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Abstract
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Agent-based models of ‘flocking’ and ‘schooling’ have shown that a weighted average of neighbor velocities, with weights that
decay gradually with distance, yields emergent collective motion. Weighted averaging thus offers a potential mechanism of
self-organization that recruits an increasing, but self-limiting, number of individuals into collective motion. Previously, we
identified and modeled such a ‘soft metric’ neighborhood of interaction in human crowds that decays exponentially to zero at a
distance of 4-5m.  Here we investigate the limits of weighted averaging in humans and find that it is surprisingly robust:
pedestrians align with the mean heading direction in their neighborhood, despite high levels of noise and diverging motions in the
crowd, as predicted by the model.  In three Virtual Reality experiments, participants were immersed in a crowd of virtual
humans in a mobile head-mounted display and were instructed to walk with the crowd.  By perturbing the heading (walking
direction) of virtual neighbors and measuring the participant’s trajectory, we probed the limits of weighted averaging.  (1) In the
‘Noisy Neighbors’ experiment, the neighbor headings were randomized (range 0‐90˚) about the crowd’s mean direction (±10˚ or
±20˚, left or right); (2) in the ‘Splitting Crowd’ experiment, the crowd split into two groups (heading difference = 10‐40˚) and the
proportion of the crowd in one group was varied (50-84%); (3) in the ‘Coherent Subgroup’ experiment, a perturbed subgroup
varied in its coherence (heading SD = 0‐20˚) about a mean direction (±10˚ or ±20˚) within a noisy crowd (heading range = 180˚),
and the proportion of the crowd in the subgroup was varied.  In each scenario, the results were predicted by the weighted
averaging model, and attraction strength (turning rate) increased with the participant’s deviation from the mean heading
direction, not with group coherence.  However, the results indicate that humans ignore highly discrepant headings (45‐90˚). These
findings reveal that weighted averaging in humans is highly robust and generates a common heading direction that acts as a
positive feedback to recruit more individuals into collective motion, in a self-reinforcing cascade.  Therefore, this ‘soft’ metric
neighborhood serves as a mechanism of self-organization in human crowds.

  

 
Contribution to the field

In human crowds, like many other animal groups, ‘flocking’ behavior emerges from local interactions between individuals, through
a process of self-organization. Mathematical models have shown that collective motion results if each individual aligns with the
weighted average of the velocities of their neighbors, where the weights decay with neighbor distance. In this paper, we show
how weighted averaging provides a mechanism of self-organization by recruiting individuals to align with their neighbors. In
three experiments in Virtual Reality, we investigate the limits of weighted averaging in humans and find that it is surprisingly
robust. Participants were immersed in a virtual crowd in a mobile head-mounted display, and were asked to “walk with the
crowd”. We find that pedestrians align with the mean heading direction in their neighborhood, despite high levels of crowd noise,
a crowd that splits into two groups, or a subgroup that diverges from the crowd. The results were closely predicted by a
weighted-averaging model. Because each individual aligns with the mean heading in their neighborhood, weighted averaging
provides a positive feedback that recruits more individuals into alignment, generating collective motion. Weighted averaging thus
serves as a mechanism of self-organization in human crowds.
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Abstract 9 

Agent-based models of ‘flocking’ and ‘schooling’ have shown that a weighted average of neighbor 10 
velocities, with weights that decay gradually with distance, yields emergent collective motion. 11 
Weighted averaging thus offers a potential mechanism of self-organization that recruits an increasing, 12 
but self-limiting, number of individuals into collective motion. Previously, we identified and 13 
modeled such a ‘soft metric’ neighborhood of interaction in human crowds that decays exponentially 14 
to zero at a distance of 4-5m.  Here we investigate the limits of weighted averaging in humans and 15 
find that it is surprisingly robust: pedestrians align with the mean heading direction in their 16 
neighborhood, despite high levels of noise and diverging motions in the crowd, as predicted by the 17 
model.  In three Virtual Reality experiments, participants were immersed in a crowd of virtual 18 
humans in a mobile head-mounted display and were instructed to walk with the crowd.  By 19 
perturbing the heading (walking direction) of virtual neighbors and measuring the participant’s 20 
trajectory, we probed the limits of weighted averaging.  (1) In the ‘Noisy Neighbors’ experiment, the 21 
neighbor headings were randomized (range 0-90˚) about the crowd’s mean direction (±10˚ or ±20˚, 22 
left or right); (2) in the ‘Splitting Crowd’ experiment, the crowd split into two groups (heading 23 
difference = 10-40˚) and the proportion of the crowd in one group was varied (50-84%); (3) in the 24 
‘Coherent Subgroup’ experiment, a perturbed subgroup varied in its coherence (heading SD = 0-20˚) 25 
about a mean direction (±10˚ or ±20˚) within a noisy crowd (heading range = 180˚), and the 26 
proportion of the crowd in the subgroup was varied.  In each scenario, the results were predicted by 27 
the weighted averaging model, and attraction strength (turning rate) increased with the participant’s 28 
deviation from the mean heading direction, not with group coherence.  However, the results indicate 29 
that humans ignore highly discrepant headings (45-90˚). These findings reveal that weighted 30 
averaging in humans is highly robust and generates a common heading direction that acts as a 31 
positive feedback to recruit more individuals into collective motion, in a self-reinforcing cascade.  32 
Therefore, this ‘soft’ metric neighborhood serves as a mechanism of self-organization in human 33 
crowds. 34 

  35 
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 36 

1 Introduction 37 

Much like schools of herring and murmurations of starlings, groups of humans exhibit collective 38 
motion, whether a group of friends walking together down a sidewalk or large crowds in a shopping 39 
plaza or a mass protest. It is generally believed that such patterns of collective motion emerge via 40 
similar processes of self-organization, where local interactions between individuals give rise to 41 
patterns of global behavior [1, 2]. An understanding of these local interactions has two aspects: first, 42 
identifying the rules of engagement that govern how an individual responds to a neighbor, and 43 
second, characterizing the neighborhood of interaction over which these rules operate and how 44 
neighbor influences are combined. 45 

Despite the similarity of collective motion across many species, this behavior has been treated 46 
separately in humans and other animals.  For flocks, schools, and herds, the main approach has been 47 
the attraction-repulsion-alignment framework [3-6], in which three local interaction rules or 48 
hypothetical forces apply over different ranges: (i) repulsion from near neighbors to avoid collisions, 49 
(ii) alignment with the velocities of intermediate neighbors to generate common motion, and (iii) 50 
attraction to far neighbors to maintain group cohesion. The influences of multiple neighbors are 51 
combined by averaging over the neighborhood. Pedestrian models, in contrast, have mainly focused 52 
on collision avoidance based on repulsion and attraction forces [7-9], although they can also generate 53 
collective motion under certain boundary conditions [10, 11].  We focus instead on the alignment of 54 
velocity direction or heading, which is sufficient to generate collective motion [12, 13]. 55 

Cucker and Smale [14] showed numerically that a weighted average of neighbor velocities, with 56 
weights that decay gradually with distance, yields emergent collective motion.  This result 57 
demonstrated that distance-weighted averaging over a spatial neighborhood offers a potential 58 
mechanism of self-organization: a self-limiting positive feedback that recruits an increasing number 59 
of individuals into collective motion until all individuals are aligned. Rio, Dachner and Warren [15] 60 
empirically identified a similar ‘soft metric’ neighborhood of interaction in human crowds, in which 61 
neighbor influence decays exponentially to zero at a distance of 4-5m.  62 

Rio, et al. [15] modeled this soft metric neighborhood using a weighted-averaging model.  Because 63 
people have a ~180˚ horizontal field of view and tend to face in the walking direction [16], the 64 
neighborhood is a semi-circular region with an eccentricity of -90˚ to +90˚ about the current heading 65 
direction, and neighbor influence is largely unidirectional.  When following a crowd, a pedestrian 66 
steers by reducing the mean difference between their current heading direction (𝜙𝑝) and the heading 67 
direction of each neighbor (𝜙𝑖), weighted by distance. Specifically, pedestrian p’s angular 68 
acceleration (change in heading direction) is proportional to the weighted average of the heading 69 
deviations of each neighbor, 70 

