

Robust weighted averaging accounts for recruitment into collective motion in human crowds

Trenton Wirth^{1*}, William H. Warren¹

¹Brown University, United States

Submitted to Journal:
Frontiers in Applied Mathematics and Statistics

Specialty Section:
Dynamical Systems

Article type:
Original Research Article

Manuscript ID:
761445

Received on:
19 Aug 2021

Revised on:
07 Oct 2021

Journal website link:
www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

T.W. and W.W. designed the research; T.W. performed the experiments, statistically analyzed the data, and simulated the results; T.W. wrote the first draft and W.W. revised and wrote sections of the manuscript. Both authors read and approved the submitted version.

Keywords

collective behavior, self-organization, Crowd dynamics, Pedestrian dynamics, agent-based models

Abstract

Word count: 348

Agent-based models of ‘flocking’ and ‘schooling’ have shown that a weighted average of neighbor velocities, with weights that decay gradually with distance, yields emergent collective motion. Weighted averaging thus offers a potential mechanism of self-organization that recruits an increasing, but self-limiting, number of individuals into collective motion. Previously, we identified and modeled such a ‘soft metric’ neighborhood of interaction in human crowds that decays exponentially to zero at a distance of 4-5m. Here we investigate the limits of weighted averaging in humans and find that it is surprisingly robust: pedestrians align with the mean heading direction in their neighborhood, despite high levels of noise and diverging motions in the crowd, as predicted by the model. In three Virtual Reality experiments, participants were immersed in a crowd of virtual humans in a mobile head-mounted display and were instructed to walk with the crowd. By perturbing the heading (walking direction) of virtual neighbors and measuring the participant’s trajectory, we probed the limits of weighted averaging. (1) In the ‘Noisy Neighbors’ experiment, the neighbor headings were randomized (range 0-90°) about the crowd’s mean direction ($\pm 10^\circ$ or $\pm 20^\circ$, left or right); (2) in the ‘Splitting Crowd’ experiment, the crowd split into two groups (heading difference = 10-40°) and the proportion of the crowd in one group was varied (50-84%); (3) in the ‘Coherent Subgroup’ experiment, a perturbed subgroup varied in its coherence (heading SD = 0-20°) about a mean direction ($\pm 10^\circ$ or $\pm 20^\circ$) within a noisy crowd (heading range = 180°), and the proportion of the crowd in the subgroup was varied. In each scenario, the results were predicted by the weighted averaging model, and attraction strength (turning rate) increased with the participant’s deviation from the mean heading direction, not with group coherence. However, the results indicate that humans ignore highly discrepant headings (45-90°). These findings reveal that weighted averaging in humans is highly robust and generates a common heading direction that acts as a positive feedback to recruit more individuals into collective motion, in a self-reinforcing cascade. Therefore, this ‘soft’ metric neighborhood serves as a mechanism of self-organization in human crowds.

Contribution to the field

In human crowds, like many other animal groups, ‘flocking’ behavior emerges from local interactions between individuals, through a process of self-organization. Mathematical models have shown that collective motion results if each individual aligns with the weighted average of the velocities of their neighbors, where the weights decay with neighbor distance. In this paper, we show how weighted averaging provides a mechanism of self-organization by recruiting individuals to align with their neighbors. In three experiments in Virtual Reality, we investigate the limits of weighted averaging in humans and find that it is surprisingly robust. Participants were immersed in a virtual crowd in a mobile head-mounted display, and were asked to “walk with the crowd”. We find that pedestrians align with the mean heading direction in their neighborhood, despite high levels of crowd noise, a crowd that splits into two groups, or a subgroup that diverges from the crowd. The results were closely predicted by a weighted-averaging model. Because each individual aligns with the mean heading in their neighborhood, weighted averaging provides a positive feedback that recruits more individuals into alignment, generating collective motion. Weighted averaging thus serves as a mechanism of self-organization in human crowds.

Funding statement

This research was supported by the U.S. National Science Foundation, award numbers BCS-1431406 and BCS-1849446 to the second author, and by a Link Foundation Fellowship to the first author.

Ethics statements

Studies involving animal subjects

Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects

Generated Statement: The studies involving human participants were reviewed and approved by Brown University IRB #00000556. The patients/participants provided their written informed consent to participate in this study.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable human images or data is presented in this study.

In review

Data availability statement

Generated Statement: The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: <https://doi.org/10.26300/6wv7-r075>.

In review

Robust weighted averaging accounts for recruitment into collective motion in human crowds

1 Trenton D. Wirth^{1*} & William H. Warren¹

2 ¹Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence,
3 RI, USA

4 *** Correspondence:**

5 Corresponding Author

6 trenton_wirth@alumni.brown.edu

7 **Keywords:** collective behavior₁, self-organization₂, crowd dynamics₃, pedestrian dynamics₄,
8 agent-based models₅

9 Abstract

10 Agent-based models of ‘flocking’ and ‘schooling’ have shown that a weighted average of neighbor
11 velocities, with weights that decay gradually with distance, yields emergent collective motion.
12 Weighted averaging thus offers a potential mechanism of self-organization that recruits an increasing,
13 but self-limiting, number of individuals into collective motion. Previously, we identified and
14 modeled such a ‘soft metric’ neighborhood of interaction in human crowds that decays exponentially
15 to zero at a distance of 4-5m. Here we investigate the limits of weighted averaging in humans and
16 find that it is surprisingly robust: pedestrians align with the mean heading direction in their
17 neighborhood, despite high levels of noise and diverging motions in the crowd, as predicted by the
18 model. In three Virtual Reality experiments, participants were immersed in a crowd of virtual
19 humans in a mobile head-mounted display and were instructed to walk with the crowd. By
20 perturbing the heading (walking direction) of virtual neighbors and measuring the participant’s
21 trajectory, we probed the limits of weighted averaging. (1) In the ‘Noisy Neighbors’ experiment, the
22 neighbor headings were randomized (range 0-90°) about the crowd’s mean direction ($\pm 10^\circ$ or $\pm 20^\circ$,
23 left or right); (2) in the ‘Splitting Crowd’ experiment, the crowd split into two groups (heading
24 difference = 10-40°) and the proportion of the crowd in one group was varied (50-84%); (3) in the
25 ‘Coherent Subgroup’ experiment, a perturbed subgroup varied in its coherence (heading SD = 0-20°)
26 about a mean direction ($\pm 10^\circ$ or $\pm 20^\circ$) within a noisy crowd (heading range = 180°), and the
27 proportion of the crowd in the subgroup was varied. In each scenario, the results were predicted by
28 the weighted averaging model, and attraction strength (turning rate) increased with the participant’s
29 deviation from the mean heading direction, not with group coherence. However, the results indicate
30 that humans ignore highly discrepant headings (45-90°). These findings reveal that weighted
31 averaging in humans is highly robust and generates a common heading direction that acts as a
32 positive feedback to recruit more individuals into collective motion, in a self-reinforcing cascade.
33 Therefore, this ‘soft’ metric neighborhood serves as a mechanism of self-organization in human
34 crowds.

36

37

1 Introduction

38 Much like schools of herring and murmurations of starlings, groups of humans exhibit collective
 39 motion, whether a group of friends walking together down a sidewalk or large crowds in a shopping
 40 plaza or a mass protest. It is generally believed that such patterns of collective motion emerge via
 41 similar processes of self-organization, where local interactions between individuals give rise to
 42 patterns of global behavior [1, 2]. An understanding of these local interactions has two aspects: first,
 43 identifying the *rules of engagement* that govern how an individual responds to a neighbor, and
 44 second, characterizing the *neighborhood of interaction* over which these rules operate and how
 45 neighbor influences are combined.

46 Despite the similarity of collective motion across many species, this behavior has been treated
 47 separately in humans and other animals. For flocks, schools, and herds, the main approach has been
 48 the attraction-repulsion-alignment framework [3-6], in which three local interaction rules or
 49 hypothetical forces apply over different ranges: (i) *repulsion* from near neighbors to avoid collisions,
 50 (ii) *alignment* with the velocities of intermediate neighbors to generate common motion, and (iii)
 51 *attraction* to far neighbors to maintain group cohesion. The influences of multiple neighbors are
 52 combined by averaging over the neighborhood. Pedestrian models, in contrast, have mainly focused
 53 on collision avoidance based on repulsion and attraction forces [7-9], although they can also generate
 54 collective motion under certain boundary conditions [10, 11]. We focus instead on the alignment of
 55 velocity direction or *heading*, which is sufficient to generate collective motion [12, 13].

56 Cucker and Smale [14] showed numerically that a weighted average of neighbor velocities, with
 57 weights that decay gradually with distance, yields emergent collective motion. This result
 58 demonstrated that distance-weighted averaging over a spatial neighborhood offers a potential
 59 mechanism of self-organization: a self-limiting positive feedback that recruits an increasing number
 60 of individuals into collective motion until all individuals are aligned. Rio, Dachner and Warren [15]
 61 empirically identified a similar ‘soft metric’ neighborhood of interaction in human crowds, in which
 62 neighbor influence decays exponentially to zero at a distance of 4-5m.

63 Rio, et al. [15] modeled this soft metric neighborhood using a *weighted-averaging model*. Because
 64 people have a $\sim 180^\circ$ horizontal field of view and tend to face in the walking direction [16], the
 65 neighborhood is a semi-circular region with an eccentricity of -90° to $+90^\circ$ about the current heading
 66 direction, and neighbor influence is largely unidirectional. When following a crowd, a pedestrian
 67 steers by reducing the mean difference between their current heading direction (ϕ_p) and the heading
 68 direction of each neighbor (ϕ_i), weighted by distance. Specifically, pedestrian p ’s angular
 69 acceleration (change in heading direction) is proportional to the weighted average of the heading
 70 deviations of each neighbor,

$$71 \quad \ddot{\phi}_p = -\frac{k}{n} \sum_{i=1}^n w_i \sin(\phi_i - \phi_p) \quad (1a)$$

$$72 \quad w_i = \frac{a}{e^{\omega d_i} + a} \quad (1b)$$

73 where n is the number of neighbors within a 5m radius and a 180° field of view, and $k=3.15$ is the
 74 stiffness or gain, fit to data on pedestrian following [17]. The weight of each neighbor (w_i) decreases
 75 exponentially with distance (d_i), where $\omega=1.3$ is the decay rate and $a=9.2$ is a scaling constant, fit to

76 motion-capture data on real crowds [15]. Thus, neighbors that are closer to the pedestrian or have
 77 larger heading deviations (up to $\pm 90^\circ$) exert a greater influence, such that the pedestrian turns to align
 78 with the weighted mean heading in the neighborhood. An analogous equation for linear acceleration
 79 controls a pedestrian's walking speed [15]. In terms of the system's dynamics, the proximity and
 80 average deviation of neighbors determine the strength of attraction to the mean heading in the
 81 neighborhood, and hence the turning rate and the relaxation time of the alignment response. It is
 82 interesting to note that Eq. 1a is a version of the Kuramoto model of synchronization in systems of
 83 phase-coupled oscillators [18,19] with second-order dynamics, which converges to a small cluster of
 84 phases analogous to a small distribution of heading directions.

85 This weighted-averaging model closely simulates individual trajectories in human experiments with
 86 virtual and real crowds [15], and generates robust collective motion in multi-agent simulations [20].
 87 So far, however, only groups of aligned virtual humans with small heading differences (10°) have
 88 been tested experimentally [15]. Here we investigate whether weighted averaging is sufficient to
 89 recruit pedestrians into collective motion in a wider range of crowd scenarios. Clearly, people can
 90 perform a variety of locomotor behaviors under intentional constraints, such as walking to a goal,
 91 following another pedestrian, and so on [21]. Thus, although collective motion can arise
 92 spontaneously, we study its formation under the intention to walk with a crowd.

93 To probe the limits of weighted averaging in humans, we performed three experiments in which the
 94 participant was asked to walk with a virtual crowd, allowing us to manipulate the motions of virtual
 95 humans (neighbors). Using virtual – as opposed to real – crowds enables precise experimental
 96 control, while still yielding meaningful insight into real-world behavior, as tests of virtual reality as a
 97 method have demonstrated [22, 23]. In each experiment, we perturbed the heading (walking)
 98 direction of neighbors in the crowd and measured the participant's heading response, the time series
 99 of their heading direction. In Experiment 1 (Noisy Neighbors), the heading directions of neighbors
 100 were randomized about the mean direction of the crowd, with a range up to 90° . The model closely
 101 predicts the human data, indicating that weighted averaging is highly robust. In Experiment 2
 102 (Splitting Crowd), the virtual crowd diverged into two groups, with an angle up to 40° between them,
 103 and the proportion of the crowd in the each group was varied. Surprisingly, participants head
 104 between the two groups, just as predicted by the weighted averaging model. In Experiment 3
 105 (Coherent Subgroup), the coherence of a perturbed subgroup was manipulated (heading Standard
 106 Deviation (SD) from 0° to 20°) within a noisy crowd (heading range 180°), and the proportion of the
 107 crowd in the subgroup was varied. Once again, heading responses were predicted by weighted
 108 averaging.

109 In each case, we find that participants align their heading with the weighted mean of the
 110 neighborhood, consistent with Rio, et al's [15] model. Moreover, as a larger proportion of neighbors
 111 turns, the mean heading deviation increases, and the strength of attraction to the neighborhood mean
 112 increases. Weighted averaging in humans is thus highly robust to crowd noise and diverging groups.
 113 The results show that individuals are not attracted to more coherent neighbors, but to the mean
 114 heading in their neighborhood. A common heading direction thus propagates across neighborhoods,
 115 providing a positive feedback that recruits more individuals into emerging collective motion.

116 2 General Method

117 2.1 Participants

118 Participants (10 in Experiment 1, 12 in Experiment 2, 12 in Experiment 3) were recruited at Brown
 119 University, had normal or corrected-to-normal vision, reported no motor impairments, and had not

120 participated in any other virtual crowd experiments. Informed consent was obtained from all
 121 participants, who were compensated for their time. The research protocol was approved by Brown
 122 University's Institutional Review Board, in accordance with the principles expressed in the
 123 Declaration of Helsinki.

