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Abstract

Imaging through diffusers presents a challenging problem with various digital image reconstruction solutions
demonstrated to date using computers. Here, we present a computer-free, all-optical image reconstruction method
to see through random diffusers at the speed of light. Using deep learning, a set of transmissive diffractive surfaces
are trained to all-optically reconstruct images of arbitrary objects that are completely covered by unknown, random
phase diffusers. After the training stage, which is a one-time effort, the resulting diffractive surfaces are fabricated and
form a passive optical network that is physically positioned between the unknown object and the image plane to all-
optically reconstruct the object pattern through an unknown, new phase diffuser. We experimentally demonstrated
this concept using coherent THz illumination and all-optically reconstructed objects distorted by unknown, random

diffusers, never used during training. Unlike digital methods, all-optical diffractive reconstructions do not require
power except for the illumination light. This diffractive solution to see through diffusers can be extended to other
wavelengths, and might fuel various applications in biomedical imaging, astronomy, atmospheric sciences, oceanog-
raphy, security, robotics, autonomous vehicles, among many others.
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1 Main text

Imaging through scattering and diffusive media has been
an important problem for many decades, with numer-
ous solutions reported so far [1-19]. In various fields,
including e.g., biomedical optics [5, 20], atmospheric
physics [6, 21], remote sensing [22, 23], astronomy [24,
25], oceanography [26, 27], security [28, 29] as well as
autonomous systems and robotics [30—32], the capabil-
ity to rapidly see through diffusive and scattering media
is of utmost importance. In principle, with a prior infor-
mation of the transmission matrix of a diffuser [16, 33],
the distorted images can be recovered using a computer.

*Correspondence: ozcan@ucla.edu

! Electrical and Computer Engineering Department, University
of California, Los Angeles, Los Angeles, CA 90095, USA

Full list of author information is available at the end of the article

@ Springer Open

However, there is no simple solution to accurately obtain
the transmission matrix of a diffuser [34]. Furthermore,
the transmission matrix will significantly deviate from
its measured function if there are changes in the scat-
tering medium [35], partially limiting the utility of such
measurements to see through unknown, new diffusers.
To overcome some of these challenges, adaptive optics-
based methods have been applied in different scenarios
[5, 17, 36]. With significant advances in wave-front shap-
ing [37-40], wide-field real-time imaging through tur-
bid media became possible [8, 41]. These algorithmic
methods are implemented digitally using a computer
and require guide-stars or known reference objects,
which introduce additional complexity to an imaging
system. Digital deconvolution using the memory effect
[42, 43] with iterative algorithms is another important
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avenue toward image reconstruction using a computer
[9, 44-47].

Some of the more recent work on imaging through
diffusers has also focused on using deep learning meth-
ods to digitally recover the images of unknown objects
[11, 12, 48, 49]. Deep learning has been re-defining the
state-of-the-art across many areas in optics, including
optical microscopy [50-55], holography [56—61], inverse
design of optical devices [62-67], optical computation
and statistical inference [68—77], among others [78-80].
To incorporate deep learning to digitally reconstruct dis-
torted images, neural networks were trained using image
pairs composed of diffuser-distorted patterns of objects
and their corresponding distortion-free images (target,
ground truth). Harvesting the generalization capability of
deep neural networks, one can digitally recover an image
that was distorted by a new diffuser (never seen in the
training phase), by passing the acquired distorted image
through a trained neural network using a computer [12].

In this paper, we present computer-free and all-optical
reconstruction of object images distorted by unknown,
randomly-generated phase diffusers, as shown in Fig. 1a.
Unlike previous digital approaches that utilized comput-
ers to reconstruct an image of the input object behind a
diffuser, here we trained a set of diffractive surfaces/lay-
ers using deep learning to all-optically reconstruct the
image of an unknown object as the diffuser-distorted
input optical field diffracts through successive trained
layers, i.e., the image reconstruction is processed at the
speed of light propagation through the diffractive layers.
Each diffractive surface that is trained has tens of thou-
sands of diffractive features (termed as neurons), where
the individual phase values of these neurons are adjusted
in the training phase through error back-propagation,
by minimizing a customized loss function between the
ground truth image and the diffracted pattern at the
output field-of-view. During this training, many dif-
ferent, randomly-selected phase diffusers, all with the
same statistical correlation length, are used to help the
generalization of the optical network. After this deep
learning-based design of these diffractive layers (which
is a one-time effort), they are fabricated to form a physi-
cal diffractive network that is positioned between an
unknown, new diffuser and the output/image plane. As
the input light corresponding to a new, unknown object
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passes through an unknown diffuser, the scattered light
is collected by the trained diffractive network to all-
optically reconstruct an image of the object at its output
field-of-view, without the need for a computer, any digital
computation or an external power source (except for the
coherent illumination light).

