 1.63(9) 0.57(3) 1.05(6) 0.46(3) 0.52(3)

BAYESEPHEM 1.08(6) 1.15(7) 0.83(5) 0.87(6) 1.12(9) 0.96(7)

Note. The digit in parentheses gives the uncertainty on the last quoted digit. All factors were computed with the product-space method discussed in Section 3.1, with
the hyperparameter priors listed in Table 2.
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we were unable to deliver a realistic analysis, i.e., we derived
constraints for the parameters describing a broken power-law
spectrum and then reinterpreted those constraints in terms of
SMBHB effects that could alter the spectrum, taken one at a
time. In this paper, we adopt the modeling framework
developed by Taylor et al. (2017b) to go much further: we
use a set of population-synthesis simulations to explore the
effects of population parameters on the GWB spectrum then
constrain those population parameters directly from the data.
We also apply the same method to the most recent cosmic-
string models.

5.1. Supermassive Black Hole Binaries

PTAs are sensitive to the stochastic GWB comprised of the
superposition of GWs from merging SMBHBs throughout the
universe. The details of this background (i.e., spectral shape
and amplitude) are sensitive to the physics of SMBHB
evolution. The history of SMBHB mergers is generally
assumed to follow the history of galaxy mergers, but the exact
relation remains an open question. Dynamical friction initially
causes SMBHs to sink toward each other in a postmerger
galaxy remnant, but becomes an inefficient means of further
hardening at parsec separations (Begelman et al. 1980).

Figure 4. Bayes factors for model comparisons on the 11year data set: on the left, evidence of a GWB, on the right, effects of spatially correlated systematics. In these
graphs, each model (as described in Table 1) is represented by a bubble, and for each pair of models the dots mark on a logarithmic scale the measured Bayes factor in
favor of the model at the head of the arrow. Thus, dots are closer to the model favored by the data. The smaller colored dots represent Bayes factors computed by
taking one of the DE421, DE430, DE435, and DE436 JPL ephemerides as a fixed-parameter model without uncertainties; the larger black dots represent Bayes factors
computed by marginalizing over ephemeris errors (i.e., by adopting BAYESEPHEM). Dots to the left of the arrows correspond to fixing the spectral slope γ of the GWB
to 13/3, as appropriate for a background from SMBHBs evolving purely by GW emission; dots to the right correspond to marginalizing over γ, taken to have uniform
prior distribution in [0, 7]. The graph on the left shows that when adopting the JPL ephemerides as fixed-parameter models, most of the evidence for a GWB accrues
from the presence of unexplained red-spectrum residuals in each pulsar (2A–1), with a smaller preference added by modeling Hellings–Downs correlations (3A–2A);
neither conclusion is supported by BAYESEPHEM. As for the graph on the right, the bottom row compares a common uncorrelated red process with dipolar and
monopolar processes; the former is favored. The top row examines the case for dipolar and monopolar processes in the presence of a Hellings–Downs (GW-like)
signal. Comparing the vertical arrows in the left and right graphs, we see that (for fixed JPL ephemerides) evidence for a GW-like signal is weakened when the model
allows for other spatially correlated processes.

Figure 5. Posterior probability distributions for AGWB (log-uniform prior,
γ=13/3, and no spatial correlations), as computed for the NANOGrav
11year data set under individual JPL ephemerides (dashed lines), and with
BAYESEPHEM, taking each of the JPL ephemerides as a starting point (solid
lines). This plot demonstrates that BAYESEPHEM bridges the JPL ephemerides
successfully; in doing so it removes most evidence for the presence of a GWB.