124 **2.2 Equipment**

125 Experiments were conducted in the Virtual Environment Navigation Lab (VENLab) at Brown
 126 University. Participants walked freely in a 12m x 14m tracking area, while viewing a virtual
 127 environment in a stereoscopic head mounted display (HMD). The HMD's inter-ocular distance was
 128 adjusted for each participant. In Experiments 1 and 2, the HMD was an Oculus Rift CV1 (Irvine CA;
 129 94°H x 93°V field of view, 1080 x 1200 pixels per eye, 90 Hz refresh rate); stereoscopic displays
 130 were generated on a Dell XPS workstation and transmitted wirelessly to the HMD using two HDTV
 131 transmitters at a frame rate of 30-60 fps. Head position and orientation were recorded with an IS-900
 132 inertial/ultrasonic tracking system (Intersense, Billerica, MA) at a sampling rate of 60 Hz, with a total
 133 latency of 50-67ms. In Experiment 3, the HMD was a Samsung Odyssey (Seoul, S. Korea; 101°H x
 134 105°V field of view, 1440 H x 1600 V pixels per eye, 90 Hz refresh rate), and stereoscopic displays
 135 were generated on a backpack computer (MSi VR-One, New Taipei City, Taiwan) at a frame rate of
 136 45-90 fps. Head position and orientation were recorded with the Odyssey's inside-out tracking
 137 system, consisting of two cameras and an inertial measurement unit (90 Hz sampling rate,
 138 downsampled to 45 Hz), with a total latency of about 11ms.

139 **2.3 Displays**

140 The virtual environment was created in Vizard (Worldviz, Santa Barbara, CA) and consisted of a
 141 ground plane with a grayscale granite texture and a blue sky. A green start pole and a red orienting
 142 pole (radius 0.2m, height 3m) appeared 12.73 m apart. The crowd consisted of animated virtual
 143 humans (WorldViz Complete Characters) with 36 unique appearances, equal numbers of men and
 144 women, and diverse races and ethnicities. In Experiment 1, 24 of the appearances were randomly
 145 chosen and used for all trials. In Experiments 2 & 3, more than 36 virtual humans were presented, so
 146 some appearances were duplicated. Each of the human models was animated with a walking gait with
 147 randomly varied phase.

148 **2.4 Procedure**

149 Participants were instructed to "walk with the crowd" and to "treat the virtual humans as though they
 150 were real people". Two practice trials were used to familiarize participants with walking in the virtual
 151 environment, followed by a series of test trials. On each trial, the participant walked to the start pole
 152 and turned to face the orienting pole. After 2 s, the poles disappeared and the virtual crowd appeared;
 153 1 s later, the virtual crowd began walking and a verbal command ("Begin") was played through
 154 headphones. The display continued until the participant either walked for 10.4s or came within 1.5m
 155 of the room walls, whereupon the end of the trial was signaled by a verbal command ("End"). A new
 156 start pole then appeared, and the next trial began. Trials were presented in a randomized order unique
 157 to each participant.

158 **2.5 Data Processing and Analysis**

159 For each trial, the time series of head position in the horizontal (X-Y) plane was filtered using a
 160 forward and backward fourth-order low-pass Butterworth filter to reduce oscillations due to the step
 161 cycle and occasional tracker error. Time series of heading direction and walking speed were then

162 computed from the filtered position data. A 0.6 Hz cut-off was used when filtering the data for
 163 computing heading to reduce lateral oscillations on each stride, while a 1.0 Hz cutoff was used for
 164 computing speed to reduce anterior-posterior oscillations on each step. The first and last second of
 165 the time series were then truncated to eliminate “edge effects” due to filtering. Because the virtual
 166 crowd turned right (+ angles) or left (- angles) on an equal number of trials (where 0° is straight
 167 ahead), the data were left/right collapsed by multiplying the heading angle on left turn trials by -1.

168 To investigate possible effects of practice or fatigue, we performed a Pearson correlation between
 169 trial number and the mean final heading of all participants. In all three experiments, there was a near
 170 zero correlation between trial number and final heading. We thus combined trials regardless of order
 171 when computing the mean heading in each condition.

172 A mean time series was calculated for each participant in each experimental condition (see 3.2
 173 Design) by computing the mean value of heading at each time step. This averaging further reduced
 174 the noise due to gait oscillations, as well as any random variation between trials. The final heading on
 175 each trial was calculated as the average heading during the last two seconds of the time series, and
 176 the mean final heading was computed for each participant in each condition. To account for variation
 177 between trials within a condition, the variable error in final heading was calculated for each subject
 178 (the within-subject standard deviation (SD) of final heading).

179 The heading data were statistically analyzed using linear mixed effects (LME) regression (Matlab
 180 fitlme function, MathWorks, Natick, MA), with fixed effects corresponding to the experimental
 181 factors and their interactions, and a maximal random effects structure with a unique intercept for
 182 every participant, to account for between-subject differences. The main effects and interactions were
 183 tested by comparing statistical models in a step-down procedure that removes the tested term from
 184 the full model, using likelihood ratio chi-squared tests. The final model included only the
 185 statistically significant effects.

186 2.6 Simulation Procedure

187 Simulations of the weighted averaging model (Eq. 1) with fixed parameter values were performed
 188 using the Runge-Kutta method (Matlab ode45 function). For each trial, the participant’s initial
 189 position and heading were taken as the initial conditions, and the positions and velocities of virtual
 190 humans on that trial were treated as input. Because we only manipulated heading, the model’s speed
 191 was determined by the time series of the participant’s speed on that trial. The output was a time series
 192 of simulated heading for every trial in the experiment. To compare the simulations with the human
 193 data, we calculated the root mean squared error (RMSE) between the mean data time series for each
 194 participant in each condition and the corresponding mean simulated time series for each participant in
 195 each condition. We chose to calculate the error on mean time series, rather than individual trials, to
 196 reduce error due to gait oscillations, for we were not attempting to model gait. We used Bayes
 197 Factors to evaluate the strength of evidence for competing hypotheses.

198 3 Experiment 1: Noisy Neighbors

199 Experiment 1 tested the effect of adding noise into the heading directions of the virtual humans in a
 200 crowd. It is well known that, when viewing moving dots in the frontal plane (on a screen), the visual
 201 system integrates stochastic local motions to perceive the direction of coherent global motion, with a
 202 range of dot directions up to 90° [24]. Here we ask whether this holds for an observer embedded in a
 203 moving crowd, when viewing local motions in depth, in the horizontal plane.

204 The heading direction of each neighbor was selected from a uniform distribution with a mean of
 205 either $\pm 10^\circ$ or $\pm 20^\circ$ (left or right) and a range that varied from 0° (aligned) to 90° ($\pm 45^\circ$ about the
 206 mean) (see schematic in Figure 1A). If participants average the headings of neighbors in the
 207 neighborhood, their mean final heading should be close to the crowd mean. In addition, the model
 208 predicts that the variable error in a participant's heading response across trials should increase with
 209 the amount of crowd "noise". This prediction stems from the fact that the neighborhood average
 210 depends on distance and heading deviation of neighbors, which vary from trial to trial. If participants
 211 ignore neighbors with large heading deviations, we would expect the human variability to stop
 212 increasing at a critical noise level. We tested these hypotheses by measuring the participant's heading
 213 response as a function of crowd noise, and comparing the results to model simulations of the stimuli.

214 3.1 Displays

215 Twenty-four virtual humans were initially positioned at equal intervals on each of 6 concentric arcs
 216 (four neighbors on each arc) with the participant at the center. The arcs had radii of 2.5m to 7.5m (1m
 217 apart) and an eccentricity of -88° to $+88^\circ$ (176° total) about the participant's initial heading direction.
 218 These initial positions were jittered in depth and eccentricity on every trial; the amount of jitter was
 219 randomly selected from a Gaussian distribution in polar coordinates (radius Δr : SD = 0.5m;
 220 eccentricity $\Delta\theta$: SD = 5°).

221 At the beginning of each trial, the virtual humans appeared facing the orientation pole, with their
 222 backs to the participant; after 1s they began walking straight ahead (0° heading), accelerating from a
 223 stand-still (0 m/s) to a speed of 1.15 m/s over a period of 3s. One second later, the headings of the
 224 entire crowd were perturbed. Each virtual human was randomly assigned a heading sampled from a
 225 uniform distribution with a mean of $\pm 10^\circ$ or $\pm 20^\circ$ (left or right), and a range of $\pm 0^\circ$ (aligned), $\pm 15^\circ$,
 226 $\pm 30^\circ$, or $\pm 45^\circ$ about the mean. These headings were re-sampled for each trial and each participant,
 227 providing unique stimuli for every participant.

228 3.2 Design

229 Mean turn angle (10° , 20° , collapsed left/right) was crossed with noise range ($\pm 0^\circ$, $\pm 15^\circ$, $\pm 30^\circ$, $\pm 45^\circ$)
 230 to yield 8 experimental conditions. There were 12 repetitions per condition (half left and half right
 231 turns), for a total of 96 trials per participant.

232 3.3 Results

233 3.3.1 Final Heading

234 The participants' mean final heading in each condition appears in Figure 2A. It is clear that the mean
 235 response in the 10° turn condition (mean heading $M = 9.04^\circ$, cyan curve) and the 20° turn condition
 236 ($M = 20.30^\circ$, dark blue curve) are close to their respective crowd turn angles, and constant across noise
 237 conditions. Thus, participants closely match the crowd's mean heading in both aligned (0°) and very
 238 noisy crowds (up to $\pm 45^\circ$), consistent with spatial averaging.

239 An LME regression was used to analyze final heading, with fixed effects of crowd turn angle, crowd
 240 noise, and their interaction, and participants as random effects. The results (Table SM1A)
 241 demonstrate that only the crowd's turn angle significantly contributed to the variability in final
 242 heading ($\chi^2(1) = 33.50$, $p < 0.001$). The level of crowd noise was not significant, either as a main
 243 effect or an interaction with turn angle ($\chi^2(2) = 0.86$, $p = 0.650$). The regression analysis allows us to
 244 estimate that for every degree increase in the crowd turn angle, there is a corresponding 1.11° (± 0.08

245 SE) increase in the participants' final heading response. This pattern of results indicates that
 246 participants are attracted to the crowd's mean heading, regardless of the amount of crowd noise.

247 **3.3.2 Variable Error**

248 The mean variable error in each condition appears in Figure 2B, and was analyzed in a similar LME
 249 regression. The results (Table SM1B) show that only the crowd noise contributes to variability in the
 250 variable error ($\chi^2(1) = 31.09$, $p < 0.001$), while neither the turn angle nor the interaction between turn
 251 angle and crowd noise do so ($\chi^2(2) = 1.43$, $p = 0.490$). For every degree increase in the range of
 252 crowd noise (from 0° to 90°), the regression analysis estimates a corresponding 0.11° (± 0.01 SE)
 253 increase in the variable error. Thus, the variable error in a participant's final heading increases with
 254 crowd noise due to larger trial-to-trial variation in neighbor headings, as predicted by weighted
 255 averaging over the neighborhood.

256 **3.3.3 Heading Over Time**

257 The mean time series of heading in each condition appears in Figure 3. The strength of attraction to
 258 the neighborhood mean is reflected in the turning rate (rate of change in heading over time), where a
 259 steeper slope indicates a stronger attractor. According to the weighted averaging model (Equation 1),
 260 a larger turn angle (solid vs. dashed curves in Figure 3) should be more attractive because it creates a
 261 larger difference between the participant's current heading and the neighborhood mean. Somewhat
 262 counter-intuitively, attractor strength should be unaffected by increased heading noise that is
 263 symmetric about the crowd mean (colored curves in Figure 3), because this does not alter the
 264 neighborhood mean or the heading difference with the participant.

265 To compare attractor strength in different conditions, we analyzed the time series of heading using an
 266 LME regression with fixed effects of crowd turn angle, crowd noise, time, the interactions with time,
 267 and participants as random effects (see final model in Table SM1C). The results show that both the
 268 crowd turn angle ($\chi^2(1) = 15.50$, $p < 0.001$) and time ($\chi^2(1) = 58.93$, $p < 0.001$) had significant
 269 effects on mean heading. More importantly, so did their interaction ($\chi^2(1) = 37.42$, $p < 0.001$),
 270 indicating that the time series had steeper slopes in the 20° than the 10° turn condition (see Figure 3).
 271 On the other hand, there was no effect of crowd noise, the interaction between time and crowd noise,
 272 the interaction between crowd noise and crowd turn angle, or the three way interaction between
 273 noise, turn angle, and time ($\chi^2(4) = 1.50$, $p = 0.824$). This pattern of results is expected by weighted
 274 averaging.

275 **3.4 Simulations of Exp. 1**

276 To test the predictions of the weighted-average model (Eq. 1), every experimental trial was simulated
 277 using the model with a 90° field of view (see General Methods for details). The RMSE between the
 278 mean heading time series for the model and each participant in each condition was computed. This
 279 resulted in a mean RMSE of 4.06° ($\pm 0.70^\circ$ SD) for the experiment. This value can be compared with
 280 the performance of a null model that does not respond to the stimuli and simply moves straight ahead
 281 on each trial, providing an estimate of the floor for any model. The RMSE between the null model
 282 and the human data was 12.81° ($\pm 1.65^\circ$ SD), more than twice the error of the weighted-average
 283 model ($BF_{10} > 100$). The weighted-average model thus generates a steering trajectory over time that
 284 is quite close to the human data.

285 **3.4.1 Final Heading**

286 The model's mean final heading in each noise condition appears in Figure 2C. Like the human data
 287 in Figure 2A, the simulation curves are fairly flat and hover around the crowd mean. In the 20° turn
 288 condition, the model slightly undershoots the crowd mean at lower levels of noise and slightly
 289 overshoots at higher levels. Nevertheless, the overall pattern is similar to human subjects.