𝜙̈𝑝 = −
𝑘

𝑛
∑ 𝑤𝑖𝑠𝑖𝑛(𝜙𝑖 − 𝜙𝑝)
𝑛
𝑖=1  (1a) 71 

𝑤𝑖 =
𝑎

e𝜔𝑑𝑖+𝑎
 (1b)   72 

where n is the number of neighbors within a 5m radius and a 180° field of view, and k=3.15 is the 73 
stiffness or gain, fit to data on pedestrian following [17]. The weight of each neighbor (wi) decreases 74 
exponentially with distance (di), where ω=1.3 is the decay rate and a=9.2 is a scaling constant, fit to 75 
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motion-capture data on real crowds [15].  Thus, neighbors that are closer to the pedestrian or have 76 
larger heading deviations (up to ±90˚) exert a greater influence, such that the pedestrian turns to align 77 
with the weighted mean heading in the neighborhood. An analogous equation for linear acceleration 78 
controls a pedestrian’s walking speed [15]. In terms of the system’s dynamics, the proximity and 79 
average deviation of neighbors determine the strength of attraction to the mean heading in the 80 
neighborhood, and hence the turning rate and the relaxation time of the alignment response. It is 81 
interesting to note that Eq. 1a is a version of the Kuramoto model of synchronization in systems of 82 
phase-coupled oscillators [18,19] with second-order dynamics, which converges to a small cluster of 83 
phases analogous to a small distribution of heading directions.   84 

This weighted-averaging model closely simulates individual trajectories in human experiments with 85 
virtual and real crowds [15], and generates robust collective motion in multi-agent simulations [20]. 86 
So far, however, only groups of aligned virtual humans with small heading differences (10˚) have 87 
been tested experimentally [15]. Here we investigate whether weighted averaging is sufficient to 88 
recruit pedestrians into collective motion in a wider range of crowd scenarios.  Clearly, people can 89 
perform a variety of locomotor behaviors under intentional constraints, such as walking to a goal, 90 
following another pedestrian, and so on [21].  Thus, although collective motion can arise 91 
spontaneously, we study its formation under the intention to walk with a crowd. 92 

To probe the limits of weighted averaging in humans, we performed three experiments in which the 93 
participant was asked to walk with a virtual crowd, allowing us to manipulate the motions of virtual 94 
humans (neighbors). Using virtual – as opposed to real – crowds enables precise experimental 95 
control, while still yielding meaningful insight into real-world behavior, as tests of virtual reality as a 96 
method have demonstrated [22, 23].  In each experiment, we perturbed the heading (walking) 97 
direction of neighbors in the crowd and measured the participant’s heading response, the time series 98 
of their heading direction. In Experiment 1 (Noisy Neighbors), the heading directions of neighbors 99 
were randomized about the mean direction of the crowd, with a range up to 90°. The model closely 100 
predicts the human data, indicating that weighted averaging is highly robust. In Experiment 2 101 
(Splitting Crowd), the virtual crowd diverged into two groups, with an angle up to 40° between them, 102 
and the proportion of the crowd in the each group was varied.  Surprisingly, participants head 103 
between the two groups, just as predicted by the weighted averaging model. In Experiment 3 104 
(Coherent Subgroup), the coherence of a perturbed subgroup was manipulated (heading Standard 105 
Deviation (SD) from 0° to 20°) within a noisy crowd (heading range 180°), and the proportion of the 106 
crowd in the subgroup was varied. Once again, heading responses were predicted by weighted 107 
averaging.   108 

In each case, we find that participants align their heading with the weighted mean of the 109 
neighborhood, consistent with Rio, et al’s [15] model.  Moreover, as a larger proportion of neighbors 110 
turns, the mean heading deviation increases, and the strength of attraction to the neighborhood mean 111 
increases.  Weighted averaging in humans is thus highly robust to crowd noise and diverging groups. 112 
The results show that individuals are not attracted to more coherent neighbors, but to the mean 113 
heading in their neighborhood.  A common heading direction thus propagates across neighborhoods, 114 
providing a positive feedback that recruits more individuals into emerging collective motion. 115 

2 General Method 116 

2.1 Participants 117 

Participants (10 in Experiment 1, 12 in Experiment 2, 12 in Experiment 3) were recruited at Brown 118 
University, had normal or corrected-to-normal vision, reported no motor impairments, and had not 119 
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participated in any other virtual crowd experiments. Informed consent was obtained from all 120 
participants, who were compensated for their time. The research protocol was approved by Brown 121 
University’s Institutional Review Board, in accordance with the principles expressed in the 122 
Declaration of Helsinki. 123 

2.2 Equipment 124 

Experiments were conducted in the Virtual Environment Navigation Lab (VENLab) at Brown 125 
University. Participants walked freely in a 12m x 14m tracking area, while viewing a virtual 126 
environment in a stereoscopic head mounted display (HMD). The HMD’s inter-ocular distance was 127 
adjusted for each participant.  In Experiments 1 and 2, the HMD was an Oculus Rift CV1 (Irvine CA; 128 
94°H x 93°V field of view, 1080 x 1200 pixels per eye, 90 Hz refresh rate); stereoscopic displays 129 
were generated on a Dell XPS workstation and transmitted wirelessly to the HMD using two HDTV 130 
transmitters at a frame rate of 30-60 fps.  Head position and orientation were recorded with an IS-900 131 
inertial/ultrasonic tracking system (Intersense, Billerica, MA) at a sampling rate of 60 Hz, with a total 132 
latency of 50-67ms.  In Experiment 3, the HMD was a Samsung Odyssey (Seoul, S. Korea; 101°H x 133 
105°V field of view, 1440 H x 1600 V pixels per eye, 90 Hz refresh rate), and stereoscopic displays 134 
were generated on a backpack computer (MSi VR-One, New Taipei City, Taiwan) at a frame rate of 135 
45-90 fps. Head position and orientation were recorded with the Odyssey’s inside-out tracking 136 
system, consisting of two cameras and an inertial measurement unit (90 Hz sampling rate, 137 
downsampled to 45 Hz), with a total latency of about 11ms. 138 

2.3 Displays 139 

The virtual environment was created in Vizard (Worldviz, Santa Barbara, CA) and consisted of a 140 
ground plane with a grayscale granite texture and a blue sky. A green start pole and a red orienting 141 
pole (radius 0.2m, height 3m) appeared 12.73 m apart. The crowd consisted of animated virtual 142 
humans (WorldViz Complete Characters) with 36 unique appearances, equal numbers of men and 143 
women, and diverse races and ethnicities. In Experiment 1, 24 of the appearances were randomly 144 
chosen and used for all trials. In Experiments 2 & 3, more than 36 virtual humans were presented, so 145 
some appearances were duplicated. Each of the human models was animated with a walking gait with 146 
randomly varied phase. 147 

2.4 Procedure 148 

Participants were instructed to “walk with the crowd” and to “treat the virtual humans as though they 149 
were real people”. Two practice trials were used to familiarize participants with walking in the virtual 150 
environment, followed by a series of test trials. On each trial, the participant walked to the start pole 151 
and turned to face the orienting pole. After 2 s, the poles disappeared and the virtual crowd appeared; 152 
1 s later, the virtual crowd began walking and a verbal command (“Begin”) was played through 153 
headphones. The display continued until the participant either walked for 10.4s or came within 1.5m 154 
of the room walls, whereupon the end of the trial was signaled by a verbal command (“End”). A new 155 
start pole then appeared, and the next trial began. Trials were presented in a randomized order unique 156 
to each participant. 157 

