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Figure 1: Data@Hand supports multimodal interactions to enable people to easily navigate and compare their personal health
data on smartphones. People can execute a context-agnostic command such as setting up a comparison by specifying two new
periods using a global speech button (1). They can feed a context to their utterance by touch, such as the start date 2), the
target for comparison (3), or the time range for refining the view (9. (Please refer to our supplementary video, available at
https://data-at-hand.github.io/chi2021, which demonstrates the interactions.)

ABSTRACT

Most mobile health apps employ data visualization to help people
view their health and activity data, but these apps provide limited
support for visual data exploration. Furthermore, despite its huge
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potential benefits, mobile visualization research in the personal
data context is sparse. This work aims to empower people to easily
navigate and compare their personal health data on smartphones by
enabling flexible time manipulation with speech. We designed and
developed Data@Hand, a mobile app that leverages the synergy
of two complementary modalities: speech and touch. Through an
exploratory study with 13 long-term Fitbit users, we examined how
multimodal interaction helps participants explore their own health
data. Participants successfully adopted multimodal interaction (i.e.,
speech and touch) for convenient and fluid data exploration. Based
on the quantitative and qualitative findings, we discuss design
implications and opportunities with multimodal interaction for
better supporting visual data exploration on mobile devices.
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1 INTRODUCTION

Smartphones, equipped with high-resolution displays and powerful
processors, are increasingly becoming a dominant way to access
information [74]. A vast number of mobile health (or mHealth)
apps, including wearable devices’ companion apps (e.g., Fitbit
App [30], Apple Health [3], Samsung Health [59], Garmin [33],
and Mi Fit [36]), enable people to access their health and activity
data collected over time. While these mHealth apps commonly
employ data visualizations to help people view and understand
personal data [2], they provide limited support for navigating and
exploring the data. Furthermore, research on mobile data visualiza-
tion is sparse [48]. Much of the mobile visualization research has
been carried out with tablets [10], and only a handful of projects
have recently begun to study data visualizations on smartphones
(e.g., [11, 12, 61]) and smartwatches (e.g., [9, 13, 46]).

In this work, we investigate how to facilitate flexible data explo-
ration on smartphones in the context of self-tracking data, while ad-
dressing several challenges smartphones pose. Due to their limited
screen space, smartphones cannot afford a control panel of widgets
(alongside the visualizations), which are effective means to support
dynamic queries [1]. It is distracting to navigate to a separate page
to adjust the widgets and come back to the page with visualizations
to see the effect. In addition, the lack of mouse input makes it diffi-
cult to perform two essential actions—(1) a precise selection and (2)
details-on-demand using a mouse hover interaction—which are well
supported in a desktop environment. Furthermore, while time is a
primary dimension of self-tracking data, it is laborious to perform
time-based interactions on smartphones, such as entering specific
date, time, and ranges. As a result, most mHealth apps tend to limit
time manipulations. For example, the Fitbit App restricts people
to view data by predefined time segments, such as one week, one
month, three months, and one year. Inspired by previous research
advocating the benefits of multimodal interaction [15, 20, 49, 50, 75],
we incorporate an additional input modality, speech, to overcome
these challenges. Speech-based interaction takes little screen space.
Speech is flexible to cover different ways that people specify date
(e.g., “Last Thanksgiving” or “Lunar New Year’s Day”) and date
ranges (e.g., “2017” indicating the range from January 1, 2017 to
December 31, 2017), which people are already familiar with.
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Combining two complementary modalities, speech and touch,
we designed and developed Data@Hand (Figure 1), a mobile app
that facilitates visual data exploration. As a first step, informed by
prior work on personal insights [17, 18], we support navigation and
temporal comparisons of personal health data, as well as data-driven
queries. To understand how speech and touch interaction can help
lay individuals explore their data, we conducted an exploratory
study with 13 long-term Fitbit users using Data@Hand.

We observed that participants successfully adopted multimodal
interaction, using both speech and touch interactions while finding
personal insights. Participants reported that they made deliberate
choices between the two input modalities for a more convenient and
fluid data exploration. Flexible time expressions enabled by speech-
based natural language interaction helped them freely navigate
data in a specific time frame (e.g., ) “Go to March 2020”), quickly
set up comparisons (e.g., () “Compare sleep ranges of winter and
summer this year,” illustrated in (@) in Figure 1), and easily execute
data-driven queries (e.g., (0 “Days I walked more than 10,000 steps
last month”). Speech commands combined with touch input (e.g.,
@), ®, and (@ in Figure 1) enabled easy modifications of the time
components. For example, to change the start/end date, one can
simply utter a specific date while holding on the start/end date
label. Also, graphical widgets (e.g., calendar widget, data source
drop-down list) served as a fallback to correct erroneous results
of speech or to explore a set of categorical values. Being satisfied
with their overall experiences, all but one participant expressed
that they are willing to keep using Data@Hand after the study. The
key contributions of this work are:

(1) The design and implementation of Data@Hand, the first mobile
app that leverages the synergy of speech and touch input modalities
for personal data exploration. Data@Hand helps people interact
with their own personal data on smartphones by accessing the Fitbit
data using the Fitbit REST API. It runs on both iOS and Android,
using the Apple speech framework [4] and Microsoft Cognitive
Speech API [53] as speech recognizers. The Data@Hand source
code is available at https://data-at-hand.github.io.

(2) An empirical study conducted with 13 long-term Fitbit users
using Data@Hand. From the quantitative and qualitative analysis,
we provide an understanding of how people explore their own data
using speech and touch interaction on smartphones, uncovering
situations and rationale for people’s choice of interaction.

(3) Design implications and opportunities for multimodal interac-
tion for mobile data visualization. Reflecting on our observations
and participants’ feedback, we draw design implications and oppor-
tunities for developing a multimodal interaction to better support
personal data exploration on mobile devices.

2 RELATED WORK

In this section, we cover related work in the areas of (1) visual ex-
ploration of personal data and (2) natural language and multimodal
interaction for visual data exploration.

2.1 Visual Exploration of Personal Data

As collecting and reflecting on personal data has become common-
place, research on personal visualization has gained increasing
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attention [37, 49, 51, 73]. Personal visualizations equipped with in-
teractivity enable visual data exploration, making it easy for people
to understand and reflect on their data. As such, many Personal
Informatics systems (e.g., [6, 18, 26, 28, 38, 72]) support visual data
exploration to empower people to gain personal insights.

