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Abstract. Heuristic evaluation has been an important part of data visu-
alization. Many heuristic rules and guidelines for evaluating data visu-
alization have been proposed and reviewed. However, applying heuristic
evaluation in practice is not trivial. First, the heuristic rules are dis-
cussed in different publications across different disciplines. There is no
central repository of heuristic rules for data visualization. There are no
consistent guidelines on how to apply them. Second, it is difficult to find
multiple experts who are knowledgeable about the heuristic rules, their
pitfalls, and counterpoints. To address this issue, we present a computer-
assisted heuristic evaluation method for data visualization. Based on this
method, we developed a Python-based tool for evaluating plots created
by the visualization tool Plotly. Recent advances in declarative data visu-
alization libraries have made it feasible to create such a tool. By providing
advice, critiques, and recommendations, this tool serves as a knowledge-
able virtual assistant to help data visualization developers evaluate their
visualizations as they code.
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1 Introduction

Evaluation is an important part of data visualization [11,18,21], and heuristic
evaluation is one of several commonly used evaluation methods. In heuristic eval-
uation, a small group of evaluators review and critique a data visualization plot
based on heuristic rules or guidelines. The heuristic rules and guidelines are pro-
posed by data visualization experts based on their experience. Many heuristic
rules have been proposed, tested, and challenged [5,7,10,12–15,17,19,22,28,30–
32,36,37,39,41,42,44–46,48]. Heuristic evaluation is a type of formative evalu-
ation that can guide visualization developers to improve visualization design,
such as visual encoding and interactions [24]. In addition, some researchers have
argued that visualization criticism can be used to great effect in visualization
teaching and research [10,20].
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In theory, heuristic evaluation is considered easy to learn and apply and
requires little time and other resources [15], but applying heuristic rules in
practice is not trivial. First, the heuristic rules are presented in many different
research papers and books, often across different disciplines such as computer
science, statistics, psychology, and other fields [28,29]. There is no well-curated
central repository of these heuristic rules.

Second, heuristic evaluation is generally difficult for a single individual
[25,27]. Ideally, heuristic evaluations should be conducted by a small number
of experts who are knowledgeable about the heuristic rules as well as the pit-
falls and contexts of these rules [26]. In reality, it is not easy to find such an
expert, let alone several of them. Therefore, data visualization developers are
usually responsible for evaluating their own data visualizations without external
help. In addition, data visualization developers generally lack knowledge about
evaluating data visualizations because they work in a wide range of fields (e.g.,
business, physical science, social science, economy, medicine), and most of them
are not formally trained in data visualization. As a result, there are many poorly
designed data visualizations on the web, in various publications, and in student
works.

To address this issue, we propose a computer-assisted heuristic evaluation
method and tool to help data visualization developers conduct heuristic eval-
uations to improve their designs (Fig. 1). This method is made feasible by the
recent advances in declarative data visualization libraries [16,33–35], such as
Plotly [3], Altair [1], and d3.js [2,9]. In a declarative data visualization library
(e.g., Plotly or Altair), plots are stored in a JSON file (Fig. 3), which can be
processed by the proposed computer-assisted heuristic evaluation tool. Based on
the characteristics of each plot, the evaluation tool will retrieve a set of internally
stored heuristic rules and use them to evaluate the plot (Fig. 1). Since declarative
tools like Plotly supports a wide variety of data visualizations, such as statistical
charts, maps, graphs, parallel coordinates, and 3D plots, our evaluation tool can
be used to evaluate many types of data visualizations.

This tool can provide two types of assistance. For heuristic rules that are too
abstract or sophisticated for automatic checking, the tool will display these rules
to help the developer conduct heuristic evaluation. In this case, the tool serves
as a knowledgeable virtual assistant that reminds developers of the heuristic
rules and reduces their mental workload. For heuristic rules that are specifically
defined, the proposed tool can automatically check the visualization design and
provide specific warnings and recommendations.