2.5 Data Processing and Analysis 158 

For each trial, the time series of head position in the horizontal (X–Y) plane was filtered using a 159 
forward and backward fourth-order low-pass Butterworth filter to reduce oscillations due to the step 160 
cycle and occasional tracker error. Time series of heading direction and walking speed were then 161 
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computed from the filtered position data. A 0.6 Hz cut-off was used when filtering the data for 162 
computing heading to reduce lateral oscillations on each stride, while a 1.0 Hz cutoff was used for 163 
computing speed to reduce anterior–posterior oscillations on each step. The first and last second of 164 
the time series were then truncated to eliminate “edge effects” due to filtering. Because the virtual 165 
crowd turned right (+ angles) or left (- angles) on an equal number of trials (where 0˚ is straight 166 
ahead), the data were left/right collapsed by multiplying the heading angle on left turn trials by -1.  167 

To investigate possible effects of practice or fatigue, we performed a Pearson correlation between 168 
trial number and the mean final heading of all participants. In all three experiments, there was a near 169 
zero correlation between trial number and final heading.  We thus combined trials regardless of order 170 
when computing the mean heading in each condition. 171 

A mean time series was calculated for each participant in each experimental condition (see 3.2 172 
Design) by computing the mean value of heading at each time step.  This averaging further reduced 173 
the noise due to gait oscillations, as well as any random variation between trials. The final heading on 174 
each trial was calculated as the average heading during the last two seconds of the time series, and 175 
the mean final heading was computed for each participant in each condition. To account for variation 176 
between trials within a condition, the variable error in final heading was calculated for each subject 177 
(the within-subject standard deviation (SD) of final heading). 178 

The heading data were statistically analyzed using linear mixed effects (LME) regression (Matlab 179 
fitlme function, MathWorks, Natick, MA), with fixed effects corresponding to the experimental 180 
factors and their interactions, and a maximal random effects structure with a unique intercept for 181 
every participant, to account for between-subject differences. The main effects and interactions were 182 
tested by comparing statistical models in a step-down procedure that removes the tested term from 183 
the full model, using likelihood ratio chi-squared tests.  The final model included only the 184 
statistically significant effects. 185 

2.6 Simulation Procedure 186 

Simulations of the weighted averaging model (Eq. 1) with fixed parameter values were performed 187 
using the Runge-Kutta method (Matlab ode45 function). For each trial, the participant’s initial 188 
position and heading were taken as the initial conditions, and the positions and velocities of virtual 189 
humans on that trial were treated as input. Because we only manipulated heading, the model’s speed 190 
was determined by the time series of the participant’s speed on that trial. The output was a time series 191 
of simulated heading for every trial in the experiment. To compare the simulations with the human 192 
data, we calculated the root mean squared error (RMSE) between the mean data time series for each 193 
participant in each condition and the corresponding mean simulated time series for each participant in 194 
each condition. We chose to calculate the error on mean time series, rather than individual trials, to 195 
reduce error due to gait oscillations, for we were not attempting to model gait. We used Bayes 196 
Factors to evaluate the strength of evidence for competing hypotheses. 197 

3 Experiment 1: Noisy Neighbors 198 

Experiment 1 tested the effect of adding noise into the heading directions of the virtual humans in a 199 
crowd.  It is well known that, when viewing moving dots in the frontal plane (on a screen), the visual 200 
system integrates stochastic local motions to perceive the direction of coherent global motion, with a 201 
range of dot directions up to 90˚ [24].  Here we ask whether this holds for an observer embedded in a 202 
moving crowd, when viewing local motions in depth, in the horizontal plane.   203 
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The heading direction of each neighbor was selected from a uniform distribution with a mean of 204 
either ±10° or ±20° (left or right) and a range that varied from 0° (aligned) to 90° (±45° about the 205 
mean) (see schematic in Figure 1A). If participants average the headings of neighbors in the 206 
neighborhood, their mean final heading should be close to the crowd mean. In addition, the model 207 
predicts that the variable error in a participant’s heading response across trials should increase with 208 
the amount of crowd “noise”. This prediction stems from the fact that the neighborhood average 209 
depends on distance and heading deviation of neighbors, which vary from trial to trial. If participants 210 
ignore neighbors with large heading deviations, we would expect the human variability to stop 211 
increasing at a critical noise level. We tested these hypotheses by measuring the participant’s heading 212 
response as a function of crowd noise, and comparing the results to model simulations of the stimuli. 213 

3.1 Displays 214 

Twenty-four virtual humans were initially positioned at equal intervals on each of 6 concentric arcs 215 
(four neighbors on each arc) with the participant at the center. The arcs had radii of 2.5m to 7.5m (1m 216 
apart) and an eccentricity of -88˚ to +88˚ (176˚ total) about the participant’s initial heading direction. 217 
These initial positions were jittered in depth and eccentricity on every trial; the amount of jitter was 218 
randomly selected from a Gaussian distribution in polar coordinates (radius Δr: SD = 0.5m; 219 
eccentricity Δθ: SD = 5°).   220 

At the beginning of each trial, the virtual humans appeared facing the orientation pole, with their 221 
backs to the participant; after 1s they began walking straight ahead (0° heading), accelerating from a 222 
stand-still (0 m/s) to a speed of 1.15 m/s over a period of 3s. One second later, the headings of the 223 
entire crowd were perturbed. Each virtual human was randomly assigned a heading sampled from a 224 
uniform distribution with a mean of ±10° or ±20° (left or right), and a range of ±0° (aligned), ±15°, 225 
±30°, or ±45° about the mean. These headings were re-sampled for each trial and each participant, 226 
providing unique stimuli for every participant. 227 

3.2 Design 228 

Mean turn angle (10°, 20°, collapsed left/right) was crossed with noise range (±0°, ±15°, ±30°, ±45°) 229 
to yield 8 experimental conditions.  There were 12 repetitions per condition (half left and half right 230 
turns), for a total of 96 trials per participant. 231 

3.3 Results 232 

3.3.1 Final Heading   233 

The participants’ mean final heading in each condition appears in Figure 2A. It is clear that the mean 234 
response in the 10˚ turn condition (mean heading M =9.04˚, cyan curve) and the 20˚ turn condition 235 
(M=20.30˚, dark blue curve) are close to their respective crowd turn angles, and constant across noise 236 
conditions. Thus, participants closely match the crowd’s mean heading in both aligned (0˚) and very 237 
noisy crowds (up to ±45˚), consistent with spatial averaging.  238 

An LME regression was used to analyze final heading, with fixed effects of crowd turn angle, crowd 239 
noise, and their interaction, and participants as random effects. The results (Table SM1A) 240 
demonstrate that only the crowd’s turn angle significantly contributed to the variability in final 241 
heading (χ2(1) = 33.50, p < 0.001). The level of crowd noise was not significant, either as a main 242 
effect or an interaction with turn angle (χ2(2) = 0.86, p = 0.650). The regression analysis allows us to 243 
estimate that for every degree increase in the crowd turn angle, there is a corresponding 1.11° (± 0.08 244 
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SE) increase in the participants’ final heading response. This pattern of results indicates that 245 
participants are attracted to the crowd’s mean heading, regardless of the amount of crowd noise. 246 

3.3.2 Variable Error   247 

The mean variable error in each condition appears in Figure 2B, and was analyzed in a similar LME 248 
regression. The results (Table SM1B) show that only the crowd noise contributes to variability in the 249 
variable error (χ2(1) = 31.09, p < 0.001), while neither the turn angle nor the interaction between turn 250 
angle and crowd noise do so (χ2(2) = 1.43, p = 0.490). For every degree increase in the range of 251 
crowd noise (from 0° to 90°), the regression analysis estimates a corresponding 0.11° (± 0.01 SE) 252 
increase in the variable error. Thus, the variable error in a participant’s final heading increases with 253 
crowd noise due to larger trial-to-trial variation in neighbor headings, as predicted by weighted 254 
averaging over the neighborhood. 255 

3.3.3 Heading Over Time 256 

The mean time series of heading in each condition appears in Figure 3. The strength of attraction to 257 
the neighborhood mean is reflected in the turning rate (rate of change in heading over time), where a 258 
steeper slope indicates a stronger attractor.  According to the weighted averaging model (Equation 1), 259 
a larger turn angle (solid vs. dashed curves in Figure 3) should be more attractive because it creates a 260 
larger difference between the participant’s current heading and the neighborhood mean.  Somewhat 261 
counter-intuitively, attractor strength should be unaffected by increased heading noise that is 262 
symmetric about the crowd mean (colored curves in Figure 3), because this does not alter the 263 
neighborhood mean or the heading difference with the participant. 264 