Because time is a primary dimension of personal data (or self-
tracking data), systems that support visual data exploration strive
to enable easy manipulation of the time component. For exam-
ple, Visualized Self [18]—a web application that enables people to
integrate and explore personal data from multiple self-tracking
services—employs the timeline mini-map to enable rapid adjust-
ment of the data scope. Activity River [6] takes a similar timeline-
based approach, but the scope was fixed as a single day. Visual
Mementos [72] supports visual exploration of personal location
history. It incorporates a multidimensional selection widget for
the precise scoping of event episodes in a series of location logs.
Huang and colleagues [38] designed an on-calendar visualization
tool that integrated people’s physical activity data. They chose to
leverage a calendar, an inherent time-based visualization with rich
personal context, to make the data readily accessible. We note that
these systems were designed for a desktop environment and did
not investigate how their interfaces could be applicable in a mobile
environment with smaller screen space.

Commercial mHealth apps, including wearable devices’ compan-
ion apps, also provide the visual exploration capability. However,
most of these apps are limited in terms of time navigation, making
it hard to jump to an arbitrary time frame or to compare data from
two different time frames. These commercial apps usually show
daily information using a dashboard on their main page, aiming to
promote self-awareness of the current performance. They are also
constrained by the smartphone form factor, such as small screen
and imprecise touch input. Furthermore, existing widgets (e.g., cal-
endar) for date entry are not flexible enough to handle the various
ways to specify time. As a result, limited navigation support be-
comes a barrier to performing flexible data exploration, and in turn
obtaining personal data insights on smartphones.

The practitioner community developed ample applications of
data visualization in mobile apps & websites (refer to [56, 57] for
curated practices). Data visualization is also commonly used for
mobile form factors, such as smartphones and tablets, in research
prototypes (e.g., [16, 22, 41, 42, 55, 60]) developed by UbiComp
and Human-Computer Interaction researchers. However, research
specifically focusing on mobile data visualization is sparse and
much of the mobile visualization research has been carried out with
tablets [10]. As such, the research community has recently put ef-
forts to shape a research agenda for mobile data visualization while
calling for more research endeavors [14, 48, 49]. Although only a
handful, mobile visualization research has begun to pay attention
to the smaller form factors (i.e., smartphones and smartwatches).
They examined effectiveness of visual representations (e.g., ranges
on timeline [11], animated transition vs. small multiples of scatter-
plots [12], data comparison on smartwatches [9]) and interaction
techniques (e.g., multivariate network exploration [25], pan and
zoom timelines and sliders [61]). In addition, in their workshop pa-
per, Choe and colleagues [15] envisioned a scenario where speech
interaction could facilitate personal data exploration on mobile
devices. Inspired by this line of research and vision, we contribute
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to mobile data visualization with Data@Hand, the first mobile app
that leverages the synergy of speech and touch input modalities to
augment personal data exploration.

2.2 Natural Language and Multimodal
Interaction for Visual Data Exploration

Advancements in natural language understanding and speech recog-
nition technology have promoted the design of natural language
interfaces (NLIs) for data visualization [8, 21, 23, 32, 34, 35, 39, 40, 47,
62-65, 67, 69, 79]. These systems commonly exploit two advantages
of natural language: (1) high flexibility in synthesizing multiple
commands and parameters [21] and (2) low barriers in expressing
intents and questions regarding the data [7, 66]. A majority of these
systems are primarily designed for desktop settings and investi-
gate typed natural language input (e.g., [21, 23, 32, 35, 62, 69]). On
the other hand, another subset of prior systems focus on speech
input and explore multimodal visualization interfaces that incor-
porate speech with other modalities such as pen and/or touch in
post-WIMP [76] settings including tablets [39, 64] and large dis-
plays [47, 65, 67].

Given the context of the smartphone form factor, two existing
systems that are most relevant to our work are the tablet-based
systems, Valletto [39] and InChorus [64]. Valletto allows people
to specify charts through speech and then perform simple touch
gestures such as a rotate to flip axes and swipe to change the visu-
alization type. Exploiting the complementary nature of pen/touch
and speech [19], InChorus illustrates a vocabulary of multimodal
actions involving a wide range of visualizations for tabular data
(e.g., selecting marks with a pen and saying “Remove others" to filter
unselected points, pointing on an axis with a finger and speaking
attribute names to specify data mappings).

Our work extends this line of research on multimodal visualiza-
tion interfaces on mobile devices in two notable ways. First, unlike
Valletto and InChorus that were designed for tablets, Data@Hand is
the first system specifically designed for smartphones. Correspond-
ingly, we discuss the unique constraints we faced in the form of
more limited screen space and lower precision with touch input [78],
and how these constraints impacted our interface and interaction
design (see DR3 in Section 3.1). Second, compared to prior NLIs that
primarily target avid users of visualization tools (e.g., data analysts,
developers or managers in visualization-oriented products), our
work targets a broader population of lay individuals interested in
exploring their personal health data. In doing so, we highlight the
role of lay individuals that affected the design of Data@Hand, and
discuss in detail the interaction patterns individuals employed for
performing tasks such as time manipulation, temporal comparisons,
and data-driven queries with Data@Hand.

3 DATA@HAND

To enable flexible data exploration on smartphones, we designed
and developed Data@Hand, a mobile app that leverages the benefits
of two complementary input modalities, speech and touch. In this
section, we describe our design rationales and the Data@Hand app
along with the implementation details.
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3.1 Design Rationales

DR1: Use Simple and Familiar Visualizations to Support Lay
Individuals. Our target audience is people who collect their health
and activity data using commercial wearable devices. They usually
do not have expertise in data visualization and analytics. Therefore,
we incorporated familiar visual representations and conventional
charts that people commonly encounter on existing mHealth apps.
For example, we used bar charts, line charts, and range charts to
visualize daily measurement values (e.g., step counts and resting
heart rates in Figure 1a and sleep ranges in Figure 2a). As for vi-
sualizing the aggregated data over a period, we designed custom
representations called aggregation plots: a simplified version of box-
and-whisker plots. We encoded only the average and the minimum
and the maximum values (for the range) because these metrics
are more relevant to the personal tracking context than median
and percentiles. For example, Figure 2c shows the aggregated sleep
ranges for February and August of 2020.