Figure 6. Model 3A-versus-2A (spatial correlation) Bayes factors for a set of
simulated 15 year data sets with GWB injections at different levels. We analyze
the full data sets (orange lines) as well as their 11.4 year “slices” (blue), both by
adopting the “wrong” ephemeris (dashed) and by employing BAYESEPHEM to
marginalize over SSE errors (solid). We conclude that BAYESEPHEM will not
impede the ability of PTAs to make a definitive detection in the near future (see
main text).
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Additional dynamical influences are required to drive an
SMBHB to milliparsec orbital separations, and thus into the
PTA frequency band. This supposed final parsec problem can
be overcome by a variety of processes: (i) three-body scattering
effects with stars in the galaxy’s bulge, where stars in the
binary’s loss cone slingshot off the binary, carrying away
orbital energy (Mikkola & Valtonen 1992; Quinlan 1996;
Sesana et al. 2006), (ii) interactions between the binary and a
viscous circumbinary disk (Ivanov et al. 1999; Haiman et al.
2009; Kocsis & Sesana 2011), and (iii) eccentricity, which
increases the rate of binary evolution (Peters & Mathews 1963;
Peters 1964) and can be amplified by (i) (Sesana et al. 2006;
Sesana 2010; Roedig & Sesana 2012) and (ii) (Armitage &
Natarajan 2005; Cuadra et al. 2009; Roedig et al. 2011). If the
final parsec problem is not completely overcome by additional
environmental processes, a subsequent galaxy merger may add
a third massive black hole to the system, which can drive the
initial binary toward coalescence and may increase that
binary’s eccentricity (Bonetti et al. 2017; Ryu et al. 2018).
All of these influences can cause the shape of the GWB
spectrum in the PTA band to deviate from the fiducial f−2/3

power law at low frequencies ( fä[1, 10] nHz), causing a
change in slope or a turnover if the binary remains coupled to
the environment or has large orbital eccentricities (Enoki et al.
2007; Kocsis & Sesana 2011; Sesana 2013; Ravi et al. 2014;
Huerta et al. 2015; Sampson et al. 2015; Taylor et al. 2017b).

As discussed earlier, we use a GP spectral model to explore
the parameter space of SMBHB environments and dynamics.
We perform sophisticated population-synthesis simulations
over a 5×5×5 grid in the {αBH, ρstars, e0} parameter space,
where αBH is the y-intercept of the MBH–Mbulge relationship,
ρstars is the typical mass density of galactic-core stars at the
binary influence radius, and e0 is binary eccentricity at
formation. At each grid point, we perform 100 simulations
and compute the mean spectrum and uncertainty from Poisson
variation. We then train a GP at each GW frequency, allowing
spectral amplitudes to be predicted with uncertainties over the
entire parameter space. These predictions act as priors on the
strain within the free-spectrum model. We set uniform priors on
the astrophysical parameters corresponding to a Î { }7, 9BH ,

r Î-
[ ] { }Mlog pc 1, 410 stars

3 , and e0ä{0, 0.95}.
Our population-synthesis model is similar to the scheme

described in Simon & Burke-Spolaor (2016) and Taylor et al.
(2017b), where the SMBHB merger rate density was
constructed from observed galaxy properties and SMBH–
host-galaxy relations. Specifically, we adopt a galaxy stellar

mass function from Ilbert et al. (2013), a galaxy pairing fraction
from Robotham et al. (2014), and a parametrized MBH–Mbulge

relationship. The MBH–Mbulge relation is set by three para-
meters: αBH, βBH, and òBH, where log10(MBH/Me)=αBH+
βBHlog10(Mbulge/10

11Me) and òBH is the intrinsic scatter of
points around the set power law. We fix βBH=1 and
òBH=0.3, values typical of observational measurements
(see, e.g., Kormendy & Ho 2013; McConnell & Ma 2013).
As shown in Simon & Burke-Spolaor (2016), αBH is the
parameter of maximal impact on the GWB; as such, it is the
only parameter from the MBH–Mbulge relation that is varied in
this work. However, there are impacts on the level of the GWB
predicted from changing all of these parameters, which are
explored in depth in Simon & Burke-Spolaor (2016), and
therefore the limits on αBH in this work must be interpreted in
that context.
The eccentricity evolution in this model follows the

prescription first derived in Quinlan (1996) and later expanded
upon in Sesana (2010). However, recent work in Rasskazov &
Merritt (2017a; see also Sesana et al. 2011; Gualandris et al.
2012; Mirza et al. 2017) has shown that eccentricity evolution
can be damped by the rotation of the central stellar bulge,
which would lessen the effect of extreme initial eccentricities.
The parameter αBH primarily changes the overall level of the