290 **3.4.2 Variable Error**

291 The mean variable error in final heading for model simulations is plotted as a function of crowd noise
 292 in Figure 2D. Again, note the similarity with the corresponding human data in Figure 2B – in both
 293 graphs, the response variability increases monotonically with crowd noise.

294 A model that computes the weighted average of neighbor headings thus predicts the observed
 295 increase in variable error as crowd noise increases. This finding strongly implies that the human
 296 response variability across trials is a direct result of averaging. On each trial, variation in the
 297 distances and headings of virtual neighbors produces a slightly different mean heading in the
 298 participant's neighborhood. With increasing crowd noise, the trial-to-trial variation in neighbor
 299 headings increases, yielding larger fluctuations in the neighborhood mean. Thus, the increase in
 300 variable error is a simple consequence of averaging noisy neighbors.

301 Taken together, the similarities between model predictions and human behavior provide strong
 302 evidence that participant heading responses are based on weighted averaging over the neighborhood,
 303 consistent with model (Equation 1).

304 **3.5 Discussion**

305 The results of Experiment 1 show that even with the noisiest neighbors, the participants' mean
 306 heading was still clustered around the mean heading of the crowd. This finding indicates that
 307 participants average the headings in their neighborhood when walking with a crowd. On the other
 308 hand, variable error in heading increased in proportion to crowd noise, due to heading fluctuations in
 309 the neighborhood from trial to trial. An analysis of the time series of heading found that the attractor
 310 strength of the crowd mean increased with turn angle but was unaffected by symmetric crowd noise.
 311 This result reveals that a pedestrian who deviates from the crowd will be recruited to align with the
 312 crowd mean, regardless of the level of noise; if all pedestrians obey this rule, the crowd will become
 313 progressively aligned. All of these findings are predicted by Rio, et al.'s [15] weighted averaging
 314 model, as demonstrated by the simulations. Weighted averaging in humans is thus highly robust to
 315 noise in crowd headings, and acts as a recruitment mechanism into collective motion.

316 **4 Experiment 2: Splitting Crowd**

317 If a crowd splits into two groups, will a pedestrian follow one group or walk in the average direction
 318 of the two groups? Previous studies have found that participants average all neighbors in a virtual
 319 crowd when the heading difference between two groups is 10° [15]. In Experiment 2, we investigate
 320 whether robust averaging extends to larger heading differences between groups. Rio, et al.'s. [15]
 321 model predicts that participants will continue to walk in the mean direction even with large angular
 322 differences between groups.

323 In the present experiment we manipulated the angular difference between the heading directions of
 324 two completely aligned groups ($\alpha = 10$ to 40°) and the proportion of the crowd in the majority group
 325 (50, 67 or 84%). On each trial, the virtual crowd began walking straight ahead, and then two groups

326 turned by the same angle ($\alpha/2$) left and right, and continued walking (see schematic in Figure 1B).
 327 The groups appeared as two spatially overlapping, continuously crossing streams, with new
 328 neighbors coming into view as others went out of view.

329 If participants average over their neighborhood, their final heading should align with the mean of the
 330 crowd – that is, they should walk between the two groups. Note that the crowd mean shifts from
 331 straight ahead (0°) toward the majority group as it increases in size, which should also lead the
 332 participant to turn at a faster rate due to the larger discrepancy from the neighborhood mean.
 333 Alternatively, if participants follow one group, then their final heading should align with that group.
 334 As the angular difference α between groups increases, we would expect to observe a transition from
 335 averaging to following if the limits of weighted averaging are reached. In that case, if participants are
 336 more attracted to the majority, their final heading should align with the larger group.

337 4.1 Displays

338 To create a display with two continuously crossing groups, the crowd consisted of 48 virtual humans
 339 initially positioned on six concentric 182° arcs, with radii of 1.6m to 6.6m (at 1m intervals), with
 340 eight virtual humans evenly spaced on each arc. Thus, many virtual humans were outside the 94°
 341 horizontal field of view of the HMD. These initial positions were then jittered by sampling from a
 342 uniform distribution in polar coordinates (radius Δr : SD = 0.15m; eccentricity $\Delta\theta$: range = -15° to
 343 15°) on every trial. The neighbors that were perturbed to the right were selected randomly in depth,
 344 but evenly distributed in eccentricity, such that no matter where the participant looked there was
 345 representation from each turn group. By default, the remainder of the crowd turned in the opposite
 346 direction such that the members of each group were spatially dispersed throughout the entire crowd.
 347 Consequently there were two continuous streams of neighbors crossing at the specified angle in the
 348 field of view.

349 On each trial, the virtual humans appeared with their backs to the participant. After 2s they began
 350 walking straight ahead (0°), accelerating from a stand-still to a speed of 1.15 m/s over a period of 2s.
 351 After a random interval (1.8s to 2.8s from the start of walking), a percentage of the crowd (50, 66 or
 352 84%) turned to the right by 5° , 10° , 15° or 20° , and the rest turned an equal angle to the left (or vice
 353 versa).

354 4.2 Design

355 Four angular differences ($\alpha = 10^\circ$, 20° , 30° or 40°) were crossed with three proportions (50, 66 or
 356 84%) in the majority, yielding 12 conditions. The proportions were left/right counter-balanced, but
 357 subsequently collapsed for analysis and normalized with the majority turning to the right. There were
 358 8 repetitions in each condition, for a total of 96 trials in a single 1-hour session.

359 4.3 Results

360 Histograms of mean final heading for each condition appear in Figure 4; the white arrows on the
 361 horizontal axis indicate the crowd mean in that condition. Note that the crowd mean (white arrows)
 362 and the center of the distribution shift together to the right as the proportion in the majority group
 363 increases (within each row); this shift is amplified by the angular difference between groups (within
 364 each column). This allows us to infer that participants generally walked in the mean heading
 365 direction of the crowd in all conditions, even with the largest angular difference between groups,
 366 consistent with the weighted averaging prediction. The spread of the distribution, increases with

367 angular difference (within each column), however, but does not appear to depend on the size of the
 368 majority (within each row). We consider these results in turn.

369 **4.3.1 Final Heading**

370 The mean final heading in each condition appears in Figure 5A, which clearly illustrates its
 371 dependence on the heading difference between groups (horizontal axis) and the percentage of
 372 neighbors in the majority (curves). With 50% of the crowd in each group, the mean heading is close
 373 to zero, for participants split the difference between them. But with majorities of 67% and 84%,
 374 mean final heading is biased toward the majority and increases with the angular difference.

375 We analyzed final heading using an LME regression with fixed effects of the angular difference (α),
 376 percentage in the majority, and their interaction, and participants as random effects (see final model
 377 in Table SM2A). Chi-squared likelihood ratio tests reveal a significant effect of angular difference
 378 ($\chi^2(1) = 59.71$, $p < 0.001$), a significant effect of percentage ($\chi^2(1) = 133.81$, $p < 0.001$), as well as a
 379 significant interaction between them ($\chi^2(1) = 16.81$, $p < 0.001$). The regression results allow us to
 380 estimate that going from a majority of 50% to 84% accounts for a $\sim 5.8^\circ$ increase in final heading,
 381 going from an angular difference of 10° to 40° accounts for a $\sim 4.4^\circ$ increase in final heading, and
 382 their interaction accounts for an additional $\sim 5.3^\circ$ increase in final heading. Thus, overall, mean final
 383 heading shifts both with an increase in angular difference and an increase in the size of the majority,
 384 as well as their interaction.

385 To determine whether heading responses were more aligned with the mean of the crowd or the mean
 386 of the majority group, we used simple linear regression. When the participants' mean final heading in
 387 each condition is regressed onto the crowd's mean heading (Figure 6A) there is a strong linear
 388 relationship ($R^2 = 0.94$) with a steep slope (0.714). In contrast, when mean final heading is regressed
 389 on the mean heading of the majority group (Figure 6B), there is a much weaker relationship ($R^2 =$
 390 .65) and a shallow slope (0.35). These results clearly indicate that participants average the headings
 391 of all neighbors, not just the majority group, as predicted by the weighted averaging model. The fact
 392 that the slope is less than 1 is likely due to the fact that trials with large perturbations often ended
 393 before the participant finished turning and heading stabilized (e.g. time series in Figure 7C,D). A
 394 Bayes Factor confirmed that the human final heading was closer to the crowd's mean heading (C)
 395 than the majority group's heading (G), $BF_{CG} > 100$, providing decisive evidence for the former
 396 hypothesis.

397 **4.3.2 Variable Error**

398 The mean variable error in final heading appears in Figure 5B. A participant's variability increases
 399 with the angular difference between groups (horizontal axis), but not with the proportion in the
 400 majority (curves). This effect occurs because the trial-to-trial variation in neighbor headings
 401 increased with the heading difference between groups, whereas the proportion of neighbors in each
 402 group merely shifted the mean heading in the neighborhood, and is consistent with weighted
 403 averaging over the neighborhood.

404 A similar mixed effects linear regression was used to analyze variable error in heading (final model
 405 in Table SM2B). Chi-squared likelihood ratio tests reveal a significant effect of angular difference
 406 ($\chi^2(1) = 75.32$, $p < 0.001$), but no effect of majority size ($\chi^2(1) = 0.02$, $p = 0.90$), nor an interaction
 407 between them ($\chi^2(1) = 0.23$, $p = 0.63$). The regression results allow us to estimate that going from an
 408 angular difference of 10° to 40° accounts for a 5.12° increase in the variable error.

409 **4.3.3 Heading Over Time**

410 The mean time series of heading in each condition appear in Figure 7 (blue curves), where Panels A
 411 to D correspond to the angular difference between groups (10° to 40° , respectively). According to the
 412 weighted averaging model, attraction strength, and hence the rate of change in heading, should
 413 increase with the difference between the crowd mean and the participant's initial heading (0°).
 414 Consistent with this expectation, the slope of the time series appears to increase with both the size of
 415 the majority (curves) and the angular difference between groups (panels) – with the exception of the
 416 50% condition, which predicts a heading near 0° .

417 Heading over time was analyzed using an LME regression with fixed effects of angular difference,
 418 percentage in the majority, time, and their interactions, and participants as random effects (final
 419 model in Table SM2C). The results show that time ($\chi^2(1) = 22.29$, $p < 0.001$), the interaction of
 420 angular difference and time ($\chi^2(1) = 15.68$, $p < 0.001$), the interaction of percentage and time ($\chi^2(1)$
 421 = 27.09 , $p < 0.001$), and the three-way interaction ($\chi^2(1) = 10.32$, $p = 0.001$) have significant effects
 422 on heading. The two-way interactions indicate that the turning rate (slope) increases with both the
 423 percentage in the majority and the angular difference between groups; the three-way interaction
 424 indicates an additional effect of the combined factors on turning rate. This analysis confirms that the
 425 attraction strength of the crowd mean increased with its deviation from the participant's initial
 426 heading.

427 **4.4 Simulations of Exp. 2**

428 To compare the data with predictions of the weighted-averaging model (Eq. 1), all experimental trials
 429 were simulated using a 90° field of view similar to the Oculus Rift HMD (see General Methods for
 430 details). Histograms of the simulated final heading in each condition appear in Figure 8. Visual
 431 comparison with the histograms of the human data (Figure 4) reveals similar unimodal distributions
 432 centered around the overall crowd mean (white arrows), although they are less variable than the
 433 human data. (The lower variability is attributable to the fact that the model does not simulate gait
 434 oscillations and tracker error.) The impression is supported by graphs of the model's mean final
 435 heading (Figure 5C) and the mean variable error (Figure 5D) in each condition, which are quite
 436 similar to the corresponding plots of the human data (Figure 5A,B).

437 To measure the model's performance we calculated the RMSE between the time series of heading for
 438 the model and the participant on every trial. The mean RMSE for Experiment 2 (excluding the 50%
 439 condition) was 4.35° ($\pm 1.55^\circ$ SD), which is better than the RMSE for the null "do nothing" model of
 440 6.12° ($\pm 1.65^\circ$ SD). A Bayes Factor comparing them provides decisive evidence that the weighted
 441 averaging model outperforms the null model ($BF_{10} > 100$). Mean heading time series for the model
 442 in each condition appear in Figure 7E-H, revealing their similarity to the human mean time series
 443 (Figure 7A-D). The comparable pattern of slopes confirms that the increase in attraction strength as
 444 the crowd mean deviates from the agent's initial heading follows from the dynamics of weighted
 445 averaging.

446 We also used simple linear regressions to compare the weighted averaging model's alignment with
 447 the crowd mean and with the majority group. When the model's mean final heading in each condition
 448 is regressed on the crowd mean (Figure 6C) there is a strong linear relationship ($R^2 > 0.99$) with a
 449 steep slope (0.898). In contrast, when mean final heading is regressed on the majority group's
 450 heading (Figure 6D) there is a much weaker relationship ($R^2 = .47$) and a shallow slope (0.38). The
 451 similarity with the human regressions (Figure 6A, B) confirms that participants averaged the

452 headings in their neighborhood, as predicted by the weighted averaging model, rather than following
 453 the majority group.

454 **4.5 Discussion**

455 The results of Experiment 2 reveal that when a crowd splits into two continuously crossing groups
 456 heading to the left and right, participants align with the mean heading in all conditions, even with a
 457 large angular difference of 40° . As the size of the majority group increases, the final heading shifts
 458 along with the crowd mean. Human averaging is thus highly robust not only to noise but to
 459 diverging groups in a crowd. The data are quite close to the model predictions, evidence that humans
 460 rely on a weighted average of headings in their neighborhood.

461 To test whether weighted averaging generalized to groups that separated in space, we repeated the
 462 experiment with a virtual crowd consisting of 8 or 16 virtual humans that diverged into two visibly
 463 separate groups (see Supplementary Material). The spatial separation of the two groups increased
 464 through the trial, so up to half of the neighbors had moved out of the field of view by the end of a
 465 trial. Nevertheless, the results were the same: The participants' mean final heading was more closely
 466 aligned with the crowd mean than the majority group, as were model simulations of the stimuli.
 467 Thus, even with visibly separate groups, participants followed the crowd mean, consistent with
 468 robust weighted averaging.