To compare attractor strength in different conditions, we analyzed the time series of heading using an 265 
LME regression with fixed effects of crowd turn angle, crowd noise, time, the interactions with time, 266 
and participants as random effects (see final model in Table SM1C). The results show that both the 267 
crowd turn angle (χ2(1) = 15.50, p < 0.001) and time (χ2(1) = 58.93, p < 0.001) had significant 268 
effects on mean heading.  More importantly, so did their interaction (χ2(1) = 37.42, p < 0.001), 269 
indicating that the time series had steeper slopes in the 20˚ than the 10˚ turn condition (see Figure 3).  270 
On the other hand, there was no effect of crowd noise, the interaction between time and crowd noise, 271 
the interaction between crowd noise and crowd turn angle, or the three way interaction between 272 
noise, turn angle, and time (χ2(4) = 1.50, p = 0.824).  This pattern of results is expected by weighted 273 
averaging. 274 

3.4 Simulations of Exp. 1 275 

To test the predictions of the weighted-average model (Eq. 1), every experimental trial was simulated 276 
using the model with a 90° field of view (see General Methods for details).  The RMSE between the 277 
mean heading time series for the model and each participant in each condition was computed. This 278 
resulted in a mean RMSE of 4.06° (±0.70° SD) for the experiment. This value can be compared with 279 
the performance of a null model that does not respond to the stimuli and simply moves straight ahead 280 
on each trial, providing an estimate of the floor for any model. The RMSE between the null model 281 
and the human data was 12.81° (±1.65° SD), more than twice the error of the weighted-average 282 
model (BF10 > 100).  The weighted-average model thus generates a steering trajectory over time that 283 
is quite close to the human data. 284 
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3.4.1 Final Heading   285 

The model’s mean final heading in each noise condition appears in Figure 2C. Like the human data 286 
in Figure 2A, the simulation curves are fairly flat and hover around the crowd mean. In the 20˚ turn 287 
condition, the model slightly undershoots the crowd mean at lower levels of noise and slightly 288 
overshoots at higher levels. Nevertheless, the overall pattern is similar to human subjects.  289 

3.4.2 Variable Error   290 

The mean variable error in final heading for model simulations is plotted as a function of crowd noise 291 
in Figure 2D. Again, note the similarity with the corresponding human data in Figure 2B – in both 292 
graphs, the response variability increases monotonically with crowd noise.  293 

A model that computes the weighted average of neighbor headings thus predicts the observed 294 
increase in variable error as crowd noise increases. This finding strongly implies that the human 295 
response variability across trials is a direct result of averaging. On each trial, variation in the 296 
distances and headings of virtual neighbors produces a slightly different mean heading in the 297 
participant’s neighborhood.  With increasing crowd noise, the trial-to-trial variation in neighbor 298 
headings increases, yielding larger fluctuations in the neighborhood mean. Thus, the increase in 299 
variable error is a simple consequence of averaging noisy neighbors.  300 

Taken together, the similarities between model predictions and human behavior provide strong 301 
evidence that participant heading responses are based on weighted averaging over the neighborhood, 302 
consistent with model (Equation 1).  303 

3.5 Discussion 304 

The results of Experiment 1 show that even with the noisiest neighbors, the participants’ mean 305 
heading was still clustered around the mean heading of the crowd. This finding indicates that 306 
participants average the headings in their neighborhood when walking with a crowd. On the other 307 
hand, variable error in heading increased in proportion to crowd noise, due to heading fluctuations in 308 
the neighborhood from trial to trial. An analysis of the time series of heading found that the attractor 309 
strength of the crowd mean increased with turn angle but was unaffected by symmetric crowd noise.  310 
This result reveals that a pedestrian who deviates from the crowd will be recruited to align with the 311 
crowd mean, regardless of the level of noise; if all pedestrians obey this rule, the crowd will become 312 
progressively aligned.  All of these findings are predicted by Rio, et al.’s [15] weighted averaging 313 
model, as demonstrated by the simulations.  Weighted averaging in humans is thus highly robust to 314 
noise in crowd headings, and acts as a recruitment mechanism into collective motion. 315 

4 Experiment 2: Splitting Crowd 316 

If a crowd splits into two groups, will a pedestrian follow one group or walk in the average direction 317 
of the two groups?  Previous studies have found that participants average all neighbors in a virtual 318 
crowd when the heading difference between two groups is 10° [15].  In Experiment 2, we investigate 319 
whether robust averaging extends to larger heading differences between groups.  Rio, et al’s. [15] 320 
model predicts that participants will continue to walk in the mean direction even with large angular 321 
differences between groups. 322 

In the present experiment we manipulated the angular difference between the heading directions of 323 
two completely aligned groups (α = 10 to 40°) and the proportion of the crowd in the majority group 324 
(50, 67 or 84%). On each trial, the virtual crowd began walking straight ahead, and then two groups 325 
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turned by the same angle (α/2) left and right, and continued walking (see schematic in Figure 1B). 326 
The groups appeared as two spatially overlapping, continuously crossing streams, with new 327 
neighbors coming into view as others went out of view.   328 

If participants average over their neighborhood, their final heading should align with the mean of the 329 
crowd – that is, they should walk between the two groups.  Note that the crowd mean shifts from 330 
straight ahead (0˚) toward the majority group as it increases in size, which should also lead the 331 
participant to turn at a faster rate due to the larger discrepancy from the neighborhood mean. 332 
Alternatively, if participants follow one group, then their final heading should align with that group. 333 
As the angular difference α between groups increases, we would expect to observe a transition from 334 
averaging to following if the limits of weighted averaging are reached. In that case, if participants are 335 
more attracted to the majority, their final heading should align with the larger group. 336 

4.1 Displays 337 

To create a display with two continuously crossing groups, the crowd consisted of 48 virtual humans 338 
initially positioned on six concentric 182˚ arcs, with radii of 1.6m to 6.6m (at 1m intervals), with 339 
eight virtual humans evenly spaced on each arc.  Thus, many virtual humans were outside the 94˚ 340 
horizontal field of view of the HMD. These initial positions were then jittered by sampling from a 341 
uniform distribution in polar coordinates (radius Δr: SD = 0.15m; eccentricity Δθ: range = -15° to 342 
15°) on every trial. The neighbors that were perturbed to the right were selected randomly in depth, 343 
but evenly distributed in eccentricity, such that no matter where the participant looked there was 344 
representation from each turn group. By default, the remainder of the crowd turned in the opposite 345 
direction such that the members of each group were spatially dispersed throughout the entire crowd. 346 
Consequently there were two continuous streams of neighbors crossing at the specified angle in the 347 
field of view. 348 

On each trial, the virtual humans appeared with their backs to the participant.  After 2s they began 349 
walking straight ahead (0˚), accelerating from a stand-still to a speed of 1.15 m/s over a period of 2s. 350 
After a random interval (1.8s to 2.8s from the start of walking), a percentage of the crowd (50, 66 or 351 
84%) turned to the right by 5°, 10°, 15° or 20°, and the rest turned an equal angle to the left (or vice 352 
versa). 353 

4.2 Design 354 

Four angular differences (α = 10°, 20°, 30° or 40°) were crossed with three proportions (50, 66 or 355 
84%) in the majority, yielding 12 conditions.  The proportions were left/right counter-balanced, but 356 
subsequently collapsed for analysis and normalized with the majority turning to the right. There were 357 
8 repetitions in each condition, for a total of 96 trials in a single 1-hour session. 358 