DR2: Enable Flexible Time Manipulation to Help Identify Per-
sonal Insights. Unlike the general and broader visual data explo-
ration, personal visualizations require different design considera-
tions because of the nature of the personal data and the diverse per-
sonal data collection goals [37, 73]. In visual exploration with per-
sonal data (or self-tracking data), people look for specific personal
insights, such as whether they achieved a certain personal goal
(e.g., 10,000 steps per day), how their behaviors (e.g., step counts,
sleep patterns) and emotional/physiological states (e.g., mood, heart
rates) change over time, and what factors might have affected the
changes (e.g., before & after the COVID-19 lockdown) [18]. Further-
more, as shown in prior works [17, 18, 51, 68], comparison by time
segmentation is one of the most common visual exploration tasks
that people actively perform to gain personal insights. However,
flexible time manipulation—a key facilitator in drawing personal
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insights—is rarely supported in mHealth apps due to the limitations
we described earlier (see Section 2.1). We strove to enable flexible
time manipulation, focusing on navigation (Figure 1a) and temporal
comparisons (Figure 1b & 1c and Figure 2c & 2d).

DR3: Leverage the Synergy of Speech and Touch Interactions
on Smartphones. Smartphones are increasingly becoming a dom-
inant way to access information [74], and much of the personal
data is collected from smartphones and wearable devices. As such,
we wanted to facilitate easy access to people’s own data on smart-
phones. To overcome the challenges smartphones pose, we leverage
both speech and touch input modalities that are complementary in
nature: speech input affords a high freedom of expression without
requiring much screen space, whereas touch input supports direct
interaction [58, 64, 65, 67]. When combining the strengths of these
two modalities, we aimed to provide a complementary set of oper-
ations [20] rather than providing an equivalent set of operations
for each modality. We detail how we synergistically incorporated
the two modalities in supporting a diverse set of operations on
smartphones in Section 3.2.2.

3.2 User Interface and Interaction Design

Data@Hand currently supports five health metrics that are re-
trieved from the Fitbit data sources: (1) step count, (2) resting heart
rate, (3) sleep duration, (4) hours slept, and (5) weight. For sleep,
we included only one sleep log per day that is marked as the main
sleep. We chose the metrics based on their prevalence in commercial
health apps according to a recent survey [44].

3.2.1 User Interface and Interaction Components. Data@Hand sup-
ports navigation, temporal comparison, and data-driven queries
using four main pages—Home (Figure 1a), Data Source Detail (Fig-
ure 2a), Two-range Comparison (Figure 1b), and Cyclical Compar-
ison (Figure 1c). As a default view, the Home page visualizes the

Wake Time Range

..... Avg. Bedtime Range
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May
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Sep
oct
Nov
Dec

Mar

Figure 2: Excerpt of the exploration flow in our usage scenario. (1) Zoe executes a data-driven query via natural language. @ The
system infers omitted parameters (e.g., a pre-selected date range as a comparison target) using the current screen information.
(® Zoe changes August 2019 to February 2020 by touch+speech interaction on the aggregation plot. (9 Zoe establishes the

cyclical comparison to see this year’s monthly trend.
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past 7-day data for the five data sources. The Data Source Detail
page shows detailed information for a single data source. Both
comparison pages juxtapose aggregated measurement values, but
in two different ways: the Two-range Comparison page plots two
selected periods side by side, and the Cyclical Comparison page
displays values within a specific period grouped by a predefined
time cycle, such as days of the week (i.e., Sunday through Saturday)
and months of the year (i.e., January through December).

These pages contain common interaction components. An app
header and bottom toolbar are located on all pages (see Figure
1). The range widget on the app header is for manipulating date
ranges, and the global microphone button () on the toolbar is
used to execute a speech command in a global scope—a command
that is agnostic to the current context or page. We describe its
functionalities in more detail in Section 3.2.2. The Home button
is a shortcut that brings back to the Home page, maintaining the
current date range. The Compare button opens the configuration
panel where people can configure data source, comparison type,
and date ranges to execute comparison queries.

People can execute data-driven queries by specifying a condition
in natural language. Data@Hand responds by highlighting the
data items in red (see Figure 2a). Also, the query bar (D) in Figure
2a), shown below the app header, contains parameter widgets for
manipulating recognized parameters in a query (e.g., [Wake Time],
[earlier than], [07:30 AM]), and the number of days that satisfy
the condition (e.g., ‘5 days’). The system automatically updates the
query result when people manipulate the time or data source on
the screen, until they dismiss the query bar by swiping it to the
left. The design was inspired by the ambiguity widgets from prior
systems (e.g., [32, 62, 65, 67]).

3.2.2  Speech and Touch Interaction. Using touch and speech input
modalities, Data@Hand provides three types of interaction—touch-
only, speech-only, and touch+speech. With Data@Hand, people can
directly interact with graphical widgets with touch, as they would
normally do with any mobile apps. For example, they can tap on
an item (e.g., label, chart) to select it, and swipe the range widget
to shift the time frame back and forth. Using speech, people can
issue powerful commands that are applicable to a global scope: for
example, changing a data source and date range together with “Show
me the step counts from this summer,” or executing a data-driven
query with “Highlight the days I walked more than 10,000 steps”
To handle speech, Data@Hand adopts a “push-to-talk” technique:
the system records the speech input while people are pressing
on the global microphone button (7. Given that pressing on the
global microphone button serves only as a means to initiate speech
interaction, we consider using speech with the global microphone
button as speech-only interaction.

For the touch+speech interaction, people press on a target ele-
ment while uttering speech commands that make use of the specific
context the target element provides. For example, as shown in (2) in
Figure 1, people can navigate to a different date range by uttering
only a date (e.g., “January 1) while pressing on the “start date”
part of the range widget. Furthermore, with touch+speech people
can perform a related command while keeping the same context.
For example, as shown in (3) in Figure 1, after comparing the sleep
ranges of winter and summer of this year (2020), they can simply
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utter “Summer 2019” while pressing on the aggregation plot for
the winter to compare summer of 2019 and 2020. As demonstrated
in previous research [52, 64, 77], this context helps Data@Hand
facilitate faster interactions and reduce the complexity of speech
commands, and ultimately improves user experiences.

