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Abstract—Rank aggregation has many applications in com-
puter science, operations research, and group decision-making.
This paper introduces lower bounds on the Kemeny aggregation
problem when the input rankings are non-strict (with and without
ties). It generalizes some of the existing lower bounds for strict
rankings to the case of non-strict rankings, and it proposes
shortcuts for reducing the run time of these techniques. More
specifically, we use Condorcet criterion variations and the Branch
& Cut method to accelerate the lower bounding process.

Index Terms—Rank aggregation, lower bounding techniques,
group decision-making, Kemeny-Snell distance, Condorcet Cri-
terion, branch & cut method.

I. INTRODUCTION

The rank aggregation problem is utilized in situations when
it is necessary to reconcile the evaluations of m judges
who rank n alternatives according to some criteria. Rank
aggregation is often used to guide group decision-making. In
particular, it is useful in decision support systems to find a ro-
bust collective decision instead of relying on individuals. Rank
aggregation has numerous applications such as recommender
systems [1], [2], feature selection [3], [4], and bioinformatics
[5], [6]. The purpose of rank aggregation problem is to find a
ranking that either maximizes a scoring function or minimizes
a distance measure to the input rankings; the former are
known as score-based methods, and the latter as distance-based
methods. Examples of score-based methods are Borda rule [7]
and Copeland rule [8]; examples of distance-based methods
are Kemeny aggregation [9] and Spearman’s footrule [10]. It
is important to remark that Kemeny aggregation, which uses
the Kemeny-Snell distance [9], is one of the most widely used
rank aggregation methods. This popularity comes from the fact
that this measure uniquely satisfies a set of axioms, namely
anonymity, commutativity, extension, non-negativity, scaling,
and triangular inequality [9]. Additionally, it satisfies a set of
key social choice properties including neutrality, local stability,
and the Condorcet criterion [11], [12].

Kemeny aggregation is NP-hard even when there are only
four input rankings [10], [13]; however, there have been
numerous efforts to solve this problem to optimality. The vast
majority of exact methods can only handle strict rankings such
as [14], [15]; a small number are applicable to both strict and
non-strict rankings [16]–[18]. Since Kemeny aggregation is

NP-hard, many heuristic methods [19]–[21] and approximation
algorithms [10], [22], [23] have been proposed in the literature.
For more examples, we refer the reader to [24].

Some researchers have studied partitioning methods that
leverage the fact that the optimal solutions to Kemeny ag-
gregation satisfy certain social choice properties. Using these
partitioning schemes, the original problem can be decomposed
into smaller subproblems where solving the subproblems
independently and concatenating the results is guaranteed to
reproduce the optimal solution to the original problem. One
such scheme is the Extended Condorcet Criterion (XCC) [25].
Yoo and Escobedo [18] showed that the solution to Kemeny
aggregation with non-strict rankings may violate XCC; thus,
the authors proposed the Non-strict Extended Condorcet Cri-
terion (NXCC), which is suitable for both strict and non-strict
rankings. For the rest of the paper, we denote these partitioning
methods as Condorcet-based partitioning for simplicity. These
partitioning schemes can render Kemeny aggregation easier to
solve [18], [26]. Herein, we use these partitioning schemes to
facilitate the proposed lower bounding techniques. We remark
that here are other partitioning schemes such as 3/4-Majority
Rule [26], which is defined for strict rankings; however, XCC
partitioning is always as good as partitioning using the 3/4-
Majority Rule.

Obtaining high quality lower bounds is of high importance,
as these bounds are usually used to evaluate the quality of
heuristics and approximation algorithms. More specifically, a
low quality lower bound may lead to the incorrect conclusion
that an optimal or near-optimal solution is of low quality.
There are three general classes of lower bounding techniques
for Kemeny aggregation: 1) pairwise comparison methods, 2)
cycle-based methods, and 3) LP relaxation methods. Pairwise
comparison methods leverage the fact that each pair of alter-
natives contributes a minimum amount to the overall distance.
Cycle-based methods seek to improve pairwise comparison
lower bounding techniques by taking advantage of the fact that
the preferences returned by the solution must be transitive.
Finally, a lower bound can be obtained by solving the LP
relaxation of the Kemeny aggregation formulation. We remark
that there are other infrequently used ways to obtain a lower
bound on Kemeny aggregation with strict rankings such as
using Spearman’s footrule [10] and Borda count [27], based
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on their relationship with the Kemeny-Snell distance; however,
to the best of our knowledge, these relationships have not been
extended to the case of non-strict rankings.

This work generalizes the three aforementioned classes of
lower bounding techniques for Kemeny aggregation with strict
rankings to the case with non-strict rankings. As another con-
tribution, it accelerates the run time of lower bounding tech-
niques using the Branch & Cut (B&C) method and Condorcet-
based partitioning. These techniques have been largely used
for solving exact formulation of Kemeny aggregation. Using
B&C, it is possible to reduce the run time of LP relaxation
methods. Furthermore, with the help of XCC and NXCC, the
process of preference-cycle detection and the solution of LP
relaxation-based methods can be significantly expedited (with
and without B&C) for certain instances.