469 It is important to note that in our splitting crowd experiments, only the virtual humans appeared in
 470 the display. In many real-world situations, two subgroups might be moving toward two visible goals,
 471 such as marked exits. An explicit choice between two alternatives would add competing attractors to
 472 the crowd dynamics. For example, Kinateder and Warren [25] studied an emergency evacuation
 473 scenario in which a virtual crowd split into two subgroups that walked to two visible exits. In this
 474 situation the authors did not observe weighted averaging, but rather a tradeoff between following the
 475 majority and going to the uncrowded exit, which depended on both the size of the crowd and the
 476 width of the exit. In a subsequent article, we plan to report a model of choice behavior in which
 477 nonlinear competition between alternatives is added to the weighted averaging model. The present
 478 findings highlight the robust nature of averaging in the absence of explicit alternatives.

479 **5 Experiment 3: Coherent Subgroup**

480 Experiments 1 and 2 demonstrated that participants align with a crowd by spatially averaging over
 481 both 'noisy neighbors' and diverging groups. This alignment behavior is well characterized by the
 482 weighted averaging model (Equation 1). In Experiment 3, we investigate whether weighted averaging
 483 extends to a coherent subgroup within a noisy crowd. According to the perceptual grouping principle
 484 of 'common fate' [26], elements that move together in the frontal plane tend to be perceived as a
 485 group. Similarly, if a subgroup of neighbors in a noisy crowd moves in a common direction in depth,
 486 they might be perceived as a unit and attract a pedestrian to align with them. On the other hand, there
 487 is also evidence that it is difficult to identify a coherently moving group of elements amid incoherent
 488 element motions [27].

489 In the present experiment, the participant was immersed in a noisy crowd whose members walked in
 490 random directions within a range of 180° ($\pm 90^\circ$ centered on the participant's heading). After a few
 491 seconds, a subgroup of neighbors that were interspersed in the crowd turned with a mean angle of
 492 $\pm 20^\circ$ (right or left) (see schematic in Figure 1C). The coherence of the subgroup was manipulated by
 493 selecting their individual headings from a Gaussian distribution with an SD of 0° (aligned), 10° , or

494 20° about the mean. In addition, the proportion of the crowd in the subgroup was varied (0%, 25%,
 495 50%, 75%, or 100%), shifting the mean heading of the entire crowd from 0° to 20°.

496 If participants are attracted to align with a coherent subgroup, their final heading should match the
 497 subgroup's mean heading (20°), and the attraction strength should increase with the subgroup's
 498 coherence. On the other hand, according to the weighted-averaging model participants should align
 499 with the crowd mean in all conditions. The model thus predicts that final heading will gradually shift
 500 from 0° to 20° as the subgroup proportion increases from 0% to 100%, whereas attraction strength
 501 will be unaffected by subgroup coherence. The model also predicts that variable error will decrease
 502 as the subgroup proportion increases, because this reduces the overall noise in the crowd; for the
 503 same reason, variable error may also decrease slightly as the subgroup becomes more coherent. The
 504 pattern of results once again supports robust weighted averaging.

505 5.1 Displays

506 The virtual crowd consisted of 48 virtual humans. Each virtual human was initially positioned in
 507 polar coordinates with a radius ranging from 1.6m to 6.6m (1m apart) in depth, and a theta ranging
 508 from 91° to -91° (26° apart) in eccentricity. Their positions were then jittered by sampling from a
 509 uniform distribution in polar coordinates (Δr : SD = 0.15m; $\Delta\theta$: range = -16° to 16°) on every trial.

510 On each trial, the virtual humans appeared facing in directions randomly selected from a uniform
 511 distribution with a range of $\pm 90^\circ$, centered on the participant's initial heading (0°), and accelerated
 512 from a stand-still (0 m/s) to a speed of 1.15 m/s over a period of 3 seconds. After a random interval
 513 (2.5s to 3.5s from the start of walking), a subgroup of virtual humans (0%, 25%, 50%, 75%, or 100%
 514 of the crowd), evenly spaced in eccentricity and depth, was perturbed: each turned and walked in a
 515 new heading direction selected from a Gaussian distribution with a mean of $\pm 20^\circ$ (positive values to
 516 the right), and an SD of 0°, 10°, or 20° (subgroup coherence).

517 5.2 Design

518 The factors of subgroup proportion (0%, 25%, 50%, 75%, 100%) and subgroup coherence (SD = 0°,
 519 10°, or 20°) were crossed, yielding 15 experimental conditions. There were 8 repetitions per
 520 condition (half left and half right turns), for a total of 120 trials in a one-hour session.

521 5.3 Results

522 5.3.1 Final Heading

523 Mean final heading in each condition appears in figure 9A. If participants align with the coherent
 524 subgroup, mean final heading should be close to 20° in all conditions (except the 0% condition,
 525 which predicts no response). However, final heading gradually shifted with the percentage of the
 526 crowd in the subgroup, consistent with weighted averaging. There appears to be no systematic
 527 relationship between final heading and crowd coherence (curves).

528 Final heading was analyzed using an LME regression with fixed effects of subgroup percentage,
 529 subgroup coherence, and their interaction, and participants as random effects (see final model in
 530 Table SM3A). The analysis reveals that only the subgroup percentage had a significant effect on
 531 final heading ($\chi^2(1) = 24.18$, $p < 0.001$), with no effect of subgroup coherence or interaction ($\chi^2(2) =$
 532 1.58, $p = 0.457$). The regression estimate indicates that for every percent increase in the subgroup
 533 size, there was 0.19° (± 0.02 SE) increase in final heading.

534 Bayes Factors were calculated to assess whether the human mean final heading was closer to the
 535 subgroup mean (20°) or the crowd mean in the neighborhood (as measured by the weighted-
 536 averaging model), for conditions in which these predictions differ (25%, 50%, 75% in the subgroup).
 537 The results indicated that the human data were closer to the crowd mean (C) than the subgroup mean
 538 (G) in the 25% subgroup condition ($BF_{CG} = 67.7$), very strong evidence favoring the crowd mean.
 539 The data did not distinguish the two hypotheses in the 50% ($BF_{CG} = 1.02$) or 75% ($BF_{CG} = 1.01$)
 540 conditions, however, as the predicted difference became smaller and the maximum heading response
 541 was reached (about 18.79°). These results indicate that participants aligned with the crowd mean in
 542 their neighborhood, which was meaningfully different from the subgroup mean in the 25% condition.

543 5.3.2 Variable Error

544 The mean variable error in final heading (Figure 9B) decreases with the subgroup percentage, and
 545 also appears to decrease with as the subgroup becomes more coherent (curves).

546 A similar LME regression was used to analyze variable error in final heading (the final model
 547 appears in Table SM3B). Chi-squared likelihood ratio tests revealed significant effects of both
 548 subgroup percentage ($\chi^2(1) = 23.30$, $p < 0.001$) and subgroup coherence ($\chi^2(1) = 4.48$, $p = 0.035$),
 549 with no interaction ($\chi^2(1) = 0.010$, $p = 0.752$). The statistical model indicates that for every point
 550 increase in the subset percentage, there was a 0.21° (± 0.03 SE) decrease in a participant's variable
 551 error. It also reveals that for every degree of increase in the subgroup's SD (i.e., decrease in
 552 coherence), there was a corresponding 0.36° (± 0.13 SE) increase in a participant's variable error.

553 Both of these effects can be attributed to the total noise in the virtual crowd, much as observed in
 554 Experiment 1. First, as the percentage of virtual humans in the coherent subgroup goes up, the
 555 number of random headings in the rest of the crowd goes down; there is thus less heading variation in
 556 the neighborhood from trial to trial, so the variability in the participant's response is reduced. Second,
 557 as the coherence of the subgroup goes up, the total heading variation in the crowd decreases slightly
 558 – enough to reduce the participant's variable error. Thus, both effects are expected from a weighted-
 559 average neighborhood. We compare the predictions of the model in the following simulations.

560 5.3.3 Heading Over Time

561 The mean time series of heading in each condition appear in Figure 10. Turning rate (slope) tends to
 562 increase with subgroup percentage (curves). An LME regression analysis reveals a significant effect
 563 of time ($\chi^2(1) = 57.70$, $p < 0.001$), and a significant interaction of the subgroup percentage and time
 564 ($\chi^2(1) = 12.33$, $p < 0.001$). There was no effect of subgroup coherence, the interaction of coherence
 565 and time, the interaction between subgroup coherence and subgroup percentage, or the three-way
 566 interaction between time, subgroup percentage, and subgroup coherence ($\chi^2(4) = 4.08$, $p = 0.396$)
 567 (see Table SM3C for final statistical model). This finding indicates that a larger subgroup was more
 568 attractive not because it was more coherent, but because it increased the deviation of the crowd's
 569 mean from the participant's current heading.

570 5.3.4 Simulations of Exp. 3

571 To compare the results with the weighted-averaging predictions, the experimental trials were
 572 simulated as before, using a 110° horizontal field of view similar to the Odyssey HMD. The average
 573 RMSE between the mean time series for each participant in each condition and the corresponding
 574 mean simulated time series was 9.24° ($\pm 4.23^\circ$ SD). For purposes of comparison, this value is better
 575 than the RMSE of 11.73° ($\pm 2.41^\circ$ SD) for the null model that moves straight ahead ($BF_{10} > 100$), but
 576 worse than the weighted-average model for the noisy neighbors in Experiment 1 (mean RMSE =

577 4.19°). This suggests that participants in the present experiment may not have been averaging all
 578 headings in the neighborhood.

579 To investigate the source of this discrepancy, we broke down the mean RMSE by condition (see SM
 580 Figure 7). The mean RMSE decreases linearly as a function of subgroup proportion, as overall crowd
 581 noise decreases. Thus, the discrepancy between the model and human data is greatest in the 0% and
 582 25% conditions, when most of the crowd has random headings in a 180° range, and lowest in the
 583 75% and 100% conditions, when most of the crowd has headings within a narrow range (SD=0° to
 584 20°). This pattern implies that participants may be ignoring neighbors with highly discrepant
 585 headings (>45°) that are greater than those in Experiment 1 (<45°).

586 5.3.5 Final Heading

587 The model's final heading in each condition appears in Figure 9B. Note the similarity with the
 588 human data in Figure 9A: in both cases, the final heading monotonically shifts toward the subgroup
 589 mean (20°) as the subgroup percentage grows. Thus, the mean model output predicts the mean human
 590 heading quite well, consistent with weighted averaging.

591 5.3.6 Variable Error

592 The model's mean variable error in final heading in each condition appears in Figure 9D. The graph
 593 is similar to the corresponding human variable error (Figure 9B): response variability decreases
 594 monotonically with the subgroup percentage, consistent with averaging a less noisy crowd (cf.
 595 Experiment 1, Figure 2B). There are, however, two notable differences.

596 First, the model variable error is markedly higher than the human error in the 0% and 25% subgroup
 597 conditions. This confirms that participants are ignoring highly discrepant neighbors. Compare the
 598 present variable error (Figure 9B and D, 0% condition) with that in Experiment 1 (Figure 2B and D,
 599 ±45° condition): the model's variable error is much greater in the present experiment with crowd
 600 noise of ±90° (about 40°) than in Experiment 1 with crowd noise of ±40° (about 13°) – but the human
 601 variable error is the same in the two experiments (about 12°). This comparison reveals that, whereas
 602 the model averages all headings, participants ignore large heading differences (>45°), thus reducing
 603 human variable error.

604 Second, the model variable error shows no consistent ordering by subgroup coherence (Figure 9D,
 605 curves), whereas there was a significant effect of coherence on human variable error (Figure 9B). We
 606 suspect that, because participants ignored highly discrepant headings, they were sensitive to the slight
 607 reduction in overall crowd noise produced by a more coherent subgroup. In contrast, because the
 608 model is strongly influenced by discrepant headings, this slight reduction in noise had little effect on
 609 its variable error.

610 In sum, the patterns of RMSE and variable error indicate that participants ignore neighbors with
 611 highly discrepant headings (>45°). This leads humans to be less influenced by extreme crowd noise
 612 than predicted by the weighted-averaging model.

613 5.4 Discussion

614 Experiment 3 tested the hypothesis that participants would be attracted to align with a coherent
 615 subgroup in a noisy crowd, and that this attraction would increase with subgroup coherence. In
 616 contrast, the results were consistent with robust weighted averaging: mean final heading gradually
 617 shifted together with the crowd mean as the percentage in the subgroup increased from 0% to 100%.

618 Moreover, the strength of attraction did not increase with the subgroup's coherence, but with the
 619 deviation of the crowd's mean heading from the participant's current heading. These results support
 620 the weighted averaging model.

621 In addition, the pattern of errors clearly indicates that humans ignore highly discrepant headings that
 622 differ from the participant's current heading by $>45^\circ$. In other words, human weighted averaging
 623 only extends over heading differences of 0° - 45° , suggesting a modest revision to the model.

624 The results of this experiment reveal an essential property of the mechanism of recruitment. One
 625 might expect that a pedestrian would be more attracted to a group of neighbors as their coherence
 626 (degree of alignment) increased, consistent with the principle of common fate. This response would
 627 amplify the alignment in the crowd and recruit more individuals into collective motion. In contrast,
 628 however, we find that a subgroup is not attractive due to its coherence, but due to its effect on the
 629 mean heading deviation in an individual's neighborhood. We consider the implications of this
 630 finding in the concluding section.

631 6 Conclusion

632 In three experiments, we asked participants to walk with a virtual crowd in several scenarios.
 633 Experiment 1 added noise in the heading directions of crowd members (range up to 90°), and found
 634 that participants aligned with the crowd mean in all conditions. Experiment 2 presented two
 635 diverging groups (angular difference up 40°) and varied their proportions, and again found that
 636 participants aligned with the crowd's mean heading rather than following one group. In Experiment
 637 3, a coherent subgroup in a noisy crowd (range 180°) was perturbed, and participants once again
 638 aligned with the mean heading of the crowd rather than the subgroup. Taken together, these results
 639 show that weighted averaging in humans is highly robust: pedestrians align with the mean heading
 640 direction in their neighborhood, just as predicted by Rio, et al's [15] soft metric model (Equation 1).
 641 However, the results indicate that weighted averaging is limited to heading differences of 0° - 45° , and
 642 humans ignore highly discrepant neighbors ($>45^\circ$).