3.2.3  Speech Affordance and Feedback. When people press the
global microphone button () or long-press a target element for
touch+speech interaction, Data@Hand displays the speech input
panel (Figure 3) while dimming outside. If the target element is an
aggregation plot, the speech input panel is embedded in a tooltip
(Figure 3, left). As a preemptive guide, Data@Hand displays a con-
textual message (e.g., “Say a new date” for start/end date) or example
phrases on the panel (Figure 3, left) until people start to utter. While
people are talking to the system, the panel displays a real-time dic-
tation result (Figure 3, right) to make people aware of how their
utterance is being recognized and to prevent the early release of
the finger before the utterance is completely dictated.

After each execution of an operation, Data@Hand provides dif-
ferent types of feedback depending on its result. When Data@Hand
could translate the utterance and execute a valid operation, it mo-
mentarily displays a confirmation message ((1) in Figure 4) along
with the undo button (@) in Figure 4) as a quick recovery option. If
the translated operation is invalid, the system opens a contextual
message dialog ((3) in Figure 4). For example, if one utters just one
date range using speech-only interaction on the Two-range Com-
parison page, the system suggests try the same command using
touch+speech interaction through the aggregation plot for disam-
biguation. When Data@Hand fails to translate the utterance, it
informs people accordingly ((@ in Figure 4).

3.3 Interacting with Data@Hand

Here we describe Data@Hand’s interactions through a usage sce-
nario: a self-tracker Zoe has been collecting data using a Fitbit
band for almost five years. While this scenario emphasizes the
speech-only and touch+speech interactions, most operations are
also supported by touch-only interaction using graphical widgets.
(Refer to our supplementary video to see more detailed interaction.)

Data Navigation & Data-Driven Queries. Being curious about
her long-term activity patterns, Zoe opens Data@Hand. The system

m

July 2020
Avg: 6,633 steps

Range: 2,309 - 9,577
Total: 205,630 131 31  3/31 4/30 5/30 6/29 7/29

31/31days

Compare winter and summer_

Figure 3: The speech input panel that displays preemptive
guides (left) and a real time dictation result (right), before
and during a speech interaction.
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Figure 4: When the system could translate the utterance and
execute a valid operation, it momentarily displays a confir-
mation message (1) along with the undo button (2). When the
translated operation is not valid, the system opens a contex-
tual message dialog 3. When the system fails to translate
the utterance, it informs people accordingly (3.

initially shows the past seven days of data on the Home page.
To extend the scope, she long-presses the start date and utters
“January 17 (@) in Figure 1), and the system sets the date range to
January 1, 2020 to today (August 27, 2020). Skimming the bar chart
for step counts, she notices a dramatic drop of step counts since
mid-March, being reminded of the start of the COVID-19 lockdown.
This plummet motivates her to explore her data since the lockdown
has taken effect.

Zoe starts to explore her step counts wanting to see how many
days she achieved her daily step goal. She speaks (' “Days I met my
step goal.” Referring to her step count goal (10,000 steps) from her
Fitbit account, Data@Hand highlights the days with step counts
higher than 10,000. She finds that the highlighted days are dense
earlier in the year but sparse since March. Zoe scrolls through the
charts for other data sources. Once she reaches the chart for sleep
range, she notices that her sleep has been pushed back since March.
Seeing this, Zoe decides to take a detailed look at her sleep ranges.
To narrow down the scope to a more recent period, she speaks

“Sleep range of this month.” The system opens the Data Source
Detail page for August’s sleep range. By asking (. “Days I woke up
earlier than 7:30 AM,” she learns that she woke up that early just
for five days in August (Figure 2a).

Temporal Comparisons. Zoe is curious about how her sleep dif-
fers from last year’s. She utters (/) “Compare with last August” (@) in
Figure 2). Translating last August to August 2019, Data@Hand opens
the Two-range Comparison page comparing August 2019 against
August 2020 (Figure 2b). Zoe notices that this August’s average
sleep schedule is shifted by more than an hour late compared to
August 2019. Also, the ranges of the bedtime and wake time in
August 2020 are longer, implying her irregular sleep pattern. Zoe
now wonders how the lockdown has affected her sleep. So, she
changes the range from August 2019 to February 2020, the previ-
ous month before the lockdown, by uttering “February 2020” while
long-pressing the aggregation plot for August 2019 (3) in Figure
2). She confirms that, compared to February, her sleep schedules
for August are also shifted towards later hours and show more
irregular bedtime and wake time (Figure 2c).
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To see how the lockdown affected her sleep schedules from
the monthly trend, she speaks () “Show 2020 by month” (@ in
Figure 2). Data@Hand opens the Cyclical Comparison page, with
her sleep ranges in 2020 grouped by month (Figure 2d). She learns
that her average sleep schedules have become more regular since
May and that they have shifted to earlier hours. Zoe continues on
the exploration, switching to other data sources by swiping the
data source widget on the app header.

3.4 Implementation

We implemented Data@Hand in TypeScript [54] upon React Na-
tive [27] to support both iOS and Android. When a participant first
signs in with a Fitbit account through OAuth 2, the system uses
Fitbit REST API [31] to download the Fitbit data of the entire period
since the account creation to the local SQLite database. The system
always uses the locally-cached data to improve the performance by
minimizing network overheads.

We used the Apple speech framework [5] and Microsoft Cogni-
tive Services [53] as a speech-to-text recognizer on iOS and Android,
respectively. We initially used a built-in speech recognizer for each
OS. However, for Android, we decided to use Microsoft’s Speech
service because of the limitations of Android’s built-in speech rec-
ognizer API. We appended a set of application-specific keywords
(e.g., name of the data sources) and time expressions (e.g., “May”
is likely to refer a month rather than a verb) to the recognizers’
vocabulary to improve accuracy for short phrases.

We implemented the system interpreter to work locally on the
device. Receiving the recognized input text, the interpreter pre-
processes it by performing part-of-speech tagging using the Com-
promise [43] Javascript library and identifying parameters such as
data sources, query conditions, and periods. To identify the time
information mentioned in the input text, we used a customized
version of Chrono [70], a natural language time parsing library.
After the preprocessing, the interpreter infers the operation based
on the tagged verbs and parameters, the current screen information,
and the pressed element for the touch+speech interaction.

4 USER STUDY

We conducted an exploratory study with Data@Hand, employing
a think-aloud protocol, to examine how multimodal interactions
help people explore their data. As part of this study, participants
interacted with their own Fitbit data using their smartphones. Due
to the COVID-19 outbreak, all study sessions were held remotely
using Zoom video call (in July 2020). In Section 4.2, we explain pre-
cautionary action we took to deliver a remote tutorial and to ensure
close monitoring of the study session while mitigating potential
privacy invasion. We refined both the system and study protocol
through six pilot sessions with Fitbit users recruited from Reddit.
This study was approved by the Institutional Review Board of the
University of Maryland at College Park.

