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Both our water and food can be contaminated by pathogenic mi
croorganisms. Most of the pathogens present in water can also be found 
in food, and vice versa (Acheson, 2009). These waterborne and food
borne pathogens have posed enormous health concerns and economic 
loss to society globally. Thus, the approaches to control and inactivate 
pathogens are of great interest in both water treatment and food 
production. 

Electric field treatment (EFT) has shown great potential in the pro
cessing of liquid food such as juice, alcoholic, and dairy products. As a 
non-thermal process, EFT will not affect the flavor, texture, and nutrient 
of the food if the processing temperature is controlled (McAuley et al., 
2016). EFT systems available on the market can process up to 10,000 L 
of liquid food per hour. The cost for the pathogen inactivation of bev
erages is estimated to be 10 Euro⋅ton−1, which is already affordable in 
some circumstances. A commercial EFT system usually contains a 
treatment chamber (batch or continuous), a pulse generator, and its 
accessories encapsulated in a stainless-steel box for safety concerns. The 
footprint is usually a few m2, primarily depending on its treatment 

capacity and the size of the pulse generator. Although training is still 
needed for the users, the friendly user interface and protection acces
sories have made EFT devices easy and safe to operate. In a survey 
article, EFT is named the top three most significant technology currently 
available by food professionals from industry, academia, and govern
ment (Jermann et al., 2015). EFT is also rated the third to be of the most 
commercial importance in ten years (Jermann et al., 2015). 

The investigation of EFT in liquid food processing has mainly focused 
on the development of more reliable EFT systems for larger-scale ap
plications. Such development is primarily driven by three objectives: (1) 
providing a more uniform electric field in order to avoid localized 
overheating, (2) reducing the applied voltage in order to lower the 
overall energy consumption, and (3) developing more stable electrodes 
in order to minimize electrochemical reactions, electrode erosion, and 
contamination of products (Buckow et al., 2011; Experton and Martin, 
2018; Experton et al., 2016; González-Sosa et al., 2014; Huo et al., 2016, 
2018; Knoerzer et al., 2012; Masood et al., 2018, 2017; Peng et al., 2017; 
Zhou et al., 2020a). In addition, researchers have studied the 
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inactivation mechanisms, the influence of processing parameters on the 
performance, and the inactivation efficiency of EFT against different 
bacteria in different liquid foods (Arroyo et al., 2010; Jeyamkondan 
et al., 1999; Kotnik et al., 2003; Mahnič-Kalamiza et al., 2014; Mañas 
et al., 2001; Montanari et al., 2019; Sharma et al., 2014; Somolinos 
et al., 2008; Timmermans et al., 2014; Toepfl et al., 2007, 2006). 

Nevertheless, EFT has rarely been studied as a water disinfection 
technique, let alone large-scale industrial applications. Notably, EFT 
employs a physical process, i.e., electroporation, to inactivate patho
gens, which avoids the formation of harmful disinfection by-products 
(DBPs) associated with chemical disinfection. Therefore, the objectives 
of this article are to (1) introduce EFT for pathogen inactivation, (2) 
discuss the feasibility of EFT for water disinfection, (3) identify the 
major obstacles and propose potential solutions, and (4) point out future 
research directions. 

1. Overview of EFT 

EFT has been applied as a pathogen inactivation method for several 
decades. As a non-thermal physical process, EFT avoids the use of 
chemicals and the production of harmful DBPs, possessing an intrinsic 
advantage over chemical disinfection methods (Jeyamkondan et al., 
1999; Raso-Pueyo and Heinz, 2010). In a most conventional EFT, the 
liquid to be treated flows through a treatment chamber consisting of two 
parallel plate electrodes (Huang and Wang, 2009; Jeyamkondan et al., 
1999). The typical distance separating the two parallel electrodes ranges 
from 1 to 10 mm (Rezaeimotlagh et al., 2018; Sharma et al., 2014; 
Timmermans et al., 2014; Walter et al., 2016). High-voltage electric 
pulses (up to several tens of kilovolts) with short durations (typically in 
microseconds) are applied between the electrodes to generate a strong 
electric field with minimal electrochemical reactions (Chang and Park, 
2010). The strong electric field is expected to induce irreversible elec
troporation that damages the cell membrane and thus cell inactivation. 