643 Weighted averaging within a spatial neighborhood thus provides a mechanism of self-organization: a
 644 positive feedback that recruits an increasing number of individuals into collective motion. But how,
 645 exactly, is this positive feedback to be understood? First, consider the phenomenon from the
 646 perspective of an individual pedestrian. It would seem intuitive that an individual is more strongly
 647 attracted to align with neighbors that are more coherent (aligned with each other); in this way, the
 648 individual would increase the attractiveness of the emerging collective. But this type of positive
 649 'coherence' feedback does not follow from Equation 1 and is empirically disconfirmed by
 650 Experiments 1 and 3: neighbors that are more coherent (aligned) do not in fact increase the
 651 attractiveness of their mean heading. Rather, as predicted by Equation 1, attraction strength increases
 652 with the deviation of the neighborhood mean from the individual's current heading (Figures 3, 7, 10).

653 Now consider the phenomenon from the perspective of the collective. When a few neighbors move
 654 in a similar heading direction, they shift the mean heading in adjacent neighborhoods toward that
 655 direction. The adjacent neighbors are attracted to their new neighborhood mean – with a strength that
 656 increases with their current deviation from the mean – which in turn contributes to a common
 657 heading direction in more neighborhoods, in a self-reinforcing cascade. This common heading thus
 658 propagates through the crowd, yielding emergent collective motion. This type of positive 'heading'
 659 feedback is a result of weighted averaging over a soft metric neighborhood, and follows from
 660 Equation 1.

661 In sum, the present experimental evidence and model simulations indicate that robust weighted
 662 averaging provides a mechanism of self-organization in human crowds, which acts to recruit
 663 individuals into emerging collective motion through a positive ‘heading’ feedback.

664

665 **7 Figure Captions**

666 Figure 1. Schematics of experimental designs. **(A)** Experiment 1, Noisy Neighbors: The participant
 667 (black figure) was immersed in a crowd of virtual humans (orange figures, $n = 24$) that had ‘noisy’
 668 heading directions (small black arrows) about the crowd mean (large orange arrow, 10° or 20° left or
 669 right). Individual headings were randomly selected from a uniform distribution centered on the crowd
 670 mean (orange vector on right), with a range of 0° , $+- 15^\circ$, $+- 30^\circ$, or $+- 45^\circ$ (set of black vectors on
 671 right). **(B)** Experiment 2, Splitting Crowd: The participant (black figure) was immersed in a virtual
 672 crowd ($n=48$) that split into two groups, each turning by the same angle to the left (blue figures) and
 673 to the right (red figures). We manipulated the angular difference between the heading of the two
 674 groups ($\alpha = 10^\circ, 20^\circ, 30^\circ$ or 40°) and the proportion of the crowd in the majority group (50, 66 or
 675 84%). The two groups formed continuously crossing streams and did not spatially separate. If the
 676 participant rotated their head, members of both groups appeared in the field of view (gray shading) in
 677 an approximately constant proportion. **(C)** Experiment 3, Coherent Subgroup: The participant (black
 678 figure) was immersed in a crowd of virtual humans ($n=48$) with very noisy heading directions
 679 sampled from a uniform distribution (range $\pm 90^\circ$, centered on 0° heading). A subgroup of the crowd
 680 (orange figures and arrows) turned left or right with a mean heading of 20° (large orange arrow), and
 681 their coherence was manipulated (heading SD = $0^\circ, 10^\circ, 20^\circ$), while the rest of the crowd continued
 682 walking in the same directions (gray figures and arrows). The proportion of the crowd in the
 683 subgroup (0%, 25%, 50%, 75%, or 100%) was also varied.

684 Figure 2. Results of Experiment 1. **(A)** Mean final heading as a function of crowd noise (heading
 685 range in the virtual crowd), for human participants. Curves represent the crowd’s mean turn angle.
 686 **(B)** Mean variable error in final heading across trials as a function of crowd noise, for the
 687 participants. **(C)** Model simulations of mean final heading and **(D)** mean variable error,
 688 corresponding to the human data in panels A and B. For both human and model, final heading
 689 increases with crowd turn angle, whereas variable error increases with crowd noise. Error bars
 690 represent the standard error of the mean (\pm SEM).

691 Figure 3. Mean time series of heading for participants in Experiment 1. Dashed curves represent
 692 crowd turns of 10° , solid curves represent 20° turns; color denotes the crowd noise level (heading
 693 range). The data are aligned so the heading perturbation occurs as $t=0$. Slopes indicate the
 694 attractiveness of the mean heading in the participant’s neighborhood.

695 Figure 4. Histograms of final heading for each condition in Experiment 2. **(A-L)** Panels represent the
 696 frequency of final heading (2.5° intervals) for all trials in that condition, where positive heading
 697 values are in direction of the majority group. Columns represent the proportion of the crowd in the
 698 majority group, rows represent the angular heading difference between the two groups. White arrows
 699 indicate the overall mean heading of the entire crowd in the corresponding condition, which shifts
 700 rightward as the proportion in the majority grows and as the angular difference increases. Data
 701 cluster around the crowd mean in each condition.

702 Figure 5. Results of Experiment 2. **(A)** Mean final heading and **(B)** mean variable error as a function
 703 of the angular difference between groups, where positive heading values are in the direction of the

704 majority group. Curves represent the proportion of the crowd in the majority. Panels A and B
 705 summarize the data in the histograms of Figure 4. **(C)** Model simulations of mean final heading and
 706 **(D)** mean variable error corresponding to the human data in panels A and B. For human and model,
 707 final heading increases with both the proportion in the majority and the angular difference, whereas
 708 the variable error only increases with angular difference. Error bars represent the standard error of the
 709 mean (\pm SEM).

710 Figure 6. Did participants follow the majority or the crowd average in Experiment 2? Linear
 711 regression of mean final heading on **(A)** the mean heading of the crowd or **(B)** the heading of the
 712 majority subgroup in each condition. **(C, D)** Corresponding linear regressions for simulations of the
 713 weighted-averaging model. Regression slopes and correlations (R^2) on each panel indicate that final
 714 heading is much closer to the crowd mean than the majority for both humans and model.

715 Figure 7. Mean time series of heading for each condition in Experiment 2. **(A-D)** Human heading
 716 over time at each angular difference, $\alpha = 10^\circ, 20^\circ, 30^\circ$, and 40° , respectively. Curves represent the
 717 percentage of the crowd in the majority group (solid = 84%, dash-dot = 67%, dashes = 50%). **(E-H)**
 718 Model simulations of heading over time in the corresponding conditions. Slopes indicate the
 719 attractiveness of the mean heading in the neighborhood, which increases with both independent
 720 variables for the model and human participants. The weighted averaging model thus predicts the
 721 increase in attraction strength with the deviation of the neighborhood mean from the participant's
 722 initial heading.

723 Figure 8. Histograms of final heading for model simulations of Experiment 2. **(A-L)** Panels represent
 724 the frequency of final heading (2.5° intervals) for all simulated trials in each condition, same layout
 725 as Figure 4. Although the spread of the model histograms is narrower than the human histograms, the
 726 clustering about the crowd mean in each condition (white arrows) is quite similar.

727 Figure 9. Results of Experiment 3. **(A)** Mean final heading and **(B)** mean variable error as a function
 728 of the proportion of the crowd in the subgroup, for participants. Curves represent the coherence of
 729 headings in subgroup. **(C)** Model simulations of mean final heading and **(D)** mean variable error
 730 corresponding to the data in panels A and B. See text for comparisons. Error bars represent the
 731 standard error of the mean (\pm SEM).

732 Figure 10. Mean time series of heading for each condition in Experiment 3. **(A, B, C)** Human
 733 heading over time in each coherence condition ($SD=0^\circ, 10^\circ, 20^\circ$, respectively). Curves represent the
 734 proportion of the crowd in the subgroup. **(D, E, F)** Model simulations of heading over time in the
 735 corresponding conditions. Slopes indicate the attractiveness of the mean heading in the
 736 neighborhood, and are highly similar for humans and model: they increase with subgroup proportion,
 737 but not with subgroup coherence.

738 8 Conflict of Interest

739 *The authors declare that the research was conducted in the absence of any commercial or financial
 740 relationships that could be construed as a potential conflict of interest.*

741 9 Author Contributions

742 T.W. and W.W. designed the research; T.W. performed the experiments, statistically analyzed the
 743 data, and simulated the results; T.W. wrote the first draft and W.W. revised and wrote sections of the
 744 manuscript. Both authors read and approved the submitted version.

745 **10 Funding**

746 This research was supported by the U.S. National Science Foundation, award numbers BCS-1431406
747 and BCS-1849446 to the second author, and by a Link Foundation Fellowship to the first author.

748 **11 Acknowledgments**

749 The authors thank Gregory Dachner and Brittany Baxter for their assistance with model simulation
750 and statistical analysis.

751 **12 Contribution to the Field Statement**

752 In human crowds, like many other animal groups, ‘flocking’ behavior emerges from local
753 interactions between individuals, through a process of self-organization. Mathematical models have
754 shown that collective motion results if each individual aligns with the weighted average of the
755 velocities of their neighbors, where the weights decay with neighbor distance. In this paper, we show
756 how weighted averaging provides a mechanism of self-organization by recruiting individuals to align
757 with their neighbors. In three experiments in Virtual Reality, we investigate the limits of weighted
758 averaging in humans and find that it is surprisingly robust. Participants were immersed in a virtual
759 crowd in a mobile head-mounted display, and were asked to “walk with the crowd”. We find that
760 pedestrians align with the mean heading direction in their neighborhood, despite high levels of crowd
761 noise, a crowd that splits into two groups, or a subgroup that diverges from the crowd. The results
762 were closely predicted by a weighted-averaging model. Because each individual aligns with the
763 mean heading in their neighborhood, weighted averaging provides a positive feedback that recruits
764 more individuals into alignment, generating collective motion. Weighted averaging thus serves as a
765 mechanism of self-organization in human crowds.

766 **13 Data Availability Statement**

767 The datasets generated for this study can be found in the Brown Digital Repository
768 [<https://doi.org/10.26300/6wv7-r075>

769

770 **14 References**

- 771 1. Couzin ID, Krause J. Self-organization and collective behavior in vertebrates. *Advances in the*
772 *Study of Behavior*. 2003;32:1-75.
- 773 2. Sumpter DJT. *Collective animal behavior*. Princeton, NJ: Princeton University Press; 2010.
- 774 3. Reynolds CW. Flocks, herds, and schools: a distributed behavioral model. *Computer Graphics*.
775 1987;21:25-34.
- 776 4. Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective memory and spatial sorting in
777 animal groups. *Journal of Theoretical Biology*. 2002;218:1-11.
- 778 5. Grégoire G, Chaté H, Tu Y. Moving and staying together without a leader. *Physica D: Nonlinear*
779 *Phenomena*. 2003;181(3-4):157-70.
- 780 6. Giardina I. Collective behavior in animal groups: theoretical models and empirical studies. *HFSP*
781 *Journal*. 2008;2(4):205-19.
- 782 7. Helbing D, Molnár P. Social force model of pedestrian dynamics. *Physical Review E*.
783 1995;51:4282-6.
- 784 8. Duives DC, Daamen W, Hoogendoorn SP. State-of-the-art crowd motion simulation models.
785 *Transportation Research Part C: Emerging Technologies*. 2013;37:193-209.
- 786 9. Moussaïd M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and
787 crowd disasters. *Proceedings of the National Academy of Sciences*. 2011;108(17):6884-8.
- 788 10. Helbing D, Molnár P, Farkas I, Bolay K. Self-organizing pedestrian movement. *Environment and*
789 *Planning B: Planning and Design*. 2001;28:361-83.
- 790 11. Moussaïd M, Guillot EG, Moreau M, Fehrenbach J, Chabiron O, Lemercier S, et al. Traffic
791 instabilities in self-organized pedestrian crowds. *PLoS Comput Biology*. 2012;8(3):e1002442.
- 792 12. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system
793 of self-driven particles. *Physics Review Letters*. 1995;75(6):1226-9.
- 794 13. Czirók A, Stanley HE, Vicsek T. Spontaneously ordered motion of self-propelled particles.
795 *Journal of Physics A: Mathematical and General*. 1997;30:1375-85.
- 796 14. Cucker F, Smale S. Emergent behavior in flocks. *IEEE Transactions on automatic control*.
797 2007;52(5):852-62.
- 798 15. Rio KW, Dachner GC, Warren WH. Local interactions underlying collective motion in human
799 crowds. *Proceedings of the Royal Society B*. 2018;285(1878): 20180611.
- 800 16. Grasso R, Prevost P, Ivanenko YP, Berthoz A (1998) Eye-head coordination for the steering of
801 locomotion in humans: an anticipatory synergy. *Neurosci Lett* 253:115-118.
- 802 17. Dachner G, Warren WH. Behavioral dynamics of heading alignment in pedestrian following.
803 *Transportation Research Procedia*. 2014;2:69-76.
- 804 18. Dörfler, F., and Bullo, F. (2011). On the critical coupling for Kuramoto oscillators. *SIAM Journal*
805 *on Applied Dynamical Systems* 10, 1070-1099.
- 806 19. Strogatz, S.H. (2000). From Kuramoto to Crawford: exploring the onset of synchronization in
807 populations of coupled oscillators. *Physica D: Nonlinear Phenomena* 143, 1-20.

808

809 20. Warren WH, Dachner GC. Comparing simple-radius and doughnut models of collective crowd
810 motion. *Journal of Vision*. 2018;18(10):1038.