4.1 Participants

We recruited 13 participants (P1-13; nine females and four males)
from Reddit by advertising the study on the subreddits for job
postings in the United States. Our inclusion criteria were adults
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Table 1: Summary of demographic and the Fitbit experience of our study participants.

Alias Age Gender Occupation Fitbit usage Fitbit wearable Collected data

P1 27 M Client services trainer 2y 4m Versa lite edition Step, HR, Sleep, Weight (Aria)
P2 27 F Chemical engineer 4y 6m Alta Step, HR, Sleep

P3 28 F Freelance social media manager 4y 10m Versa Step, HR, Sleep

P4 32 M Implementation specialist 5y Tm lonic Step, HR, Sleep, Weight (BT)
P5 35 F Freelance photographer 5y 2m Blaze Step, HR, Sleep, Weight (BT)
P6 23 F Graduate student 4y 8m Alta HR Step, HR, Sleep

P7 23 F Graduate student 5y 6m Charge 2 Step, HR, Sleep, Weight

P8 46 F Product manager 1y 7m Versa Step, HR, Sleep, Weight

P9 30 F Healthcare consultant 5y 9m Versa Step, HR, Sleep, Weight (Aria)
P10 24 M Unemployed (Varsity football player) 1y 8m Versa Step, HR, Sleep, Weight

P11 28 M Software engineer 4y Tm Charge 3 Step, HR, Sleep, Weight

P12 36 F Professional figure skater 2y Im Alta Step, HR, Sleep, Weight

P13 39 F Market survey manager 4y 4m Alta Step, HR, Sleep, Weight

who (1) are native English speakers; (2) have used Fitbit wearables
for at least six months and tracked at least three of the following
measures: step count, heart rate, sleep, and weight; (3) are interested
in looking at their Fitbit data; (4) are currently using iPhone or
Android; (5) have no visual, motor, or speech impairments; (6) have
used voice recognition systems within six months with a generally
positive experience; and (7) can understand simple charts.

The demographic and Fitbit usage information of our study par-
ticipants is shown in Table 1. Participants’ ages ranged from 23 to
46 (avg = 30.62). Ten participants were full-time employees, two
were graduate students, and one was unemployed. At the time of
the study, participants had used Fitbit for an average of 47 months
based on their account creation date. Four participants had been
tracking weight using Aria [29] or third-party Bluetooth scales
(which share the data with Fitbit). The screen sizes of participants’
smartphones ranged from 4.7 to 6.1 inches (eight participants used
iPhones with a 4.7-inch screen). We offered a 30 USD Amazon gift
card for their participation.

4.2 Study Setup and Procedure

4.2.1 Pre-study Preparation. A fully-remote study using partici-
pants’ own data required us to take extra precautions, such as miti-
gating potential invasion of privacy from the use of participants’
own smartphones, preparing the training material, and establishing
robust audio- and video- recording methods. Furthermore, because
Fitbit allowed only 150 API calls per hour per account, we had to
prefetch the Fitbit data before the study session. (Immediately after
the study session, we deleted the participants’ Fitbit data from our
server.) To do so, we sent participants a link to a web page where
they could sign an electronic consent form and fill out a pre-study
questionnaire asking their Fitbit usage patterns and experiences of
using voice assistant systems. After completing the questionnaire,
the participants were asked to sign in with their Fitbit accounts so
that our crawler could cumulatively download participants’ entire
Fitbit data. We also delivered the Data@Hand app to participants

BT: Bluetooth scales which are from other vendors but can feed the data to Fitbit.

through TestFlight (i0OS) or Google Play beta testing (Android) so
that they could install the app on their phone.

4.2.2 Remote Study Session. Participants joined a 90-minute study
session via Zoom video call [80] from their computer. Figure 5
illustrates the settings of the remote study session. Via TeamViewer
QuickSupport [71], participants shared their smartphone screen
with the experimenter. Prior to the screen sharing, the experimenter
instructed participants to remove any privacy-sensitive information
from their home screen and to turn off all the notifications. The
experimenter then shared his monitor screen with the participant
using Zoom’s screen sharing feature: the participant could see how
their smartphone screen was being displayed to the experimenter.
Using the recording feature in Zoom, the experimenter recorded
the video call session including the shared smartphone screen.

Tutorial. After explaining the goal of the study, the experimenter
gave a 40-minute tutorial, using an example dataset containing
fabricated data generated based on the first author’s four years of
Fitbit data. The tutorial covered Data@Hand’s key design compo-
nents and interactions—data sources & charts, time manipulation,
data navigation, temporal comparison, and data-driven queries.
The experimenter introduced and demonstrated each feature us-
ing presentation slides and a video clip on a shared screen (refer
to our supplementary material available at https://data-at-
hand.github.io/chi2021), and gave participants a chance to
practice before moving to a new feature. In particular, participants
were encouraged to practice the push-to-talk interaction exploring
the example dataset. We gave them example speech queries (via
shared Zoom screen) that they could use for practice, but also en-
couraged them to try out their own speech commands. We gave
them enough time to practice until they feel comfortable using both
the touch and speech input to interact with Data@Hand.

Free-form Exploration. In this phase, the experimenter instructed
participants to freely explore their own data with Data@Hand.
We asked them to use any of the supported interaction modalities
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Figure 5: Settings of the remote study session using video call and screen sharing. The participant shares the smartphone
screen with the experimenter, and the experimenter shares his monitor screen with the participant.

(touch, speech, touch+speech) of their choice. We also asked them
to think aloud as they explored the data so that we can capture
the insights they found and the challenges they faced, and under-
stand their intentions and experiences. The experimenter observed
how participants interacted with Data@Hand through the shared
screen showing their smartphone screen and faces. We audio- and
video-recorded each video call session and the system logged the in-
teraction history and uploaded the logs to our server. This free-form
exploration phase lasted approximately 20 minutes.

Debriefing. We conducted a semi-structured interview around 10—
15 minutes at the end of the session. We asked participants about
their experiences with Data@Hand, difficulties and confusing fea-
tures, and follow-up questions based on our observation in the
exploration phase. We also asked them about the use cases of
Data@Hand they could envision and their willingness to keep
using the Data@Hand app after the study.