GWB, while ρstars and e0 primarily change its spectral shape.
We start to explore this parameter space by constraining αBH.
Figure 10 shows αBH posteriors derived by marginalizing over
{ρstars, e0} (black solid line) and by marginalizing over ρstars for
circular sources (e0= 0; red dashed line). The constraint for
circular sources is slightly more stringent, as is expected from
removing a degree of freedom. However, in both cases the
determination of αBH in Kormendy & Ho (2013, hereafter
KH13) is disfavored compared to the others.
Quantitatively, we may take the ratios of PDFs as proxies for

model-comparison Bayes factors between aBH determinations;
by doing so, we find McConnell & Ma (2013, hereafter MM13)
to be 1.5 times more probable than KH13, while the other two
measurements are 1.9 times more probable than KH13. These
constraints become 2 and 2.6, respectively, for circular sources
(e0= 0). As stated above, these results for αBH need to be
viewed in the context of the complete model used to infer the
population of SMBHBs, which relies on the assumption that
the SMBH merger rate follows the observed galaxy merger
rate. This may not be the case if the final parsec problem is not
solved for all systems, or if binary evolution takes much longer
than anticipated by this model (Tremmel et al. 2018). However,
even when we robustly incorporate many of the parameters that
impact the spectral shape of the GWB, the NANOGrav 11 year
data set prefers values of αBH that are lower than the largest
observed measurements from KH13.
We can also compute a joint marginalized posterior for ρstars

and e0, but the αBH distribution is too broad for this to be
useful. It is more informative to examine r a( ∣ )p e,stars 0 BH for a
few representative values of αBH. In Figure 11, we show
αBH=8.46, 8.69, and 8.89. The first two values are the
measurements reported in MM13 and KH13, while the third is
an even larger value. The top panels of Figure 11 show
posteriors, while the bottom panels show the corresponding
marginalized spectral distributions using the same conventions
as Figure 9. As αBH increases from left to right, the GWB
increases in level, and its spectral shape needs to deviate more
strongly from an f−2/3 power law to be consistent with the

Table 7

Optimal Statistic Âgw

2
and Associated S/N for the NANOGrav 11Year Data

Set, Assuming a γ=13/3 Power-law GWB with Hellings–Downs Spatial
Correlations

Fixed Noise Noise Marginalized

JPL Ephemeris ÂGWB

2 S/N Mean ÂGWB

2 Mean S/N

DE421 8.23×10−31 1.06 8.9×10−31 0.9(9)
DE430 2.32×10−31 0.390 6.9×10−31 0.4(4)
DE435 −3.46×10−31 −0.640 5.9×10−31 0.7(6)
DE436 4.47×10−32 −0.069 9.7×10−31 0.8(7)

Note. The noise-marginalized computation provides a more accurate assess-
ment of the significance of a common red process compared to the fixed noise
due to the covariance between pulsar red-noise parameters and common red-
noise parameters (see Section 3.5).
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data. This trend is also seen in the increased preference toward
larger ρstars and e0. While this effect was observed in earlier
work, the methodology used in this paper allows for its robust
exploration.

Taken at a glance, the results detailed in this work appear
less constraining then those presented in NG9b. This is to be
expected: marginalizing over parameters, rather than fixing
them to set values, will insert more uncertainty into any
constraint. Additionally, the methods used in NG9b incorpo-
rated an intermediate step by extrapolating from the posterior
on AGWB while assuming a power-law GWB. In this paper, we
are able to constrain the entire spectrum directly from the data

set with no intermediaries—a benefit of the GP method of
Taylor et al. (2017b), which will enable future NANOGrav data
sets to place constraints on the dynamics of the most massive
black holes in the universe.

Table 8

Noise-marginalized Optimal Statistic Âgw

2
and Associated S/N for the NANOGrav 11Year Data Set, Assuming a γ=13/3 Power-law GWB with Hellings–Downs

(GW-like), Monopolar (Clock-error-like), and Dipolar (Ephemeris-error-like) Spatial Correlations

Hellings–Downs Monopole Dipole

JPL Ephemeris Mean ÂGWB

2 Mean S/N Mean ÂGWB

2 Mean S/N Mean ÂGWB

2 Mean S/N

DE421 8.9×10−31 0.9(9) −6.2×10−33 0.0(6) 3.8×10−32 0(1)
DE430 6.9×10−31 0.4(4) −1.5×10−31 0.5(4) 2.4×10−31 0.7(9)
DE435 5.9×10−31 0.7(6) 8.5×10−32 0.5(5) 5.7×10−32 1(1)
DE436 9.7×10−31 0.8(7) 2.0×10−31 0.9(7) 1.9×10−31 1(1)

BAYESEPHEM 1.3×10−31 0.1(9) 2.7×10−32 0(1) −4.3×10−32 0(1)

Note. None of the S/Ns are significant.

