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Abstract

Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed

implementation of social distancing interventions in late March 2020 and a phased reopen-

ing of the country in June 2020 has facilitated sustained disease transmission in the region.

In this study we systematically generate and compare 30-day ahead forecasts using previ-

ously validated growth models based on mortality trends from the Institute for Health Metrics

and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate repro-

duction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well

as case incidence data. Subsequently, functional data analysis techniques are utilized to

analyze the shapes of COVID-19 growth rate curves at the state level to characterize the

spatiotemporal transmission patterns of SARS-CoV-2. The early estimates of the reproduc-

tion number for Mexico were estimated between Rt ~1.1–1.3 from the genomic and case

incidence data. Moreover, the mean estimate of Rt has fluctuated around ~1.0 from late July

till end of September 2020. The spatial analysis characterizes the state-level dynamics of

COVID-19 into four groups with distinct epidemic trajectories based on epidemic growth

rates. Our results show that the sequential mortality forecasts from the GLM and Richards

model predict a downward trend in the number of deaths for all thirteen forecast periods for

Mexico and Mexico City. However, the sub-epidemic and IHME models perform better pre-

dicting a more realistic stable trajectory of COVID-19 mortality trends for the last three fore-

cast periods (09/21-10/21, 09/28-10/27, 09/28-10/27) for Mexico and Mexico City. Our

findings indicate that phenomenological models are useful tools for short-term epidemic
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forecasting albeit forecasts need to be interpreted with caution given the dynamic implemen-

tation and lifting of social distancing measures.

Introduction

The ongoing COVID-19 (coronavirus disease 2019) pandemic is the most important global

health challenge since the 1918 influenza pandemic that was caused by an A/H1N1 virus of

avian origin [1, 2]. The severity of the COVID-19 pandemic calls for scientists, health profes-

sionals, and policymakers to collaboratively address the challenges posed by this lethal infec-

tious disease. The causative SARS-CoV-2 (severe acute respiratory syndrome virus 2) is a

novel, unusually complex, and highly transmissible virus that spreads via respiratory droplets

and aerosols [3, 4]. It presents a clinical spectrum that ranges from asymptomatic individuals

to conditions that require the use of mechanical ventilation to multiorgan failure and septic

shock leading to death [3]. The ongoing COVID-19 pandemic has not only exerted significant

morbidity but also an excruciating mortality burden with more than 79.2 million cases and 1.7

million deaths reported worldwide as of December 29, 2020 [5]. Approximately 27 countries

globally including 9 countries in the Americas have reported more than 10,000 deaths attribut-

able to SARS-CoV-2 as of December 29, 2020, despite the implementation of social distancing

policies to limit the death toll [6]. In comparison, a total of 774 deaths were reported during

the 2003 SARS multi-country epidemic and 858 deaths were reported during the 2012 MERS

epidemic in Saudi Arabia [7, 8].

Determining the best containment strategies for the COVID-19 pandemic is a highly active

research area [4]. While multiple vaccines against the novel coronavirus have begun to roll out

amidst emerging SARS-CoV-2 variants, many scientific uncertainties exist that will dictate

how vaccination campaigns will affect the course of the pandemic. For instance, it is still

unclear if the vaccine will prevent the transmission of SARS-CoV-2 and its variants or just pro-

tect against more severe disease outcomes and death [9–11]. In these circumstances, non-phar-

maceutical interventions remain the most promising policy levers to reduce virus transmission

[12]. The epidemiological and mathematical models can help quantify the effects of non-phar-

maceutical interventions that require behavioral changes such as washing hands, wearing face-

masks and social distancing mandates to contain the spread of the virus [13, 14]. However,

recent studies have demonstrated that population indicators such as poverty, population den-

sity, over-crowding, and inappropriate workplace conditions hinder the social distancing

interventions propagating the unmitigated spread of the virus, especially in developing coun-

tries [15, 16]. Moreover, the differential mortality trends are also influenced by the disparate

disease burden driven by the socioeconomic gradients with the poorest areas showing the

highest preventable mortality rates [17].

Mexico, exhibiting one of the highest COVID-19 mortality impacts in the world thus far

[18], is a highly populated country [19] with ~42% of the population living in poverty (defined

as the state of a person or group of people that lack a specified amount of money or material

possessions) [20] and ~60% of the population work in the informal sector [21]. A previous

study reported an all-cause excess mortality of 26.10 per 10,000 population from March 1,

2020 to January 2, 2021, reflecting a heavy mortality impact of the COVID-19 pandemic in

Mexico [22]. In this context, Mexico ranks fourth in the world in terms of the number of

COVID-19 deaths, a tally surpassed only by the USA, Brazil, and India [23]. Moreover, the

overall lethality of COVID-19 in Mexico has been reported to be 9.2% [24] accompanied by
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one of the highest death tolls among healthcare workers (~2500 deaths) [25] and the lowest

number of COVID-19 tests per capita as of December 29, 2020 [26].

As the virus infiltrated the country, Mexican Ministry of Health identified three phases of

the contingency plan: viral importation, community transmission, and epidemic to combat

the COVID-19 pandemic in Mexico [27]. The pandemic in Mexico was likely seeded by

imported COVID-19 cases reported by the government on February 28, 2020 [14, 28]. As the

virus spread across the nation in phase one of the pandemic, some universities switched to vir-

tual classes and some festivals and sporting events were postponed [29]. However, the govern-

ment initially downplayed the impact of the virus and did not enforce strict social distancing

measures [30]. This led to large gatherings at some social events such as concerts, festivals, and

soccer tournaments amidst sustained disease transmission in the country [31]. A study con-

ducted in Mexico estimated the early reproduction number for the first ten days of the pan-

demic between 2.9–4.9 [32]. However, the true impact of the pandemic was generally

underestimated by the Mexican government despite active virus transmission in the country

[33].

As local clusters of the disease started to appear in the community, phase 2 (community

transmission) of the pandemic was declared on March 24, 2020 [34]. Authorities suspended all

non-essential activities including the closure of public and entertainment places and banned

gatherings of more than 100 people [34–36]. This was followed by the declaration of a national

emergency on March 30, 2020. The new measures to fight the virus under the national emer-

gency included extending the suspension of non-essential activities and a reduction in the

number of people who can gather not to exceed fifty [37]. However, as the virus paved its way

across the country ravaging the poor and rural communities, the government urged the public

to comply with the stay-at-home orders [36, 38, 39]. These preventive orders from the govern-

ment were met with mixed reactions from people belonging to different socio-economic sec-

tors of the community [40]. Moreover, transportation restrictions to and from the regions

most affected by COVID-19 were not implemented until April 16, 2020 [41]. Shortly after, on

April 21, 2020, Mexico announced phase 3 of the contingency (epidemic phase) as widespread

community transmission intensified [42].

With lockdowns and other restrictions in place, Mexican officials shared model output [43]

predicting that COVID-19 case counts would peak in early May and that the pandemic was

expected to end before July 2020 [44]. Despite notorious disagreement between surveillance

data and government forecasts, these model predictions continued to be cited by official and

independent sources [45, 46]. The extent to which these overly optimistic predictions skewed

the plans and budgets of private and public institutions remains unknown. Under the official

narrative that the pandemic would soon be over, Mexico planned a gradual phased re-opening

of its economy in early June 2020, as the “new normal” phase [33, 47].

In Mexico, the reopening of the economic activities started on June 1 under a four-color

traffic light monitoring system to alert the residents of the epidemiological risks of COVID-19

based on the level of severity of the pandemic in each state, on a bi-weekly basis [48]. As of

December 29, 2020, Mexico exhibits high estimates of cumulative COVID-19 cases and deaths;

1,401,529 and 123,845 respectively [18]. Given the high transmission potential of the virus and

limited application of tests in the country, testing only 24.54 people for every 1000 people (as

of December 28, 2020) [26], estimates of the effective reproduction number from the case inci-

dence data and near real-time epidemic projections using mortality data could prove to be

highly beneficial to understand the trajectory of the COVID-19 pandemic in Mexico. It may

also be useful to assess the effect of mobility patterns and intervention strategies such as the

stay-at-home orders on the epidemic curve and understand the different spatiotemporal

dynamics of the virus.
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In order to investigate the transmission dynamics of the unfolding COVID-19 pandemic in

Mexico, we analyze the case incidence data by date of symptoms onset and mortality data by

date of report utilizing mathematical models that are useful to characterize the empirical pat-

terns of epidemics [49, 50]. We estimate the effective reproduction number of SARS-CoV-2 in

Mexico to understand the transmission dynamics of the virus and examine the mobility trends

in relation to the curve of the number of COVID-19 deaths. Moreover, we employ statistical

methods from functional data analysis to study the shapes of the COVID-19 growth rate curves

at the state level. This helps us characterize the spatiotemporal dynamics of the pandemic

based on the shape features of these curves. Lastly, Twitter data corresponding to frequency of

tweets indicating stay-at-home-order are analyzed in relation to the COVID-19 case counts at

the national level.

Methods

Data

Five sources of data are analyzed in this manuscript. A brief description of the datasets and

their sources is presented below.

(i) IHME data for short-term forecasts. We utilized the openly published smoothed

trend in daily COVID-19 reported deaths from the Institute of Health Metrics and Evaluation

(IHME) for (i) Mexico (country) and (ii) Mexico City (capital of Mexico) as of October 9,

2020, to generate the sequential forecasts [51]. IHME smoothed death data estimates (current

projection scenario) publicly available from the IHME COVID-19 estimates downloads page

were analyzed [51]. The death estimates were corrected for the irregularities in the reporting of

daily deaths by averaging model results over the last seven days. The statistical procedure of

spline regressions obtained from MR-BRT (“meta-regression—Bayesian, regularized,

trimmed”) was utilized to smooth the trend in COVID-19 reported deaths as described in the

study [12]. This source of data for prediction modeling was chosen for its consistent updates.

For this analysis, deaths reported by the IHME model (current projection scenario) on

November 11, 2020, were used as a proxy for actual reported deaths attributed to COVID-19.

(ii) Apple mobility trends data. Publicly available mobility data for Mexico, published by

Apple’s mobility trends reports was retrieved as of December 5, 2020 [52]. This aggregated and

anonymized data is updated daily and includes the relative volume of directions requests per

country compared to a baseline volume on January 13, 2020. Apple has released the data for

the three modes of human mobility: driving, walking and public transit. The mobility mea-

sures are normalized in the range 0–100 for each country at the beginning of the series, so

trends are relative to this baseline.

(iii) Case incidence and genomic data for estimating reproduction number. To esti-

mate the reproduction number, we use two different data sources. For estimating the early

reproduction number from the genomic data, 111 SARS-CoV-2 genome samples were

obtained from the “global initiative on sharing avian influenza data” (GISAID) repository

between February 27- May 29, 2020 [53]. For estimating the reproduction number from the

case incidence data (early reproduction number and the instantaneous reproduction number),

we utilized a publicly available time series of laboratory-confirmed cases by dates of symptoms

onset which were obtained from the Mexican Ministry of Health Mexico, as of December 5,

2020 [18].