The theory of electroporation was established primarily using bac
teria as the model microorganisms (Weaver and Chizmadzhev, 1996). A 
resting transmembrane potential (TMP, typically in the range of tens of 
millivolts) is maintained across the bacteria lipid bilayer membrane due 
to the distribution of charged ions inside versus outside of the membrane 
(Felle et al., 1980; Stratford et al., 2019). When a bacterial cell is placed 
in an electric field, an additional TMP, i.e., ∆TMP, is induced (Kotnik 
et al., 2015). When the electric field is strong enough, the TMP exceeds 
the breakdown threshold, and thus electroporation occurs: the con
ductivity and permeability of the bacterial membrane increase, and 
electroporated pores are formed on the membrane (Chang and Reese, 
1990; Weaver and Chizmadzhev, 1996). The breakdown TMP threshold 
ranges from ~250 mV to 1 V, depending on the characteristics of the 
microbes (size, shape, and orientation in the field, etc.) (Jeyamkondan 
et al., 1999). Initial electroporation is reversible: microbial cells reseal 
the pores and heal themselves, and thus maintain their activities (Kotnik 
et al., 2015). As the TMP increases, electroporation gradually evolves 
from reversible to irreversible (Weaver and Chizmadzhev, 1996). In this 
case, the electroporated cells cannot reseal and lose their viability, 
causing microbial inactivation (Kotnik et al., 2015). 

Applying EFT for pathogen inactivation has multiple advantages. As 
a physical process, EFT does not require the addition of chemicals nor 
theoretically generate harmful DBPs (Weaver and Chizmadzhev, 1996). 
EFT is capable of inactivating a wide variety of pathogenic microor
ganisms because EFT targets microbial lipid bilayer structures (Gusbeth 
et al., 2009). EFT can be a fast treatment process to achieve high path
ogen inactivation efficiency if the electric field strength is strong, 
because irreversible electroporation can happen in a few microseconds 
or less (Shahini and Yeow, 2013). In terms of operation, EFT only relies 
on electricity and does not need the transportation and storage of 
chemicals. Meanwhile, EFT does not introduce secondary pollution in 
terms of odor, sound, or light (Weaver and Chizmadzhev, 1996). 

2. Feasibility of EFT for water disinfection 

The pathogen inactivation processes for drinking water and liquid 
food share the same goal of achieving a high inactivation efficiency 
against a broad spectrum of pathogens. Nevertheless, drinking water 
and liquid food have different properties (Table 1). In a conventional 
drinking water treatment process, the source water to be disinfected 
usually has a nearly neutral pH (6~8), low conductivity (200~2000 
µs⋅cm−1), and low total solid concentration (< 50 mg⋅L − 1) (Fernández 
et al., 2018; Gusbeth et al., 2009; Mañas et al., 2001; Seratlić et al., 
2013). Liquid food to be processed can be much more complex. For 
example, fruit juice is usually acidic with a pH of 2~5 (Huang et al., 
2014; Majstorović et al., 2017; Rezaeimotlagh et al., 2018). The vis
cosity of dairy products can be much higher than that of drinking water 
(Table 1) (Cregenzán-Alberti et al., 2015; Jaeger et al., 2009; Mañas 
et al., 2001; McAuley et al., 2016). 

Theoretically, EFT for water disinfection can achieve efficacy at least 
similar to that for liquid food processing, because pathogens found in 
water are similar to those in liquid foods, and the physicochemical 
properties of water are also within the range of those for liquid foods. In 
addition, drinking water is relatively nutrient-deficient compared to 
liquid food, making the pathogens more difficult to survive. Drinking 
water also typically has fewer particles and organic molecules that can 
protect pathogens from inactivation by shading or other mechanisms. 
Therefore, higher pathogen inactivation efficiency can actually be ex
pected when EFT is used in water. 