811 21. Warren WH, Fajen BR. Behavioral dynamics of visually-guided locomotion. In: Fuchs A, Jirsa
812 V, editors. *Coordination: Neural, behavioral, and social dynamics*. Heidelberg: Springer; 2008. p.
813 45-75.

814 22. Kinateder, M., Wirth, T. D., & Warren, W. H. (2018). Crowd dynamics in virtual reality.
815 In *Crowd Dynamics, Volume 1* (pp. 15-36). Birkhäuser, Cham.

816 23. Kinateder, M., & Warren, W. H. (2016). Social influence on evacuation behavior in real and
817 virtual environments. *Frontiers in Robotics and AI*, 3, 43.24. Williams DW, Sekuler R.
818 Coherent global motion percepts from stochastic local motions. *Vision Res*. 1984;24(1):55-62.

819 25. Kinateder, M., & Warren, W. H. (2021). Exit choice during evacuation is influenced by both the
820 size and proportion of the egressing crowd. *Physica A: Statistical Mechanics and its
821 Applications*, 569, 125746.

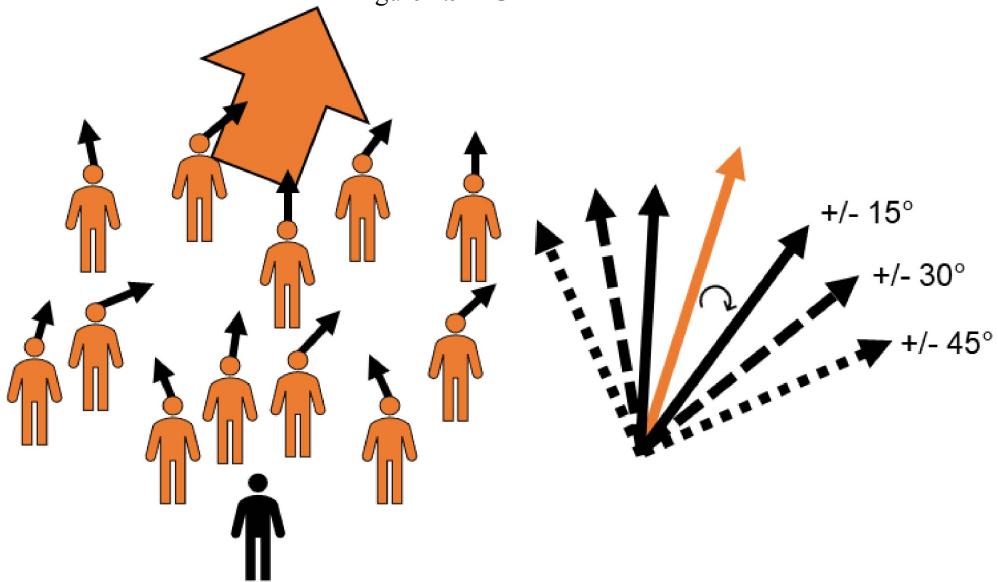
822 26. Wagemans J, Kubovy M, Peterson MA, Elder JH, Palmer SE, Singh M, et al. A century of
823 Gestalt Psychology in visual perception: I. Perceptual grouping and figure-ground organization.
824 *Psychological Bulletin*. 2012;138(6):1172-217.

825 27. Levinthal BR, Franconeri SL. Common-fate grouping as feature selection. *Psychological science*.
826 2011;22(9):1132-7.

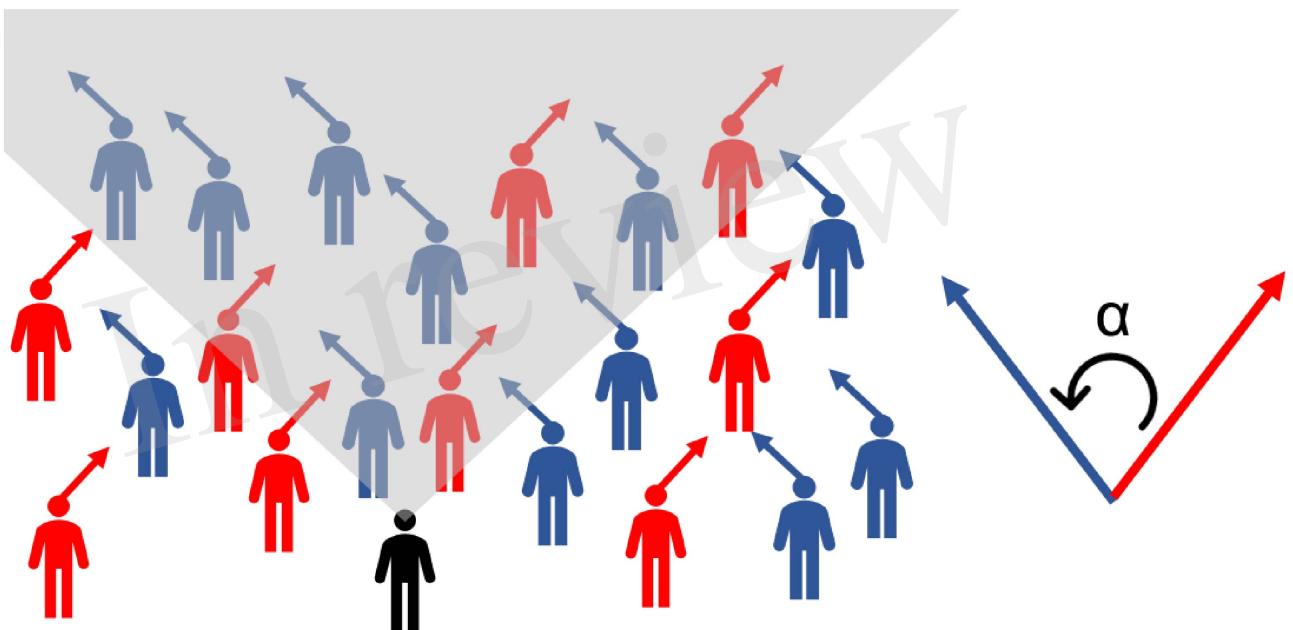
827

Figure 1.JPG

(A)



(B)



(C)

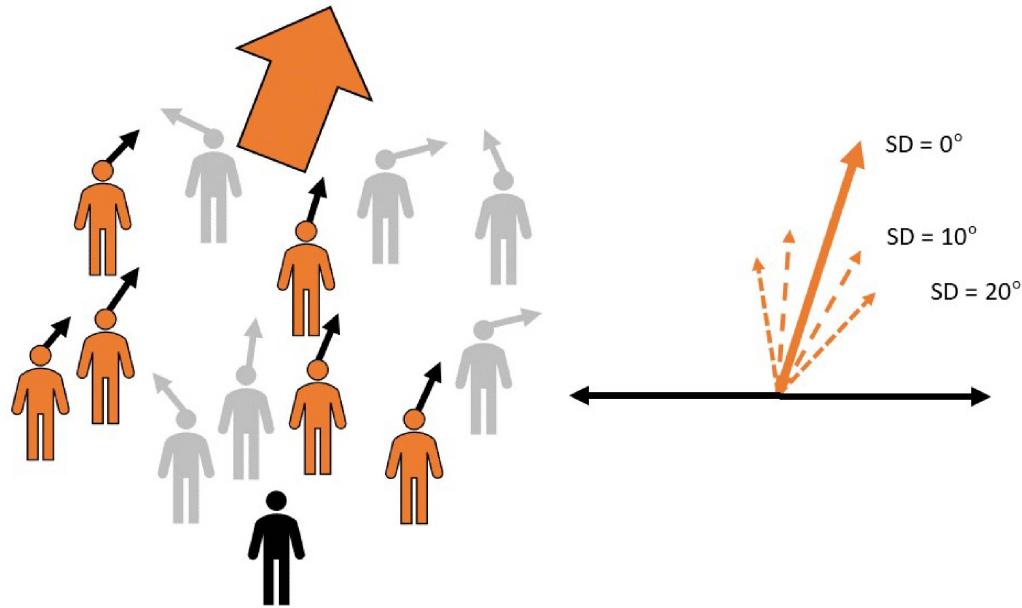


Figure 2.JPG

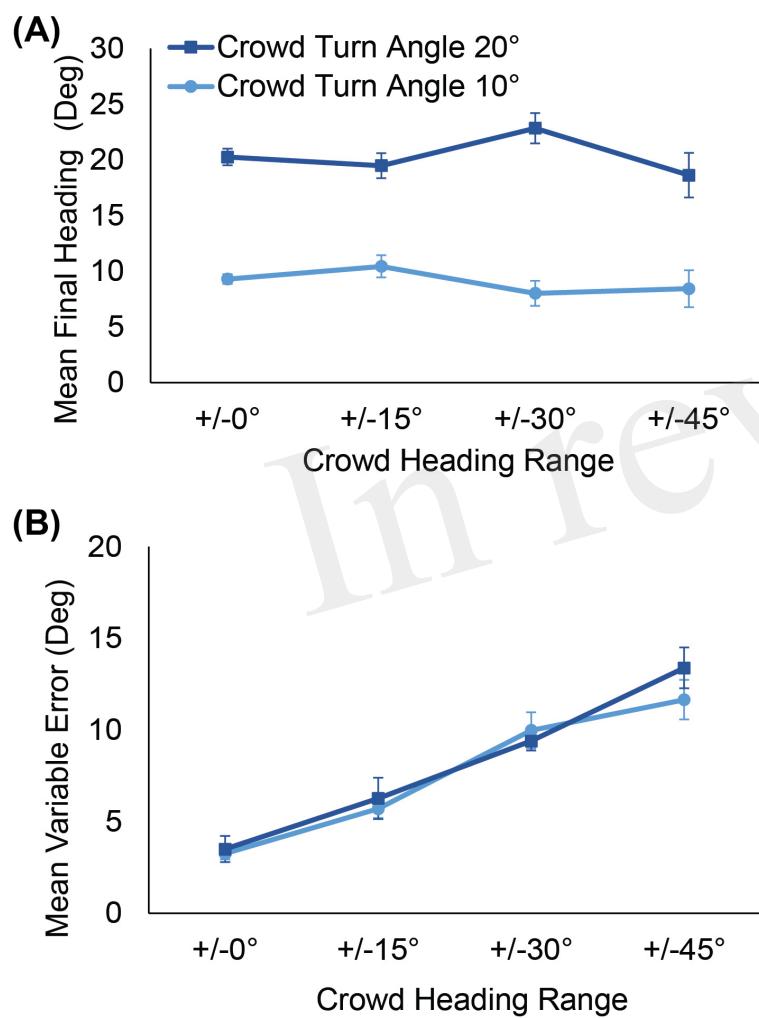
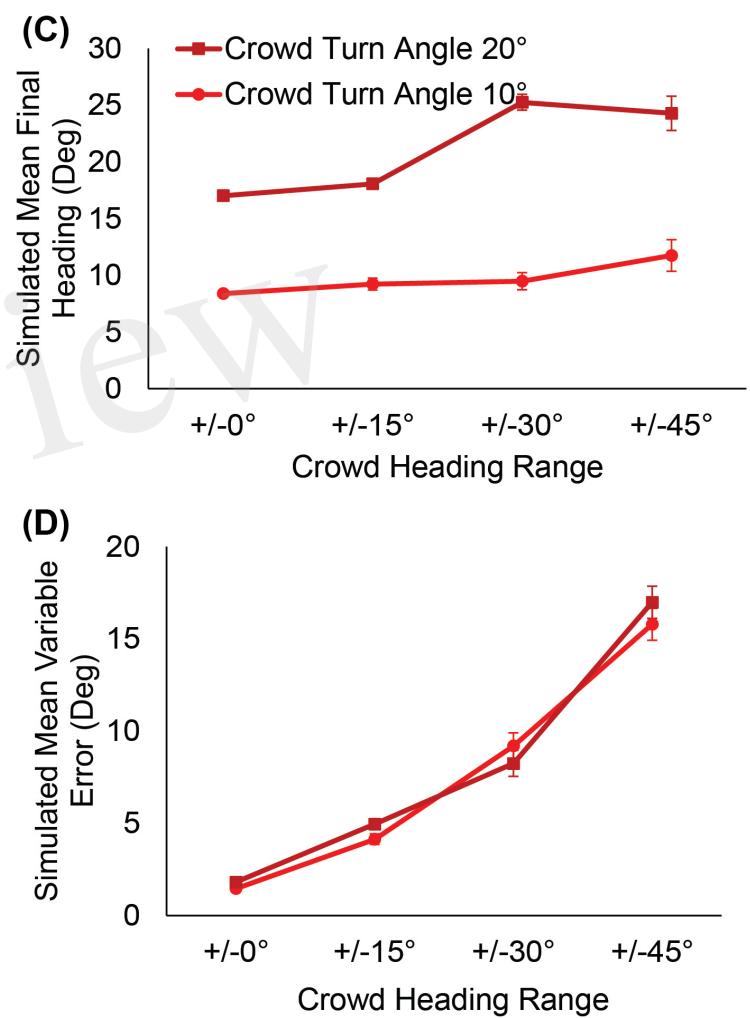