(iv) Case incidence data for spatial analysis. We recovered daily case incidence data for

all 32 states of Mexico from March 20 to December 5 from the Ministry of Health Mexico, as

of December 5, 2020 [18].
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(v) Twitter data for Twitter analysis. For the Twitter data analysis, we retrieved data

from the publicly available Twitter data set of COVID-19 chatter from March 12 to November

11, 2020 [54].

Modeling framework for forecast generation

We harness three dynamic phenomenological growth models previously applied to multiple

infectious diseases (e.g., SARS, foot and mouth disease, Ebola [55, 56] and the current

COVID-19 outbreak [57, 58]) for mortality modeling and short-term forecasting in Mexico

and Mexico City. These models include the simple scalar differential equation models such as

the generalized logistic growth model [56] and the Richards growth model [59]. We also utilize

the sub-epidemic wave model [55] which accommodates complex epidemic trajectories by

assembling the contribution of multiple overlapping sub-epidemic waves. The mortality fore-

casts obtained from these mathematical models can provide valuable insights on the disease

transmission mechanisms, the efficacy of intervention strategies and help evaluate optimal

resource allocation procedures to inform public health policies. The COVID-19 mortality fore-

casts for Mexico and Mexico City generated by IHME (current projections scenario) are used

as a benchmark model. The description of these models is provided in the S1 File.

Cumulative mortality forecasts obtained from our phenomenological growth models are

compared with the total mean smoothed death data estimates retrieved from the IHME refer-

ence scenario and two IHME counterfactual scenarios. The IHME reference scenario depicts

the “current projection”, which assumes that the social distancing measures are re-imposed for

six weeks whenever daily deaths reach eight per million. The second scenario “mandates eas-

ing” implies what would happen if the government continued to ease social distancing mea-

sures without re-imposition. Lastly, the third scenario, “universal masks” accounts for

universal facemask wearing, which reflects 95% facemask usage in public and social distancing

mandates reimposed at 8 deaths per million. A detailed description of these modeling scenar-

ios and their assumptions is explained in reference [12]. Moreover, the total mean smoothed

death data estimates reported by the IHME reference scenario as of November 11, 2020, are

considered as a proxy for the actual death count for each forecasting period.

Model calibration and forecasting approach

We conducted 30-day ahead short-term forecasts utilizing thirteen data sets spanned over a

period of four months (July 4-October 9, 2020) (Table 1). Each forecast was fitted to the daily

death counts from the IHME smoothed death data estimates reported between March 20-Sep-

tember 27, 2020 for (i) Mexico and (ii) Mexico City. The first model calibration process relies

on fifteen weeks of data, from March 20-July 4, 2020. Sequentially models are recalibrated

each week with the most up-to-date data, meaning the length of the calibration period

increases by one week up to August 2, 2020. However, owing to the irregular publishing of

data estimates by the IHME, the length of the calibration period increased by 2 weeks after

August 2, 2020. This was followed by a one-week increase from August 17-September 27,

2020, as the data estimates were again published every week.

The 30-day ahead forecasts generated by calibrating our three phenomenological growth

models with the IHME smoothed death data estimates are compared with the forecasts gener-

ated by the IHME reference scenario for the same calibration and forecasting periods.

For each of the three models; GLM, Richards growth model, and the sub-epidemic wave

model, we estimate the best fit solution for each model using nonlinear least-square fitting pro-

cedure [60]. This process yields the best set of parameter estimates Ŷ ¼ ðŷ1; ŷ2; . . . ; ŷmÞ by

minimizing the sum of squared errors between the model fit, f ðt; ŶÞ and the smoothed death
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data estimates, yti . The estimated set of parameters Ŷ ¼ argmin
Pn

t¼1
ðf ðt; ŶÞ � ytiÞ

2
define

the best-fit model f ðt; ŶÞ. Here Ŷ ¼ ðr; p; ko; q and CthrÞ corresponds to the set of parameters

of the sub-epidemic model, Ŷ ¼ ðr; a; k0Þ corresponds to the set of parameters of the Richards

model, and Ŷ ¼ ðr; p; k0Þ corresponds to the set of parameters of the GLM model [61]. For

the GLM and sub-epidemic wave model, we provide initial best guesses of the parameter esti-

mates. However, for the Richards growth model, we initialize the parameters for the nonlinear

least-squares’ method [60] over a wide range of plausible parameters from a uniform distribu-

tion using Latin hypercube sampling [62]. This allows us to test the uniqueness of the best fit

model. Moreover, the initial conditions are set at the first data point for each of the three mod-

els [61]. Uncertainty bounds around the best-fit solution are generated using a parametric

bootstrap approach which involves resampling with replacement of data assuming a Poisson

error structure for the GLM and sub-epidemic model. A negative binomial error structure is

used to generate the uncertainty bounds for the Richards growth model; where we assume the

mean to be three times the variance based on the noise in the data. A detailed description of

this method is provided in the previous study [61].

Each of the M best-fit parameter sets is used to construct the 95% confidence intervals for

each parameter by refitting the models to each of the M = 300 datasets generated by the boot-

strap approach during the calibration phase. Further, each M best-fit model solution is used to

generate m = 30 additional simulations with Poisson error structure for GLM and sub-epi-

demic model and negative binomial error structure for Richards model extended through a

30-day forecasting period. For the forecasting period, we construct the 95% prediction inter-

vals with these 9000 (M×m) curves. A detailed description of the methods of parameter esti-

mation can be found in prior studies [61, 63, 64].

Performance metrics

We utilized the following four performance metrics to assess the quality of our model fit and

the 30-day ahead short-term forecasts: the mean absolute error (MAE) [65], the mean squared

error (MSE) [66], the coverage of the 95% prediction intervals (95% PI) [66], and the mean

interval score (MIS) [66] for each of the three models. For calibration performance, we com-

pare the model fit to the observed smoothed death data estimates fitted to the model, whereas

Table 1. Characteristics of the data sets used for the sequential calibration and forecasting of the COVID-19 pandemic in Mexico and Mexico City (2020).

Date of the retrieval of the

data set (MMDD)

Calibration period for the GLM, sub-epidemic,

Richards and IHME model

Calibration period

(number of days)

Forecast period for the GLM, sub-epidemic,

Richards and IHME model

07/04 03/20-07/04 107 07/05-08/03

07/10 03/20-07/11 114 07/12-08/10

07/17 03/20-07/17 120 07/18-08/16

07/27 03/20-07/25 128 07/26-08/24

08/06 03/20-08/02 136 08/03-09/01

08/22 03/20-08/17 151 08/18-09/16

08/27 03/20-08/22 156 08/23-09/21

09/02 03/20-08/30 164 08/31-09/30

09/11 03/20-09/07 172 09/08-10/08

09/18 03/20-09/13 179 09/14-10/13

09/24 03/20-09/20 185 09/21-10/21

10/02 03/20-09/27 193 09/28-10/27

10/09 03/20-09/27 193 09/28-10/27

https://doi.org/10.1371/journal.pone.0254826.t001
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for the performance of forecasts, we compare our forecasts with the smoothed death data esti-

mates (current projections scenario) reported on November 11, 2020, for the time-period of

the forecast.

The MSE and the MAE assess the average deviations of the model fit to the observed death

data. The MAE is given by:

MAE ¼
1

n

Xn

i¼1

jf ðti; ŶÞ � yti j

The MSE is given by:

MSE ¼
1

n

Xn

i¼1

ðf ðti; ŶÞ � ytiÞ
2

where yti is the time series of reported smoothed death estimates, ti is the time stamp and Ŷ is

the set of model parameters. For the calibration period, n equals the number of data points

used for calibration, and for the forecasting period, n = 30 for the 30-day ahead short-term

forecast.

Moreover, to assess the model uncertainty and performance of the prediction interval cov-

erage, we use the 95% PI and MIS. The prediction interval coverage is defined as the propor-

tion of observations that fall within 95% PI and is calculated as:

PI coverage ¼
1

n

Xn

t¼1

Ifyti > Lti
\ yti < Uti

g

where yti are the smoothed death data estimates, Lti
and Uti

are the lower and upper bounds of

the 95% prediction intervals, respectively, n is the length of the period, and I is an indicator

variable that equals 1 if the value of yti is in the specified interval and 0 otherwise.

The MIS addresses the width of the prediction interval as well as the coverage. The MIS is

given by:

MIS ¼
1

n

Xn

i¼1

ðUti
� Lti

Þ þ
2

0:05
ðLti

� ytiÞI yti < Lti

n o
þ

2

0:05
yti � Uti

� �
I yti > Uti

n o

In this equation Lti
; Uti

; yti , n and I are as specified above for PI coverage. Therefore, if the PI

coverage is 1, the MIS is the average width of the interval across each time point. For two models

that have an equivalent PI coverage, a lower value of MIS indicates narrower intervals [66].

Mobility data analysis

In order to analyze the time-series data for Mexico from March 20-December 5, 2020 for three

modes of mobility; driving, walking, and public transport, we utilize the R code developed by

Healy [67]. We analyze the mobility trends to look for any common pattern with the mortality

curve of COVID-19. The time series for mobility requests is decomposed into trends, weekly

and remainder components. The trend is a locally weighted regression fitted to the data and

the remainder is any residual leftover on any given day after the underlying trend and normal

daily fluctuations have been accounted for.

Reproduction number

We estimate the reproduction number, Rt, for the early ascending phase of the COVID-19

pandemic in Mexico and the instantaneous reproduction number Rt throughout the
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pandemic. Reproduction number, Rt, is a key parameter that characterizes the average number

of secondary cases generated by a primary case at calendar time t during the outbreak. This

quantity is critical to identify the intensity and magnitude of public health interventions

required to contain a pandemic [68–70]. Estimates of Rt indicate if widespread disease trans-

mission continues (Rt>1) or disease transmission declines (Rt<1). Therefore, to contain an

outbreak, it is vital to maintain Rt<1.

Estimating the reproduction number, Rt, from case incidence using

generalized growth model (GGM)

We estimate the reproduction number by calibrating the GGM (as described in the S1 File) to

the early growth phase of the pandemic (February 27-May 29, 2020) [71]. The generation

interval of SARS-CoV-2 is modeled assuming gamma distribution with a mean of 5.2 days and

a standard deviation of 1.72 days [72]. We estimate the growth rate parameter r, and the decel-

eration of growth parameter, p, as described in the S1 File. The GGM model is used to simulate

the progression of local incidence cases Ii at calendar time ti. This is followed by the application

of the discretized probability distribution of the generation interval, denoted by ρi, to the

renewal equation to estimate the reproduction number at the time ti [73–75]:

Rti
¼

Ii
Pi

j¼0
ðIi�jrjÞ

The numerator represents the total new cases Ii at time ti, and the denominator represents

the total number of cases that contribute (as primary cases) to generate the new cases Ii (as sec-

ondary cases) at time ti. This way, Rt, represents the average number of secondary cases gener-

ated by a single case at calendar time t. The uncertainty bounds around the curve of Rt are

derived directly from the uncertainty associated with the parameter estimates (r, p) obtained

from the GGM. We estimate Rt for 300 simulated curves assuming a negative binomial error

structure [61].