Figure 7. Top: angular distribution of cross-correlated power between pulsar
pairs in the NANOGrav 11year data set, averaged over 10 degree bins. This
analysis was done using DE436; other ephemerides give similar results. A
GWB would cause the cross-correlated power to lie along the Hellings–Downs
curve (red dashed line), shown assuming a GWB amplitude of AGWB=10−15.
Bottom: histogram of pulsar-pair angular separations. The blue curve shows
numbers in each bin, while the orange curve is reweighted by squared 1σ
uncertainties of the averaged cross-correlated power in that bin. Currently,
NANOGrav is most sensitive at angular separations between 30° and 60°.

Figure 8. Posterior probability distributions for AGWB (log-uniform prior,
g = 13 3, and no spatial correlations), as computed for the NANOGrav nine-
year data set under individual JPL ephemerides (dashed lines) and with
BAYESEPHEM, taking each of the JPL ephemerides as a starting point (solid
lines).

Figure 9. Posterior density plots of broken power-law GWB spectra, as
constrained by the 11year data set, adopting high-frequency AGWB priors from
MOP14, Simon & Burke-Spolaor (2016), and S16. At each frequency, a thin
vertical segment of the plot should be understood as a density plot of the
characteristic strain; the solid lines mark the 2.5%, 50%, and 97.5% quantiles,
the dashed line shows the γ=13/3 unbroken power-law upper limit, and the
vertical dotted lines show the median fbend values. All plots were produced for a
spatially uncorrelated common GWB process. Larger values of AGWB induce
stronger turnovers at higher frequencies (e.g., MOP14 has a median value (50%
quantile) of fbend that is more than three times that of Sesana et al. 2016).
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5.2. Cosmic Strings

Cosmic strings are linear topological defects that can form in
the early universe as a result of symmetry-breaking phase
transitions (Kibble 1976; Vilenkin 1981, 1985; Vilenkin &
Shellard 2000). Strings that form with lengths greater than the
horizon are known as “long” or “infinite” strings, while smaller
strings form loops. If two strings meet one another, they can
exchange partners, and small portions of string can be chopped
off with a reconnection probability p. For classical strings
p=1, but string-theory-inspired models may have p<1. This
is due to the fact that fundamental strings interact probabil-
istically, and also that in these models an intersection occurring
in the usual three spatial dimensions need not occur in higher
compactified dimensions. Cosmic-string networks evolve
toward an attractor solution known as the “scaling regime” in
which the statistical properties of the system (such as the
average size of loops or the distance between long strings) scale
with the cosmic time, and the energy density of the string
network is a small constant fraction of the radiation or matter
density. Cosmic strings have tensions equal to their mass per
unit length, μ. This tension is so high that strings oscillate
relativistically under their own tension, decaying solely through
the emission of GWs, and shrinking in size. The formation of
loops and their subsequent decay by GW emission is the
mechanism by which the string network loses energy and
reaches the scaling regime. The GW spectrum from cosmic-
string networks is exceptionally broadband, covering all
regions of LIGO, LISA, and PTA sensitivity. For our purposes,
we describe the parameter space of cosmic strings in terms of
their dimensionless tension, Gμ/c2, and their reconnection
probability, p.

We take a more self-consistent approach than previous PTA
analyses. Rather than refit posterior samples (from power-law
or free spectrum searches) to cosmic-string models (Lentati
et al. 2015; Arzoumanian 2016), we train a GP interpolant on
output from the most up-to-date string population simulations.