4.3 Results 359 

Histograms of mean final heading for each condition appear in Figure 4; the white arrows on the 360 
horizontal axis indicate the crowd mean in that condition.  Note that the crowd mean (white arrows) 361 
and the center of the distribution shift together to the right as the proportion in the majority group 362 
increases (within each row); this shift is amplified by the angular difference between groups (within 363 
each column). This allows us to infer that participants generally walked in the mean heading 364 
direction of the crowd in all conditions, even with the largest angular difference between groups, 365 
consistent with the weighted averaging prediction. The spread of the distribution, increases with 366 
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angular difference (within each column), however, but does not appear to depend on the size of the 367 
majority (within each row). We consider these results in turn. 368 

4.3.1 Final Heading 369 

The mean final heading in each condition appears in Figure 5A, which clearly illustrates its 370 
dependence on the heading difference between groups (horizontal axis) and the percentage of 371 
neighbors in the majority (curves).  With 50% of the crowd in each group, the mean heading is close 372 
to zero, for participants split the difference between them.  But with majorities of 67% and 84%, 373 
mean final heading is biased toward the majority and increases with the angular difference.    374 

We analyzed final heading using an LME regression with fixed effects of the angular difference (α), 375 
percentage in the majority, and their interaction, and participants as random effects (see final model 376 
in Table SM2A). Chi-squared likelihood ratio tests reveal a significant effect of angular difference 377 
(χ2(1) = 59.71, p < 0.001), a significant effect of percentage (χ2(1) = 133.81, p < 0.001), as well as a 378 
significant interaction between them (χ2(1) = 16.81, p < 0.001). The regression results allow us to 379 
estimate that going from a majority of 50% to 84% accounts for a ~5.8° increase in final heading, 380 
going from an angular difference of 10° to 40° accounts for a ~4.4° increase in final heading, and 381 
their interaction accounts for an additional ~5.3° increase in final heading. Thus, overall, mean final 382 
heading shifts both with an increase in angular difference and an increase in the size of the majority, 383 
as well as their interaction.  384 

To determine whether heading responses were more aligned with the mean of the crowd or the mean 385 
of the majority group, we used simple linear regression. When the participants’ mean final heading in 386 
each condition is regressed onto the crowd’s mean heading (Figure 6A) there is a strong linear 387 
relationship (R2 = 0.94) with a steep slope (0.714).  In contrast, when mean final heading is regressed 388 
on the mean heading of the majority group (Figure 6B), there is a much weaker relationship (R2 = 389 
.65) and a shallow slope (0.35). These results clearly indicate that participants average the headings 390 
of all neighbors, not just the majority group, as predicted by the weighted averaging model.  The fact 391 
that the slope is less than 1 is likely due to the fact that trials with large perturbations often ended 392 
before the participant finished turning and heading stabilized (e.g. time series in Figure 7C,D).  A 393 
Bayes Factor confirmed that the human final heading was closer to the crowd’s mean heading (C) 394 
than the majority group’s heading (G), BFCG > 100, providing decisive evidence for the former 395 
hypothesis.   396 

4.3.2 Variable Error 397 

The mean variable error in final heading appears in Figure 5B. A participant’s variability increases 398 
with the angular difference between groups (horizontal axis), but not with the proportion in the 399 
majority (curves).  This effect occurs because the trial-to-trial variation in neighbor headings 400 
increased with the heading difference between groups, whereas the proportion of neighbors in each 401 
group merely shifted the mean heading in the neighborhood, and is consistent with weighted 402 
averaging over the neighborhood.   403 

A similar mixed effects linear regression was used to analyze variable error in heading (final model 404 
in Table SM2B). Chi-squared likelihood ratio tests reveal a significant effect of angular difference 405 
(χ2(1) = 75.32, p < 0.001), but no effect of majority size (χ2(1) = 0.02, p = 0.90), nor an interaction 406 
between them (χ2(1) = 0.23, p = 0.63). The regression results allow us to estimate that going from an 407 
angular difference of 10° to 40° accounts for a 5.12° increase in the variable error.  408 
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4.3.3 Heading Over Time 409 

The mean time series of heading in each condition appear in Figure 7 (blue curves), where Panels A 410 
to D correspond to the angular difference between groups (10˚ to 40˚, respectively). According to the 411 
weighted averaging model, attraction strength, and hence the rate of change in heading, should 412 
increase with the difference between the crowd mean and the participant’s initial heading (0˚).  413 
Consistent with this expectation, the slope of the time series appears to increase with both the size of 414 
the majority (curves) and the angular difference between groups (panels) – with the exception of the 415 
50% condition, which predicts a heading near 0˚.   416 

Heading over time was analyzed using an LME regression with fixed effects of angular difference, 417 
percentage in the majority, time, and their interactions, and participants as random effects (final 418 
model in Table SM2C).  The results show that time (χ2(1) = 22.29, p < 0.001), the interaction of 419 
angular difference and time (χ2(1) = 15.68, p < 0.001), the interaction of percentage and time (χ2(1) 420 
= 27.09, p < 0.001), and the three-way interaction (χ2(1) = 10.32, p = 0.001) have significant effects 421 
on heading. The two-way interactions indicate that the turning rate (slope) increases with both the 422 
percentage in the majority and the angular difference between groups; the three-way interaction 423 
indicates an additional effect of the combined factors on turning rate.  This analysis confirms that the 424 
attraction strength of the crowd mean increased with its deviation from the participant’s initial 425 
heading.     426 

4.4 Simulations of Exp. 2 427 

To compare the data with predictions of the weighted-averaging model (Eq. 1), all experimental trials 428 
were simulated using a 90˚ field of view similar to the Oculus Rift HMD (see General Methods for 429 
details). Histograms of the simulated final heading in each condition appear in Figure 8. Visual 430 
comparison with the histograms of the human data (Figure 4) reveals similar unimodal distributions 431 
centered around the overall crowd mean (white arrows), although they are less variable that the 432 
human data. (The lower variability is attributable to the fact that the model does not simulate gait 433 
oscillations and tracker error.) The impression is supported by graphs of the model’s mean final 434 
heading (Figure 5C) and the mean variable error (Figure 5D) in each condition, which are quite 435 
similar to the corresponding plots of the human data (Figure 5A,B).    436 

To measure the model’s performance we calculated the RMSE between the time series of heading for 437 
the model and the participant on every trial. The mean RMSE for Experiment 2 (excluding the 50% 438 
condition) was 4.35° (±1.55° SD), which is better than the RMSE for the null “do nothing” model of 439 
6.12° (±1.65° SD).  A Bayes Factor comparing them provides decisive evidence that the weighted 440 
averaging model outperforms the null model (BF10 > 100).  Mean heading time series for the model 441 
in each condition appear in Figure 7E-H, revealing their similarity to the human mean time series 442 
(Figure 7A-D).  The comparable pattern of slopes confirms that the increase in attraction strength as 443 
the crowd mean deviates from the agent’s initial heading follows from the dynamics of weighted 444 
averaging. 445 

We also used simple linear regressions to compare the weighted averaging model’s alignment with 446 
the crowd mean and with the majority group. When the model’s mean final heading in each condition 447 
is regressed on the crowd mean (Figure 6C) there is a strong linear relationship (R2 > 0.99) with a 448 
steep slope (0.898).  In contrast, when mean final heading is regressed on the majority group’s 449 
heading (Figure 6D) there is a much weaker relationship (R2 =.47) and a shallow slope (0.38).  The 450 
similarity with the human regressions (Figure 6A, B) confirms that participants averaged the 451 
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headings in their neighborhood, as predicted by the weighted averaging model, rather than following 452 
the majority group.   453 

4.5 Discussion 454 

The results of Experiment 2 reveal that when a crowd splits into two continuously crossing groups 455 
heading to the left and right, participants align with the mean heading in all conditions, even with a 456 
large angular difference of 40˚.  As the size of the majority group increases, the final heading shifts 457 
along with the crowd mean.  Human averaging is thus highly robust not only to noise but to 458 
diverging groups in a crowd.  The data are quite close to the model predictions, evidence that humans 459 
rely on a weighted average of headings in their neighborhood. 460 