Instantaneous reproduction number Rt, using the Cori method

The instantaneous reproduction number, Rt, is estimated by the ratio of the number of new

infections generated at calendar time t (It), to the total infectiousness of infected individuals at

time t given by
Pt

s¼1
It�sws [76, 77]. Hence Rt can be written as:

Rt ¼
ItPt

s¼1
It�sws

In this equation, It is the number of new infections on day t and ws represents the infectivity

function, which is the infectivity profile of the infected individual. This is dependent on the

time since infection (s), but is independent of the calendar time (t) [78, 79].

The term
Pt

s¼1
It�sws describes the sum of infection incidence up to time step t − 1,

weighted by the infectivity function ws. The distribution of the generation time can be applied

to approximate ws, however, since the time of infection is rarely an observed event, it is diffi-

cult to measure the distribution of generation time [76]. Therefore, the time of symptom onset

is usually used to estimate the distribution of serial interval (SI), which is defined as the time

interval between the dates of symptom onset among two successive cases in a disease transmis-

sion chain [80].

The infectiousness of a case is a function of the time since infection, which is proportional

to ws if the timing of infection in the primary case is set as time zero of ws and we assume that
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the generation interval equals the SI. The SI was assumed to follow a gamma distribution with

a mean of 5.2 days and a standard deviation of 1.72 days [72]. Analytical estimates of Rt were

obtained within a Bayesian framework using EpiEstim R package in R language [80]. Rt was

estimated at weekly intervals. We reported the median and 95% credible interval (CrI).

Estimating the reproduction number, R, from the genomic analysis

In order to estimate the reproduction number for SARS-CoV-2 between February 27- May 29,

2020 from the genomic data, 111 SARS-CoV-2 genomes sampled from infected patients from

Mexico, and their sampling times were obtained from GISAID repository [53]. Short

sequences and sequences with a significant number of gaps and non-identified nucleotides

were removed, yielding 83 high-quality sequences. For clustering, they were complemented by

sequences from other geographical regions, down sampled to n = 4325 representative

sequences. We used the sequence subsample from Nextstrain (www.nextstrain.org) global

analysis as of August 15, 2020. These sequences were aligned to the reference genome taken

from the literature [81] using MUSCLE [82] and trimmed to the same length of 29772 bp. The

maximum likelihood phylogeny has been constructed using RAxML (Randomize Axelerated

Maximum Likelihood) [83].

The largest Mexican cluster that possibly corresponds to within-country transmissions has

been identified using hierarchical clustering of sequences. The phylodynamics analysis of that

cluster has been carried out using BEAST v1.10.4 (Bayesian Evolutionary Analysis by sampling

trees) [84]. We used a strict molecular clock and the tree prior with exponential growth coales-

cent. Markov Chain Monte Carlo sampling has been run for 10,000,000 iterations, and the

parameters were sampled every 1000 iterations. The exponential growth rate f estimated by

BEAST was used to calculate the reproductive number R. For that, we utilized the standard

assumption that SARS-CoV-2 generation intervals (times between infection and onward

transmission) are gamma-distributed [85]. In that case R can be estimated as R ¼ 1 þ
fs2

m

� �m2

s2

,

where μ and σ are the mean and standard deviation of that gamma distribution. Their values

were taken from the study [72].

Spatial analysis

For the shape analysis of incidence rate curves, we followed reference [86] to pre-process the

daily cumulative COVID-19 case data at the state level as follows:

a. Time differencing: If fi(t) denotes the given cumulative number of confirmed cases for state

i on day t, then per day growth rate at time t is given by gi(t) = fi(t)−fi(t−1).

b. Smoothing: We then smooth the normalized curves using the smooth function in

MATLAB.

c. Rescaling: Rescaling of each curve is done by dividing each gi by the total confirmed cases

for a state i. That is, compute hi(t) = gi(t)/ri, where ri = ∑tgi(t).

This process is depicted in S17 Fig. To identify the clusters by comparing the curves, we

used a simple metric. For any two rate curves, hi and hj, we compute the norm ||hi−hj||, where

the double bars denote the L2 norm of the difference function, i.e., ||hi−hj|| =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

tðhiðtÞ � hjðtÞÞ
2

q

. To perform clustering of 32 curves into smaller groups, we apply the

dendrogram function in Matlab using the “ward” linkage as explained in reference [86]. The

number of clusters is decided empirically based on the display of overall clustering results.
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After clustering the states into different groups, we derived the average curve for each cluster

after using a time wrapping algorithm as discussed in prior studies [86, 87].

Twitter data analysis

To observe any relationship between the COVID-19 cases by date of symptoms onset and the

frequency of tweets indicating stay-at-home orders we used a public dataset of 698 million

tweets of COVID-19 chatter [54]. The frequency of tweets indicating stay-at-home order is

used to gauge the compliance of people with the orders of staying at home to avoid the spread

of the virus by maintaining social distance. Tweets indicate the magnitude of the people being

pro-lockdown and depict how these numbers have dwindled over the course of the pandemic.

To get to the plotted data, we removed all retweets and tweets that were not in the Spanish lan-

guage. We also filtered the tweets by the following hashtags: #quedateencasa, and #trabajardes-

decasa, which are two of the most used hashtags when users refer to the COVID-19 pandemic

and their engagement with health measures. Lastly, we limited the tweets to the ones that origi-

nated from Mexico, via its 2-letter country code: MX. A set of 521,359 unique tweets were

gathered from March 12 to November 11, 2020. We then overlay the curve of tweets over the

epidemic curve in Mexico to observe any relationship between the shape of the epidemic tra-

jectory and the shape of the curve for the frequency of tweets during the established time

period. We also estimate the correlation coefficient between the cases and frequency of tweets.

Results

As of November 11, 2020, Mexico has reported 105,656 deaths whereas Mexico City has

reported 15,742 deaths per IHME smoothed death data estimates. Fig 1 (upper panel) shows

the daily COVID-19 death curve in Mexico and Mexico City from March 20-November 11,

2020. The mobility trend for Mexico (Fig 1, lower panel) shows that the human mobility

tracked in the form of walking, driving and public transportation declined from the end of

March to the beginning of June, corresponding to the implementation of social distancing

interventions and the Jornada Nacional de Sana Distancia that was put in place between

March 23-May 30, 2020 enforcing the suspension of non-essential activities in public, private

and social sectors [88]. The driving and walking trends subsequently increased in June with

the reopening of the non-essential services. Fig 1 (upper panel) shows that the reopening of

the country coincides with the highest levels of daily deaths. These remain at a high level for

just over two months (June and July). Then from mid-August, the number of deaths begins to

fall, reaching a reduction of nearly 50% by mid-October. However, at the end of October 2020,

a new spurt in death counts can be observed.

In the subsequent sections, we first present the results for the short-term forecasting, fol-

lowed by the estimation of the reproduction numbers. Then we present the results for spatial

analysis and Twitter data analysis.

Model calibration and forecasting performance

Here we compare the calibration and 30-day ahead forecasting performance between March

20- September 27, 2020, and July 5-October 27, 2020 respectively of the three models: the

GLM, Richards growth model, and the sub-epidemic wave model for (i) Mexico and (ii)

Mexico City. We also compare the results of our cumulative mortality forecasts with the total

mean smoothed death data estimates retrieved from the three IHME model scenarios (as

explained in the methods section).
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Calibration performance

Across the thirteen sequential model calibration phases for Mexico over a period of seven

months (March-September), as provided in S1 Table in S1 File and Fig 2, the sub-epidemic

model outperforms the GLM with lower RMSE estimates for the seven calibration phases 03/

20-07/04, 03/20-07/17, 03/20-08/17, 03/20-08/22, 03/20-09/13, 03/20-09/20, 03/20-09/27. The

GLM model outperforms the other two models for the remaining six calibration phases in

terms of RMSE. The Richards model has substantially higher RMSE (between 10.2–24.9)

across all thirteen calibration phases indicating a sub-optimal model fit. The sub-epidemic

model also outperforms the other two models in terms of MAE, MIS, and the 95% PI coverage.

It has the lowest values for MIS and the highest 95% PI coverage for nine of the thirteen cali-

bration phases (S1 Table in S1 File). Moreover, the sub-epidemic model has the lowest MAE

for eleven calibration phases. The Richards model shows much higher MIS and lower 95% PI

coverage compared to the GLM and sub-epidemic model, pointing towards a sub-optimal

model fit.

For Mexico City, the sub-epidemic model outperforms the other two models in terms of all

performance metrics. It has the lowest RMSE for eleven of the thirteen calibration phases

Fig 1. Upper panel: Epidemic curve for the COVID-19 deaths in Mexico and Mexico City from March

20-November 11, 2020. The blue line depicts the confirmed deaths in Mexico and the green line depicts the confirmed

deaths in Mexico City. Lower panel: The mobility trends for Mexico from February 28-December 5, 2020. The orange

line shows the driving trend, the blue line shows the transit trend, and the black line shows the walking trend.

https://doi.org/10.1371/journal.pone.0254826.g001
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followed by the GLM and Richards model. The MAE is also the lowest for the sub-epidemic

model for all thirteen calibration phases followed by the GLM and Richards growth model.

Further, in terms of MIS, the sub-epidemic model outperforms the Richards and GLM model

for nine calibration phases whereas the GLM model outperforms the other two models in the

remaining four calibration phases (03/20-07/04, 03/20-07/11, 03/20-07/17, 03/20-08/02). The

Richards model has much higher estimates for the MIS compared to the other two models

indicating a sub-optimal model fit. The 95% PI coverage across all thirteen calibration phases

lies between 91.6–99.4% for the sub-epidemic model, followed by the Richards model (85.9–

100%) and the GLM model (53.2–100%) (S2 Table in S1 File, Fig 3).

Overall, the goodness of fit metrics points toward the sub-epidemic model as the most

appropriate model for the Mexico City and Mexico across all four-performance metrics except

for the RMSE for Mexico, where the estimates of the GLM model compete with the sub-epi-

demic model.

Forecasting performance

For Mexico, the sub-epidemic model consistently outperforms the GLM and Richards growth

model for ten out of the thirteen forecasting phases in terms of RMSE and MAE, eight fore-

casting phases in terms of MIS and nine forecasting phases in terms of the 95% PI coverage.