Blanco-Pillado & Olum (2017) and Blanco-Pillado et al. (2017)
performed a complete end-to-end calculation of the stochastic
GWB expected from a network of cosmic strings, namely (i)
simulation of the long-string network to find a representative
sample of loop sizes and shapes, (ii) modeling of loop-shape
deformations due to gravitational backreaction, (iii) GW
spectrum computed for each loop, (iv) evaporation and
production modeled to find the distribution of loops over z,
(v) integration of the GW spectrum of each loop over the
redshift-dependent loop distribution, and finally, (vi) integra-
tion over cosmological time to find the present-day GW
background.
The output from these simulations corresponds to GW

energy-density spectra at a range of string tension values,
Gμ/c2, over 25 orders of magnitude in frequency and has been
made publicly available.63 We convert these to characteristic
strain, then at each frequency bin in our PTA analysis we train
a GP to emulate the strain as a function of string tension. We
expand our model to include reconnection probability, p, by
analytically scaling the fiducial p=1 strain spectrum by
(1/p)1/2 (Sakellariadou 2005). We then use this model (with all
features of the cosmic-string spectrum included) to analyze the
NANOGrav 11year data set. We do not model signal finiteness
or anisotropy due to bright resolvable cosmic-string bursts,
since this is only expected when initial loop sizes are very
small (10−8; Kuroyanagi et al. 2017).
Figure 12 shows the 95% upper limit on string tension as a

function of reconnection probability. The shaded region
enclosed by the solid black line indicates parameter space that
is excluded by the NANOGrav 11year data set under the
assumptions of the Blanco-Pillado & Olum (2017) cosmic-
string simulations. For p=1, the string tension is constrained
to be Gμ/c2<5.3(2)×10−11. At this level, we would not
expect any measurable effects in the CMB power spectrum, nor
through gravitational lensing (Blanco-Pillado et al. 2017).
PTAs are currently the best experiment with which to detect
cosmic strings and to place stringent limits on the string
parameter space.
By contrast, the NANOGrav nine-year data set (NG9b)

constraints on string tension (shown as an excluded region with
a dashed line boundary) were computed under the assumptions
of older string simulations (Blanco-Pillado et al. 2014) and
were obtained by resampling the posterior distribution of a
power-law GWB spectrum. For p=1, the string tension was
constrained to be Gμ/c2<1.3×10−10. Finally, even though
the most recent EPTA constraints on cosmic strings (Lentati
et al. 2015) were not computed under the assumptions of the
Blanco-Pillado et al. (2014) simulations, in NG9b the
constraints were converted to get a corresponding limit on
the string tension of m < ´ -G c 8.6 102 10. Thus, the
constraints on cosmic-string tension from the NANOGrav
11year data set are 2.5 times better than those from the
NANOGrav nine-year data set, and 16.2 times better than those
from the most recent EPTA analysis. The 9 to 11year
improvement is to be expected, since BAYESEPHEM analyses
of the 11year data set give consistently more constraining
GWB limits than DE421 analyses of the nine-year data set.
There are a few other notable caveats to these comparisons: (i)
the NANOGrav nine-year and EPTA analyses were performed
under a fixed JPL SSE model, while the NANOGrav 11year

Figure 10. Constraints on aBH from the NANOGrav 11year data set. The
black solid line is the posterior PDF marginalized over the combined parameter
space {ρstars,e0}, while the red dashed line is the posterior PDF marginalized
over ρstars for circular binaries (e0 = 0). The red line is slightly more
constraining, which is to be expected when a degree of freedom is removed.
We do not set a 95% upper limit from these posteriors, since that number
would be dependent on the lower bound of the αBH prior. The colored lines
show selected observational measurements and predictions for αBH: KH13
(Kormendy & Ho 2013), MM13 (McConnell & Ma 2013), RM17 (Rasskazov
& Merritt 2017b), S+16 (Shankar et al. 2016). The S+16 line is dashed
because that measurement is not a simple power-law relation but includes
higher-order terms; here we base our plot on the leading-order coefficient.

63 http://cosmos.phy.tufts.edu/cosmic-string-spectra/
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analysis uses BAYESEPHEM, and (ii) the simulation advances
of Blanco-Pillado & Olum (2017) with respect to Blanco-
Pillado et al. (2014) impede a direct comparison. However, the
additional ∼2 years of data in the new NANOGrav data set, the
new SSE uncertainty modeling, and the improved end-to-end
analysis with simulated cosmic-string spectra all combine to

increase NANOGrav’s sensitivity to the cosmic-string para-
meter space.