4.3 Data Analysis

We analyzed the video recordings and the interaction logs from the
free-form exploration phase. We performed both quantitative and
qualitative analysis to examine how participants used the speech
and touch modalities in finding personal insights. As for the quanti-
tative analysis, we first extracted participants’ interaction attempts
to perform actions for data navigation, temporal comparisons, and
data-driven queries, reviewing the exploration videos and interac-
tions logs. We defined an interaction attempt as a series of low-level
interactions (e.g., tapping, swiping) that were involved to obtain a
desired outcome. To modify a start date, for example, people may
tap the start date on the range widget to invoke a calendar popup
and tap the target date. We treated this series of tap interactions as
one attempt with touch-only interaction.

As for the qualitative analysis, we analyzed the transcripts
from the exploration phase to identify the types of personal in-
sights, following Choe and colleagues’ definition of personal insight
(“an individual observation about the data accompanied by visual
evidence”) [17, 18]. We extracted personal insights and catego-
rized their types. For example, we extracted the following from
P10’s exploration session: (On the Cyclical Comparison page) “Just
pretty interesting that I get my most steps on Saturdays.” We coded

this observation with three insight types: extreme (“most steps”),
reference (“Saturdays”), and comparison by time segments (essential
to identify the day with the most step counts in this case). We de-
scribe when and how participants gained the insights in Section 5.2.

We transcribed the audio recordings of the debriefing interviews,
which were grouped according to the following aspects: (1) partici-
pants’ rationales of choosing the input modalities; (2) new analy-
ses/tasks/questions Data@Hand enabled; (3) challenges participants
encountered; and (4) how participants envisioned the use cases of
Data@Hand in their own contexts. We referenced this information
when interpreting the video recordings and interaction logs, as well
as to understand participants’ general reactions to Data@Hand
(reported in Section 5.3).

5 RESULTS

In this section, we report the results of our study in three parts: (1)
interaction usages, (2) personal insights, and (3) general reactions
to Data@Hand.

5.1 Interaction Usages

We identified 809 interaction attempts in total. Among these, 400
(49.4%) were touch-only, 281 (34.7%) were speech-only, and 128
(15.8%) were touch+speech interaction attempts. Among the 400
touch-only attempts, five were aborted by participants to perform
the equivalent action using speech instead (e.g., P4 first opened a
calendar picker to modify the start date, but he closed it and mod-
ified the start date using the touch+speech interaction). Among
the 281 speech-only attempts, 32 were failed due to the recogni-
tion/interpretation errors, 16 were invalid actions (e.g., “Com-
pare hours slept” without designating any comparative periods),
and five were unsupported actions (e.g., attempting to execute
a data-driven query to the aggregation plots). Among the 128
touch+speech attempts, eight were recognition/interpretation er-
rors, and seven were invalid actions (e.g., uttering a date where a
period is required). As a result, 736 (395 touch-only, 228 speech-only,
and 113 touch+speech) interaction attempts were successfully exe-
cuted, which we call operations from now on. Of these, we included
only 589 operations that are relevant to the three main features
(time manipulation, temporal comparison, and data-driven queries)
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into further analysis (268 touch-only, 209 speech-only, and 112
touch+speech operations). The rest 147 operations consisted of 127
touch-only and 19 speech-only operations for data source manip-
ulation, and one touch+speech operation for data-driven query.
Figure 6 visualizes these operations by participant. In the following
subsections, we describe participants’ detailed usage of these input
modalities for the three main features.

5.1.1 Time Manipulation. In total, participants manipulated time
470 times (see Table 2 for the summary). Participants specified
time (T1-5; e.g., change the start/end date) or manipulated time as
part of executing comparison (C1-4) or data-driven queries (Q1).
When manipulating time, participants actively used both speech
and touch: to navigate to a new date range, participants used speech-
only interaction 71 times (T3) and a calendar picker with touch
48 times (T1). To modify ranges in the Two-range Comparison
page, participants tended to use touch+speech interaction on the
aggregation plot instead of touch-only interaction. As shown in
Table 3-top, 12 participants used touch+speech 37 times (T5) while
3 participants used touch-only 13 times (T1).

When participants modified only start or end date of the date
range, their behaviors differed depending on the distance between
their target date and the currently selected one. If the target date
was close to the original one (especially within the same month),
they preferred a calendar picker (T1) as it would require only a
few taps. On the other hand, if the target date was far from the
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currently selected date (e.g., several months away), they preferred
touch+speech interaction (T4) by long-pressing the date label and
mentioning the target date.

Three participants (P5, P11, P13) heavily used swipe to modify
the date range (T2, 146 out of 170 times). For example, starting
from the Data Source Detail page for weight in year 2020, P13
swiped through the year 2016, skimming the trend of each year (see
swiping sequences in Figure 6). The touch-only swipe is a quick
way to navigate through using a preset date range.

5.1.2  Temporal Comparisons. Table 3 summarizes the operations
to execute comparisons (C1-4), including the cases that modify
time as part of the follow-up comparisons (T1-5). As shown in
Figure 6, participants often performed a series of comparisons (184
operations, units in both green and yellow without an X mark)
by refining the time range (or the data source). When executing
comparison queries (C1-4), participants tended to choose the input
modalities depending on the type of comparison. For two-range
comparison, participants were inclined to use speech-only inter-
action (C2): only three participants used the Compare button to
execute the two-range comparison query with touch-only inter-
action (C1, 4 instances). On the other hand, participants showed
mixed patterns on modality for cyclical comparison: among 12
participants who used the cyclical comparison, four participants
(P1, P6, P12, and P13) used only touch (C3), two (P2 and P3) used
only speech (C4), and the other six used both modalities.
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Figure 6: Sequences of operations—successfully executed interaction attempts—that are relevant to the three main features
(time manipulation, temporal comparison, and data-driven query) by participant. Each unit on the horizontal-axis represents
one operation, and the color of rectangles in a unit indicates the intended feature. The X mark indicates the initiation of

temporal comparison (and thus only applicable for yellow r

ectangles; see C1-4 in Table 3). The border of a unit indicates the

use of the speech modality (i.e., speech-only or touch+speech). A series of swiping to manipulate time is bundled or collapsed
with a black horizontal line. This operation overview shows that participants used all three interaction types to perform
various actions. Also, the prevalence of a series of the green+yellow units without X suggests that participants often performed

a series of comparisons with time refinement.
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Insight Type and Frequency Example Quotes