To test whether weighted averaging generalized to groups that separated in space, we repeated the 461 
experiment with a virtual crowd consisting of 8 or 16 virtual humans that diverged into two visibly 462 
separate groups (see Supplementary Material).  The spatial separation of the two groups increased 463 
through the trial, so up to half of the neighbors had moved out of the field of view by the end of a 464 
trial.  Nevertheless, the results were the same: The participants’ mean final heading was more closely 465 
aligned with the crowd mean than the majority group, as were model simulations of the stimuli. 466 
Thus, even with visibly separate groups, participants followed the crowd mean, consistent with 467 
robust weighted averaging.   468 

It is important to note that in our splitting crowd experiments, only the virtual humans appeared in 469 
the display. In many real-world situations, two subgroups might be moving toward two visible goals, 470 
such as marked exits. An explicit choice between two alternatives would add competing attractors to 471 
the crowd dynamics.  For example, Kinateder and Warren [25] studied an emergency evacuation 472 
scenario in which a virtual crowd split into two subgroups that walked to two visible exits. In this 473 
situation the authors did not observe weighted averaging, but rather a tradeoff between following the 474 
majority and going to the uncrowded exit, which depended on both the size of the crowd and the 475 
width of the exit. In a subsequent article, we plan to report a model of choice behavior in which 476 
nonlinear competition between alternatives is added to the weighted averaging model. The present 477 
findings highlight the robust nature of averaging in the absence of explicit alternatives. 478 

5 Experiment 3: Coherent Subgroup 479 

Experiments 1 and 2 demonstrated that participants align with a crowd by spatially averaging over 480 
both ‘noisy neighbors’ and diverging groups. This alignment behavior is well characterized by the 481 
weighted averaging model (Equation 1). In Experiment 3, we investigate whether weighted averaging 482 
extends to a coherent subgroup within a noisy crowd. According to the perceptual grouping principle 483 
of ‘common fate’ [26], elements that move together in the frontal plane tend to be perceived as a 484 
group.  Similarly, if a subgroup of neighbors in a noisy crowd moves in a common direction in depth, 485 
they might be perceived as a unit and attract a pedestrian to align with them. On the other hand, there 486 
is also evidence that it is difficult to identify a coherently moving group of elements amid incoherent 487 
element motions [27].  488 

In the present experiment, the participant was immersed in a noisy crowd whose members walked in 489 
random directions within a range of 180˚ (±90° centered on the participant’s heading). After a few 490 
seconds, a subgroup of neighbors that were interspersed in the crowd turned with a mean angle of 491 
±20° (right or left) (see schematic in Figure 1C).  The coherence of the subgroup was manipulated by 492 
selecting their individual headings from a Gaussian distribution with an SD of 0° (aligned), 10°, or 493 
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20° about the mean.  In addition, the proportion of the crowd in the subgroup was varied (0%, 25%, 494 
50%, 75%, or 100%), shifting the mean heading of the entire crowd from 0˚ to 20˚.  495 

If participants are attracted to align with a coherent subgroup, their final heading should match the 496 
subgroup’s mean heading (20˚), and the attraction strength should increase with the subgroup’s 497 
coherence.  On the other hand, according to the weighted-averaging model participants should align 498 
with the crowd mean in all conditions.  The model thus predicts that final heading will gradually shift 499 
from 0° to 20° as the subgroup proportion increases from 0% to 100%, whereas attraction strength 500 
will be unaffected by subgroup coherence. The model also predicts that variable error will decrease 501 
as the subgroup proportion increases, because this reduces the overall noise in the crowd;  for the 502 
same reason, variable error may also decrease slightly as the subgroup becomes more coherent.  The 503 
pattern of results once again supports robust weighted averaging.  504 

5.1 Displays 505 

The virtual crowd consisted of 48 virtual humans. Each virtual human was initially positioned in 506 
polar coordinates with a radius ranging from 1.6m to 6.6m (1m apart) in depth, and a theta ranging 507 
from 91° to -91° (26° apart) in eccentricity. Their positions were then jittered by sampling from a 508 
uniform distribution in polar coordinates (Δr: SD = 0.15m; Δθ: range = -16° to 16°) on every trial.  509 

On each trial, the virtual humans appeared facing in directions randomly selected from a uniform 510 
distribution with a range of ±90º, centered on the participant’s initial heading (0°), and accelerated 511 
from a stand-still (0 m/s) to a speed of 1.15 m/s over a period of 3 seconds. After a random interval 512 
(2.5s to 3.5s from the start of walking), a subgroup of virtual humans (0%, 25%, 50%, 75%, or 100% 513 
of the crowd), evenly spaced in eccentricity and depth, was perturbed:  each turned and walked in a 514 
new heading direction selected from a Gaussian distribution with a mean of ±20° (positive values to 515 
the right), and an SD of 0°, 10°, or 20° (subgroup coherence). 516 

5.2 Design 517 

The factors of subgroup proportion (0%, 25%, 50%, 75%, 100%) and subgroup coherence (SD = 0°, 518 
10°, or 20°) were crossed, yielding 15 experimental conditions.  There were 8 repetitions per 519 
condition (half left and half right turns), for a total of 120 trials in a one-hour session. 520 

5.3 Results 521 

5.3.1 Final Heading 522 

Mean final heading in each condition appears in figure 9A. If participants align with the coherent 523 
subgroup, mean final heading should be close to 20˚ in all conditions (except the 0% condition, 524 
which predicts no response).  However, final heading gradually shifted with the percentage of the 525 
crowd in the subgroup, consistent with weighted averaging.  There appears to be no systematic 526 
relationship between final heading and crowd coherence (curves).  527 

Final heading was analyzed using an LME regression with fixed effects of subgroup percentage, 528 
subgroup coherence, and their interaction, and participants as random effects (see final model in 529 
Table SM3A).  The analysis reveals that only the subgroup percentage had a significant effect on 530 
final heading (χ2(1) = 24.18, p < 0.001), with no effect of subgroup coherence or interaction (χ2(2) = 531 
1.58, p = 0.457). The regression estimate indicates that for every percent increase in the subgroup 532 
size, there was 0.19° (±0.02 SE) increase in final heading. 533 
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Bayes Factors were calculated to assess whether the human mean final heading was closer to the 534 
subgroup mean (20°) or the crowd mean in the neighborhood (as measured by the weighted-535 
averaging model), for conditions in which these predictions differ (25%, 50%, 75% in the subgroup).  536 
The results indicated that the human data were closer to the crowd mean (C) than the subgroup mean 537 
(G) in the 25% subgroup condition (BFCG = 67.7), very strong evidence favoring the crowd mean.  538 
The data did not distinguish the two hypotheses in the 50% (BFCG = 1.02) or 75% (BFCG = 1.01) 539 
conditions, however, as the predicted difference became smaller and the maximum heading response 540 
was reached (about 18.79˚).  These results indicate that participants aligned with the crowd mean in 541 
their neighborhood, which was meaningfully different from the subgroup mean in the 25% condition.   542 

5.3.2 Variable Error 543 

The mean variable error in final heading (Figure 9B) decreases with the subgroup percentage, and 544 
also appears to decrease with as the subgroup becomes more coherent (curves). 545 

A similar LME regression was used to analyze variable error in final heading (the final model 546 
appears in Table SM3B). Chi-squared likelihood ratio tests revealed significant effects of both 547 
subgroup percentage (χ2(1) = 23.30, p < 0.001) and subgroup coherence (χ2(1) = 4.48, p = 0.035), 548 
with no interaction(χ2(1) = 0.010, p = 0.752). The statistical model indicates that for every point 549 
increase in the subset percentage, there was a 0.21° (±0.03 SE) decrease in a participant’s variable 550 
error. It also reveals that for every degree of increase in the subgroup’s SD (i.e., decrease in 551 
coherence), there was a corresponding 0.36° (±0.13 SE) increase in a participant’s variable error.  552 

Both of these effects can be attributed to the total noise in the virtual crowd, much as observed in 553 
Experiment 1. First, as the percentage of virtual humans in the coherent subgroup goes up, the 554 
number of random headings in the rest of the crowd goes down; there is thus less heading variation in 555 
the neighborhood from trial to trial, so the variability in the participant’s response is reduced. Second, 556 
as the coherence of the subgroup goes up, the total heading variation in the crowd decreases slightly 557 
– enough to reduce the participant’s variable error. Thus, both effects are expected from a weighted-558 
average neighborhood. We compare the predictions of the model in the following simulations. 559 