The rest of the paper is organized as follows. Section
II introduces the notation used throughout the paper, and
it provides preliminary definitions. Section III reviews the
lower bounds obtained from pairwise comparison information
for strict rankings and generalizes this method for non-strict
rankings. Section IV focuses on cycle-based lower bounding
techniques, and it leverages Condorcet-based partitioning for
the purpose of accelerating cycle-based methods. Section V
focuses on LP relaxation lower bounding techniques. Section
VI describes the experiments and discusses the results. Finally,
Section VII concludes the paper.

II. NOTATION AND PRELIMINARIES

Rankings can be categorized as strict and non-strict. Strict
rankings refer to the case where there are no ties, while non-
strict rankings refer to the case where there may be ties.
Both strict and non-strict rankings can further be categorized
into complete and incomplete, e.g. see [10], [28]; all alter-
natives are ranked in the former but some alternatives may
be unranked in the latter. This work focuses on complete and
possibly non-strict rankings.

Let A = {1, 2, · · · , n} be the set of alternatives, and L =
{1, 2, · · · ,m} be the set of input rankings, i.e., the judges’
ordinal evaluations. Additionally, let Σ ⊂ Zn be the set of all
possible complete rankings, σl ∈ Σ be the ranking of judge
l ∈ L, σl(i) be the rank of alternative i in the ranking of judge
l, and σ∗ be the consensus ranking. As a convention, σl(i) <
σl(j) indicates that alternative i is preferred over alternative
j by judge l, and σl(i) = σl(j) indicates that alternatives i
and j are tied by judge l. Furthermore, let Λ = {(i, j)|i, j ∈
A, j > i} be the set of unordered pairs of distinct alternatives.

The Kemeny-Snell distance between two complete rankings
σ1 and σ2, denoted by Dks(σ

1,σ2), is given by

Dks(σ
1,σ2) =

1

4

∑
i,j∈A

|sign(σ1(i)− σ1(j))− sign(σ2(i)− σ2(j))|.

(1)

Note that sign(v) returns 1 if v > 0, −1 if v < 0, and
0 otherwise. In the case of strict rankings, Dks counts the
number of rank reversals between two given rankings σ1

and σ2. Furthermore, in the case of non-strict rankings, Dks

assigns half of a rank reversal whenever alternatives i and j
are tied in one ranking, but not in the other.

Kemeny aggregation can be mathematically stated as:

σ∗ = argmin
σ∈Σ

∑
l∈L

Dks(σ, σ
l). (2)

As a convention, let D∗ks be the cumulative Kemeny-Snell
distance between σ∗ and all of the input rankings. The focus
of this paper is finding lower bounds on D∗ks.

Let pij = |l ∈ L : σl(i) < σl(j)| and tij = |l ∈ L : σl(i) =
σl(j)| be the number of input rankings in which alternative
i is ranked ahead of alternative j and the number of input
rankings in which alternatives i and j are tied, respectively.

Alternative i is said to be pairwise preferred by a decisive
majority over alternative j, denoted by i � j, if pij > pji+tij
in the case of non-strict rankings [18]. If neither i is preferred
over j nor j is preferred over i, then there is no decisive
majority preference between i and j; this case is denoted by
i ≈ j. To be more succinct, for the rest of the paper we use
the term pairwise preferred instead of pairwise preferred by
a decisive majority, for succinctness.

Yoo and Escobedo [18] proposed the Generalized Kemeny
Binary Programming (GKBP) formulation for solving Ke-
meny aggregation with strict and non-strict rankings. GKBP
utilizes the relationship between Kemeny-Snell distance and
the extended Kendall tau correlation coefficient [17]. The
formulation is given by:

max z =
∑
i,j∈A

cij(2yij − 1) (3a)

s.t. yij − ykj − yik ≥ −1, i, j, k ∈ A; i 6= j 6= k (3b)
yij + yji ≥ 1, i, j,∈ A; i 6= j (3c)
yii = 0, i ∈ A, (3d)
yij ∈ {0, 1}, i, j ∈ A; i 6= j. (3e)

Here, decision variable yij is equal to 1 if alternative i is
ranked ahead or tied with alternative j and 0 otherwise; i and j
are tied in the ranking if yij = yji = 1. Objective function (3a)
maximizes the extended Kendall tau correlation coefficient;
the coefficient cij is given by pij + tij − pji ∀i, j ∈ A
when the input rankings are complete. Constraint (3b) prevents
preference cycles. Constraint (3c) enforces that i and j cannot
be simultaneously dispreferred over each other. Constraint (3e)
determines the domain of the variables. Let σ′ be the ranking
obtained by solving GKBP, whose ith element (i.e., the rank
of alternative i) is calculated as σ′(i) = n−

∑
j 6=i yij . Further-

more, the cumulative Kemeny-Snell distance between σ′ and
all of the input rankings,

∑
l∈LDks(σ

′,σl), is calculated as
(mn(n−1)−z)/2, where z is the objective function value of
GKBP. Formulation 3 is selected for solving the LP relaxation
of Kemeny aggregation with non-strict rankings since [18]
showed that it is more computationally advantageous than the
binary programming formulation proposed in [16].