This is followed by the GLM and the Richards growth model (Fig 4, S4 Table in S1 File).

Similarly, for Mexico City, the sub-epidemic model consistently outperforms the GLM and

Richards growth model for ten of the thirteen forecasting phases in terms of RMSE and MAE

Fig 2. Calibration performance for each of the thirteen sequential calibration phases for GLM (magenta), Richards (red), and sub-

epidemic (blue) model for Mexico. High 95% PI coverage and lower mean interval score (MIS), root mean square error (RMSE), and mean

absolute error (MAE) indicate better performance.

https://doi.org/10.1371/journal.pone.0254826.g002
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and eleven forecasting phases in terms of the MIS. Whereas, in terms of 95% PI coverage, fore-

casting phases 08/31–09/29, 09/08-10/08 and 09/21-10/21 show zero 95% PI coverage across

all three models. The sub-epidemic model outperforms the Richards and GLM model in six

forecasting phases, with the Richards model performing better than the GLM model for the

remaining four forecasting phases in terms of the 95% PI coverage (Fig 5, S3 Table in S1 File).

Comparison of daily death forecasts

The thirteen sequentially generated daily death forecasts from GLM and Richards growth

model, for Mexico and Mexico City indicate towards a sustained decline in the number of

deaths (S1–S4 Figs). However, the IHME model forecasts (retrieved from smoothed death data

estimates, current projections scenario) indicate a decline in the number of deaths for the first

six forecast periods followed by a stable epidemic trajectory for the last seven forecasts, for

Mexico City and Mexico. Unlike the GLM and Richards models, the sub-epidemic model can

reproduce the observed stabilization of daily deaths observed after the first six forecast periods

for Mexico and the last three forecast periods for Mexico City, as can also be seen with the

IHME model (S5–S8 Figs).

Comparison of cumulative mortality forecasts

The total number of COVID-19 deaths is an important quantity to measure the progression of

an epidemic. Here we present the results of the estimated cumulative death counts obtained

from our 30-day ahead cumulative forecasts generated using the GLM, Richards and sub-

Fig 3. Calibration performance for each of the thirteen sequential calibration phases for GLM (magenta), Richards (red), and sub-

epidemic (blue) model for Mexico City. High 95% PI coverage and lower mean interval score (MIS), root mean square error (RMSE) and

mean absolute error (MAE) indicate better performance.

https://doi.org/10.1371/journal.pone.0254826.g003
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epidemic growth model. We compare these results with the total mean smoothed death data

estimates obtained from the three IHME modeling scenarios; current projection, universal

masks and mandates easing. The total mean smoothed death data estimates obtained from the

IHME current projections scenario as of November 11, 2020, are considered as a proxy for the

actual death count for each date that the cumulative forecast is obtained (Figs 6 and 7).

Mexico. The 30-day ahead cumulative forecast results for the thirteen sequentially gener-

ated forecasts for Mexico utilizing GLM, Richards growth model, sub-epidemic wave model,

and the IHME model (current projections scenario) are presented in S9–S12 Figs. The cumu-

lative mortality estimates comparison is given in Fig 6. For the first, second, third, and thir-

teenth generated forecast the GLM, sub-epidemic model, and the Richards model tend to

underestimate the true deaths counts (~50,255, ~54,857, ~58,604, 89,730 deaths respectively),

whereas the three IHME forecasting scenarios closely estimate the actual death counts for the

first, second, and thirteenth forecasting periods. For the fourth, fifth, and seventh generated

forecast the sub-epidemic model and the IHME scenarios most closely approximate the actual

death counts (~63,078, ~67,075, ~76,054 deaths respectively). For the sixth generated forecast

the GLM model closely approximates the actual death count (~73,911 deaths) whereas for the

tenth generated forecast the sub-epidemic model closely approximates the actual deaths

(~84,471 deaths). For the eighth, ninth, eleventh, and twelfth generated forecast, GLM, Rich-

ards, and sub-epidemic model tend to under-predict the actual death counts with the IHME

model underestimating the actual death counts for the eleventh and twelfth generated forecast

and overestimating the total death counts for the ninth generated forecast (Table 2).

Fig 4. Forecasting period performance metrics for each of the thirteen sequential forecasting phases for GLM (magenta), Richards

(red) and sub-epidemic (blue) model for Mexico. High 95% PI coverage and lower mean interval score (MIS), root mean square error

(RMSE) and mean absolute error (MAE) indicate better performance.

https://doi.org/10.1371/journal.pone.0254826.g004
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In summary, the Richards growth model consistently under-estimates the actual death

counts compared to the GLM, sub-epidemic model, and three IHME modeling scenarios. The

GLM model also provides lower estimates of mean death counts compared to the sub-epi-

demic model and the three IHME modeling scenarios, but higher mean death estimates com-

pared to the Richards model. The 95% PI for the Richards model is substantially wider than

the other five models indicating greater uncertainty in the results. The actual mean death

counts lie within the 95% PI of the sub-epidemic model for all the thirteen forecasts. Moreover,

the three IHME modeling scenarios predict approximately similar cumulative death counts

across the thirteen generated forecasts, indicating that the three scenarios do not differ

substantially.

Mexico City. The 30 day ahead cumulative forecast results for thirteen sequentially gener-

ated forecasts for Mexico City utilizing GLM, Richards model, sub-epidemic wave model, and

IHME model (current projections scenario) are presented in S13–S16 Figs. The cumulative

death comparison is given in Fig 7 and Table 3. For the first generated forecast, the sub-epi-

demic model closely approximates the actual death count (~10,081 deaths). For the second

generated forecast, the sub-epidemic model and the IHME scenarios closely approximate the

actual death count (~10,496 deaths). For the third and sixth generated forecast, GLM and

Richards model underestimate the actual death count (~10,859, ~12,615 deaths respectively)

whereas the sub-epidemic model closely estimates the actual death count for the third forecast

and under-predicts the actual death count for the sixth forecast. The three IHME model

Fig 5. Forecasting period performance metrics for each of the thirteen sequential forecasting phases for GLM (magenta), Richards (red)

and sub-epidemic (blue) model for the Mexico City. High 95% PI coverage and lower mean interval score (MIS), root mean square error

(RMSE) and mean absolute error (MAE) indicate better performance.

https://doi.org/10.1371/journal.pone.0254826.g005
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scenarios seem to predict the actual death counts closely. For the fourth, fifth, and seventh to

thirteenth generated forecasts all models under-predict the actual death counts.

In general, the Richards growth model has a much wider 95% PI coverage compared to the

other models indicating greater uncertainty in the results. The mean cumulative death count

estimates for the GLM and Richards model closely approximate each other. However, the

actual mean death counts lie within the 95% PI of the GLM and sub-epidemic model for all

thirteen forecasts. The three IHME model scenarios predict approximately similar cumulative

death counts across the thirteen generated forecasts with much narrow 95% PI’s, indicating

that the three scenarios do not differ substantially.

Reproduction number

Estimate of reproduction number, Rt from case incidence data. The reproduction num-

ber from the case incidence data (February 27- May 29, 2020) using GGM was estimated at

Rt~1.1(95% CI: [1.1,1.1]). The growth rate parameter, r, was estimated at 1.2 (95% CI: [1.1,

1.4]) and the deceleration of growth parameter, p, was estimated at 0.7 (95% CI: [0.68,0.71])

indicating early sub-exponential growth dynamics of the pandemic (Fig 8).

Estimate of instantaneous reproduction number, Rt. The instantaneous reproduction

number for Mexico remained consistently above 1.0 until the end of May 2020, after which the

reproduction number has fluctuated around 1.0 with the estimate of Rt~0.93 (95% CrI: [0.91,

0.94]) as of September 27, 2020. For Mexico City, the reproduction number remained above

Fig 6. Systematic comparison of six models (GLM, Richards, sub-epidemic model, IHME current projections (IHME C.P), IHME

universal masks (IHME U.M) and IHME mandates easing (IHME M.E) to predict the cumulative COVID-19 deaths for Mexico in the

thirteen sequential forecasts. The blue circles represent the mean deaths, and the magenta vertical line indicates the 95% PI around the mean

death count. The horizontal dashed line represents the actual death count reported by that date as published in the November 11, 2020, IHME

estimates file.

https://doi.org/10.1371/journal.pone.0254826.g006
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1.0 until the end of June after which it has fluctuated around 1.0 with the estimate of Rt~0.96

(95% CrI: [0.93, 0.99]) as of September 27, 2020 (Fig 9).

Estimate of reproduction number, R from genomic data analysis. The majority of ana-

lyzed Mexican SARS-CoV-2 sequences (69 out of 83) have been sampled in March and April

2020. These sequences are spread along the whole global SARS-CoV-2 phylogeny (Fig 10) and

split into multiple clusters. This indicates multiple introductions of SARS-CoV-2 to the coun-

try during the initial pandemic stage (February 27- May 29, 2020). For the largest cluster of

size 42, the reproduction number was estimated at R = 1.3 (95% HDP (Highest Posterior Den-

sity) interval [1.1,1.5]) in accordance with the early estimate of Rt obtained from the case inci-

dence data.

Spatial analysis

The results from pre-processing of COVID-19 data into growth rate functions are shown in

S17 Fig. The dendrogram plot shown in S18 Fig presents the results of clustering and the states

are color coded based on their cluster membership within the map of Mexico (Fig 11; left

panel). The four predominant clusters that were identified include the following states:

Cluster 1: Baja California, Coahuila, Colima, Mexico City, Guanajuato, Guerrero, Hidalgo,

Jalisco, Mexico, Michoacán, Morelos, Nuevo Leon, Oaxaca, Puebla, San Luis Potosi, Sina-

loa, and Tlaxcala

Fig 7. Systematic comparison of six models (GLM, Richards, sub-epidemic model, IHME current projections (IHME C.P), IHME

universal masks (IHME U.M) and IHME mandates easing (IHME M.E) to predict the cumulative COVID-19 deaths for the Mexico City

in the thirteen sequential forecasts. The blue circles represent the mean deaths, and the magenta vertical line indicates the 95% PI around

the mean death count. The horizontal dashed line represents the actual death count reported by that date as published in the November 11,

2020, IHME estimates file.

https://doi.org/10.1371/journal.pone.0254826.g007
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Cluster 2: Baja California Sur, Campeche, Chiapas, Nayarit, Quintana Roo, Sonora, Tabasco,

Tamaulipas, Veracruz, and Yucatan

Cluster 3: Chihuahua

Cluster 4: Aguascalientes, Durango, Queretaro, and Zacatecas

Fig 11 (right panel) shows the average shape of growth rate curves in each cluster and the

overall cluster average. S19 Fig shows mean growth rate curves and one standard-deviation

bands around it in each cluster. Since cluster 3 included only one state, the average growth rate

curves of cluster 1, cluster 2, and cluster 4 are shown. The average growth patterns in the three

Table 2. Cumulative mortality estimates obtained from the six models (GLM, Richards model, sub-epidemic model, IHME current projections, IHME universal

mask and IHME mandates easing) at the end of each forecasting period for the COVID-19 pandemic in Mexico (2020).