5.3.3 Heading Over Time 560 

The mean time series of heading in each condition appear in Figure 10. Turning rate (slope) tends to 561 
increase with subgroup percentage (curves). An LME regression analysis reveals a significant effect 562 
of time (χ2(1) = 57.70, p < 0.001), and a significant interaction of the subgroup percentage and time 563 
(χ2(1) = 12.33, p < 0.001). There was no effect of subgroup coherence, the interaction of coherence 564 
and time, the interaction between subgroup coherence and subgroup percentage, or the three-way 565 
interaction between time, subgroup percentage, and subgroup coherence (χ2(4) = 4.08, p = 0.396) 566 
(see Table SM3C for final statistical model).  This finding indicates that a larger subgroup was more 567 
attractive not because it was more coherent, but because it increased the deviation of the crowd’s 568 
mean from the participant’s current heading. 569 

5.3.4 Simulations of Exp. 3 570 

To compare the results with the weighted-averaging predictions, the experimental trials were 571 
simulated as before, using a 110˚ horizontal field of view similar to the Odyssey HMD. The average 572 
RMSE between the mean time series for each participant in each condition and the corresponding 573 
mean simulated time series was 9.24° (±4.23° SD). For purposes of comparison, this value is better 574 
than the RMSE of 11.73° (±2.41° SD) for the null model that moves straight ahead (BF10 > 100), but 575 
worse than the weighted-average model for the noisy neighbors in Experiment 1 (mean RMSE = 576 
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4.19˚).  This suggests that participants in the present experiment may not have been averaging all 577 
headings in the neighborhood.  578 

To investigate the source of this discrepancy, we broke down the mean RMSE by condition (see SM 579 
Figure 7). The mean RMSE decreases linearly as a function of subgroup proportion, as overall crowd 580 
noise decreases. Thus, the discrepancy between the model and human data is greatest in the 0% and 581 
25% conditions, when most of the crowd has random headings in a 180˚ range, and lowest in the 582 
75% and 100% conditions, when most of the crowd has headings within a narrow range (SD=0˚ to 583 
20˚). This pattern implies that participants may be ignoring neighbors with highly discrepant 584 
headings (>45˚) that are greater than those in Experiment 1 (<45˚). 585 

5.3.5 Final Heading 586 

The model’s final heading in each condition appears in Figure 9B. Note the similarity with the 587 
human data in Figure 9A: in both cases, the final heading monotonically shifts toward the subgroup 588 
mean (20˚) as the subgroup percentage grows. Thus, the mean model output predicts the mean human 589 
heading quite well, consistent with weighted averaging. 590 

5.3.6 Variable Error 591 

The model’s mean variable error in final heading in each condition appears in Figure 9D. The graph 592 
is similar to the corresponding human variable error (Figure 9B): response variability decreases 593 
monotonically with the subgroup percentage, consistent with averaging a less noisy crowd (cf. 594 
Experiment 1, Figure 2B). There are, however, two notable differences.  595 

First, the model variable error is markedly higher than the human error in the 0% and 25% subgroup 596 
conditions. This confirms that participants are ignoring highly discrepant neighbors.  Compare the 597 
present variable error (Figure 9B and D, 0% condition) with that in Experiment 1 (Figure 2B and D, 598 
±45˚ condition): the model’s variable error is much greater in the present experiment with crowd 599 
noise of ±90˚ (about 40˚) than in Experiment 1 with crowd noise of ±40˚ (about 13˚) – but the human 600 
variable error is the same in the two experiments (about 12˚).  This comparison reveals that, whereas 601 
the model averages all headings, participants ignore large heading differences (>45˚), thus reducing 602 
human variable error.   603 

Second, the model variable error shows no consistent ordering by subgroup coherence (Figure 9D, 604 
curves), whereas there was a significant effect of coherence on human variable error (Figure 9B). We 605 
suspect that, because participants ignored highly discrepant headings, they were sensitive to the slight 606 
reduction in overall crowd noise produced by a more coherent subgroup.  In contrast, because the 607 
model is strongly influenced by discrepant headings, this slight reduction in noise had little effect on 608 
its variable error.  609 

In sum, the patterns of RMSE and variable error indicate that participants ignore neighbors with 610 
highly discrepant headings (>45˚).  This leads humans to be less influenced by extreme crowd noise 611 
than predicted by the weighted-averaging model.  612 

5.4 Discussion 613 

Experiment 3 tested the hypothesis that participants would be attracted to align with a coherent 614 
subgroup in a noisy crowd, and that this attraction would increase with subgroup coherence. In 615 
contrast, the results were consistent with robust weighted averaging: mean final heading gradually 616 
shifted together with the crowd mean as the percentage in the subgroup increased from 0% to 100%. 617 
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Moreover, the strength of attraction did not increase with the subgroup’s coherence, but with the 618 
deviation of the crowd’s mean heading from the participant’s current heading. These results support 619 
the weighted averaging model. 620 

In addition, the pattern of errors clearly indicates that humans ignore highly discrepant headings that 621 
differ from the participant’s current heading by >45˚.  In other words, human weighted averaging 622 
only extends over heading differences of 0˚-45˚, suggesting a modest revision to the model.   623 

The results of this experiment reveal an essential property of the mechanism of recruitment.  One 624 
might expect that a pedestrian would be more attracted to a group of neighbors as their coherence 625 
(degree of alignment) increased, consistent with the principle of common fate.  This response would 626 
amplify the alignment in the crowd and recruit more individuals into collective motion.  In contrast, 627 
however, we find that a subgroup is not attractive due to its coherence, but due to its effect on the 628 
mean heading deviation in an individual’s neighborhood.  We consider the implications of this 629 
finding in the concluding section. 630 

6 Conclusion 631 

In three experiments, we asked participants to walk with a virtual crowd in several scenarios. 632 
Experiment 1 added noise in the heading directions of crowd members (range up to 90˚), and found 633 
that participants aligned with the crowd mean in all conditions. Experiment 2 presented two 634 
diverging groups (angular difference up 40°) and varied their proportions, and again found that 635 
participants aligned with the crowd’s mean heading rather than following one group. In Experiment 636 
3, a coherent subgroup in a noisy crowd (range 180˚) was perturbed, and participants once again 637 
aligned with the mean heading of the crowd rather than the subgroup. Taken together, these results 638 
show that weighted averaging in humans is highly robust: pedestrians align with the mean heading 639 
direction in their neighborhood, just as predicted by Rio, et al’s [15] soft metric model (Equation 1).  640 
However, the results indicate that weighted averaging is limited to heading differences of 0˚-45˚, and 641 
humans ignore highly discrepant neighbors (>45˚).   642 

Weighted averaging within a spatial neighborhood thus provides a mechanism of self-organization: a 643 
positive feedback that recruits an increasing number of individuals into collective motion.  But how, 644 
exactly, is this positive feedback to be understood?  First, consider the phenomenon from the 645 
perspective of an individual pedestrian. It would seem intuitive that an individual is more strongly 646 
attracted to align with neighbors that are more coherent (aligned with each other); in this way, the 647 
individual would increase the attractiveness of the emerging collective.  But this type of positive 648 
‘coherence’ feedback does not follow from Equation 1 and is empirically disconfirmed by 649 
Experiments 1 and 3: neighbors that are more coherent (aligned) do not in fact increase the 650 
attractiveness of their mean heading.  Rather, as predicted by Equation 1, attraction strength increases 651 
with the deviation of the neighborhood mean from the individual’s current heading (Figures 3, 7, 10). 652 