III. PAIRWISE COMPARISON METHODS

The cumulative Kemeny-Snell distance between any σ ∈
Σ and all of the input rankings,

∑
l∈LDks(σ,σ

l), can



be expressed as
∑

(i,j)∈A
Dks(σij), where Dks(σij) is the

contribution of each pair of alternatives (i, j) ∈ A to∑
l∈LDks(σ,σ

l).
For the case of strict rankings, Dks(σij) is given by

Dks(σij) =

{
2pji if σ(i) < σ(j),

2pij if σ(j) < σ(i).

Davenport and Kalagnanam [29] proposed the first lower
bound for Kemeny aggregation with strict ranking, given by

LB0 = 2
∑

(i,j)∈A

min(pij , pji). (4)

Eq. (4) obtains a lower bound on D∗ks by simply summing
the smallest contribution of all distinct pairs of alternatives.
Note that Eq. (4) has been scaled by a factor of 2 herein to
facilitate the generalization of this lower bound to non-strict
rankings.

For the case of non-strict rankings, Dks(σij) can be ex-
pressed as [18]

Dks(σij) =


2pji + tij if σ(i) < σ(j),

2pij + tij if σ(j) < σ(i),

pij + pji if σ(i) = σ(j).

(5)

Eq. (5) can be intuitively described as follows. While
computing the distance between σ and input ranking σl, Dks

imposes a distance of 2 if the relative ordering of alternatives
i and i is different in the two rankings; a distance of 1 if i and
i are tied in one ranking but not in the other; and a distance
of 0 when both rankings concur on the relative ordering of
i and j. Therefore, if σ(i) < σ(j), Eq. (5) is equal to the
number of input rankings in which j is ranked ahead of i,
times 2, plus the number of input rankings in which i and j
are tied. Additionally, if σ(j) = σ(i), Eq. (5) is equal to the
number of input rankings in which i and j are not tied. Using
this information, we generalize LB0 to the case of non-strict
rankings.

Proposition 1. Given an instance of Kemeny aggregation, a
lower bound on D∗ks is given by

LB1 =
∑

(i,j)∈A

min(2pij + tij , 2pji + tij , pij + pji). (6)

Similar to LB0, Eq. (6) obtains a lower bound on D∗ks by
simply summing the smallest contribution of all distinct pairs
of alternatives. Note that LB1 reduces to LB0 when the input
rankings are strict, i.e., if tij = 0 ∀i, j ∈ A.

IV. CYCLE-BASED METHODS

This section is devoted to lower bounds on Kemeny ag-
gregation using preference-cycles. First, Section IV-A reviews
cycle-based methods for strict rankings; Section IV-B proposes
a method to apply these techniques to the case of non-strict
rankings; and Section IV-C uses Condorcet-based partitioning
to reduce the run time of cycle-based methods.

A. Cycle-Based Methods for Strict Rankings

The Kemeny aggregation problem with strict rankings can
be solved via the Weighted Minimum Feedback Arc Set Prob-
lem (WMFASP), and vice versa [14], [30]. Let G = (V,E)
be a weighted directed graph where V is the set of vertices
and E is the set of arcs (edges). The objective of WMFASP
is finding a subset of arcs E′ ⊂ E with minimum weight
such that its removal would make the resulting graph, i.e.,
G′ = (V,E\E′), acyclic [31]. Conitzer, Davenport, and
Kalagnanam [14] provided various lower bounds for the equiv-
alent WMFASP of Kemeny aggregation with strict rankings on
the pairwise majority graph. The nodes of this graph are the
alternatives; there is a directed arc from i to j if pij > pji
with a weight of wij = pij − pji; and there is no arc from
i to j and vice versa if pij = pji. The lower bounds on the
WMFASP pairwise majority graph in [14] do not provide any
information on how to obtain the respective lower bounds on
the equivalent Kemeny aggregation problem. For this reason,
Milosz and Hamel [32] utilized methods developed in [14] to
improve LB0.

Recall that LB0 considers the smallest contribution for each
pair of alternatives. However, the resulting solution obtained
by this selection may not be transitive as it may contain
preference-cycles, which can make this bound unattainable.
Nevertheless, this information can be utilized to improve this
lower bound.