We validated the success of this approach using coher-
ent THz illumination, and fabricated our designed dif-
fractive networks with a 3D-printer to demonstrate their
capability to see through randomly-generated unknown
phase diffusers that were never used in the training
phase. We also observed an improved object reconstruc-
tion quality using deeper diffractive networks that have
additional trainable layers. This all-optical image recon-
struction achieved by passive diffractive layers enables
to see objects through unknown random diffusers and
presents an extremely low power solution compared with
existing deep learning-based or iterative image recon-
struction methods implemented using computers, only
requiring power for the coherent illumination source.
Learning-based diffractive models presented here to
see through diffusers can also work at other parts of the
electromagnetic spectrum, including the visible and far/
mid-infrared wavelengths. Although the presented proof-
of-concept results considered a thin, random diffuser
layer, we believe that this framework and the underlying
methods can potentially be extended to see through volu-
metric diffusers and might bring transformative advances
in various fields, where imaging through diffusive media
is of utmost importance such as e.g., in biomedical imag-
ing, astronomy, autonomous vehicles, robotics and
defense/security applications, among many others.

2 Results

2.1 Diffractive network design and experimental set-up
We designed and 3D-fabricated diffractive networks
that can all-optically reconstruct object images that are
distorted by random phase diffusers under 400 GHz
illumination (A & 0.75 mm). In terms of the optical set-
up, custom fabricated phase diffusers (see the Methods
section) are individually placed 40 mm (534) away from
the input object plane. The successive diffractive lay-
ers (designed for all-optical reconstruction of the object
field-of-view) are placed 2 mm away from the diffuser,
with a layer-to-layer distance of 2 mm. The output image

(See figure on next page.)

shown in ¢ using continuous wave coherent THz illumination

Fig. 1 All-optical imaging through diffusers using diffractive surfaces. a Training and design schematic of a 4-layered diffractive system that can
see through unknown/new randomly generated phase diffusers. b Sample images showing the image distortion generated by random diffusers.
Top: input images. Second row: free-space propagation (FSP) of the input objects through the diffuser, without the diffractive layers, imaged at the
output plane. Third row: the input objects imaged by an aberration-free lens through the diffuser. Fourth row: the outputs of the trained diffractive
network. ¢ Schematic of a 4-layered network trained to all-optically reconstruct the input field of view seen through an unknown random diffuser.
d The photograph of the 3D printed network shown in ¢. e Schematic and photograph of the experimental apparatus used for testing the design
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plane is positioned 7 mm (9.3 1) from the last diffrac-
tive layer along the optical axis (Fig. 1a). Based on these
parameters, characteristic object distortion generated by
a randomly selected phase diffuser is reported in Fig. 1b.
First, we simulated the free-space propagation (FSP) of a
distorted object (i.e., seen through a diffuser) without the
presence of the diffractive layers, and got its intensity dis-
tribution at the output plane, which is shown in the sec-
ond row of Fig. 1b. Imaging of the same object through
the same diffuser by an aberration-free lens is also shown
in the third row of Fig. 1b. These images clearly show the
impact of the diffuser at the output plane (through free-
space propagation or an imaging lens), which makes it
impossible to recognize the object unless further compu-
tation or digital reconstruction is applied. As we report
here, jointly-trained passive diffractive surfaces can per-
form this needed computation all-optically, as the scat-
tered light behind an unknown diffuser passes through
these layers, forming an image of the object field-of-view
at its output plane, as exemplified in the fourth row of
Fig. 1b.