3. The major barrier and potential solutions for the 
implementation of EFT for water disinfection 

The high cost associated with the extensive energy consumption is 
the major barrier of EFT for liquid food processing (Rodriguez-Gonzalez 
et al., 2015). This concern will be more significant when applying EFT 
for water disinfection because drinking water is typically less valuable 
than liquid food. According to the literature, the specific energy con
sumption of EFT for liquid food processing is 40~1000 kJ⋅L − 1, 
assuming the liquid density is 1 kg⋅L−1 (Saldaña et al., 2010; Timmer
mans et al., 2014; Walter et al., 2016), which is significantly higher than 
that of some other technologies that mainly consumes electrical energy 
for water disinfection (e.g., 20~100 J⋅L − 1 for UV and 20~150 J⋅L − 1 for 
ozone) which has been adopted and optimized for decades (Chang et al., 
2008). 

Compared to liquid food processing, the energy consumption of EFT 
for water disinfection can potentially be lower, because the conductivity 
of drinking water is significantly lower than that of liquid food (Table 1), 
indicating that the energy unintentionally diverted for heat generation is 
largely reduced. Nevertheless, efforts are still needed to further reduce 
the energy consumption of EFT to make it affordable for water 
disinfection. 

The general idea to reduce the energy consumption of EFT is to 
operate the process at lower voltages. When the operating voltage is 
lower, energy conversion efficiency for pulse generation is typically 
higher. In addition, side electrochemical reactions and unintentional 
heating can also be reduced. Nevertheless, according to the current 
theory of electroporation, the electric field strength needs to reach a 
threshold value to cause irreversible electroporation, i.e., cell inactiva
tion. Therefore, high electric field strength needs to be maintained while 
lowering the operating voltages, which has been realized by two 
different strategies. 

First, we can reduce the distance between the electrodes for the flow- 
by EFT systems (electric field direction perpendicular to the fluid flow, 
Fig. 1a) or apply “co-field” or “converged” configurations for the flow- 
through EFT systems (electric field direction parallel to the fluid flow, 
Fig. 1b) (Eveke and Brunkhorst, 2004; Evrendilek and Zhang, 2005). In 
both cases, the treated fluid needs to flow through narrower channels, 
which will result in a higher risk of clogging and require more energy to 
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push the fluid through (Huang and Wang, 2009). This strategy has been 
investigated in food processing for many years, and the knowledge 
gained from these studies can be applied for water treatment. As 
drinking water usually has fewer solid components and lower viscosity 
than most liquid foods (Table 1), EFT systems for drinking water 
disinfection may apply narrower channels than those for liquid food 
processing. Nevertheless, the throughput of the system will be limited, 
and may not be practical for large-scale applications. 

Another strategy to achieve high electric field strength with low 
operating voltages is applying locally enhanced EFT (LEEFT). The design 
goal of conventional EFT is to achieve a uniform electric field and avoid 
dead zones so that all pathogens in the system can be inactivated 
simultaneously. Differently, LEEFT aims to enhance the electric field 
locally and to transport pathogens to these regions by various forces (e. 
g., hydrodynamic, electrophoretic, and dielectrophoretic) to achieve 
high-efficiency disinfection. The electric field can be enhanced locally at 
two different levels. At the macro-scale, coaxial electrodes instead of 
parallel electrodes can be applied (Fig. 1c). With this configuration, the 
electric field is stronger when closer to the center electrode. Secondly, 
the electrode surface can be modified with micro-scale structures with 
sharp tips (e.g., nanowires) (Fig. 1d). Attributed to the “lightning-rod” 
effect, the electric field near the tips is significantly stronger (Poudineh 
et al., 2014). Simulation results show that the electric field strength can 
be enhanced by at least 3–4 orders of magnitude (Liu et al., 2014). 