Let C = {c1, c2, . . . , cs} be any set of edge-disjoint
preference-cycles. For each cycle, the consensus ranking dis-
agrees with at least one of the edges in the cycle [14]. Hence,
the lower bound can be improved by adding the minimum
cost of reverting an edge of cycle, i.e., the minimum cost of
breaking the preference-cycle. Therefore, a new lower bound
can be calculated as follows [14], [32]:

LB2 = LB0 +
∑
cr∈C

min
(i,j)∈cr

wij . (7)

When only edge-disjoint preference-cycles are considered,
a part of the cycles remains unused. Conitzer, Davenport,
and Kalagnanam [14] proposed a method to leverage this
underutilized information. Let C = {c1, c2, . . . , cs} be any set
of preference-cycles, and δ ((i, j), cr) be an indicator function
which is set to 1 if (i, j) ∈ cr, and 0 otherwise. Addition-
ally, let vl = min(i,j)∈cr{wij −

∑l−1
q=1 δ ((i, j), cq) .vq} [14].

Intuitively, vl calculates the minimum portion of the weights
of cr edges that have not been used by prior cycles in C. A
lower bound on the Kemeny aggregation problem with strict
rankings can be calculated as [14], [32]

LB3 = LB0 +
∑
cr∈C

vl. (8)

Notice that LB3 is at least as good as LB2 [14].

B. Cycle-Based Methods for Non-Strict Rankings

LB1 provides a lower bound on Kemeny aggregation with
non-strict rankings using pairwise comparison information
by considering the smallest among all three possible values.



Similar to the case of strict rankings, the resulting ranking
of this selection may contain preference-cycles, which can be
similarly broken to boost LB1.

Similar to [14] and [32], we focus only on preference-cycles
of length 3 for the purposes of simplicity and computational
efficiency. These preference-cycles are much easier to find,
and every preference-cycle of length 4 or higher contains at
least a preference-cycle of length 3 [33].

As mentioned earlier, Kemeny aggregation with strict rank-
ings and WMFASP are equivalent problems. However, this
claim has not yet been proven for non-strict rankings. We
reckon that, to the best of our knowledge, it may not be
possible to represent Kemeny aggregation with non-strict
rankings via an equivalent WMFASP. The reason is that, for
every pair of distinct alternatives (i, j), there are 3 parameters
involved, namely pij , pji, tij . Additionally, in the case of
strict rankings, alternatives i, j, k form a preference-cycle if
i � j � k � i; however, in the case of non-strict rankings,
there are additional types of preference cycles as shown in
Fig. 1, where arc (i, j) is drawn if i � j; and arcs (i, j) and
(j, i) are simultaneously drawn if i ≈ j. In the case of strict
rankings, it is possible to break a preference-cycle of length
3 by reversing the edge with the lowest weight, however, this
method cannot be applied to non-strict rankings, as edges
are not weighted; additionally, reversing certain individual
edges may not break the cycle. For example, reversing edge
(k, j) in Fig. 1 (b) does not make the resulting graph acyclic.
Consequently, it is not possible to directly apply the previously
reviewed techniques for strict rankings to the case of non-strict
rankings.

Figure 1. preference-cycles in non-strict rankings [18]

We propose a new method to boost LB1 using preference-
cycles. Let C = {c1, . . . , cs} be any set of edge-disjoint
preference-cycles of length 3. For each cycle cr ∈ C, we
explicitly evaluate all 13 possible non-strict rankings (i.e.,
acyclic preferences) of 3 alternatives, and we define X∗r as the
minimum Dks distance of the Kemeny aggregation restricted
to the alternatives in cycle cr. X∗r is the minimum possible
contribution of alternatives i, j, k in D∗ks, i.e., consensus rank-
ing. On the other hand, the contribution of pairs (i, j), (i, k),
and (j, k) to LB1, denoted by dijk, is equal to

dijk = 2 [minDks(σij) + minDks(σik) + minDks(σjk)] .
(9)

We remark that Eq. (9) has been multiplied by 2 since Dks

counts each pair of alternatives twice.

Hence, the improvement caused by breaking cycle cr,
denoted by Qr, is equal to

Qr = X∗r − dijk.

As a result, an improved lower bound can be obtained as

LB4 = LB1 +
∑
cr∈C

Qr. (10)

Given a set of cycles, it is possible to construct different
edge-disjoint sets that can result in different values of LB4.
Since LB1 is a fixed value, LB4 is maximized by focusing
on the second term of Eq. (10).

The problem of finding the set of disjoint cycles that yields
the highest LB4 value can be formulated as a weighted node
packing (WNP) problem. Let G = (V,E,W ) be an undirected
graph where V is the set of nodes, E is the set of edges, and
W is set of nodes weights. The goal of WNP is finding a
subset of nodes with maximum total weight such that no pair
of nodes shares an edge [34]. Here, V is the set of cycles,
i.e., V = C. There is an edge between cycles cr, cg ∈ C if
cr and cg are not edge-disjoint. The weight of node cr is its
improvement to the lower bound, i.e., Qr.