A diffractive network generalizes to see through
unknown, new diffusers by training its layers with
numerous image pairs: diffuser-distorted speckle pat-
terns of various input objects and the corresponding
distortion-free object images (target). To make our all-
optical diffractive system capable of reconstructing an
unknown object’s image that is distorted by new diffusers
(i.e., never seen during the training phase), we adopted
the strategy of using multiple diffusers to train our dif-
fractive surfaces, following the procedure depicted in
Fig. 1a. All of the diffusers that are used in the training
and blind testing phases are assumed to have the same
correlation length (L~10\) and are randomly created
as thin phase elements (see the Methods section and
Fig. 1a). At the beginning of each training epoch, a set
of n different phase diffusers are initialized to be used
throughout the whole epoch. In each iteration within a
given epoch, we randomly selected a batch of B grayscale
training images from the MNIST dataset [81] (containing
50,000 handwritten digits for training and 10,000 for test-
ing) and used them, one by one, through the amplitude
channel of the input object plane. During each iteration,
a total of Bxn distorted optical fields were processed by
the diffractive network and subsequently measured at the
output plane. The corresponding loss value, calculated
through a training loss function that blends negative
Pearson Correlation Coefficient (PCC) [11] and photon
loss (see the Methods section), was then used to calculate
the error gradients for updating the phase modulation
values of the neurons on the diffractive layers, marking
the end of one iteration. An epoch was finished when all
the 50,000 training images within the MNIST dataset
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were exhausted to train the network. After being trained
for 100 epochs, the network has seen features from a total
of N=100# unique phase diffusers that are randomly gen-
erated. As demonstrated in the following subsections,
this strategy enabled the generalization of the diffractive
network to see and reconstruct unknown objects through
novel/new phase diffusers that were never used in the
training phase.

2.2 All-optical, computer-free image reconstruction
through diffusers

To demonstrate the all-optical image reconstruction
performance of a diffractive network, we first trained a
4-layered network using #=20 diffusers in each epoch
(Fig. 1c). After being trained for 100 epochs, the result-
ing network generalized to an imaging system that can
see through diffusers at the speed of light, without the
need for a computer or a digital reconstruction algo-
rithm. The trained diffractive layers’ phase modulation
patterns are reported in Additional file 1: Fig. S1. To shed
light on the operation principles of the trained diffrac-
tive network, it was initially tested with new hand-writ-
ten digits (i.e., MNIST test images that were never used
in the training phase) distorted by n=20 individual dif-
fusers that were used in the last training epoch (we term
these as known diffusers, meaning they were used in the
training). The first three rows in Fig. 2a present the suc-
cessful all-optical reconstruction results corresponding
to these new hand-written digits that were distorted by
three (K1, K2 and K3) of the last n=20 known diffusers.
Next we blindly tested the same trained diffractive net-
work with new phase diffusers that were not used during
the training. For this, we randomly generated 20 novel/
new diffusers and Fig. 2b shows the all-optical recon-
struction results of the same objects (never seen by the
network before) distorted by unknown/new diffusers (B1,
B2 and B3), which were randomly selected from the 20
new phase diffusers. A comparison between Figs. 2a and
b reveals the generalization performance of the trained
diffractive network to all-optically reconstruct unknown
objects through unknown phase diffusers that were never
seen before.

In addition to MNIST test images, we further tested
the same diffractive network with resolution test targets
having different periods (10.8 mm and 12 mm respec-
tively); see Fig. 2, last 2 rows. These types of resolution
test targets, composed of periodic lines, were never seen
by the diffractive network before (which was trained with
only MNIST data), and their successful reconstruction
at the network output plane (Fig. 2) further supports the
generalization of the diffractive network’s capability to
reconstruct any arbitrary object positioned at the input
field-of-view, instead of overfitting to a local minimum
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Fig. 2 Simulation results of the all-optically reconstructed images of test objects distorted by a known and b new diffusers using the trained
diffractive network shown in Fig. 1c. The PCC value of each reconstruction is reported below the corresponding image

covering only images from a specific dataset. To quantita-
tively analyze the generalization performance of trained
diffractive networks, in Fig. 3a and b we also report the
measured periods corresponding to the all-optically
reconstructed images of different resolution test tar-
gets that were seen through the last # known diffusers
(used in the last training epoch) as well as 20 new, ran-
domly generated diffusers (never used during the train-
ing). Despite the use of different training strategies (with
n=1, 10, 15, 20), the results reported in Fig. 3 reveal that
all these trained diffractive network models can resolve
and accurately quantify the periods of these resolution

test targets seen through known as well as new/novel
diffusers.