Our target audience is data visualization developers who create plots through
coding. This API-based tool is easy to use and fully integrated with the current
data visualization programming environments such as Jupyter Notebook and
Google Colab. For example, a developer only needs to import a Python library
and make one API call to start the evaluation. It is particularly useful for indi-
vidual data visualization developers conducting heuristic evaluations on their
own. As far as we know, this is the first computer-based heuristic evaluation
tool for data visualization.
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2 Background and Related Work

Heuristic evaluation was first proposed by Jacob Nielsen [25–27] for usability
inspection of user interfaces, and it has become popular in the field of human-
computer interaction (HCI). According to Nielsen and Molich [27], “Heuristic
evaluation is an informal method of usability analysis where a number of evalu-
ators are presented with an interface design and asked to comment on it.” Their
experiments showed that individual evaluators were less effective than a small
group of evaluators in finding usability issues [27]. Nielsen [26] also showed that
usability specialists were better than non-specialists at performing the heuris-
tic evaluation. Our work directly addresses the issues identified by Nielsen. Our
computer-assisted heuristic evaluation tool is designed to help individual data
visualization developers who are not experts in data visualization evaluation.

The standard evaluation method for data visualization is controlled user stud-
ies, but such studies are complex and time-consuming [4,23]. Many researchers
have advocated using heuristic evaluation as a valuable alternative or supple-
ment to the controlled user studies. Tory and Moller [40] argued that expert
review could generate valuable feedback on visualization tools, and they rec-
ommended developing heuristics based on visualization guidelines and usability
guidelines. Munzner [24] proposed a nested model for visualization design and
validation, and classified heuristic evaluation as a type of formative evaluation.
She further pointed out that heuristic evaluation and expert review are helpful
for improving the design of visual encoding and interaction techniques. Lam et al.
[21] identified seven guiding scenarios for information visualization evaluation.
They pointed out that heuristic evaluation is a useful tool for the design stage
and for evaluating collaborative data analysis. Kosara, et al. [20] and Brath and
Banissi [10] argued that the visualization design and education could benefit
from using more and better critiques. All the previous works assumed that the
heuristic evaluations were carried out by human evaluators. However, our work
showed that a computer program could be a virtual evaluator for some heuristic
evaluation tasks.

Many heuristic rules and guidelines have been proposed for data visualiza-
tion. Seminal works by Bertin [7], Cleveland and McGill [13], Chambers, et al.
[12], Tufte [41,42], and Shneiderman [38] are highly influential in the data visu-
alization field. In 1990s, Senay and Ignatius [37] collected many heuristic rules
and principles for the purpose of developing a visualization tool assistant to
help scientists and engineers in selecting and creating effective data visualiza-
tions. Many scholars continued to develop, analyze, and classify heuristic rules
for data visualization [5,6,8,14,15,28,30–32,36,39,44–46,48].

Some researchers have tried to develop software tools to assist the evaluation
of data visualizations [4,23]. However, these tools were primarily for assisting
user studies, not heuristic analysis. Our evaluation assistant tool is different
from the previous work in that our tool focuses on heuristic analysis through
code and data analysis.
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3 Methodology

3.1 Overview

Figure 1 shows the workflow of computer-assisted heuristic evaluation. A data
visualization developer creates a visualization plot using a declarative visualiza-
tion library, such as Plotly, Altair, or d3.js. The plot is internally stored in a
JSON file (see Fig. 3), which is passed to the heuristic evaluation program via a
single API call. The heuristic evaluation program processes the JSON file and
analyzes the plots based on selected heuristic rules. The outputs of the evaluation
program are a set of rules, analyses, warnings, and recommendations. Based on
this information, the developer continues to revise and evaluate the visualization
plots.

The heuristic evaluation library can be loaded as an external package in a
standard programming environment such as Jupyter Notebook, Google Colab,
or Observable. The developer only needs to make one API call to start the
heuristic evaluation. Therefore, the evaluation tool is easy to use and integrates
seamlessly with the current visualization programming practice. This workflow
is similar to a writer using a tool like Grammarly to help detect grammar errors
and improve the quality of writing.
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Fig. 1. Computer-assisted heuristic evaluation of data visualization
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3.2 Declarative Visualization Libraries

Declarative programming is a programming paradigm in which a developer spec-
ifies the logic of a computation without describing its control flow. On the other
hand, in imperative programming, a developer implements the control flow to
create the desired outcome. One of the best-known examples of declarative pro-
gramming is the JavaScript library React.