Forecast

Number

Forecast

period

(MMDD)

GLM Mean

(95% PI)

Sub-epidemic

model Mean

(95% PI)

Richards model

Mean (95% PI)

IHME current

projections Mean

(95% PI)

IHME universal

mask Mean (95%

PI)

IHME mandates

easing Mean (95%

PI)

Actual deaths

reported as of Nov

11, 2020

1 07/05-08/03 48,917

(43,931–

54,039

48,110 (42,939–

53,661)

45,808 (38,808–

53,665)

50,721 (47,410–

55,597)

49,692 (46,500–

54,250)

51,299 (47,893–

56,184)

50,255

2 07/12-08/10 49,412

(44,517–

49,412)

52,085 (46,973–

57,379)

47,358 (39,836–

55,808)

54,438 (49,269–

59,598)

53,615 (48,634–

58,590)

55,176 (49,609–

60,621)

54,857

3 07/18-08/16 52,197

(47,059–

57,541)

54,758 (49,600–

60,070)

50,055 (42,161–

58,892)

54,572 (39,989–

62,409)

54,020 (39,989–

61,614)

54,749 (39,989–

62,710)

58,604

4 07/26-08/24 56,658

(51,208–

62,320)

62,271 (56,644–

68,073)

53,742 (45,332–

63,144)

62,902 (58,094–

68,253)

62,194 (57,516–

67,205)

63,116 (58,285–

68,542)

63,078

5 08/03-09/01 61,451

(55,655–

67,494)

67,010 (60,988–

73,219)

57,186 (48,270–

67,114)

66,376 (63,705–

69,334)

65,944 (63,308–

68,853)

66,582 (63,865–

69,612)

67,075

6 08/18-09/16 73,700

(66,996–

80,655)

79,144 (72,306–

86,048)

65,814 (55,834–

76,954)

80,072 (74,140–

84,710)

79,598 (73,772–

84,225)

80,537 (74,479–

85,288)

73,911

7 08/23-09/21 73,901

(67,126–

80,909)

75,809 (69,107–

82,699)

67,273 (57,061–

78,667)

75,125 (73,161–

78,209)

74,887 (72,993–

77,883)

75,160 (73,207–

78,254)

76,054

8 08/31-09/30 76,535

(69,509–

83,826)

77,629 (70,688–

84,743)

70,218 (59,490–

82,174)

78,525 (76,644–

80,538)

78,653 (76,767–

80,669)

79,016 (77,057–

81,135)

79,683

9 09/08-10/08 79,406

(72,084–

87,022)

79,491 (72,250–

86,959)

72,712 (61,556–

85,135)

84,215 (80,639–

88,038)

84,307 (80,682–

88,069)

84,937 (81,130–

88,999)

82,669

10 09/14-10/13 81,546

(74,030–

89,356)

84,561 (76,905–

92,411)

74,504 (63,026–

87,292)

86,249 (84,255–

88,722)

85,926 (83,982–

88,256)

86,249 (84,259–

88,694)

84,471

11 09/21-10/21 82,815

(75,098,

90,804)

84,392 (76,640–

92,327)

76,386 (64,579–

89,556)

84,731 (83,126–

86,880)

84,435 (82,872–

86,512)

84,731 (83,135–

86,864)

87,396

12 09/28-10/27 84,827

(76,896–

93,047)

85,885 (77,943–

94,022)

78,448 (66,244–

92,090)

87,491 (84,095–

90,872)

87,265 (83,967–

90,580

87,522 (84,115–

90,945)

89,730

13 09/28-10/27 85,197

(77,258–

93,454)

86,850 (78,896–

95,001)

77,876 (65,750–

91,401)

89,666 (88,264–

91,036)

89,627 (88,280–

91036)

89,667 (88,281–

91,036)

89,730

https://doi.org/10.1371/journal.pone.0254826.t002
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categories are very distinct and clearly visible. For cluster 1, the rate rises rapidly from April to

July and then shows small fluctuations. For cluster 2, there is a rapid increase in growth rate

from April to July followed by a rapid decline. Chihuahua in cluster 3 shows a slow growth

rate until September followed by a rapid rise until mid-September which then declines rapidly.

For cluster 4, the rate rises slowly, from April to September, and then shows a rapid rise (S20

Fig).

From the colormap (Fig 12) we can see that the cases were concentrated from the beginning

in the central region in Mexico and Mexico City. Daily cases have been square root trans-

formed to reduce variability in the amplitude of the time series while dashed lines separate the

Northern, Central, and Southern regions. S20 Fig shows the time-series graph of daily

COVID-19 new cases by the date for all states, Northern states, Central states, and the

Table 3. Cumulative mortality estimates obtained from the six models (GLM, Richards model, sub-epidemic model, IHME current projections, IHME universal

mask, and IHME mandates easing) at the end of each forecasting period for the COVID-19 pandemic in Mexico City (2020).

Forecast

Number

Forecast

period

(MMDD)

GLM Mean

(95% PI)

Sub-epidemic

model Mean

(95% PI)

Richards model

Mean (95% PI)

IHME current

projections Mean

(95% PI)

IHME universal

mask Mean (95%

PI)

IHME mandates

easing Mean (95%

PI)

Actual deaths

reported as of Nov

11, 2020

1 07/05-08/03 8,480

(6,642–

10,549)

9,655 (7,437–

12,016)

8,628 (5,712–

12,363)

9,075 (8,334–9,888) 8,991 (8,334–

9,888)

9,195 (8,443–

10,182)

10,081

2 07/12-08/10 8,968

(7,022–

11,119)

10,534 (8,063–

13,187)

9,015 (5,951–

12,971)

10,091 (8,607–

12,421)

10,018 (8,598–

12,263)

10,254 (8,648–

12,905)

10,496

3 07/18-08/16 9,447

(7,402–

11,710)

11,287 (8,541–

14,037)

9,495 (6,291–

13,616)

10,388 (8,382–

12,505)

10,323 (8,381–

12,365)

10,467 (8,381–

12,660)

10,859

4 07/26-08/24 9,588

(7,478–

11,891)

10,249 (8,042–

12,622)

9,575 (6,283–

13,836)

10,481 (9,761–

11,551)

10,424 (9,729–

11,433)

10,526 (9,791–

11,623)

11,326

5 08/03-09/01 9,786

(7,621–

12,166)

10,232 (7,950–

12,686)

9,737 (6,351–

14,140)

10,314 (9,746–

11,477)

10,290 (9,733–

11,423)

10,314 (9,746–

11,477)

11,769

6 08/18-09/16 10,388

(8,054–

12,957)

11,103 (8,646–

13,752)

10,425 (6,762–

15,212)

12,099 (11,387–

13,118)

12,055 (11,362–

13,046)

12,184 (11,422–

13,255)

12,615

7 08/23-09/21 10,615

(8,226–

13,272)

11,205 (8,700–

13,911)

10,411 (6,719–

15,250)

11,826 (11,289–

12,584)

11,794 (11,273–

12,527)

11,826 (11,290–

12,585)

12,966

8 08/31-09/30 10,851

(8,381–

13,581)

11,103 (8,646–

13,752)

10,872 (6,997–

15,950)

11,829 (11,397–

12,328)

11,842 (11,409–

12,527)

11,871 (11,421–

12,394)

13,414

9 09/08-10/08 11,182

(8,621–

14,011)

11,237 (8,721–

13,955)

10,820 (6,936–

15,966)

12,547 (11,851–

13,318)

12,560 (11,859–

13,340)

12,604 (11,881–

13,413)

13,838

10 09/14-10/13 11,553

(8,887–

14,492)

12,443 (9,645–

15,439)

11,064 (7,043–

16,373)

13,256 (12,586–

14,106)

13,215 (12,566–

14,031)

13,256 (12,857–

14,105)

14,107

11 09/21-10/21 11,711

(8,985–

14,714)

12,636 (9,737–

15,742)

11,811 (7,578–

17,367)

12,727 (12,326–

13,200)

12,699 (12,310,

13,156)

12,728 (12,327–

13,192)

14,561

12 09/28-10/27 12,074

(9,253–

15,195)

12,878 (9,919–

16,054)

11,503 (7,315–

17,079)

13,358 (12,718–

14,095)

13,332 (12,705–

14,049)

13,361 (12,720–

14,153)

14,911

13 09/28-10/27 12,493

(9,570–

15,716)

13,460 (10,341–

16,815)

11,659 (7,398–

17,370)

14,172 (13,539–

15,031)

14,131 (13,522–

14,958)

14,191 (14,541–

15,128)

15,306

https://doi.org/10.1371/journal.pone.0254826.t003
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Southern states. As observed for both Northern and Central regions including the national

level, the epidemic peaked in mid-July followed by a decline at around mid-September, which

then started rising again. Southern states exhibit a stable decline. S21 Fig shows the total num-

ber of COVID-19 cases at the state level as of December 5, 2020. Some of the areas with a

higher concentration of COVID-19 cases are Mexico City, Mexico state, Guanajuato in the

central region and, Nuevo Leon in the Northern region.

Twitter data analysis

The epidemic curve for Mexico is overlaid with the curve of tweets indicating stay-at-home

orders in Mexico as shown in S22 Fig. The engagement of people in Mexico with the #queda-

teencasa hashtag (stay-at-home order hashtag) has been gradually declining as the number of

cases has continued to increase or remain at a steady pace, showing the frustration and apathy

of the public on lock downs and restrictions. Mostly the non-government public health experts

are calling for more lockdowns or continued social distancing measures (without being heard

by the authorities). It could also imply that the population is not following the government’s

stay-at-home orders and hence we continue to observe the cases. S22 Fig shows that the high-

est number of tweets were made during the earlier part of the pandemic, with the number of

tweets declining as of mid-May 2020. In contrast, the number of cases by onset dates peaked

around mid-June. The correlation coefficient between the epidemic curve of cases by dates of

onset and the curve of tweets representing the stay-at-home orders was estimated at R = -0.001

from March 12- November 11, 2020.