Different from the first strategy that has been applied for food pro
cessing, LEEFT was first developed for water treatment and has 
demonstrated high-efficiency disinfection (Huo et al., 2018; Zhou et al., 
2020b, 2020c). When both synthetic and natural water samples dosed 
with model bacteria are treated by LEEFT, inactivation efficiencies of >6 
logs have been realized with applied voltages as low as 1 V (Zhou et al., 
2020b). During LEEFT, pathogens will be exposed to the locally 
enhanced electric field and inactivated, but the bulk water is only 
exposed to the background electric field with much lower strength. This 
paradigm-shifting strategy makes the LEEFT intrinsically a very low 
energy-consuming process. At the bench-scale, the specific energy con
sumption of 1~5 J⋅L − 1 has been achieved according to the operating 
current and voltage (Huo et al., 2016; Zhou et al., 2020c). Nevertheless, 
the development of LEEFT is still at a very early stage, and many chal
lenges still need to be addressed before its real-world applications. More 
discussion on LEEFT can be found in recent publications that talk about 
electrode materials, electrode lifetime, concerns of secondary contami
nants, etc. (Zhou et al., 2020b; Zhou et al., 2020c). 

4. Future research and perspectives 

Much higher energy consumption of EFT compared with competing 
technologies is still the major barrier to overcome for water disinfection. 

Table 1 
Typical characteristics of drinking water sources and liquid food.   

Examples pH Conductivity 
(µS⋅cm−1) 

Viscosity (mPa⋅s)* Other parameters of concern References 

Drinking 
water 
sources 

Natural surface water 
(e.g., river, lake, & 
stormwater) 

6–8 200–2000 ~1 TSS (normal range 0–50 mg⋅L−1), 
turbidity (normal range under 10 
NTU), water activity, & buffer ability 

(Arroyo et al., 2010; Fernández et al., 2018;  
Gusbeth et al., 2009; Liu, 2017; Mañas et al., 
2001; Seratlić et al., 2013)  

Alcoholic beverages 
(e.g., wine & beer) 

3–6 300–3000 0.7–3.0 Alcohol concentration (0.05–15%) & 
sugar content (1–200 g⋅L−1) 

(Aadil, 2015; Evrendilek, 2004;  
González-Arenzana, 2015; Majstorović 
et al., 2017; Puértolas, 2009; Van Wyk, 
2019) 

Liquid food Dairy products (e.g., 
milk, cream, & 
ovalbumin) 

6–7 1000–40,000 2 (milk)−100 
(cream, 50% fat) 

Fat (0–4%) & protein (~3%) 
component 

(Bermúdez-Aguirre, 2012; Jaeger et al., 
2009; Mañas et al., 2001; McAuley et al., 
2016; Sharma et al., 2014)  

Juices of different 
fruits 

2.5–6 1000–3000 2 (diluted)−200 
(concentrated) 

Sugar content (13–23 Bx)** & 
acidity 

(Huang et al., 2014; Majstorović et al., 2017; 
Rezaeimotlagh et al., 2018)  

* The viscosity values reported are at room temperature (18–25 ◦C). 
** Degrees Brix (symbol Bx): 1 Bx is 1 gram of sucrose in 100 g of solution. For solutions containing dissolved solids other than pure sucrose, the Bx only approximates 

the dissolved solid content. 

Fig. 1. Schematics of different strategies to achieve enhanced electric field. 
Green arrows represent the direction of electric field, and the thickness of the 
arrow indicates the strength of the electric field (i.e., regions of enhanced 
electric field are presented by the thicker arrows). Blue arrows show the di
rection of water flow. (a) Electric field can be enhanced by reducing the dis
tance between two electrodes. Water flows by the electrodes. (b) A co-field 
configuration can increase the electric field strength inside the narrow channel 
of the insulator. Water flows through the electrodes. (c) and (d) shows two 
different scales for locally enhanced electric field treatment (LEEFT). (c) Macro- 
scale enhancement by a coaxial electrode design. The center electrode is usually 
assigned positive, since the electrophoretic force can be utilized to transport the 
negatively-charged bacterial cells closer to the center region. Water flows by 
the electrodes. (d) Micro-scale enhancement by sharp tips on the electrode 
surface. The schematic is for demonstration and not to scale. The modification 
(e.g., nanowires) can be very small compared with the bulk electrode and 
cannot be visualized by naked eyes. Water can flow either through or by the 
electrodes (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article). 
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Even though the above-mentioned two strategies have been applied to 
dramatically reduce the energy consumption in bench-scale prototypes, 
implementation in full-scale EFT systems requires much more effort. For 
example, the lifetime of the nanowire-modified LEEFT electrode is still 
too short and needs significant improvement. Meanwhile, researchers 
also need to look for other strategies that can reduce the energy con
sumption of EFT, such as improve the energy efficiency of pulse gen
eration and minimize heat generation. 