Data visualization libraries can also be divided into imperative libraries and
declarative libraries. Imperative libraries include Matplotlib, Seaborn, Bokeh,
R/ggplot, Google Charts, etc. Declarative libraries include Plotly [3], Altair [1],
d3.js [2], etc. Altair and d3.js are based on the declarative language and visual-
ization grammar research by Heer’s lab [16,33–35]. Their visualization grammars
Vega and Vega Lite provide a declarative JSON syntax to create an expressive
range of data visualizations. The Plotly library is based on d3.js and uses a
similar JSON syntax to store its plots. Plotly also includes a set of imperative
API called Plotly Express. Therefore, Plotly developers can choose to use either
the declarative Plotly API, the imperative Plotly Express API, or both. In this
paper, we will use Plotly in our examples.

In Plotly, a developer creates a plot figure by assigning values to some
attributes of a JSON data structure, such as specifying chart type, mapping
data variables to X and Y axes, adding labels, etc. Many more attributes are
filled with default values. The internal Plotly rendering engine processes the
JSON file to draw the plot figure. A developer can also create a figure by call-
ing the imperative Plotly Express APIs in a way similar to that of Matplotlib
or Seaborn. Even if the figure is created with Plotly Express, the figure is still
expressed in a JSON data structure and can be retrieved with a simple API call.

Declarative libraries such as Plotly and Altair make it feasible to analyze
data visualization plots in their entirety. Every detail of the plot is stored in
the JSON file and can be retrieved and analyzed based on certain heuristic
rules. In contrast, it is much more difficult to analyze a plot created by an
imperative visualization library (such as Matplotlib or Seaborn) because one
has to write a static code analyzer to process the API calls in the source code
and the many default attributes of the plot are difficult to locate. Therefore, the
recent advances in declarative visualization libraries provide an opportunity to
apply certain heuristic evaluations algorithmically.

3.3 Selecting and Classifying Heuristic Rules

We collected over one hundred heuristic rules and guidelines by searching
through various academic papers, books, and websites [5–8,12–15,28,30–32,36–
39,41,42,44–46,48]. While some rules are specific, many rules are loosely defined
and difficult to be checked by a computer program. Therefore, we divide the rules
into three categories: difficult-to-check, advice, and automatic-check.

The rules in the difficult-to-check category are considered too difficult to be
checked by a computer program for various reasons, such as too general, too
abstract, or too short. For example, the rules “expose uncertainty” [5], “relate”
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[38], “flexibility” [15] would fall into this category. We do not include these rules
in our program.

The rules in the advice category are more specific but still not specific enough
to be checked automatically. In this category, a rule might be associated with a
specific plot (e.g., a line chart) or a specific feature of the plot (e.g., axis), but
it is difficult to conduct a specific evaluation. This type of heuristic rules will be
presented to the developer so the developer can conduct the heuristic evaluation
herself. In this case, our program would serve as a virtual assistant that advises
the developer with heuristic rules relevant to the current plot.

Due to the space limit, we will only list a few examples of the rules in the
advice category here.

– Maximizing data-ink ratio, but within reason.
– Remove the extraneous ink.
– Choose colormaps that match the nature of the data

The rules in the automatic-check category are mostly low-level, specific rules
that can be automatically checked by a program. Table 1 shows 20 rules in the
Automatic-Check category. Additional rules are implemented in our program,
and we continue to add more rules.

3.4 Codifying Heuristic Rules

Given a particular plot, how does our program select the relevant heuristic rules
for evaluation? We have developed a novel mechanism to match heuristic rules
with visualization plots. The basic idea is to label each heuristic rule based on
seven attributes. Similarly, each plot is also labeled based on the seven attributes.
The heuristic rules with the same or similar labels as the plot are selected for
evaluation. We will describe this mechanism in this section and the next two
sections.

Each rule in the advice and automatic-check category is classified based on its
connections to the following seven attributes: visual frames, visual structures,
visual unities, visual primitives, labeling, interaction, and data attributes. A
visualization plot can also be classified based on these attributes. The following
list shows the attributes and their possible values.