Discussion

We report initial sub-exponential growth dynamics of the COVID-19 pandemic in Mexico

and Mexico City with the deceleration of growth parameter, p, estimated between 0.6–0.8

Fig 8. Upper panel: Reproduction number with 95% CI estimated using the GGM model. The estimated

reproduction number of the COVID-19 pandemic in Mexico as of May 29, 2020, is 1.1 (95% CI: [1.1, 1.1]). The growth

rate parameter, r, is estimated at 1.2 (95% CI: [1.1, 1.4]) and the deceleration of growth parameter, p, is estimated at 0.7

(95% CI: [0.68, 0.71]). Lower panel: The lower panel shows the GGM fit to the case incidence data for the first 90 days.

https://doi.org/10.1371/journal.pone.0254826.g008

PLOS ONE Transmission dynamics and forecasts of the COVID-19 pandemic in Mexico, March-December 2020

PLOS ONE | https://doi.org/10.1371/journal.pone.0254826 July 21, 2021 20 / 34

https://doi.org/10.1371/journal.pone.0254826.g008
https://doi.org/10.1371/journal.pone.0254826


from the case incidence and mortality data. Yet, the early estimates of reproduction number,

Rt, demonstrate the sustained disease transmission in the country. As Rt fluctuates around 1.0

since the end of July 2020, variable epidemic growth patterns can be observed at the national

and state level. As the virus transmission continues in Mexico, Twitter analysis implies the

relaxation of lockdowns with inconsequential decline in the mobility patterns observed over

the last few weeks as evident from Apple’s mobility trends. Moreover, the systematic compari-

son of our models across thirteen sequential forecasts suggests that the sub-epidemic model is

the most appropriate model for mortality forecasting. The sub-epidemic model can reproduce

the stabilization in the trajectory of mortality forecasts as predicted by the IHME model.

The sub-exponential growth pattern of the COVID-19 pandemic in Mexico can be attrib-

uted to a myriad of factors including non-homogenous mixing, spatial structure, population

mobility, behavior changes, and control interventions [89]. Our results are consistent with the

sub-exponential growth patterns of COVID-19 outbreaks observed in Mexico [90] and Chile

[91]. Along with the observed sub-exponential growth dynamics of the COVID-19 pandemic

in Mexico, the reproduction number estimated from the genomic sequence analysis and the

case incidence data (Rt~ 1.1–1.2) indicate a sustained transmission of SARS-CoV-2 in Mexico

Fig 9. Upper panel: Epidemiological curve (by the dates of symptom onset) for Mexico (left panel) and Mexico City (right panel) as of September 27, 2020. Lower panel:

Instantaneous reproduction number with 95% credible intervals for the COVID-19 pandemic in Mexico as of September 27, 2020. The red solid line represents the mean

reproduction number for Mexico and the red shaded area represents the 95% credible interval around it. The blue solid line represents the mean reproduction number

for Mexico City and the blue shaded region represents the 95% credible interval around it.

https://doi.org/10.1371/journal.pone.0254826.g009
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Fig 10. Global ML tree for SARS-CoV-2 genomic data from February 27- May 29, 2020. Sequences sampled in Mexico are highlighted in red.

https://doi.org/10.1371/journal.pone.0254826.g010

Fig 11. Clusters of states by their growth rates. Cluster 1 in blue, cluster 2 in orange, cluster 3 in yellow, and cluster 4

in purple. The right panel shows the average growth rate curves for each cluster (solid curves) and their overall average

(black broken curve).

https://doi.org/10.1371/journal.pone.0254826.g011
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during the early transmission phase of the virus (February 27- May 29, 2020). Our estimates of

Rt are similar to the estimates of reproduction numbers retrieved from other studies conducted

in Mexico [92], Chile [91, 93], Peru [94], and Brazil [95]. The early estimate of Rt obtained

from the Cori et al. method (instantaneous reproduction number) in our study also coincides

with the early estimates of Rt obtained from the case incidence data and the genomic data

(Rt~1). The instantaneous reproduction number estimated from our study shows that Rt is

slightly above 1 since the end of March 2020, without a significant increase. This is in accor-

dance with the estimates of Rt obtained from another study conducted in Mexico [14].

In general, Mexico has observed a sustained SARS-CoV-2 transmission and an increasing

or sustained case load despite the implementation of social distancing interventions including

the stay-at-home orders that were eased around June 2020. As our Twitter data analysis also

shows, the number of cases by onset dates was negatively correlated to the stay-at-home

orders. A possible explanation indicates that people might have stopped following the govern-

ment’s preventive orders to stay at home as a result of pandemic fatigue [96, 97]. Mexico has

been one of the countries where the stay-at-home orders have been least respected. The aver-

age reduction in mobility in Mexico was reported to be 80% by mid-April that has declined to

~34% since August 2020. In comparison, Argentina and Peru have showed the largest mobility

reductions ranging from 60–90% between March-September 2020 [98]. The preventive orders

have affected the Mexican population disproportionately, with some proportion of the popula-

tion exhibiting aggression towards quarantine and stay-at-home orders [40]. However, the

public health professionals seem to be frustrated towards the relaxation of stay-at-home orders

and reopening of the country, as the cases and deaths keep mounting. We can also appreciate

Fig 12. Color scale image of daily COVID-19 cases by region.

https://doi.org/10.1371/journal.pone.0254826.g012
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the variable spatiotemporal dynamics of the COVID-19 pandemic in Mexico. Our classifica-

tion of the epidemic patterns at the state level in Mexico shows a distinct variation of growth

rates across states. For instance, cluster 1 including Baja California, Colima, and Mexico City

has stable growth at a higher rate and cluster 4 including Aguascalientes, Durango, Queretaro,

and Zacatecas shows a rising pattern in the growth rate (Fig 11). Hence, the place of residence

of an individual can largely influence their vulnerability during an epidemic [99]. This infor-

mation can be utilized by the states in guiding their decision regarding the implementation of

public health measures. For example, states in clusters 1 and 4 may need strict public health

measures to contain the pandemic.

Appropriate short-term forecasts can also help gauge the impact of interventions in near

real-time. In this study, we compared the performance of our three models for short-term

real-time forecasting the COVID-19 mortality estimates in Mexico and Mexico City. As in

Figs 2–5, the sub-epidemic model can be declared the most appropriate model as it exhibits

the most desirable performance metrics across most of the calibration and forecasting phases.

This model has the capacity to accommodate more complex epidemic trajectories suggesting a

longer epidemic wave and can better adjust to the early signs of changes in disease transmis-

sion, while other models (GLM and Richards) are less reactive. This model can also be utilized

as a potential forecasting tool for other cities in Mexico and be compared with other prediction

models. Further short-term forecasts (5,10 days) could be also be conducted with the sub-epi-

demic model using the consecutive calibration phases to reduce the error metrics [55].

Overall, the sequential forecasts based on the daily smoothed death estimates for Mexico

from the two models (GLM and Richards growth model) suggest a decline in overall deaths

(S1 and S2 Figs) consistent with the sustained decline in COVID-19 associated case fatalities

since mid-August as reported officially by the government of Mexico [100]. However, this

decline in COVID-19 deaths can be attributed to the inaccurate reporting of deaths in the sur-

veillance system or downplay of fatalities by the government. For instance, the reported excess

deaths as of September 26, 2020, are estimated to be 193,170 with 139,151 deaths attributable

to COVID-19 [101]. While the official tally of COVID-19 deaths in Mexico is only exceeded

by the USA and Brazil, it is roughly the same as that of India, a country whose population is

ten times larger than Mexico [102]. As observed earlier, the easing of the social distancing

interventions and lifting of lockdowns in Mexico in the month of June led to a surge of the

COVID-19 associated deaths [103]. In June, the government of Mexico also inaccurately fore-

casted that a potential decline in the number of COVID-19 deaths would be observed by Sep-

tember 2020 [104]. Therefore, the forecasting trends need to be interpreted cautiously to

inform policies. The IHME model also shows a decline in COVID-19 deaths in Mexico from

mid-August-September, which have stabilized since then for the last six forecast periods (S5

Fig). The sub-epidemic model also indicates a stabilization of the deaths for the last seven fore-

cast periods (S6 Fig) consistent with the results obtained from the IHME model.

Similarly, for Mexico City, the sequential forecasts obtained from the GLM and Richards

model fitted to the daily death data estimates indicate a decline in the overall deaths (S3 and S4

Figs). The IHME and sub-epidemic models on the other hand indicate a stabilization in the

trajectory of mortality trends for the last three forecast periods (S7 and S8 Figs), suggesting

that the actual death counts might not be decreasing in Mexico City as seen with Mexico.

Based on the mortality data, the observed decline or stability in death predictions could likely

reflect the false slowing down of the pandemic in Mexico City [103]. Moreover, insufficient

testing can also result in an inaccurate trajectory of the COVID-19 mortality curve [105].

The cumulative comparison of deaths in Mexico and Mexico City indicates that in general,

the Richards model has under-performed in predicting the actual death counts with much

wider uncertainty around the mean death estimates. The Richards model has also failed to
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capture the early sub-exponential growth dynamics of the mortality curve. The cumulative

death counts obtained from the flexible sub-epidemic model closely approximate the total

mean death counts obtained from the three IHME modeling scenarios. Whereas the GLM

slightly under predicts the cumulative death counts (Figs 6 and 7). Another competing model,

the COVID-19 predictions model projects 87,151 deaths (95% PI: [84,414, 91,883]) for Mexico

as of October 27, 2020 (last forecasting phase), an estimate that closely approximates the esti-

mate obtained from the GLM model (between 77,258–93,454 deaths) [106].

The three phenomenological models (GLM, Richards, sub-epidemic wave model) used in

this study generally provide good fits to the mortality curves based on the residuals. However,

the Richards model is unable to capture the early sub-exponential dynamics of the mortality

curve. These phenomenological models are particularly valuable for providing rapid predic-

tions of the epidemics in complex scenarios that can be used for real-time preparedness since

these models do not require specific disease transmission processes to account for the inter-

ventions. Since these models do not explicitly account for behavioral changes, the results

should be interpreted with caution. Importantly, since the mortality curves employed in this

study are reported according to the date of reporting, they are likely influenced by variation in

the testing rates and related factors including the case fatality rates. Further, delays in reporting

of deaths due to the magnitude of the epidemic could also influence our predictions. More-

over, using the reporting date is not ideal due to the time difference between the date of death

and the reporting date of death, which at a given moment can provide a false impression of the

ongoing circumstances.

Our study is not exempt from limitations. First, the IHME (current projections, mandated

mask, and worst-case scenario) model utilized has been revised multiple times over the course

of the pandemic and differs substantially in methodology, assumptions, range of predictions,

and quantities estimated. Second, the IHME has been irregular in publishing the downloadable

estimates online for some periods. Third, we model the death estimates by date of reporting

rather than by the date of death. Lastly, the unpredictable social component of the epidemic on

the ground is also a limiting factor for the study as we do not know the ground truth mortality

pattern when the forecasts are generated.