Figure 3.JPG

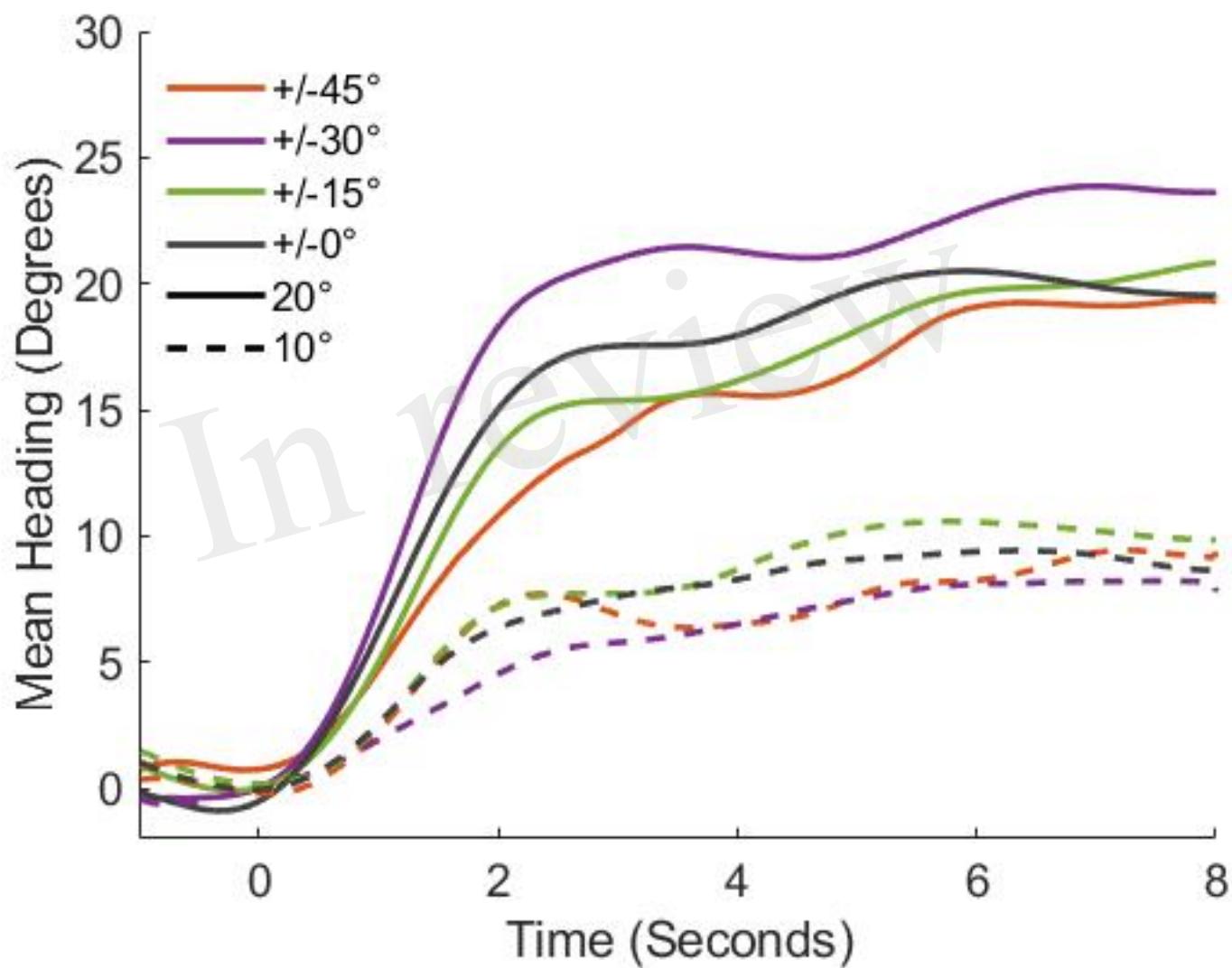


Figure 4.JPG

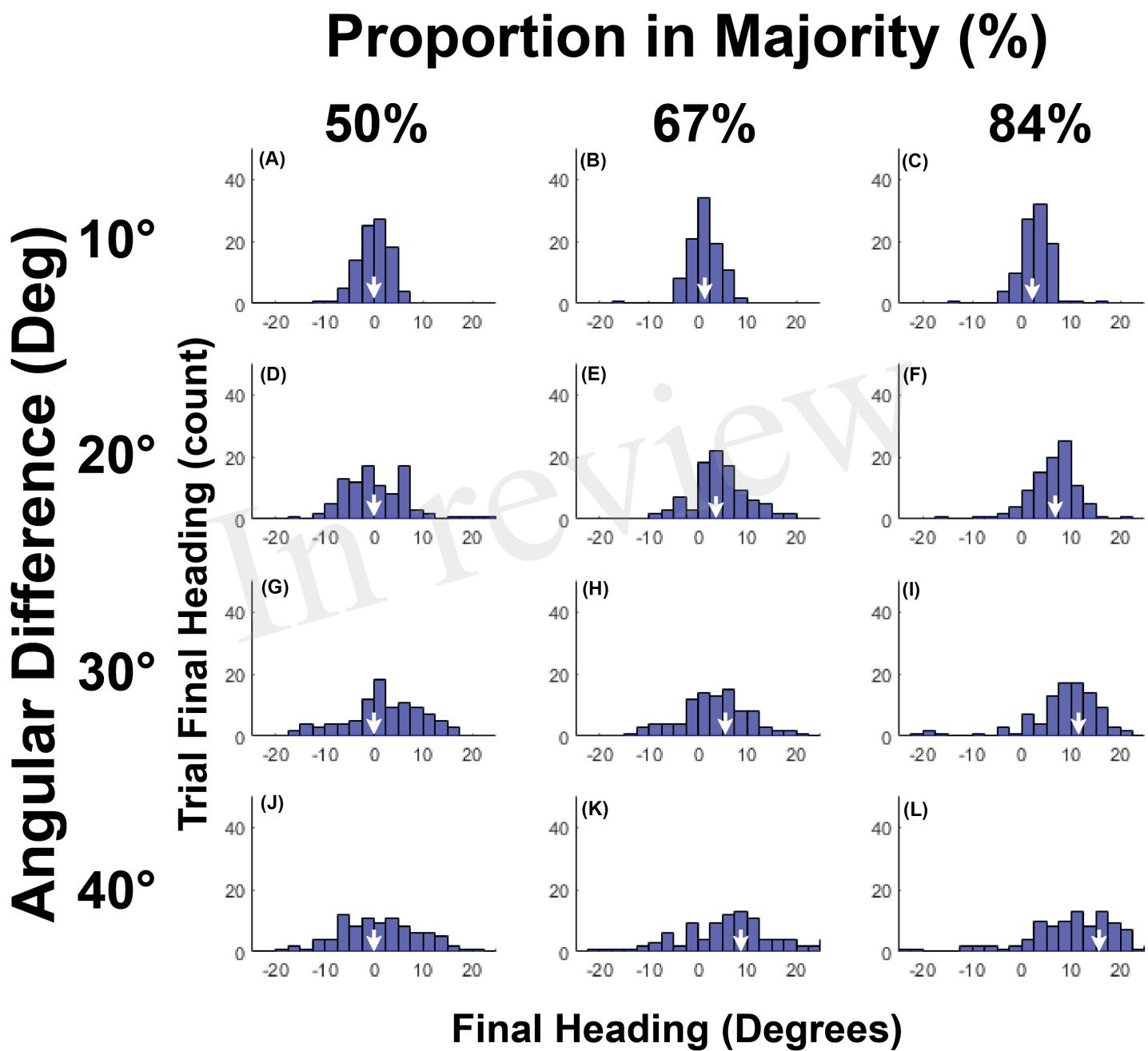


Figure 5.JPG

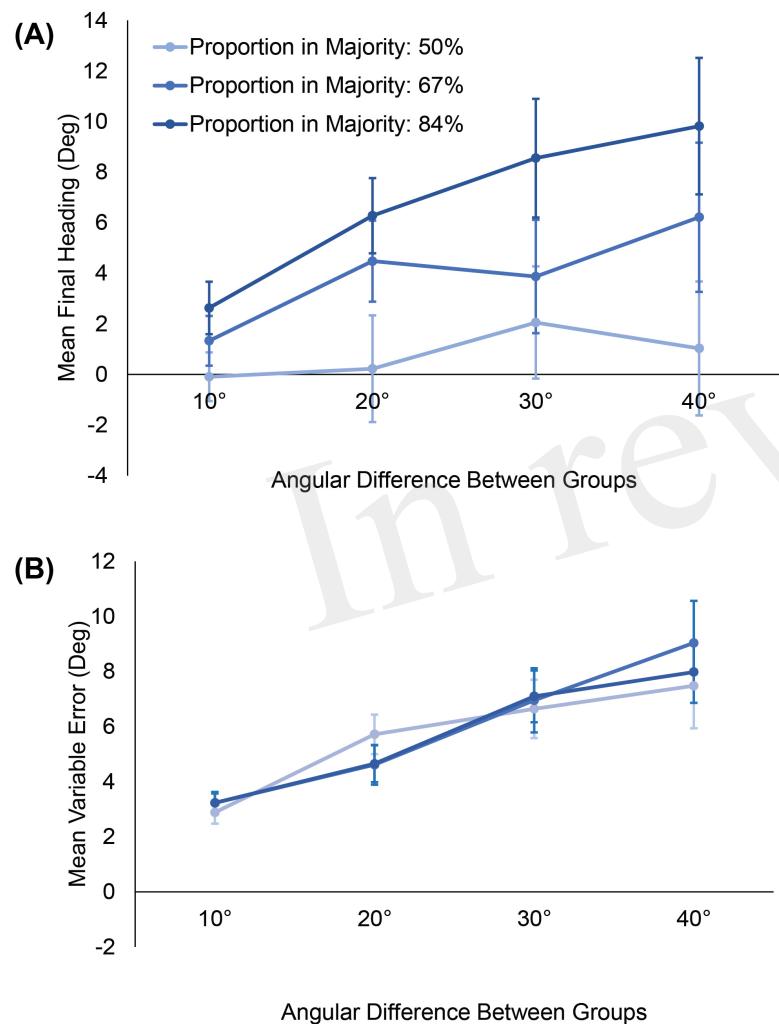
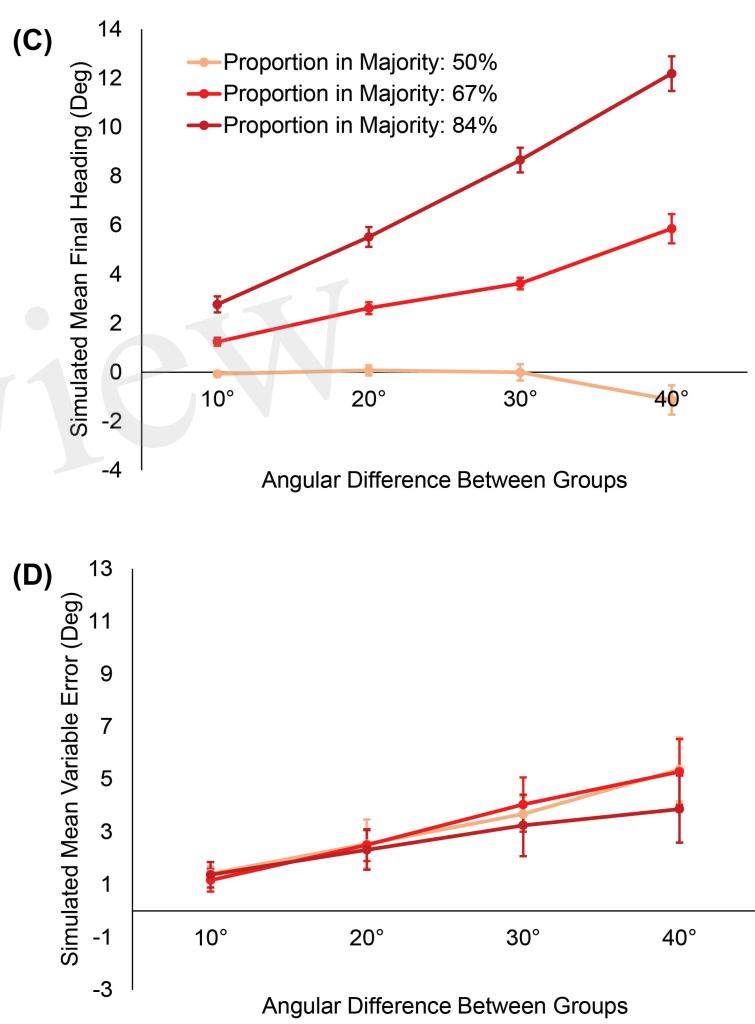