Now consider the phenomenon from the perspective of the collective.  When a few neighbors move 653 
in a similar heading direction, they shift the mean heading in adjacent neighborhoods toward that 654 
direction.  The adjacent neighbors are attracted to their new neighborhood mean – with a strength that 655 
increases with their current deviation from the mean – which in turn contributes to a common 656 
heading direction in more neighborhoods, in a self-reinforcing cascade.  This common heading thus 657 
propagates through the crowd, yielding emergent collective motion.  This type of positive ‘heading’ 658 
feedback is a result of weighted averaging over a soft metric neighborhood, and follows from 659 
Equation 1.   660 
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In sum, the present experimental evidence and model simulations indicate that robust weighted 661 
averaging provides a mechanism of self-organization in human crowds, which acts to recruit 662 
individuals into emerging collective motion through a positive ‘heading’ feedback. 663 

 664 

7 Figure Captions 665 

Figure 1. Schematics of experimental designs. (A) Experiment 1, Noisy Neighbors: The participant 666 
(black figure) was immersed in a crowd of virtual humans (orange figures, n = 24) that had ‘noisy’ 667 
heading directions (small black arrows) about the crowd mean (large orange arrow, 10° or 20° left or 668 
right). Individual headings were randomly selected from a uniform distribution centered on the crowd 669 
mean (orange vector on right), with a range of  0°, +/- 15°, +/-30°, or +/- 45° (set of black vectors on 670 
right). (B) Experiment 2, Splitting Crowd: The participant (black figure) was immersed in a virtual 671 
crowd (n=48) that split into two groups, each turning by the same angle to the left (blue figures) and 672 
to the right (red figures). We manipulated the angular difference between the heading of the two 673 
groups (α = 10°, 20°, 30° or 40°) and the proportion of the crowd in the majority group (50, 66 or 674 
84%). The two groups formed continuously crossing streams and did not spatially separate.  If the 675 
participant rotated their head, members of both groups appeared in the field of view (gray shading) in 676 
an approximately constant proportion. (C) Experiment 3, Coherent Subgroup: The participant (black 677 
figure) was immersed in a crowd of virtual humans (n=48) with very noisy heading directions 678 
sampled from a uniform distribution (range ±90°, centered on 0˚ heading). A subgroup of the crowd 679 
(orange figures and arrows) turned left or right with a mean heading of 20° (large orange arrow), and 680 
their coherence was manipulated (heading SD = 0°, 10°, 20°), while the rest of the crowd continued 681 
walking in the same directions (gray figures and arrows).  The proportion of the crowd in the 682 
subgroup (0%, 25%, 50%, 75%, or 100%) was also varied. 683 

Figure 2. Results of Experiment 1.  (A) Mean final heading as a function of crowd noise (heading 684 
range in the virtual crowd), for human participants. Curves represent the crowd’s mean turn angle. 685 
(B) Mean variable error in final heading across trials as a function of crowd noise, for the 686 
participants. (C) Model simulations of mean final heading and (D) mean variable error, 687 
corresponding to the human data in panels A and B. For both human and model, final heading 688 
increases with crowd turn angle, whereas variable error increases with crowd noise. Error bars 689 
represent the standard error of the mean (±SEM). 690 

Figure 3. Mean time series of heading for participants in Experiment 1. Dashed curves represent 691 
crowd turns of 10°, solid curves represent 20° turns; color denotes the crowd noise level (heading 692 
range). The data are aligned so the heading perturbation occurs as t=0.  Slopes indicate the 693 
attractiveness of the mean heading in the participant’s neighborhood. 694 

Figure 4. Histograms of final heading for each condition in Experiment 2.  (A-L) Panels represent the 695 
frequency of final heading (2.5˚ intervals) for all trials in that condition, where positive heading 696 
values are in direction of the majority group. Columns represent the proportion of the crowd in the 697 
majority group, rows represent the angular heading difference between the two groups. White arrows 698 
indicate the overall mean heading of the entire crowd in the corresponding condition, which shifts 699 
rightward as the proportion in the majority grows and as the angular difference increases.  Data 700 
cluster around the crowd mean in each condition. 701 

Figure 5. Results of Experiment 2.  (A) Mean final heading and (B) mean variable error as a function 702 
of the angular difference between groups, where positive heading values are in the direction of the 703 

In review



  Robust Averaging in Human Crowds 

 
18 

This is a provisional file, not the final typeset article 

majority group. Curves represent the proportion of the crowd in the majority.  Panels A and B 704 
summarize the data in the histograms of Figure 4.  (C) Model simulations of mean final heading and 705 
(D) mean variable error corresponding to the human data in panels A and B. For human and model, 706 
final heading increases with both the proportion in the majority and the angular difference, whereas 707 
the variable error only increases with angular difference. Error bars represent the standard error of the 708 
mean (±SEM). 709 

Figure 6. Did participants follow the majority or the crowd average in Experiment 2? Linear 710 
regression of mean final heading on (A) the mean heading of the crowd or (B) the heading of the 711 
majority subgroup in each condition. (C, D) Corresponding linear regressions for simulations of the 712 
weighted-averaging model. Regression slopes and correlations (R2) on each panel indicate that final 713 
heading is much closer to the crowd mean than the majority for both humans and model. 714 

Figure 7. Mean time series of heading for each condition in Experiment 2. (A-D) Human heading 715 
over time at each angular difference, α = 10°, 20°, 30°, and 40°, respectively. Curves represent the 716 
percentage of the crowd in the majority group (solid = 84%, dash-dot = 67%, dashes = 50%).  (E-H) 717 
Model simulations of heading over time in the corresponding conditions.  Slopes indicate the 718 
attractiveness of the mean heading in the neighborhood, which increases with both independent 719 
variables for the model and human participants.  The weighted averaging model thus predicts the 720 
increase in attraction strength with the deviation of the neighborhood mean from the participant’s 721 
initial heading. 722 

Figure 8. Histograms of final heading for model simulations of Experiment 2. (A-L) Panels represent 723 
the frequency of final heading (2.5˚ intervals) for all simulated trials in each condition, same layout 724 
as Figure 4.  Although the spread of the model histograms is narrower that the human histograms, the 725 
clustering about the crowd mean in each condition (white arrows) is quite similar. 726 

Figure 9. Results of Experiment 3.  (A) Mean final heading and (B) mean variable error as a function 727 
of the proportion of the crowd in the subgroup, for participants.  Curves represent the coherence of 728 
headings in subgroup.  (C) Model simulations of mean final heading and (D) mean variable error 729 
corresponding to the data in panels A and B.  See text for comparisons.  Error bars represent the 730 
standard error of the mean (±SEM). 731 

Figure 10. Mean time series of heading for each condition in Experiment 3.  (A, B, C) Human 732 
heading over time in each coherence condition (SD=0˚, 10˚, 20˚, respectively).  Curves represent the 733 
proportion of the crowd in the subgroup.  (D, E, F) Model simulations of heading over time in the 734 
corresponding conditions.  Slopes indicate the attractiveness of the mean heading in the 735 
neighborhood, and are highly similar for humans and model: they increase with subgroup proportion, 736 
but not with subgroup coherence. 737 
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12 Contribution to the Field Statement 751 

In human crowds, like many other animal groups, ‘flocking’ behavior emerges from local 752 
interactions between individuals, through a process of self-organization. Mathematical models have 753 
shown that collective motion results if each individual aligns with the weighted average of the 754 
velocities of their neighbors, where the weights decay with neighbor distance.  In this paper, we show 755 
how weighted averaging provides a mechanism of self-organization by recruiting individuals to align 756 
with their neighbors. In three experiments in Virtual Reality, we investigate the limits of weighted 757 
averaging in humans and find that it is surprisingly robust.  Participants were immersed in a virtual 758 
crowd in a mobile head-mounted display, and were asked to “walk with the crowd”.  We find that 759 
pedestrians align with the mean heading direction in their neighborhood, despite high levels of crowd 760 
noise, a crowd that splits into two groups, or a subgroup that diverges from the crowd. The results 761 
were closely predicted by a weighted-averaging model.  Because each individual aligns with the 762 
mean heading in their neighborhood, weighted averaging provides a positive feedback that recruits 763 
more individuals into alignment, generating collective motion.  Weighted averaging thus serves as a 764 
mechanism of self-organization in human crowds.   765 
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