Let C = {c1, . . . , cs} be the set of all cycles of length
3, which may not necessary be edge-disjoint. Given C, the
ensuing optimization problem maximizes LB4. Beforehand,
we introduce the decision variables and parameters of the
model. Let decision variable vl be equal to 1 if cycle cr ∈ C
is in the selected set of edge-disjoint cycles, and 0 otherwise.
Additionally, let Ξ be the set of cycle pairs that share an edge.
The binary programming formulation is given by

max
∑
cr∈C

Qrvr (11a)

subject to vr + vg ≤ 1, ∀(cr, cg) ∈ Ξ (11b)
vr ∈ {0, 1}, ∀cr ∈ C. (11c)

Objective function (11a) maximizes LB4; Constraint (11b)
enforces that, whenever cycles cr and cg share one edge, at
most one of them can belong to the set of edge-disjoint cycles;
and Constraint (11c) specifies the domain of the decision
variables. WNP is an NP-hard problem for general graphs and
even finding an approximation algorithm for this problem is
NP-hard [34]. WNP has stronger formulations using cliques
[34]. However, solving this problem to optimality still may be
computationally demanding.

Here, we propose a simple add-swap heuristic method
to find a high quality set of edge-disjoint cycles for our
problem of interest. The pseudocode of the proposed method is
presented in Algorithm 1, which begins by sorting cycles based
on non-increasing improvement in the lower bound, i.e., Q-
values. Additionally, let C ′ be the working set of edge-disjoint
cycles, which initially is set to be empty. Next, starting with
the cycle that yields the highest improvement, the algorithm
adds this cycle to C ′ if its addition keeps the working set
edge-disjoint. After this step, the algorithm checks whether it



Algorithm 1: Lower Bound Improvement using
preference-cycles

Input : Set of cycles of length 3 (C), Q = [Qr] ∈ Z|C|
Output : Overall improvement in the lower bound

1 Sort cycles based on non-increasing Q-values;
2 Discard cycles with zero improvement;
3 C′ ← ∅; // Set of edge disjoint cycles
4 Q← 0; // Overall improvement in the lower

bound
5 for l = 1 to |C| do
6 if Cycle cr is mutually edge-disjoint with all cycles in

C′ then
7 C′ ← C′ ∪ cr;
8 Q← Q+Qr

while True do
9 Swap cycles cm, cn /∈ C′ with cg ∈ C′ if this swap

allows the set to remain edge-disjoint and increases Q;
10 Otherwise, set to False

11 return Q

is possible to swap one cycle in C ′ with two mutually edge-
disjoint cycles that are not in C ′, such that this swap keeps
C ′ to remain edge-disjoint and simultaneously increases the
overall lower bound improvement of C ′.

Detecting preference-cycles of length 3 has a time com-
plexity of O(n3), which makes this lower bound boosting
technique suitable only for small to medium sized problem.
Here, we use Condorcet-based partitioning to reduce the run
time of this process.

C. Scaling up Cycle-Based Methods with Social Choice Prop-
erties

The Condorcet Criterion [35] is one of the most recog-
nized and widely utilized social choice properties. Young [36]
formalized this concept, which states that if there exists an
alternative such that it beats all other candidates in pairwise
comparison, then it must ranked first in all consensus rankings.
Such an alternative is known as the Condorcet Winner. The
Condorcet Criterion can be mathematically stated as

if ∃ i ∈ A : pij > pji ∀j ∈ A\i =⇒ σ∗(i) < σ∗(j) ∀j ∈ A\i,

where σ∗ is consensus ranking. Truchon [25] proposed a
more general version of the Condorcet Criterion, called the
Extended Condorcet Criterion (XCC), which can be applied to
subsets of alternatives rather than to a single alternative. XCC
guarantees the relative ordering of alternatives in different sub-
sets in the consensus rankings. Let A = {A1,A2, · · · ,Aw}
be a partition of X , where all alternatives in lower-indexed
subsets are pairwise preferred over all alternatives in higher-
indexed subsets. XCC guarantees that all alternatives in lower-
indexed subsets are ranked ahead of all alternatives in the
higher-indexed subsets in the consensus ranking. This criterion
can be mathematically stated as

if pij > pji ∀i ∈ Xk ∈ A,∀j ∈ Ak′ ∈ A : k < k′

=⇒ σ∗(i) < σ∗(j) ∀i ∈ Ak ∈ A,∀j ∈ Ak′ ∈ A.

Recently, Yoo and Escobedo [18] showed that XCC may not
be consistent with the optimal solution of Kemeny aggregation
with non-strict rankings; hence the authors proposed the
Non-strict Extended Condorcet Criterion (NXCC), which is
consistent with the solution to the aforementioned problem.
NXCC can be mathematically stated as:

if pij > pji + tij ∀i ∈ Ak ∈ A,∀j ∈ Ak′ ∈ A : k < k′

=⇒ σ∗(i) < σ∗(j), ∀i ∈ Ak ∈ A,∀j ∈ Ak′ ∈ A.

It is important to remark that NXCC is a generalization of
XCC, as it becomes XCC when all input rankings are strict.