In conclusion, the reproduction number has been fluctuating around ~1.0 since the end of

July-end of September 2020, indicating sustained virus transmission in the region. Simulta-

neously, the country has seen much lower mobility reduction and mixed compliance with

stay-at-home orders contributing towards the virus transmission in the country. Moreover,

the spatial analysis indicates that states like Mexico, Michoacán, Morelos, Nuevo Leon, Baja

California require stronger public health strategies to contain the rising patterns in epidemic

growth rates. The GLM and sub-epidemic model applied to mortality data in Mexico provide

reasonable estimates for short-term projections in near real-time. While the GLM and Rich-

ards models predict that the COVID-19 outbreak in Mexico and Mexico City may be on a sus-

tained decline, the sub-epidemic and IHME model predict a stabilization of daily deaths.

However, the forecasts need to be interpreted with caution given the dynamic implementation

and lifting of the social distancing measures.

Supporting information
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S1 Fig. COVID-19 deaths forecasts using daily deaths, GLM model, Mexico: 30-days ahead

forecasts based on the Generalized Logistic Growth model (GLM) calibrated using an

increasing amount of daily death data (blue circles): 107, 114, 120, 128, 136, 151, 156, 164,
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172, 179, 185, 193, 193 epidemic days. The vertical dashed line indicates the end of the cali-

bration period and start of the forecasting period. The mean (solid red line) and 95% PIs

(dashed red lines) of the model fit and forecast are shown.

(TIF)

S2 Fig. COVID-19 death forecasts using daily deaths, Richards model, Mexico: 30-days

ahead forecasts based on the Richards model calibrated using an increasing amount of

daily death data (blue circles): 107, 114, 120, 128, 136, 151, 156, 164, 172, 179, 185, 193,

193 epidemic days. The vertical dashed line indicates the end of the calibration period and

start of the forecasting period. The mean (solid red line) and 95% PIs (dashed red lines) of the

model fit and forecast are shown.

(TIF)

S3 Fig. COVID-19 death forecasts using daily deaths, GLM model, Mexico City: 30-days

ahead forecasts based on the GLM model calibrated using an increasing amount of daily

death data (blue circles): 107, 114, 120, 128, 136, 151, 156, 164, 172, 179, 185, 193, 193 epi-

demic days. The vertical dashed line indicates the end of the calibration period and start of the

forecasting period. The mean (solid red line) and 95% PIs (dashed red lines) of the model fit

and forecast are shown.

(TIF)

S4 Fig. COVID-19 death forecasts using daily deaths, Richards model, Mexico City:

30-days ahead forecasts based on the Richards model calibrated using an increasing

amount of daily death data (blue circles): 107, 114, 120, 128, 136, 151, 156, 164, 172, 179,

185, 193, 193 epidemic days. The vertical dashed line indicates the end of the calibration

period and start of the forecasting period. The mean (solid red line) and 95% PIs (dashed red

lines) of the model fit and forecast are shown.

(TIF)

S5 Fig. COVID-19 death forecasts using daily deaths, IHME model, Mexico: 30-days ahead

forecasts based on the IHME model calibrated using an increasing amount of daily death

data (blue circles): 107, 114, 120, 128, 136, 151, 156, 164, 172, 179, 185, 193, 193 epidemic

days. The vertical dashed line indicates the end of the calibration period and start of the fore-

casting period. The mean (solid red line) and 95% PIs (dashed red lines) of the model fit and

forecast are shown.

(TIF)

S6 Fig. COVID-19 death forecasts using daily deaths, sub-epidemic wave model, Mexico:

30-days ahead forecasts based on the sub-epidemic wave model calibrated using an

increasing amount of daily death data (blue circles): 107, 114, 120, 128, 136, 151, 156, 164,

172, 179, 185, 193, 193 epidemic days. The vertical dashed line indicates the end of the cali-

bration period and start of the forecasting period. The mean (solid red line) and 95% PIs

(dashed red lines) of the model fit and forecast are shown.

(TIF)

S7 Fig. COVID-19 death forecasts using daily deaths, IHME model, Mexico City: 30-days

ahead forecasts based on the IHME model calibrated using an increasing amount of daily

death data (blue circles): 107, 114, 120, 128, 136, 151, 156, 164, 172, 179, 185, 193, 193 epi-

demic days. The vertical dashed line indicates the end of the calibration period and start of the

forecasting period. The mean (solid red line) and 95% PIs (dashed red lines) of the model fit

and forecast are shown.

(TIF)
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S8 Fig. COVID-19 death forecasts using daily deaths, sub-epidemic wave model, Mexico

City: 30-days ahead forecasts based on the sub-epidemic wave model calibrated using an

increasing amount of daily death data (blue circles): 107, 114, 120, 128, 136, 151, 156, 164,

172, 179, 185, 193, 193 epidemic days. The vertical dashed line indicates the end of the cali-

bration period and start of the forecasting period. The mean (solid red line) and 95% PIs

(dashed red lines) of the model fit and forecast are shown.

(TIF)

S9 Fig. COVID-19 deaths forecasts using cumulative deaths, GLM model, Mexico: 30-days

ahead forecasts based on the Generalized Logistic Growth model (GLM) calibrated using

an increasing amount of cumulative death data (blue circles). The vertical dashed line indi-

cates the end of the calibration period and start of the forecasting period. The mean (solid red

line) and 95% PIs (dashed red lines) of the model fit and forecast are shown.

(TIF)

S10 Fig. COVID-19 death forecasts using cumulative deaths, IHME model, Mexico: 30-day

ahead forecasts based on the IHME model calibrated using cumulative death data (blue

circles). The vertical dashed line indicates the end of the calibration period and start of the

forecasting period. The mean (solid red line) and 95% PIs (dashed red lines) of the model fit

and forecast are shown.

(TIF)

S11 Fig. COVID-19 death forecasts using cumulative deaths, Richards model, Mexico:

30-day ahead forecasts based on the Richards model calibrated using cumulative death

data (blue circles). The vertical dashed line indicates the end of the calibration period and

start of the forecasting period. The mean (solid red line) and 95% PIs (dashed red lines) of the

model fit and forecast are shown.

(TIF)

S12 Fig. COVID-19 death forecasts using cumulative deaths, sub-epidemic wave model,

Mexico: 30-day ahead forecasts based on the Sub-epidemic wave model calibrated using

cumulative death data (blue circles). The vertical dashed line indicates the end of the calibra-

tion period and start of the forecasting period. The mean (solid red line) and 95% PIs (dashed

red lines) of the model fit and forecast are shown.

(TIF)

S13 Fig. COVID-19 deaths forecasts using cumulative deaths, GLM model, Mexico City:

30-day ahead forecasts based on the Generalized Logistic Growth model (GLM) calibrated

using cumulative death data (blue circles). The vertical dashed line indicates the end of the

calibration period and start of the forecasting period. The mean (solid red line) and 95% PIs

(dashed red lines) of the model fit and forecast are shown.

(TIF)

S14 Fig. COVID-19 death forecasts using cumulative deaths, IHME model, Mexico City:

30-day ahead forecasts based on the IHME model calibrated using cumulative death data

(blue circles). The vertical dashed line indicates the end of the calibration period and start of

the forecasting period. The mean (solid red line) and 95% PIs (dashed red lines) of the model

fit and forecast are shown.

(TIF)
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S15 Fig. COVID-19 death forecasts using cumulative deaths, Richards model, Mexico City:

30-day ahead forecasts based on the Richards model calibrated using cumulative death

data (blue circles). The vertical dashed line indicates the end of the calibration period and

start of the forecasting period. The mean (solid red line) and 95% PIs (dashed red lines) of the

model fit and forecast are shown.

(TIF)

S16 Fig. COVID-19 death forecasts using cumulative deaths, sub-epidemic wave model,

Mexico City: 30-day ahead forecasts based on the Sub-epidemic wave model calibrated

using cumulative death data (blue circles). The vertical dashed line indicates the end of the

calibration period and start of the forecasting period. The mean (solid red line) and 95% PIs

(dashed red lines) of the model fit and forecast are shown.

(TIF)

S17 Fig. Pre-processing COVID-19 data into incidence rate functions. From left to right:

original lab-confirmed COVID-19 cases, curve of daily new cases, smoothed and scaled rate

curves, average of rate curves before scaling and smothing.

(TIF)

S18 Fig. Clustering of states according to the shapes of their rate curves. The largest clus-

ter–cluster 1 –is shown in green while the smallest cluster–cluster 3 –is shown in the black.

One can see that states with similar shapes of rates curves are geographically close to each

other.

(TIF)

S19 Fig. Average shapes of the COVID-19 incidence rate curves, along with a one stan-

dard-deviation band around the average, in each of the clusters.

(TIF)

S20 Fig. Cluster averages and the overall average. These averages represent the four domi-

nant patterns of incidence rates observed across all states.

(TIF)

S21 Fig. Total number of COVID-19 cases as of December 5, 2020.

(TIF)

S22 Fig. COVID-19 epi-curve overlaid by the curve of stay-at-home orders tweets. Blue line

indicates the number of cases by dates of onset and the orange line indicates the number of

tweets referring to the stay-at-home orders.

(TIF)

Author Contributions

Conceptualization: Amna Tariq, Gerardo Chowell.

Data curation: Amna Tariq, Sushma Dahal.

Formal analysis: Amna Tariq, Juan M. Banda, Pavel Skums, Gerardo Chowell.

Funding acquisition: Amna Tariq, Pavel Skums, Gerardo Chowell.

Investigation: Amna Tariq, Juan M. Banda, Pavel Skums, Anuj Srivastava, Gerardo Chowell.

Methodology: Amna Tariq, Juan M. Banda, Pavel Skums, Anuj Srivastava, Gerardo Chowell.

Project administration: Amna Tariq, Gerardo Chowell.

PLOS ONE Transmission dynamics and forecasts of the COVID-19 pandemic in Mexico, March-December 2020

PLOS ONE | https://doi.org/10.1371/journal.pone.0254826 July 21, 2021 28 / 34

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254826.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254826.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254826.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254826.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254826.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254826.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254826.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254826.s023
https://doi.org/10.1371/journal.pone.0254826


Resources: Amna Tariq, Juan M. Banda, Pavel Skums, Baltazar Espinoza, Anuj Srivastava,

Ana I. Bento, Gerardo Chowell.

Software: Amna Tariq.

Supervision: Amna Tariq, Gerardo Chowell.

Validation: Amna Tariq, Gerardo Chowell.

Visualization: Amna Tariq, Pavel Skums, Sushma Dahal, Anuj Srivastava, Gerardo Chowell.

Writing – original draft: Amna Tariq, Gerardo Chowell.

Writing – review & editing: Amna Tariq, Juan M. Banda, Pavel Skums, Sushma Dahal, Carlos

Castillo-Garsow, Baltazar Espinoza, Noel G. Brizuela, Roberto A. Saenz, Alexander Kirpich,

Ruiyan Luo, Anuj Srivastava, Humberto Gutierrez, Nestor Garcia Chan, Ana I. Bento,

Maria-Eugenia Jimenez-Corona, Gerardo Chowell.