5.3. Primordial Gravitational Waves

According to the theory of inflation, quantum fluctuations in
the spacetime geometry of the early universe are amplified to
cosmological scales. Inflation leaves a background of relic
primordial GWs that may be observable today (Grishchuk
1976, 1977; Starobinsky 1980; Linde 1982; Fabbri & Pollock
1983). Studies of the cosmic microwave background (CMB)

that attempt to observe these GWs indirectly through their
imprint of tensor-mode CMB polarizations are limited to
probing the surface of last scattering, roughly 300,000 years
after the big bang (Kamionkowski et al. 1997; Seljak &
Zaldarriaga 1997; BICEP2/Keck et al. 2015). By contrast, GW
observations can in principle observe a much earlier epoch in the
history of the universe, extending back to as soon as 10−32 s
post-big bang. Indeed, the spectral index of the primordial GWB
is determined by the equation-of-state parameter w in the
immediate post-inflation, pre-Big Bang nucleosynthesis uni-
verse, and by the tensor index nt, which depends on the detailed
dynamics of inflation (see Grishchuk 2005 and references
therein). The primordial spectral dependencies are typically
stated in terms of GWB-α as in Lasky et al. (2016) and NG9b.
We can express GWB-γ (see Equation (4)) for a primordial

Figure 11. Top (a): posteriors for ρstars and e0 at different values of αBH, as computed for the NANOGrav 11year data set. Bottom (b): marginalized spectral densities
computed from those posteriors. Each column of plots corresponds to a different value of αBH with values decreasing from right to left. The center and left columns
correspond to the measured values from Kormendy & Ho (2013) and McConnell & Ma (2013), respectively, while the right column corresponds to a larger value, for
comparison. The solid (dashed) line in (a) corresponds to the 68% (95%) contour, and the blue shading is consistent across all of the plots. The dashed and solid lines
in (b) are identical to those shown in Figure 9, where the dashed line indicates our upper limit on AGWB of 1.34(1)×10−15 on a power-law GWB (f−2/3), and the
solid lines show the 2.5%, 50%, and 97.5% confidence levels. As αBH increases, so too does the overall level of the background, and the spectral shape of the GWB is
more constrained by the data.

Figure 12. Constraints on cosmic-string tension, Gμ/c2, as a function of
reconnection probability, p, with the NANOGrav 11year data set. The
excluded region of parameter space is bounded by a solid black line. The
corresponding excluded region for the NANOGrav nine-year data set (NG9b)
is bounded by a dashed black line, while the EPTA constraints (Lentati et al.
2015) are shown for p=1 only.

18

The Astrophysical Journal, 859:47 (22pp), 2018 May 20 Arzoumanian et al.



spectrum as
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In Table 9, we list Bayesian 95% upper limits on AGWB of
a primordial GWB, derived as described in Section 3.1. We
consider three scenarios, the same considered in NG9b, fixing γ to
values corresponding to each: radiation-dominated ( =w 1 3),
matter-dominated (w=0), and kinetic-energy-dominated (w= 1)
equations of state. Following Zhao (2011), we assume a scale-
invariant primordial power spectrum (i.e., nt= 0) for all cases.

These limits constrain the energy-density spectrum of the
primordial GWB by way of

p
W =( ) ( ) ( )f h
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f h f

2

3
, 10cGWB
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where h is the dimensionless Hubble parameter, H0=
100 km s−1Mpc−1, and hc is the characteristic GW strain.
For a radiation-dominated post-inflationary universe, we obtain

W ´ -( ) ( ) ( )f h 3.4 1 10 , 11GWB yr
2 10

after marginalizing over SSE uncertainties. This is a 20%
improvement over the result quoted in NG9b; that number,
however, should be significantly revised upward due to SSE
bias. Referring back to the bottom panel of Figure 3, we see
that the energy-density sensitivity of our PTA data set is
dominated by the lowest few frequencies, which individually
have 95% upper limit values of ∼10−9, but which in
combination beat the limit down to the value quoted in
Equation (11).