– Visual Frames: single or multiple visual structures
– Visual Structures: scatter plot, line plot, bar plot, pie chart, map, graph, and

other chart types supported by the visualization libraries
– Visual Unities: points, lines, 2D shapes, texts, tooltips, etc.
– Visual Primitives: X or Y position, shape, size, color, and orientation
– Labeling: chart title, X or Y-axis label, ticks on axes, labels, legend, back-

ground color, and other style or layout features supported by the visualization
libraries

– Interaction: tooltip, zoom, pan, filter, etc.
– Data Attributes: range, dimension, multivariant, categorical, ordinal, nomi-

nal, numerical, continuous, etc.



414 Y. Zhu and J. A. Gumieniak

Table 1. Examples of heuristic rules and their classifications

Heuristic rules Classification

A plot should have a title Labeling (title)

Each axis should have a label Visual Primitives (color)

Avoid using more than four different colors Visual Primitives (color)

Avoid using color to encode ordinal data Visual Primitives (color)

Local contrast affects color and gray perception Visual Primitives (color)

Color perception varies with the size of the colored item Visual Primitives (color, size)

Use color blind friendly palettes Visual Primitives (color)

Use a lighter color for secondary elements such as frames,

grids, and axes

Visual Primitives (color)

A reasonable number of reference values on a coordinate axis

might be between four and twelve

Labeling (axis)

If data squeezes toward zero, use a log scale Labeling (axis), Data (range)

Zoom, filter, and details on demand Visual Unities (text),

Interaction (zoom, filter,

tooltip)

Ensure visual variable has sufficient length. For example, it is

difficult to tell small differences in size

Visual Primitives (all)

Quantitative assessment requires position or size variation Visual Primitives (position,

size)

Preserve data to graphic dimensionality. For example, avoid

representing one or two-dimensional data in 3D visualizations

Visual Structure (3D), Data

(dimension)

In general, the position is the most accurate and effective

visual variable. Use position for visual encoding when possible

Visual Primitive (position)

Integrate text wherever relevant Visual Unities (text)

Consider replacing a pie chart with a bar chart Visual Structure (pie chart)

Do not use line plots if wild points are at all common Visual Structure (line plot)

Multivariate data calls for multivariate representation. One

implication is to consider replacing a stacked bar chart with

multiple bar charts or replacing a grouped bar chart with a

scatter plot with color-coding

Visual Frame (multiple views),

Visual Structure (scatter plot,

bar chart), Data (multivariate)

A line plot can only be used to express a continuous function Visual Structure (line plot),

Data (continuous)

The seven attributes are partially based on the visual hierarchy and visual
actions proposed by Zhou and Feiner [47]. We removed the visual object “visual
discourse” from Zhou and Feiner’s original visual hierarchy because it is too
abstract for a computer program to check, and we added labeling and data.
Visual frame, visual structure, visual unit, and visual primitives are primarily
related to visual perception. Labeling and interaction are primarily related to
usability. Therefore, the focus of our heuristic analysis is on visual perception or
usability, depending on the specific rules.

Table 1 shows the classification of the rules discussed in Sect. 3.3 based on
the seven attributes.
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3.5 Extracting Plot Features

With declarative visualization library Plotly (or Altair), every attribute of a
plot is stored in a JSON file. Our program will parse the JSON file and retrieve
relevant information based on the seven attributes discussed in Sect. 3.4. For
example, from the JSON file (Fig. 3), our program can identify whether the plot
is a single frame or multi-frame plot (Visual Frames), the chart type (Visual
Structures), what Visual Units are used, how different data variables are mapped
to different Visual Primitives, and whether the plot has titles and labels. Since
the JSON file for the figure created by Plotly contains the data, it is also possible
to retrieve and analyze data attributes based on the JSON file. Therefore, each
plot can be labeled based on the values for the seven attributes. Several examples
will be discussed in Sect. 4.

3.6 Computer-Assisted Evaluation

Since both the heuristic rules and plots are labeled based on the same seven
attributes, it is now possible to match them by the labels. For a particular plot,
our program searches for the heuristic rules with labels that match the labels of
the plot. Once the heuristic rules are selected for a particular plot, the nature of
the assistance provided to the developer depends on the type of rules. For the
rules in the advice category, our program displays the rules and lets the developer
evaluate the plot. Our program can also display a more detailed description
of the rules, such as the sources of the rules, context, potential pitfalls, and
counterpoints. In this case, our program serves as a knowledgeable assistant
that advises the developer in evaluating the visualization design.