Identify value

“What was that day? | got so much sleep. Wow, I got 13 and a half hours on that Monday.” - P10

Detail (109) - 12Ps
(263) Identify references  “Um.. wonder why it’s slow in April.” — P2
(104) - 13Ps “It’s pretty consistent, but in December | had a very broad range the hours.” - P6
Identify extreme “It looks like December was probably my highest activity month if | look back at the whole trend.” - P8
(50) - 12Ps
Of two instances “It’s interesting to see my step count average is | was much more all over the place in October. But in February, | was much more
. (66) - 11Ps consistent, which is better.” - P1
Comparison
(143) By time segments “My average was cut about a half from January, February, down to March.” - P4
(43) - 10Ps
By factor “My average (step count) was obviously higher six months ago than it is now because we’re all locked in our houses.” — P8
(33) - 10Ps
Against external data “I've been tracking what | eat. So I definitely used to weigh more. Look at that. this is like 150 b.” — P11
(1)- 1P
External context “That[hourly step count chart] would remind me of what | did that day. | know, based on the time of day and the day of the
Recall (79) - 13Ps week, that it was a hike that | went on and that’s why | got the extra steps.” — P8
(115 Confirmation “I know I've been getting less sleep recently compared to before. That’s what | wanted to see.” — P11
(26) - 8Ps
Contradiction “...because nothing feels the same (after the COVID-19 outbreak). But it’s interesting to see that the data looks less terrible than
(10) - 5Ps I expected, and I'm kind of happy.” — P12

Value judgment (51) - 10Ps

“My average bedtime is.. somewhere between 2 and 4 am..pretty terrible.” — P9

Variability (49) - 12Ps

“Looks like | mean for everything in 2020, it seems to be my sleep is getting much more consistent, which is a good sign.” - P1

Trend (42) - 11Ps

“It’s an increasing trend but like it’s super low in the beginning of April which I find odd.” — P2

Correlation (18) - 8Ps
That makes sense.” — P3

“The days that | have done the least amount of steps are the days of my heart rate is the lowest on average.

Outlier (7) - 3Ps

“Wow, there is definitely an outlier there.” - P1

Data summary (6) - 3Ps

“My average steps is 10760. Wow 4 millions (of total steps) *laugh* that’s a lot. Range anywhere from eight to twenty four
thousand, because sometimes | didn’t wear it.” — P6
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to easily and flexibly set time ranges.
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(e.g., job change, vacation, semester), which are important in explor-
ing personal data. Thus, our study participants had to rely on their
memory to perform time-based exploration using their personal
contexts. Tagging personally meaningful events and being able to
refer to them with speech could address this issue, offering great op-
portunities to enhance personal data exploration (e.g., -/ “Compare
my sleep range between spring semester and summer break”).
Although our work focused on a much-needed mobile scenario of
exploring personal health data, we envision that multimodal inter-
actions leveraging time expressions can be similarly useful in other
contexts. For example, flexible time navigation and comparison
features can facilitate exploring personal data beyond the health
and fitness domains, such as productivity, finance, and location
history (e.g.,
“Most expensive expense during the last quarter,
the places that I visited in the last three months”).

“Compare last week’s screen time with this week’s,
“Show me

6.2 Complementary Roles of Speech and Touch
Input Modalities

Our quantitative results showed that participants used both speech
and touch modalities, individually and in tandem, performing all
three types of interactions—touch-only, speech-only, and touch+
speech. Our observations and participants’ feedback also suggest
that participants made deliberate choices between the two input
modalities. In the debriefing interview, participants distinguished
the advantages of the two modalities.

Speech interaction was generally considered to be fast and flex-
ible, especially when making big shifts in terms of time ranges, or
executing commands involving multiple keywords (e.g., () “Com-
pare step counts of this month and last month,” from the Home page).
P13 remarked, “I would like to be able to use voice for more things
Jjust because it’s easier and I've found myself just sometimes thinking
like, ‘Oh, would this be quicker if I use a voice command?” “Would it
be easier if I use a voice command?’” On the other hand, touch in-
teraction was preferred in some cases, such as shifting time frames
successively with swipe (see the swiping sequences from Figure 6)
or choosing a data source from a list with a tap. This is also reflected
in the high number of touch-only operation for data source manip-
ulation (127 out of 146). In addition, participants resorted to touch
when they were having a difficulty remembering exact keywords
for a speech command (e.g., “month-of-the-year” for the cyclical
comparison). Participants favored the touch+speech interaction
when refining pre-executed commands (e.g., uttering a new date
while pressing on the date button to modify only the start date).
P4 noted, “I felt much more confident doing that [touch+speech] be-
cause I knew that it was only got to manipulate that one aspect of a
comparison chart or only the start date, instead of having to be more
precise with my speech in what I was asking.”

6.3 Natural Language vs. Keyword-Based
Commands

We observed two different patterns of participants’ use of speech
commands—natural language (e.g., the two-range comparison and
data-driven queries) and keyword-based utterances (e.g., uttering

CHI ’21, May 8-13, 2021, Yokohama, Japan

“Hours slept” to set the data source). They impose different technical
challenges. The natural language commands were sensitive to the
linguistic structure of participants’ utterance. All 18 interpretation
errors (the system recognized the utterance correctly but did not
interpret the recognized text successfully) occurred during the natu-
ral phrasing of commands. To prevent such errors and improve the
interpretation coverage of the system, we can collect utterance ex-
amples via crowdsourcing or from pilot studies to identify common
linguistic structures people use to perform interactions.

On the other hand, keyword-based commands were vulnerable
to recognition errors [45] with the generalized speech-to-text rec-
ognizers we used. All eight errors related to the keyword phrases
occurred at the recognizer level. Such recognition errors may be
prevented by training the recognizer with keywords as shown in
recent projects [64, 65]. However, using a customized recognizer
is currently not feasible for smartphone apps without involving a
remote server, which may cause additional delays and thus hamper
the user experience.

6.4 Designing Multimodal Interaction for
Smartphones

Our main design goal with Data@Hand was to support the visual
exploration of self-tracking data on smartphones. The smartphone
form factor and personal data context led to the design choices that
are different from general-purpose multimodal data exploration
systems on tablet devices, such as InChorus [64] and Valletto [39].