Besides the major barrier in energy consumption, there are other 
aspects of applying EFT for water disinfection that need future investi
gation. Food scientists have intensively studied the influence of liquid 
property parameters, including temperature, pH, conductivity, water 
activity, and protein and fat components, on the performance of EFT 
(Arroyo et al., 2010; Fernández et al., 2018; Somolinos et al., 2008; 
Timmermans et al., 2014). For the applications in drinking water 
disinfection, more studies are needed to investigate the influence of 
specific water quality characteristics such as turbidity and alkalinity, as 
well as inorganic ions (e.g., Ca2+, Mg2+, HCO3

−, and SO4
2−) and dis

solved organic matters (e.g., humic acids) that commonly exist in natural 
water bodies. Most existing studies of EFT for water disinfection used a 
handful of common model bacteria. More investigation is needed on 
different microorganisms, including pathogenic bacteria, bacterial 
spores, viruses, and protozoa. The reactor of the EFT also needs to be 
rationally designed for water treatment. Computational fluid dynamics 
can be used to access the flow regime and pressure drop, which could be 
beneficial for the optimization of the reactor configuration. In addition, 
different from liquid food processing that is typically conducted at in
dustrial scales by the manufacturers, drinking water disinfection can be 
applied not only in large centralized treatment plants but also through 
the water distribution pipelines and at the point of use for individual 
houses. Drinking water disinfection is also needed for remote places 
without grid power (e.g., islands, ships, submarines, space stations, and 
developing areas) or emergency situations when the grid power is dis
rupted (e.g., earthquakes and hurricanes). Therefore, specific challenges 
will need to be addressed for EFT to be adopted for drinking water 
disinfection at different scales and under different scenarios. 

Promoting the implementation of EFT in drinking water disinfection 
requires the collaboration of water treatment scientists and engineers 
with other experts from multiple disciplines. For example, microbiolo
gists can strengthen the understanding of the electroporation process in 
different water matrix, which provides fundamental knowledge to the 
mechanism of pathogen inactivation in EFT. Electrical engineers can 
design and optimize the pulse generator and control circuits specifically 
for water treatment. Mechanical engineers can improve the cooling 
system in those EFT systems with overheating issues. Material scientists 
can develop new electrodes with higher stability, lower cost, and/or 
specific surface features to provide the electric field enhancement effect. 
Food scientists who have applied EFT for liquid food processing can also 
share their acquired knowledge and experience and provide insights into 
the EFT for drinking water disinfection. 

5. Conclusions 

The next-generation water disinfection technologies should mini
mize the use of chemicals, the consumption of energy, and the impact on 
the environment, while having high resilience for different application 
scenarios (Deng, 2021; Shannon et al., 2010). We believe that EFT has 
the potential to become a competitive candidate in the technology 
toolbox for next-generation water disinfection. After analyzing both the 
feasibility and challenges of EFT for water disinfection, we offer the 
following insights:  

1) As a physical process, EFT holds intrinsic merit comparing to 
chemical methods: the microbial inactivation by electroporation 
introduces no DBPs to the treated water.  

2) The operation of EFT only relies on electricity, which is very easy to 
transport compared with chemical disinfectants, and can also be 
generated on-site to ensure resilience. 

3) Even though the cost of electricity keeps dropping and can poten
tially be very low in the future, the energy consumption of EFT de
vices is still much higher than that of current water disinfection 
techniques, which becomes the major barrier of EFT. Potential so
lutions include redesigning the device configuration and electrode 
materials (e.g., LEEFT).  

4) With further development, EFT is promising to be applicable in the 
water treatment systems with reasonable cost to provide safer and 
more reliable drinking water. 
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Saldaña, G., Puértolas, E., Condón, S., Alvarez, I., Raso, J., 2010. Inactivation kinetics of 
pulsed electric field-resistant strains of Listeria monocytogenes and Staphylococcus 
aureus in media of different pH. Food Microbiol. 27 (4), 550–558. 
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