After these numerical analyses of all-optical image
reconstruction under different conditions, next we exper-
imentally verified its performance and fabricated the
designed diffractive layers using a 3D printer (Fig. 1d);
we also fabricated diffusers K1-K3 and B1-B3 as well
as 5 test objects (3 hand-written digits and 2 resolution
test targets). The test objects were further coated using
aluminum foil to provide binary transmittance. For each
hand-written digit, a 42x42 mm field-of-view at the
output plane was imaged by scanning a 0.5x0.25 mm
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Fig. 3 Generalization of diffractive networks that were trained with MNIST image data to reconstruct the images of different resolution test targets,
seen through a known and b new randomly generated diffusers. Despite the fact that such resolution test targets or similar line-based objects were
never seen by the networks during their training, their periods are successfully resolved at the output plane of the diffractive networks

detector with a step size of 1 mm in each direction (see
Fig. 1e). The experimental results are shown in Fig. 4a
and b, clearly demonstrating the success of the all-optical
network’s capability to see through unknown diffusers.
For comparison, we also report the intensity distribu-
tion generated by a lens-based imaging system as well
as free-space propagation (without the diffractive lay-
ers) of an input object with the presence of the diffuser
K1 (see Additional file 1: Fig. S2); a similar comparison is
also provided in Fig. 1b. These comparisons clearly high-
light the success of the all-optical image reconstruction
achieved by the diffractive network despite the presence
of significant image distortion caused by the unknown
diffuser and free-space propagation.

We also imaged resolution test targets using the
same experimental setup at the output plane of the dif-
fractive network (see Fig. 4c). From the all-optically
reconstructed output images of the diffractive net-
work, we measured the periods of the resolution test
targets imaged through known and (new/movel) dif-
fusers as 10.8514+0.121 mm (11.233+0.531 mm) and
12.2691+0.431 mm (12.225+0.245 mm), corresponding
to the fabricated resolution test targets with periods of
10.8 mm and 12 mm, respectively. These experimental
results further demonstrate the generalization capa-
bility of the trained diffractive network to all-optically
reconstruct/image unknown objects through unknown
diffusers, which were never used during the training
phase; moreover, we should emphasize that this fabri-
cated diffractive network design was only trained with

MNIST image data, without seeing grating-like periodic
structures.

Several factors affect the experimental performance
of our system. First, the incident THz wave is not com-
pletely uniform at the input object plane due to the prac-
tical limitations of the THz source that we used, deviating
from our assumption of plane wave incidence. Second,
potential fabrication imperfections and the mechani-
cal misalignments between successive diffractive layers
as they are assembled together might have also partially
degraded our experimental results, compared with the
numerical test results. Finally, since the random diffuser
layer strongly diffracts light, our experiments might also
suffer from reduced signal-to-noise ratio at the detector.

2.3 Performance of all-optical image reconstruction

as a function of the number of independent diffusers

used in the training
An important training parameter to be further examined
is the number of diffusers (n) used in each epoch of the
training. To shed more light on the impact of this param-
eter, we compared the all-optical reconstruction per-
formance of four different diffractive networks trained
with n=1, n=10, n=15 and n=20, while keeping all the
other parameters the same. To further quantify the image
reconstruction performance of these trained diffractive
networks, we adopted the Pearson Correlation Coeffi-
cient (PCC) [82] as a figure of merit, defined as:

b ¥(0-0)(G=0)
/2 (0-0)' % (6-6)’ W)
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Fig. 4 Experimental results of the all-optically reconstructed images of test objects distorted by a known and b new diffusers using the trained
diffractive network shown in Fig. 1c. The PCC value of each measured image is reported in black. ¢ The measured periods of the resolution test