For the rules in the automatic-check category, our program will analyze the
plot based on the values extracted from the JSON file. Since the logic of the
evaluation varies from rule to rule, each heuristic rule is implemented separately
in a function. The output of the automatic evaluation is a set of rules, analyses,
warnings, and recommendations.

We implemented this computer-assisted evaluation tool in Python for Plotly-
generated charts. This is an API-based tool with no graphical user interface. Our
goal is to make it integrate seamlessly with the existing coding workflow. It can
work in any Python programming environment such as Jupyter Notebook and
Google Colab.

4 Case Studies

Figure 2 shows four plots created with Plotly. All four examples are taken from
the official Plotly programming guide [3], which unfortunately contains many
data visualizations that need improvement.
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(a) ScatterGeo Chart (b) Polar Chart

(c) Stacked Bar Chart (d) Pie Chart

Fig. 2. Charts created with Plotly

For each chart (or figure), a program calls the Plotly API fig.to json() or
fig.to plotly json() to retrieve the JSON file (see Fig. 3) and call our API
heustic eval(fig.to json()) to start the heuristic evaluation.

For Fig. 2(a), from the JSON file, our program detects five geo traces, each
with two markers: color and size. Based on the heuristic rules, a warning will
be displayed to inform the developer that he or she used more than four colors.
Our program also detects buttons with ‘method’: ‘animate’ in the JSON file.
This means the plot has an animation button. Based on this information, the
heuristic rule about animation will be displayed, advising the developer about
the pros and cons of animation [17,43].

For Fig. 2(b), from the JSON file, our program detects eight scatterpolar type
traces, each with two markers: color and symbol. Based on the heuristic rules,
two warnings will be displayed. The first one warns the developer that too many
colors are used. The second one warns the developer about the drawbacks of
using shapes as visual variables [7].

For Fig. 2(c), from the JSON file, our program detects three bar traces, each
with two markers: color and pattern. Based on the heuristic rules, two warnings
will be displayed. One warns the developer about the drawbacks of stacked bar
charts and suggests an alternative: a grouped bar chart. The second warns about
the pitfalls of using patterns as a visual variable [7].

For Fig. 2(d), from the JSON file, our program detects a pie chart with 25
values and labels. A warning will be displayed to remind the developer about
the drawbacks of pie charts and suggest an alternative: bar chart.

Our program also detects the missing title property in the JSON files of
Figs. 2(a), 2(b), and 2(c) and generates warnings.
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Fig. 3. Part of the JSON file for the Polar Chart in Fig. 2(b)

5 Limitations

This computer-assisted heuristic evaluation method has its limitations. First,
it only works for heuristic rules that are more specific. Many heuristic rules
are too abstract to be checked automatically. This tool can help visualization
developers find some design flaws, but much of the evaluation still needs to be
done by a human. Second, this tool works with declarative visualization libraries
such as Plotly, Altair, d3.js, or d3.js based tools. It does not work with imperative
visualization libraries such as Matplotlib, Seaborn, Bokeh, or R/ggplot. So far,
we have only implemented this tool in Python for Plotly, but it can be adapted
to support Altair and d3.js.

6 Conclusion and Future Work

We have presented a method and tool for computer-assisted heuristic evaluation
of data visualization. Heuristic evaluation is a valuable method for improving
visualization designs. However, heuristic evaluation is often difficult for individ-
ual visualization developers who are often unfamiliar with the wide range of
heuristic rules and their pitfalls. The proposed tool addresses this issue by pro-
viding virtual assistance during the coding process, informing developers of the
relevant heuristic rules, and in some cases, automatically checking the visualiza-
tion plots for possible design flaws or improvements. Although the tool is still
limited to certain specifically defined heuristic rules and only works for declara-
tive visualization libraries, it is a step toward AI-enabled automatic evaluation
of data visualizations.

We are improving the tool by adding and testing more heuristic rules and
adding support for Altair and d3.js based visualization libraries.
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