6. Summary and Conclusions

This paper reports on the search for an isotropic stochastic
GWB in NANOGrav’s 11year data set. We targeted a GW
signal with predominantly low-frequency power, and so
analyzed only those pulsars that have more than three years
of observations, corresponding to 34 out of the 45 in the data
release. Our investigations encompassed different models of
the GWB strain spectrum, spatial correlations between pulsars,
and SSE. The latter influence was rigorously studied and led to
the major discovery of this paper:

1. We found significant variations in GW upper limits and
detection statistics when the data set was analyzed under
different published models of the SSE. These models are
primarily from JPL, ranging from DE421 to DE436. We
also performed a limited analysis with INPOP13c.

2. For a model with H.–D. spatial correlations between
pulsars (as appropriate for an isotropic GW background),
the 95% upper limit on the amplitude of a fiducial f−2/3

power-law strain spectrum (from an astrophysical
population of SMBHBs) at a frequency of 1 yr−1 varies
between 1.53–1.79×10−15.

3. The ratio of Bayesian evidences between models that
include a GWB versus only intrinsic pulsar noise processes
varies between ∼2 and ∼26 in favor of a GWB, while the
odds favoring GW-induced spatial correlation between
pulsars vary between 1.18:1 and 1.63:1. The frequentist
analog to the Bayesian odds ratio (known as the “optimal
statistic”) gives an S/N for GW-induced spatial correlations
that varies between 0.57 and 0.87.

This discovery has major ramifications on how we interpret
previous PTA results and also how our analysis methodology
must be revised for future searches.

1. We formulated a perturbative model (“BAYESEPHEM”)

that acts to bridge the systematic offsets in the various
published models of the SSE, resulting in the first pulsar-
timing constraints on GWs that are robust against solar
system uncertainties. This model corrects for coordinate-
frame drift, uncertainties in gas-giant masses, and
uncertainties in Jupiter’s orbital elements.

2. Under this new model, the upper limit on the strain
amplitude becomes 1.34×10−15 for a common red-
spectrum process and 1.45×10−15 for a GWB. Adding
further spatially correlated processes in the model served
to worsen these limits only slightly.

3. The evidence ratio for models that include a GWB versus
only intrinsic pulsar noise processes is 1 for a GWB with
fixed spectral slope and 0.70 if the spectral slope is
varied. The odds ratio favoring GW-induced spatial
correlations between pulsars is 1.08:1 if the spectral slope
is fixed, or 1.15:1 if the slope is varied. The frequentist
optimal statistic gives an S/N for GW-induced spatial
correlations of 0.09, where the spectral slope is
necessarily fixed at the fiducial value of −2/3. Both the
Bayesian and frequentist analysis show inconclusive
evidence for a GW-like red-spectrum process and
quadrupolar interpulsar spatial correlations.

We also performed a systematic study of spatially correlated
processes in the PTA data set under different ephemerides,
tabulating upper limits and evidence ratios for various
combinations of a common red-spectrum process, GWB,
stochastic clock error, and stochastic SSE uncertainty. With
BAYESEPHEM, the presence of these additional spatially
correlated processes slightly worsens the GW upper limits,
but all remain broadly consistent within uncertainties. Dipole
spatial correlations between pulsars seem most disfavored
under BAYESEPHEM, likely because we have dealt with the
most plausible source of such correlations with our determi-
nistic SSE uncertainty modeling. Uncertainties in the evidence
and odds ratios (in addition to their absolute values being
around unity) prevent us from being able to make strong

Table 9

NANOGrav 11Year Upper Limits on Primordial GWs (Last Digit
Uncertainty): 95% Credible Intervals Obtained under Uniform Priors for GW

and Pulsar Red-noise Amplitudes, and Quoted at Reference
Frequency = -f yryr

1

95% Upper Limit on AGWB [×10−15]

Ephemeris
KE

Dom. (γ = 4)
Rad.

Dom. (γ = 5)
Mat.

Dom. (γ = 7)

DE421 2.01(3) 0.81(1) 0.100(3)
DE430 2.32(2) 0.92(1) 0.117(2)
DE435 2.04(2) 0.84(1) 0.105(2)
DE436 2.10(2) 0.88(1) 0.111(1)

BAYESEPHEM 1.78(2) 0.74(1) 0.099(2)
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statements. The NANOGrav 11year data set is only weakly
informative of spatial correlations between pulsars.