Since applying NXCC has a time complexity of O(n2) [18],
[25], this modification can make cycle detection operation less
expensive and may be effective for certain large-scale prob-
lems. Let A = {A1,A2, · · · ,Aw} be the partition according
to NXCC. In the original problem, all

(
n
3

)
alternative triplets

must be checked for possible preference cycles. However, in
the partitioned problem it is sufficient to evaluate all subsets of
A for possible preference cycles independently. Hence, in the
partitioned problem only

(|A1|
3

)
+
(|A2|

3

)
+ . . . +

(|Aw|
3

)
triplets

must be checked.

Proposition 2. Given an instance of Kemeny aggregation, the
set of cycles obtained from the NXCC partition and from the
original non-partitioned problem are the same.

Proof. All the alternatives that form a preference-cycle must
belong to the same subset in the NXCC partition [25]. There-
fore, there are no preference cycles between alternatives from
different subsets.

V. LP RELAXATION-BASED METHODS

It is well known that the LP relaxation version of a min-
imization Integer Programming (IP) model provides a valid
lower bound on the respective IP model. Conitzer, Davenport,
and Kalagnanam [14] explored this type of lower bound on
the WMFASP version of the Kemeny aggregation with strict
rankings. This method yields tighter bounds than cycle-based
methods; however, it takes more time as well. This is not
surprising, since the exact formulation of the Kemeny aggre-
gation model, and hence the LP relaxation version, has O(n3)
constraints, which can be cumbersome to solve for large values
of n. However, a large portion of these constraints are trivially
satisfied at the optimal solution [37], which is a fact that can
be utilized to simplify the solution to the LP relaxation models
of Kemeny aggregation. Here, we explore an alternative exact
solution approach for solving the LP relaxation problem, the
branch and cut (B&C) method [37]. B&C is an iterative
optimization approach that begins with a relaxed version of
a problem’s exact formulation; the relaxation usually excludes
a large number of the constraints and is, hence, easier to
solve. Here, the cycle-prevention constraints are excluded from
the model at first, i.e, Constraints (3b). At each iteration, the
working relaxation is solved to optimality and the solution is
analyzed to determine if any of the excluded constraints are
violated, in which case the respective constraints (i.e., cuts) are



added back into the working relaxation model. This process
is repeated until there are no such violations.

Furthermore, the process of obtaining a lower bound using
the LP relaxation method can be accelerated by deploying
NXCC partitioning. If the instance of interest is partitionable,
the original problem can be equivalently solved as a collection
of smaller subproblems, which can decrease run times.

VI. COMPUTATIONAL RESULTS

This section compares the quality and run time of the
various lower bounding techniques for non-strict rankings
discussed in this work. Condorcet-based partitioning was per-
formed using the algorithm proposed in [18], which works by
carrying out sequential pairwise comparisons. All experiments
were carried out on a computer with an Intel(R) Xeon(R) CPU
E5-2680 @ 2.40 GHz with 64 GB RAM. The optimization
models were solved using CPLEX solver version 12.10.0.

A. Data Set

We use the Mallows model [38], which is a popular prob-
abilistic model on ranking data and has the nice property
of scalability [39] to generate synthetic instances. Using the
Mallows model, we can control the difficulty of generated
instances and investigate the performance of the algorithms
under different conditions.

The Mallows model has two parameters: a ground truth
ranking σ, and dispersion φ ∈ (0, 1]. The Mallows model used
in this work utilizes Kemeny-Snell distance. The dispersion
parameter controls the density of the generated ranking around
σ. The probability of observing a ranking σ is determined by:

P (σ) = P (σ|σ, φ) =
φDks(σ,σ)

Z
, (12)

where Z =
∑
σ′∈Σ

φDks(σ
′,σ) = 1× (1 + φ)× (1 + φ+ φ2)×

· · · × (1 + · · · + φn − 1) is a normalizing constant. When φ
approaches 0, the Mallows model generates a ranking closer
to σ and, as φ approaches 1, Eq. (12) converges to a uniform
distribution, which means any complete ranking has an equal
probability of occurring.

Doignon et al. [40] introduced the Repeated Insertion Model
(RIM) for generating strict rankings, which encompasses the
Mallows model as a special case. To describe RIM, assume
without loss of generality, that the ground truth ranking σ
is the permutation (1, 2, . . . , n). The method starts by placing
alternative 1 into an initially empty working ranking vector; in
each succeeding iteration and until the target size is reached,
the next alternative from σ is inserted in a specific position
in the working ranking vector based on the Mallows proba-
bilities. Specifically, alternative i is inserted before alterna-
tive j < i in the working ranking vector with probability
pij = φi−j/(1 + φ + · · · + φi−1). Yoo and Escobedo [41]
developed a modified RIM sampling process for generating
non-strict rankings, which is used herein. In this sampling
process, after generating strict rankings via RIM, a random
number u is drawn from a uniform distribution U(1, n − 1),
and the alternative with rank u is tied with the alternative

with the next higher (i.e., worse) rank. The process is repeated
until the number of alternatives that are tied reaches a specific
threshold, herein set to 0.25n. Please refer to [40] and [41]
for more information.