Figure 6.JPG

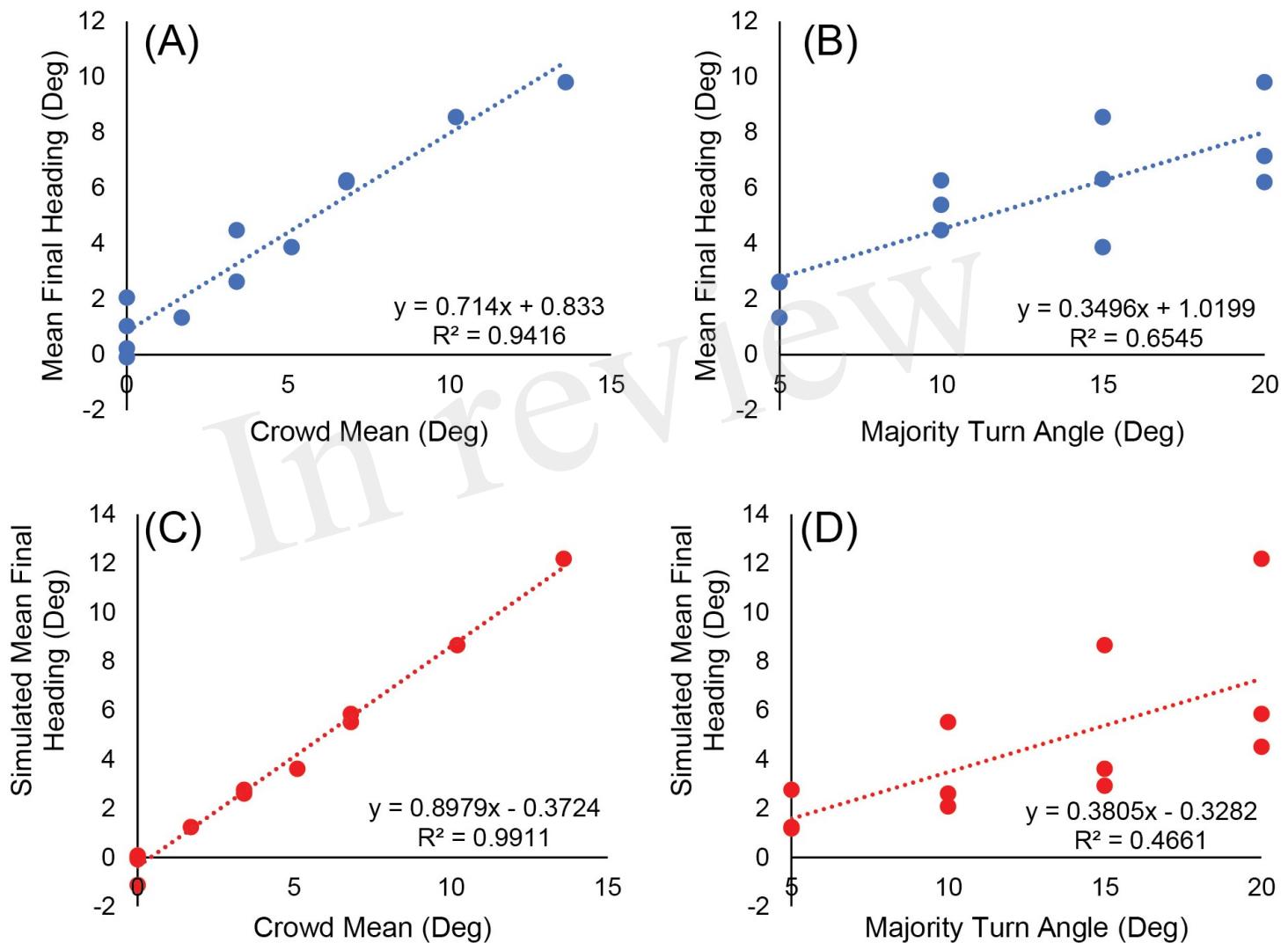


Figure 7.JPG

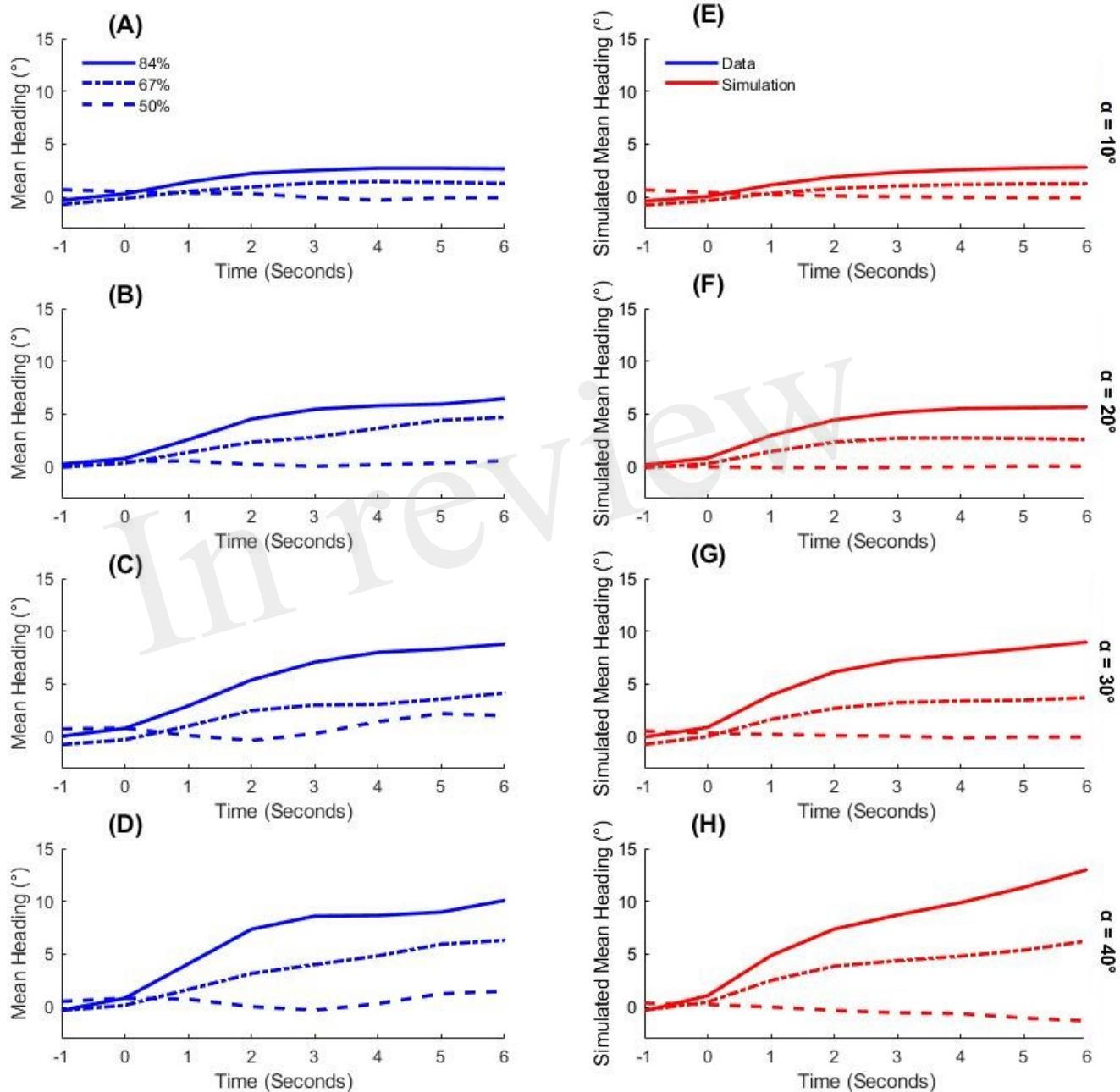


Figure 8.JPG

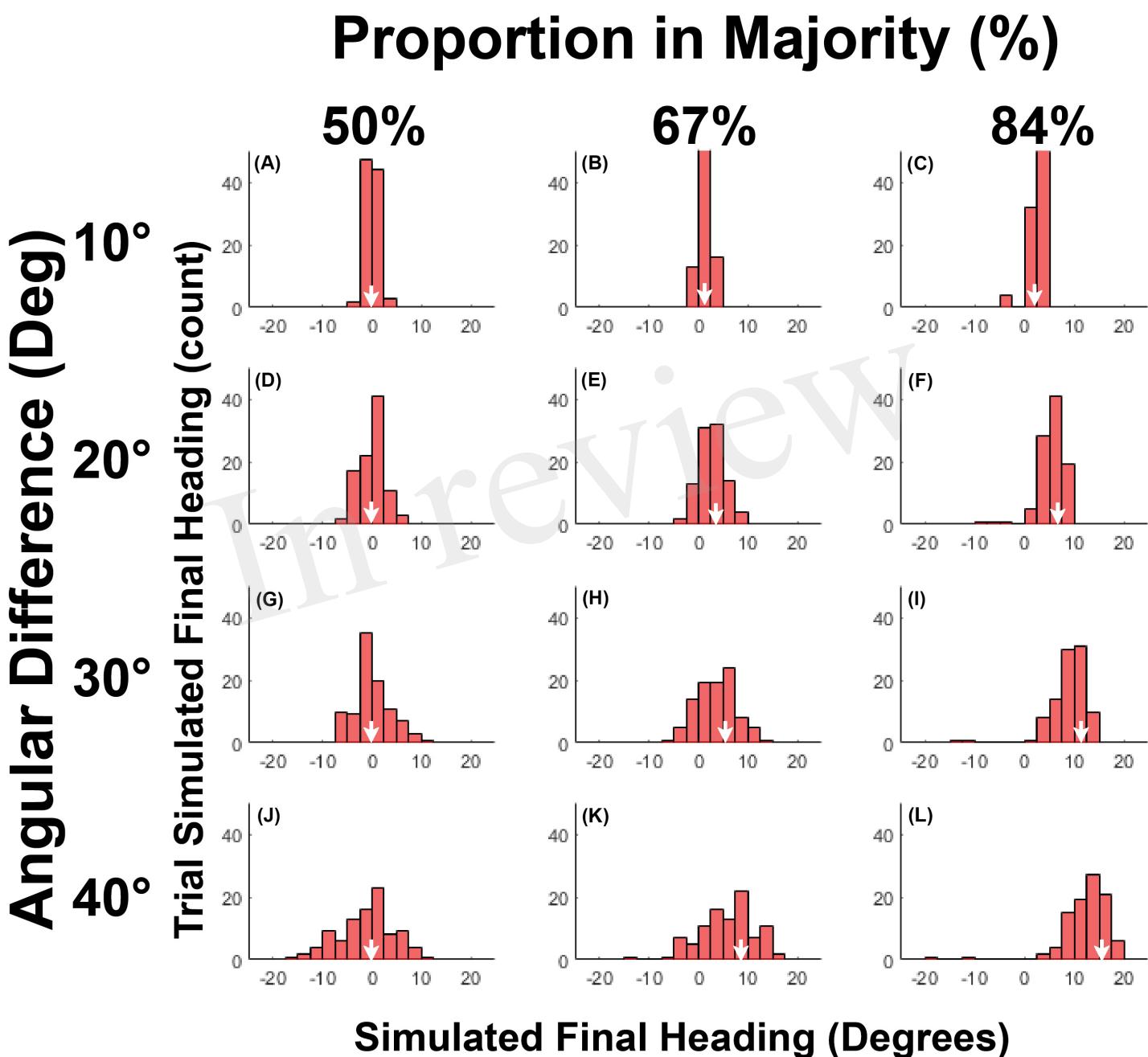


Figure 9.JPG

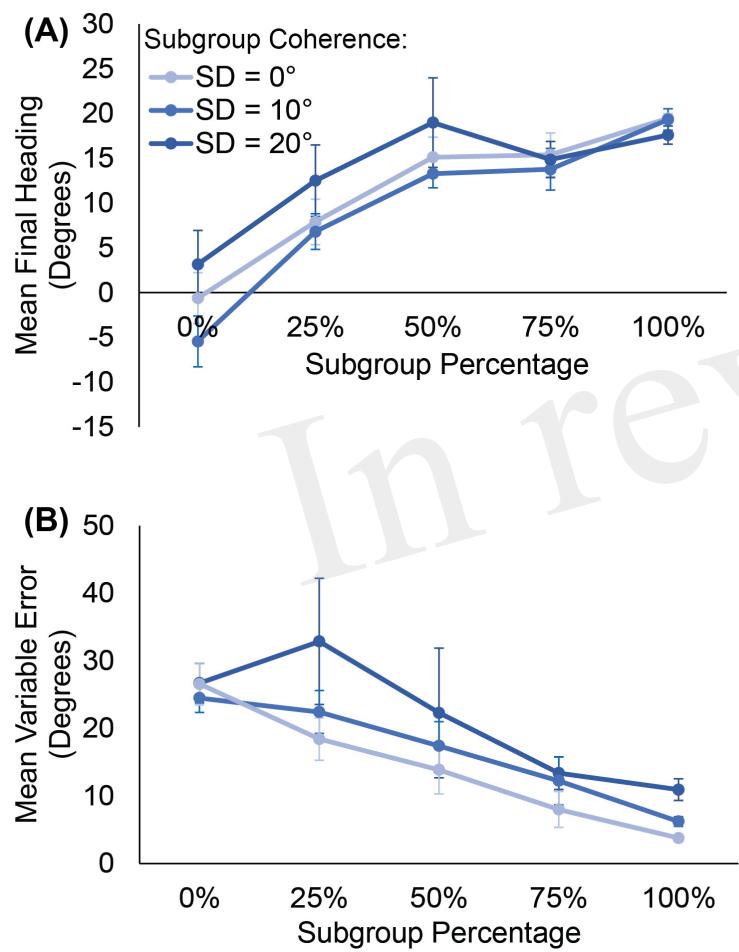
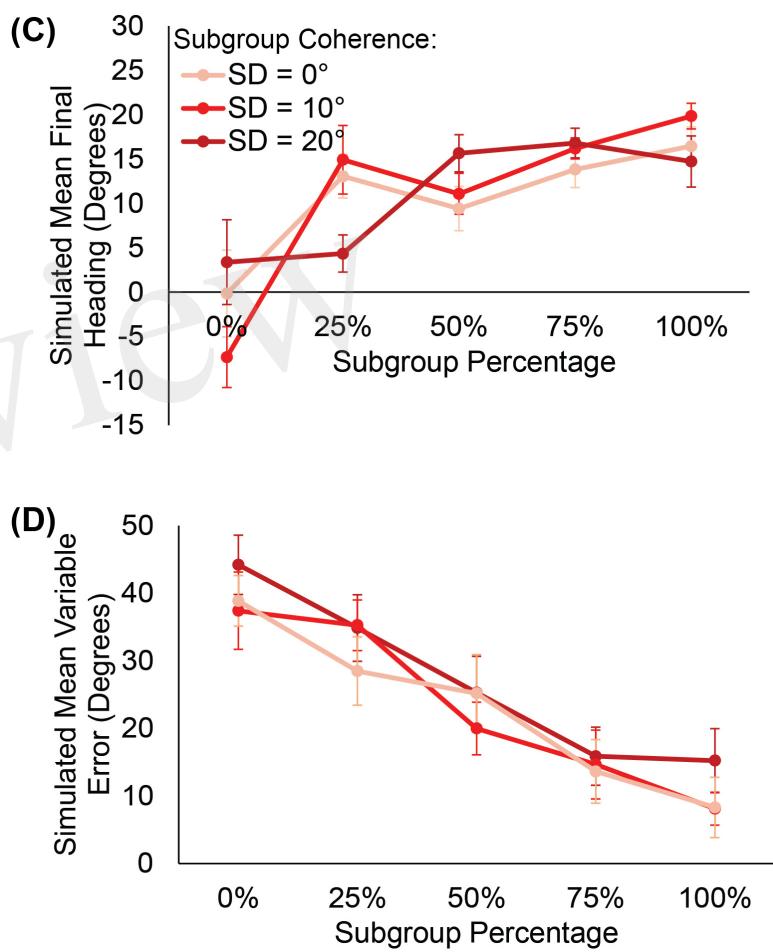


Figure 10.JPG