where O is the output image of the diffractive network
and G is object image to be reconstructed, i.e., the ground
truth. Using this metric, we calculated the mean PCC
value for the all-optical reconstruction of 10,000 MNIST
test objects (never used in the training) distorted by the
same diffusers. Stated differently, after being trained for
100 epochs, all the finalized networks (n=1, 10, 15, 20)
were compared to each other by calculating the aver-
age PCC values over unknown MNIST test objects dis-
torted by each one of the 100n known diffusers as well
as each one of the 20 new/novel randomly generated

diffusers (see Fig. 5). This figure should not be confused
with learning curves typically used to monitor the ongo-
ing training of a neural network model; in fact, the results
in Fig. 5 report the all-optical reconstruction fidelity/
quality achieved for unknown test objects after the train-
ing is complete. From top to bottom, the four panels in
Fig. 5a present the comparison of the diffractive net-
works trained with #n =1, n =10, n=15 and n=20, respec-
tively, while the inserts in last three panels show the same
plot zoomed into the last 50 diffusers. An increased PCC
value can be clearly observed corresponding to testing
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Fig. 5 Memory of diffractive networks. a After being trained for 100 epochs, all the finalized networks (n=1, 10, 15 and 20) were compared by
calculating the average PCC values over unknown objects distorted by all the known diffusers (solid line). Dashed line: the average PCC value over
unknown objects distorted by diffusers indexed as 1-99n. Inserts: the same plot zoomed into the last 50 diffusers. b PCC values of each finalized
network tested with images distorted by 10n diffusers used in last 10 epochs in training (n=1, 10, 15 and 20, respectively) and 20 new random
diffusers (never seen before). The error bars reflect the standard deviation over different diffusers

of unknown objects through the last # diffusers used in
the final epoch of the training. Furthermore, we observe
that the trained diftractive models treat all the diffusers
used in the previous epochs (1-99) on average the same
(dashed lines in Fig. 5a), while the diffusers used in the
last epoch (100) are still part of the “memory” of the
network as it shows better all-optical reconstruction of
unknown test objects through any one of the last # dif-
fusers used in the training. Interestingly, due to the small

learning rate used at the end of the training phase (~3x
107 see the Methods section for details), the diffractive
network trained with #=1 maintained a fading memory
of the last 10 known diffusers. However, this memory did
not provide an additional benefit for generalizing to new,
unknown diffusers.

Another important observation is that the all-optical
reconstruction performance of these trained networks to
image unknown test objects through new diffusers is on
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par with the reconstruction of test objects seen through
the diffusers used in epochs 1 through 99 (see Fig. 5b).
These results, along with Figs. 2, 3 and 4, clearly show
that these trained diffractive networks have success-
fully generalized to reconstruct unknown test objects
through new random diffusers, never seen before. Fig-
ure 5 further illustrates that the training strategies that
used #=10, n=15 and n=20 perform very similar to each
other and are significantly superior to using n=1 during
the training, as the latter yields relatively inferior gener-
alization and poorer all-optical reconstruction results for
unknown new diffusers, as also confirmed in Figs. 6a, b.

To shed more light on the operation principles of our
designed diffractive networks, we also tested the same
networks to image distortion-free objects, and therefore
removed the random phase diffuser in Fig. 1a while keep-
ing all the other components at their corresponding loca-
tions; see Figs. 6a and b for the resulting images and the
PCC values corresponding to the same networks trained
with n=1, n=10, n=15 and n=20. The fourth column in
Fig. 6a visually illustrates the diffracted images formed at
the output field-of-view of each network, without a dif-
fuser present, demonstrating that the networks indeed
converged to a general purpose imager. In other words,
the diffractive network converged to an imager design
with built-in resilience against distortions created by ran-
dom, unknown phase diffusers, as also confirmed by the
increased PCC values reported in Fig. 6b for the cases
without a diffuser.