The tested parameter settings are φ ∈ {0.8, 0.85, 0.9, 0.95},
n ∈ {50, 100, 150, 200}, and m = 20; we chose only high
values of φ because they are more difficult to solve, as they
correspond to low group cohesion and higher noise levels [41].

B. Results and Discussion

For each combination of (φ, n), we perform 20 replications.
Since the ground truth ranking used in the Mallows model
are the same for each combination of (φ, n), the D∗ks values
very close to each other. For all three tested lower bounding
techniques, the experimental results shown in Table I reports
the average, minimum, and maximum lower bound over the
20 replications for each combination of (φ, n). Furthermore,
Table I reports the geometric mean run time of the pairwise
comparison (PC); the run time of the cycle-based method (CB)
and its run time with NXCC (CB + NXCC); and the run time
of the LP relaxation (LPR), its run time with B&C (LPR +
B&C), and its run time with B&C and NXCC (LPR + B&C
+ NXCC) over the 20 replications for each combination of
(φ, n).

Instances with a lower φ value yielded a partition with more
subsets than those with a higher value. This was expected
since higher values of φ correspond to more noise in the
generated rankings, which induces less agreement on the
relative ordering of alternatives in these instances. All tested
instances with a φ value of 0.8, 0.85, 0.9 yielded a non-trivial
NXCC partition, however, all tested instances with a φ value of
0.95 were not partitionable. Whenever, NXCC yielded a non-
trivial partition, it was able to accelerate the preference-cycle
detection process rather significantly, especially for instances
with a φ value of 0.8 and 0.85 where the NXCC partition had
the most subsets.

For all tested combinations of (φ, n), the LP relaxation
method achieves a better average, minimum, and maximum
lower bound than the other two techniques; furthermore, this
was true for all the individual instances. On the other hand,
LP relaxation had the highest average run time for all tested
combinations of (φ, n); this was true for all the individual
instances as well. As expected, the cycled-based technique
achieves a better lower bound than the pairwise comparison
method; on the other hand, it takes significantly more time.
The pairwise comparison method achieves the worst bounds.
However, the highest run time of this technique was only 0.04
seconds, which makes this method very attractive whenever a
very fast lower bounding technique is required.

The cycle-based technique was able to improve the pairwise
comparison lower bound in up to a handful of seconds. In
fact this technique was able to achieve bounds that were
competitive with the LP relaxation technique in far less time.
Deploying NXCC makes this method even more attractive as,
whenever NXCC yielded a non-trivial partition, it was able
to accelerate the cycle-based technique rather impressively,



Table I
COMPUTATIONAL RESULTS OF DIFFERENT LOWER BOUNDING TECHNIQUES

N=50
Pairwise Comparison (PC) Cycle-Based (CB) LP Relaxation (LPR)

φ LB Time LB Time LB Time
Ave Min Max PC Ave Min Max CB CB + NXCC Ave Min Max LPR LPR + B&C LPR + B&C + NXCC

0.8 6490.25 5974 6892 0.00 6510.35 6004 6906 0.06 0.01 6513.05 6006 6906 4.20 1.68 0.22
0.85 8651.65 7940 9418 0.00 8684.85 7956 9452 0.06 0.03 8689.7 7956 9458 4.27 1.84 0.41
0.9 11782.75 10726 12854 0.00 11842.35 10796 11806.5 0.09 0.10 11852.55 10810 12940 4.24 1.94 1.20

0.95 16705.15 15633 17906 0.00 16856.75 15777 16790.5 0.37 0.39 16892.55 15811 16817.5 4.35 1.93 1.86

N=100
Pairwise Comparison (PC) Cycle-Based (CB) LP Relaxation (LPR)

φ LB Time LB Time LB Time
Ave Min Max PC Ave Min Max CB CB + NXCC Ave Min Max LPR LPR + B&C LPR + B&C + NXCC

0.8 14263.8 13585 15073 0.01 14304.8 13615 15109 0.38 0.03 14311.7 13617 15117 35.8 15.20 1.34
0.85 19654.55 18644 20615 0.01 19725.55 18724 20701 0.39 0.08 19738.95 18738 20727 35.63 15.57 1.62
0.9 29167.35 27445 30625 0.01 29308.45 27583 30799 0.53 0.51 29335.85 27623 30831 35.56 15.98 10.01

0.95 49735.15 46784 52936 0.01 50059.35 47030 53310 2.16 2.19 50137.35 47091 53392 36.11 15.38 15.41

N=150
Pairwise Comparison (PC) Cycle-Based (CB) LP Relaxation (LPR)

φ LB Time LB Time LB Time
Ave Min Max PC Ave Min Max CB CB + NXCC Ave Min Max LPR LPR + B&C LPR + B&C + NXCC