We used the NANOGrav 11year data set (with the
BAYESEPHEM model) to place constraints on the parameter
space of astrophysical and cosmological sources of GWs. As
in NG9b, we placed priors on the high-frequency strain
amplitude that are motivated by different SMBHB modeling
scenarios, then allowed the presence of a turnover in the shape
of the strain spectrum to be constrained by the data. With a
positive GWB detection, signs of a spectral turnover could
indicate that dynamical evolution of SMBHBs remains strongly
driven by galactic environmental processes even at centiparsec
orbital separations, thereby offering a solution to the “final
parsec problem.” For a nondetection (as we currently have),
this procedure also acts as a test of the validity of our high-
frequency strain priors, i.e., priors with larger strain amplitude
at high frequency are more in tension with the data when
extrapolated back to low frequencies via the fiducial f−2/3

scaling, necessitating low-frequency spectral attenuation to
ensure consistency with nondetection. We found that the
MOP14 prior led to a turnover within the sensitivity band of
our PTA ( f> 1/T∼ 3 nHz) with greater than 97.5% cred-
ibility. Other astrophysically motivated priors gave greater
consistency with a pure power-law strain spectrum.

For this paper, we took a large step forward in GW spectral
modeling and analysis. As described in Taylor et al. (2017b),
we trained a GP model on strain spectra from SMBHB
population simulations carried out over a large grid in
astrophysical parameter space, namely the y-intercept of the
MBH–Mbulge relation (αBH), the typical mass density of stars in
a galactic core (ρstars), and the binary eccentricity at formation
(e0). This trained model acts as a prior on the GW strain at each
frequency, allowing direct recovery of the posterior distribution
of astrophysical parameters. We found that the NANOGrav
11 year data set prefers values of αBH that are lower than the
largest observed measurements from KH13. Taking the ratios
of probability densities as a proxy for model-comparison Bayes
factors, we found MM13 to be 1.5 times more probable than
KH13, while other, lower measurements are 1.9 times more
probable than KH13. These constraints become 2 and 2.6,
respectively, when we consider only circular sources (binary
eccentricity at formation equaling zero). By studying different
values of αBH, we showed how larger levels of the GWB,
which require spectral shapes that deviate more from the
common power law, set progressively tighter constraints on the
joint parameter space of {ρstars, e0}. The modeling utilized to
produce these results can be trivially expanded to incorporate
new astrophysical complexity, and in the era of precision
spectral characterization, it will allow PTAs to construct a
detailed view of SMBH demographics out to z∼2.

We took a similar modeling approach for strain spectra
resulting from decaying cosmic-string networks, where we
calibrated a GP model with the simulations of Blanco-Pillado
& Olum (2017). This gave an SSE-marginalized 95% upper
limit on the string tension of Gμ/c2=5.3×10−11 at a
reconnection probability of p=1, which is 2.5 times better
than NG9b, and 16.2 times better than Lentati et al. (2015).
(These previous published limits were computed without SSE
uncertainty modeling, however). PTAs have already surpassed
conventional cosmological probes of cosmic-string networks
(Lasky et al. 2016) and will continue to offer the best
constraints for the foreseeable future. Likewise, we obtained a

limit on a background of primordial GWs resulting from the
inflation of quantum spacetime fluctuations (with a radiation-
dominated post-inflationary universe), corresponding to ΩGWB

h
2<3.4×10−10 at 95% credibility with SSE marginalization.
This is a 20% improvement over NG9b and an even larger
improvement once proper SSE modeling is taken into account
for the nine-year analysis.
Over the last few years, the PTA community has made great

strides in gathering ever larger, higher-quality data sets and in
developing sophisticated analysis methods that can deal with the
complex noise budgets and subtle systematics typical of pulsar
timing, while interfacing ever more closely and robustly with the
astrophysics of GW sources. The sequence of recent stochastic-
GW papers (for NANOGrav, Demorest et al. 2013, Arzoumanian
2016, and this paper) is a fitting witness to this growth. We expect
this effort to be rewarded by nanohertz GW detection within the
next several years (Taylor et al. 2016), if the steadfast pursuit of
methodological rigor and physical insight remains our cynosure.
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