Multimodal interaction of InChorus and Valletto focuses on con-
structing visualization (e.g., performing data binding and visual
encoding, specifying chart types) and their exploration is driven by
attributes in a given table. For example, InChorus incorporates a
wide range of multimodal interaction to support a flexible visualiza-
tion construction on tablets: people can choose the input modality
they prefer, such as drag-and-drop, point & tap (using two fingers),
point and write (with a pen) or speak, utter a command with speech,
to perform a mapping between data attributes and chart elements,
such as axes and legends. Valletto supports simple touch gestures
such as swiping and rotating for manipulating visual encoding (e.g.,
flipping the axes) and provides a persistent chat panel where people
can speak to generate a new chart, exclude/include attributes, or
ask analytic questions such as correlation between two attributes.
However, it would be challenging to provide all of such interactions
on a smartphone, which has a smaller screen, needs to be held with
a non-dominant hand, and may not support a pen.

Furthermore, in the personal data context especially to assist
lay individuals, it is not necessary to support flexible visualization
construction: it is more important to facilitate easy navigation
and comparison across the time dimension in a given chart (e.g.,
bar chart and line chart). Therefore, Data@Hand’s multimodal
interaction focuses on the manipulation of time parameters, while
reducing the complexity of interface.

Our study results suggest that participants can learn and use
such multimodal interaction to find various insights from their
self-tracking data, and their reactions were generally positive. We
believe that Data@Hand’s multimodal interaction achieved a good
balance between flexibility and learnability by carefully considering
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smartphone form factor and personal data context together. In addi-
tion, we note that, for the personal data exploration, Data@Hand’s
interaction can be transferred to tablet form factors.

6.5 Privacy Concerns on Voice Interaction for
Personal Data

While describing their real-world use cases in the debriefing, seven
participants noted that they would be inclined to use only touch
in the public space for two main reasons: (1) they did not want to
disturb others and (2) they were afraid that surrounding people
might feel awkward seeing them verbalizing health-related queries.
For example, P3 mentioned, “If you’re only able to use speech, there’s
no privacy. You can’t be at the doctor’s office and be like, ‘Tell me
how much weight I've lost’ or ‘What day was I the fattest last year.”
These remarks align with the findings from previous research that
privacy concerns can discourage the use of voice interaction in
close proximity to other people [24], thus potentially limiting the
applicability of speech-incorporated multimodal interaction in the
public setting.

6.6 Improving Visual Representations

According to our design rationale (DR1), we used basic charts that
many people are already familiar with, such as bar charts and line
charts. We also designed a new representation (i.e., aggregation
plots) to support temporal comparison, which requires data aggre-
gations. Furthermore, to efficiently communicate results for the
data-driven queries, we enhanced basic charts with a highlight-
ing capability while presenting data without aggregation (i.e., one
bar/dot per day) in the Home page.

We see opportunities to improve visual representations to further
enhance data exploration experiences especially with long-term
data. While participants could view year-long data without aggre-
gation (which was shown to be readable in recent research [11]),
the current charts would not scale to view a longer term beyond a
year. One straightforward solution would be to use our aggrega-
tion plots with data grouping (e.g., by week, by month, by year),
a common approach in existing mobile apps. However, the lower
level of details induced by the aggregation makes it difficult to
highlight particular data points. It is an open research question to
effectively show query results on these aggregation plots, for ex-
ample, highlighting days with steps over 10,000 on the aggregation
plots grouped by month.

6.7 Conducting an Exploratory Study in a
Remote Environment

We had to address a number of challenges to convert the original
plan of running the in-person study into a fully-remote one due to
the COVID-19 outbreak. Here, we share some of the challenges and
issues we encountered and how we alleviated them. First, it was
infeasible to effectively demonstrate multimodal interactions (e.g.,
the push-to-talk recording) during the remote tutorial. We therefore
prepared a video clip with subtitles and played it during the tutorial
to introduce interaction methods to our participants. Second, we
did not have control over participants’ environment. Before run-
ning the pilot sessions, we sent a checklist to our participants (e.g.,
turning off the smartphone notification, connecting the laptop to a
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power cable) and asked them to follow the instructions. However,
some participants did not actually comply with the provisions, even
if they confirmed that they did. Furthermore, participants were oc-
casionally distracted with pets or family members. To alleviate such
issues in the main study sessions, we thoroughly checked whether
participants turned on the most strict do-not-disturb mode prior
to the screen sharing. Also, when participants were interrupted,
we paused the session and asked them to handle the situation (e.g.,
closing the room door).

On the contrary, we were pleasantly surprised by unexpected ad-
vantages that our original in-person protocol would not have. First,
because we were less constrained by time and location, we could
reach a broad audience with diverse backgrounds and occupations.
Second, the screen sharing app enabled us to record the smartphone
screen in high-resolution, supporting better observations. Third,
the research team members from remote locations could attend and
observe the study session without much interference (by turning
off the webcam and muting the microphone). We demonstrated
that a remote study can be a viable option for deploying and testing
multimodal interactions in a mobile app and hope that this study
could inform other researchers wanting to design and run similar
types of remote studies.

7 CONCLUSION

We presented Data@Hand, a novel mobile app that combines two
complementary input modalities, speech and touch, to support
exploring personal health data on smartphones. Data@Hand sup-
ports three types of interactions—touch-only, speech-only, and
touch+speech—to enable flexible time manipulation, temporal com-
parisons, and data-driven queries. To examine how multimodal
interaction helps people explore their own data, we conducted an
exploratory think-aloud study with 13 long-term Fitbit users. Partic-
ipants successfully adopted multimodal interaction and used both
speech and touch interactions while finding personal insights. We
also learned when and why people choose one interaction modality
over others. We highlighted several areas for future research, in-
cluding incorporating personally meaningful events and contexts,
improving the recognition and interpretation of speech commands,
and refining visualizations for further enhancing data exploration.
We also showed that a remote study can be a viable option for
deploying and testing a mobile app with multimodal interaction.
In summary, our work contributes the first mobile app that lever-
ages the synergy of speech and touch input modalities for personal
data exploration, and the study conducted with participants’ own
long-term data on their devices. We hope this work can inform and
inspire researchers in the visualization and broad HCI communities
to leverage multimodal interactions to foster fluid and flexible data
exploration on smartphones.
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