0.8 22276.6 21578 23189 0.02 22345.3 21642 23273 1.26 0.08 22357.1 21652 23291 122.32 52.67 3.43
0.85 30640.1 29563 31850 0.02 30745.6 29669 31974 1.26 0.18 30766.75 29692 32004 122.30 56.02 3.96
0.9 47121.75 44486 49368 0.02 47324.25 44686 49624 1.49 1.46 47364.05 44718 49682 121.75 55.65 31.92

0.95 85673.6 84089 86765 0.02 86168 84577 87315 6.75 6.76 86282 84713 87451 121.06 58.80 58.81

N=200
Pairwise Comparison (PC) Cycle-Based (CB) LP Relaxation (LPR)

φ LB Time LB Time LB Time
Ave Min Max PC Ave Min Max CB CB + NXCC Ave Min Max LPR LPR + B&C LPR + B&C + NXCC

0.8 29850.1 29046 30894 0.03 29935.1 29118 30980 2.79 0.11 29948.1 29120 31002 294.98 131.80 8.28
0.85 41825.2 40709 43203 0.03 41969.4 40855 43339 2.86 0.28 41992 40879 43363 296.57 135.50 6.71
0.9 64462.8 62991 68004 0.04 64742.6 63239 68290 3.40 2.84 64792.7 63285 68332 298.87 128.01 61.59

0.95 122121.6 118772 125625 0.03 122824.4 119506 126353 13.68 13.72 122968.6 119645 126533 292.13 130.89 130.92

especially for instances with a φ value of 0.8 and 0.85. For
example, NXCC was able to reduce the average run time of
this technique from 2.79 to 0.11 seconds, which represents a
25x computational speedup.

Even though the LP relaxation technique achieves the best
bounds, its run time is considerably larger than the other
two methods, which may make this techniques somewhat less
useful in real world applications. However, incorporating the
B&C method was able to reduce the run time significantly,
specifically by more than half in all tested instances. Moreover,
NXCC was able to accelerate the LP relaxation technique
with B&C rather remarkably for instances with a φ value
of 0.8,0.85, and 0.9. For example, it was able to reduce the
average run time of this technique from 135.5 to 6.71 seconds,
which represents a 20x computational speedup. It is worth
mentioning that Brancotte et al. [16] introduced a formulation
that could be adapted to Kemeny aggregation with non-strict
rankings [18]. This means that LP relaxation bounds could
be obtained from this alternative formulation as well. We
conducted a separate set of experiments to evaluate the quality
of these bounds and found that the LP relaxation of Brancotte’s
formulation provided the same bound as that of the GKPB
formulation for nearly 95% of instances, and it provided a
slightly better bound in most (but not all) of the remaining
instances. However, since the run times of this alternative
formulation were 2.6 to 4.4 times slower than GKBP, we
elected not to report these results for succinctness.

It is important to remark that the maximum NXCC partition-
ing time over all tested instances was only 0.09 seconds, which
makes this computationally inexpensive operation worthwhile
to lower bounding techniques for Kemeny aggregation.

All in all, the pairwise comparison method is suitable when
a very fast lower bounding technique is required. When high
quality bounds are desired, the cycle-based method combined
with NXCC partitioning is probably the best candidate, as it
can produce competitive bounds in up to a handful of seconds.
Finally, LP relaxation combined with B&C and NXCC method
produces the tightest bounds in considerably more time.

VII. CONCLUSION AND FUTURE RESEARCH

This paper explores lower bounding techniques for Kemeny
aggregation problem with non-strict rankings. It generalizes
various existing methods for strict rankings, namely, those
based on pairwise comparisons, cycles, and LP relaxations, to
the case of non-strict rankings. Additionally, it utilizes parti-
tioning using variations of the seminal Condorcet criterion and
Branch & Cut (B&C) methods to accelerate the lower bound-
ing process. The experimental results demonstrate the LP
relaxation provides the tightest bounds, but it is substantially
more computationally demanding than the other techniques.
Deploying partitioning and B&C can drastically reduce the
run time of this technique. Moreover, the cycle-based method
produces high quality bounds in a reasonable time, and its run
times can also be further reduced by partitioning.



Finally, future research can assess and enhance the perfor-
mance of approximation algorithms [42] and exact methods
[17] using the generalized lower bounding techniques de-
veloped herein. Furthermore, there might be other ways to
generalize the lower bounds for Kemeny aggregation with
strict rankings to the case of non-strict rankings.
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[40] J.-P. Doignon, A. Pekeč, and M. Regenwetter, “The repeated insertion

model for rankings: Missing link between two subset choice models,”
Psychometrika, vol. 69, no. 1, pp. 33–54, 2004.

[41] Y. Yoo, A. R. Escobedo, and J. K. Skolfield, “A new correlation
coefficient for comparing and aggregating non-strict and incomplete
rankings,” European Journal of Operational Research, 2020.

[42] S. Akbari and A. R. Escobedo, “Approximate condorcet partitioning:
Solving very large rank aggregation problems at scale,” Under review,
2021.