References
1. Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918–1920 "Spanish" influenza

pandemic. Bull Hist Med. 2002; 76(1):105–15. Epub 2002/03/05. https://doi.org/10.1353/bhm.2002.

0022 PMID: 11875246.

2. Fernández-Rojas MA, Luna-Ruiz Esparza MA, Campos-Romero A, Calva-Espinosa DY, Moreno-

Camacho JL, Langle-Martı́nez AP, et al. Epidemiology of COVID-19 in Mexico: Symptomatic profiles

and presymptomatic people. Int J Infect Dis 2021; 104:572–9. https://doi.org/10.1016/j.ijid.2020.12.

086 PMID: 33434668

3. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of

Coronavirus (COVID-19). StatPearls. Treasure Island (FL): StatPearls Publishing, 2021, StatPearls

Publishing LLC.; 2021. PMID: 32150360.

4. Li Z, Chen Q, Feng L, Rodewald L, Xia Y, Yu H, et al. Active case finding with case management: the

key to tackling the COVID-19 pandemic. The Lancet. 2020; 396(10243):63–70. https://doi.org/10.

1016/S0140-6736(20)31278-2 PMID: 32505220

5. WHO. COVID-19 Weekly Epidemiological Update World Health Organization. 2020 [cited 2020

December 30]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/

situation-reports.

6. WHO. Situation Reports Coronavirus World Health Organization. 2020 [cited 2020 December 30].

Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

7. WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003.

World Health Organization. 2003 [cited 2020 September 20]. Available from: https://www.who.int/csr/

sars/country/table2004_04_21/en/.

8. WHO. MERS situation update November 2019. World Health Organization. 2019 [cited 2020 Septem-

ber 7]. Available from: https://applications.emro.who.int/docs/EMRPUB-CSR-241-2019-EN.pdf?ua=

1&ua=1&ua=1.

9. The L. COVID-19 vaccines: no time for complacency. The Lancet. 2020; 396(10263):1607. https://doi.

org/10.1016/S0140-6736(20)32472-7 PMID: 33220729

10. Ledford H. US authorization of first COVID vaccine marks new phase in safety monitoring. Nature.

2020;(588):377–8. https://doi.org/10.1038/d41586-020-03542-4.

11. Burki T. Understanding variants of SARS-CoV-2. The Lancet. 2021; 397(10273):462. https://doi.org/

10.1016/S0140-6736(21)00298-1 PMID: 33549181

12. Reiner RC, Barber RM, Collins JK, Zheng P, Adolph C, Albright J, et al. Modeling COVID-19 scenarios

for the United States. Nat Med. 2021; 27(1):94–105. https://doi.org/10.1038/s41591-020-1132-9

PMID: 33097835

13. Azanza Ricardo CL, Hernandez Vargas EA. The Risk of Lifting COVID-19 Confinement in Mexico.

medRxiv 2020.05.28.20115063 [preprint] 2020 [cited 2021 February 3]. Available from: https://doi.org/

10.1101/2020.05.28.20115063

14. Acuña-Zegarra MA, Santana-Cibrian M, Velasco-Hernandez JX. Modeling behavioral change and

COVID-19 containment in Mexico: A trade-off between lockdown and compliance. Math Biosci. 2020;

325:108370–. Epub 2020/05/06. https://doi.org/10.1016/j.mbs.2020.108370 PMID: 32387384.

PLOS ONE Transmission dynamics and forecasts of the COVID-19 pandemic in Mexico, March-December 2020

PLOS ONE | https://doi.org/10.1371/journal.pone.0254826 July 21, 2021 29 / 34

https://doi.org/10.1353/bhm.2002.0022
https://doi.org/10.1353/bhm.2002.0022
http://www.ncbi.nlm.nih.gov/pubmed/11875246
https://doi.org/10.1016/j.ijid.2020.12.086
https://doi.org/10.1016/j.ijid.2020.12.086
http://www.ncbi.nlm.nih.gov/pubmed/33434668
http://www.ncbi.nlm.nih.gov/pubmed/32150360
https://doi.org/10.1016/S0140-6736%2820%2931278-2
https://doi.org/10.1016/S0140-6736%2820%2931278-2
http://www.ncbi.nlm.nih.gov/pubmed/32505220
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/csr/sars/country/table2004_04_21/en/
https://www.who.int/csr/sars/country/table2004_04_21/en/
https://applications.emro.who.int/docs/EMRPUB-CSR-241-2019-EN.pdf?ua=1&ua=1&ua=1
https://applications.emro.who.int/docs/EMRPUB-CSR-241-2019-EN.pdf?ua=1&ua=1&ua=1
https://doi.org/10.1016/S0140-6736%2820%2932472-7
https://doi.org/10.1016/S0140-6736%2820%2932472-7
http://www.ncbi.nlm.nih.gov/pubmed/33220729
https://doi.org/10.1038/d41586-020-03542-4
https://doi.org/10.1016/S0140-6736%2821%2900298-1
https://doi.org/10.1016/S0140-6736%2821%2900298-1
http://www.ncbi.nlm.nih.gov/pubmed/33549181
https://doi.org/10.1038/s41591-020-1132-9
http://www.ncbi.nlm.nih.gov/pubmed/33097835
https://doi.org/10.1101/2020.05.28.20115063
https://doi.org/10.1101/2020.05.28.20115063
https://doi.org/10.1016/j.mbs.2020.108370
http://www.ncbi.nlm.nih.gov/pubmed/32387384
https://doi.org/10.1371/journal.pone.0254826


15. Shuchman M. Low- and middle-income countries face up to COVID-19. Nat Med. 2020;(26):986–8.

https://doi.org/10.1038/d41591-020-00020-2 PMID: 32439872

16. Barnett-Howell Z, Mobarak AM. Should Low-Income Countries Impose the Same Social Distancing

Guidelines as Europe and North America to Halt the Spread of COVID-19? 2020 [cited 2020 Septem-

ber 20]. Available from: https://som.yale.edu/should-low-income-countries-impose-the-same-social-

distancing-guidelines-as-europe-and-north-america-to-halt-the-spread-of-covid-19.

17. Regmi K, Lwin CM. Impact of social distancing measures for preventing coronavirus disease 2019

[COVID-19]: A systematic review and meta-analysis protocol. medRxiv. 2020.06.13.20130294 [pre-

print]. 2020 [cited 2020 December 28]. Available from: https://www.medrxiv.org/content/10.1101/

2020.06.13.20130294v1

18. MOH. Ministry of Health Mexico, Open Data General Directorate of Epidemiology 2020 [cited 2020

December 28]. Available from: https://www.gob.mx/salud/documentos/datos-abiertos-152127.

19. Statistica. Number of people living in poverty in Mexico between 2008 and 2018 (in millions) 2019

[cited 2020 September 18]. Available from: https://www.statista.com/statistics/1039479/mexico-

people-living-poverty/.

20. Coneval. Poverty measurement, poverty measurement in Mexico 2020 [cited 2020 December 16].

Available from: https://www.coneval.org.mx/Medicion/Paginas/PobrezaInicio.aspx.

21. Organization IL. Informal employment in Mexico: Current situation, policies and challenges: FORLAC;

2014 [cited 2020 August 13]. Available from: https://www.ilo.org/wcmsp5/groups/public/—americas/—

rolima/documents/publication/wcms_245889.pdf.

22. Dahal S, Banda JM, Bento AI, Mizumoto K, Chowell G. Characterizing all-cause excess mortality pat-

terns during COVID-19 pandemic in Mexico. BMC Infect Dis. 2021; 21(1):432. https://doi.org/10.1186/

s12879-021-06122-7 PMID: 33962563

23. Agren D. Understanding Mexican health worker COVID-19 deaths. The Lancet. 2020; 396

(10254):807. https://doi.org/10.1016/S0140-6736(20)31955-3 PMID: 32950079

24. Carrillo-Vega MF, Salinas-Escudero G, Garcı́a-Peña C, Gutiérrez-Robledo LM, Parra-Rodrı́guez L.

Early estimation of the risk factors for hospitalization and mortality by COVID-19 in Mexico. PLoS

ONE. 2020; 15(9):e0238905. https://doi.org/10.1371/journal.pone.0238905 PMID: 32915872

25. Montes J. Covid-19 Takes Outsize Toll on Mexican Health Workers. The Wall St J. 2021 January 9.

Available from: https://www.wsj.com/articles/covid-19-takes-outsize-toll-on-mexican-health-workers-

11610214842

26. Total COVID-19 tests per 1,000 people: Our World in Data; 2020 [cited 2020 September 24]. Available

from: https://ourworldindata.org/grapher/full-list-cumulative-total-tests-per-thousand?time=2020-02-

21..latest&country=BRA~CHL~SLV~MEX~PER.

27. Moreno T. Mexico’s COVID-19 contingency plan: three key phases to fight the coronavirus outbreak:

El Universal; 2020 March 14 [cited 2020 July 27]. Available from: https://www.eluniversal.com.mx/

english/mexicos-covid-19-contingency-plan-three-key-phases-fight-coronavirus-outbreak.

28. Drafting. There are 3 confirmed cases of coronavirus in Mexico: Elfinanciero; 2020 February 28 [cited

2020 June 4]. Available from: https://elfinanciero.com.mx/salud/van-3-casos-confirmados-de-

coronavirus-en-mexico.

29. Informer T. Massive Activities Due to Coronavirus Suspended: Informador.Mx; 2020 March 13 [cited

2020 July 17]. Available from: https://www.informador.mx/mexico/Suspenden-actividades-masivas-

por-coronavirus-20200313-0020.html.

30. Taylor L. Covid-19: How denialism led Mexico’s disastrous pandemic control effort. BMJ. 2020; 371:

m4952. https://doi.org/10.1136/bmj.m4952 PMID: 33380418

31. Agren D. Mexico holds off canceling mass gatherings amid coronavirus threat: USA Today; 2020

March 14 [cited 2020 August 16]. Available from: https://www.usatoday.com/story/news/world/2020/

03/14/coronavirus-mexico-holds-off-canceling-mass-gatherings-amid-pandemic/5049632002/.

32. Caicedo-Ochoa Y, Rebellón-Sánchez DE, Peñaloza-Rallón M, Cortés-Motta HF, Méndez-Fandiño

YR. Effective Reproductive Number estimation for initial stage of COVID-19 pandemic in Latin Ameri-

can Countries. Int J of Infect Dis. 2020; 95:316–8. https://doi.org/10.1016/j.ijid.2020.04.069 PMID:

32360941

33. Ibarra-Nava I, Cardenas-de la Garza JA, Ruiz-Lozano RE, Salazar-Montalvo RG. Mexico and the

COVID-19 Response. Disaster Med Public Health Prep. 2020; 14(4):e17–e8. Epub 2020/07/27.

https://doi.org/10.1017/dmp.2020.260 PMID: 32713412
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