It is also worth noting that, the diffractive network
trained with n=1 diffuser per epoch had an easier time to
overfit to the last diffuser used during the training phase,
and therefore it scored higher when imaging through this
last known diffuser (Fig. 6b). This is a result of overfitting,
which is also evident from its poorer generalization per-
formance under new diffusers as compared to the train-
ing strategies that used n=10, n=15 and »=20 diffusers
per epoch (see Fig. 6b).

2.4 Deeper diffractive networks improve all-optical image
reconstruction fidelity
We also analyzed the impact of deeper diffractive net-
works that are composed of a larger number of trainable
diffractive surfaces on their all-optical reconstruction and
generalization performance to see through diffusers. Fig-
ure 7 compares the average PCC values for the all-optical
reconstruction of unknown test objects using diffractive
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networks that are designed with different number of dif-
fractive layers. Our results reveal that, with additional
trainable diffractive layers, the average PCC values calcu-
lated with test images distorted by both known and new
random diffusers increase, demonstrating a depth advan-
tage for all-optical image reconstruction.

3 Discussion

As demonstrated in our numerical and experimen-
tal results, a diffractive network trained with MNIST
dataset can all-optically reconstruct unknown resolu-
tion test targets through new random diffusers, both of
which were not included in the training dataset; these
results confirm that the trained diffractive networks do
not perform dataset-specific reconstruction, but serve
as a general-purpose imager that can reconstruct objects
through unknown diffusers. The same conclusion is
further supported by the fact that once the diffuser is
eliminated from the same set-up, the trained diffractive
networks still provide a correct image of the sample at
their output, in fact with improved reconstruction fidel-
ity (see Fig. 6). Further investigation of the phase patterns
of the designed diffractive layers sheds more light on the
imaging capability of the diffractive network: the com-
bination of an array of small phase islands and the rap-
idly changing phase variations surrounding these islands
work together in order to collectively image the input
objects through unknown, random phase diffusers (see
Additional file 1: Figs. S3 and S4). Moreover, the gener-
alization of the diffractive network’s imaging capability
to different types of objects that were not included in the
training phase is also emphasized in Additional file 1: Fig.
S4.

To further demonstrate the generalization of the all-
optical image reconstructions achieved by trained dif-
fractive networks, Additional file 1: Fig. S5 reports the
reconstruction of unknown test objects that were seen
through a new diffuser, which had a smaller correlation
length (~5\) compared to the training diffusers (~10\);
stated differently, not only the randomly generated test
diffuser was not used as part of the training, but also
it included much finer phase distortions compared to
the diffusers used in the training. The results presented
in Additional file 1: Fig. S5 reveal that, despite a reduc-
tion in image contrast, the test objects can still be faith-
fully reconstructed at the output of the same diffractive
network designs using a new diffuser with a smaller

(See figure on next page.)

Fig. 6 Comparison of diffractive network output images under different conditions. a Output images corresponding to the same input test object
imaged through diffractive networks trained with n=1, n=10, n=15 and n=20. Second column: imaged through a known diffuser; third column:
imaged through a new diffuser; fourth column: imaged without a diffuser. b The PCC values corresponding to the networks trained withn=1,

10, 15 and 20 over input test objects distorted by known diffusers, new diffusers, as well as imaged without a diffuser. The error bars reflect the

standard deviation over different diffusers
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All-Optical Reconstruction

Fig. 6 (See legend on previous page.)
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Fig. 7 Additional trainable diffractive surfaces improve the all-optical
image reconstruction of objects seen through unknown random
diffusers. The error bars reflect the standard deviation over different
diffusers

correlation length, further deviating from the training
phase.

All the results presented in this paper are based on opti-
cally thin phase diffusers, which is a standard assumption
commonly used in various related studies [5, 11, 83-85].
As a result of this assumption, our results ignore multiple
scattering within a volumetric diffuser. Future work will
include training diffractive networks that can generalize
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over volumetric diffusers that distort both the phase
and amplitude profiles of the scattered fields at the input
plane of a diffractive network. In reality, our experiments
already include 3D-printed diffusers that present both
phase and amplitude distortions due to the absorption of
the THz beam as it passes through different thicknesses
of individual features of a fabricated diffuser. Consider-
ing the fact that the training of the diffractive networks
only included random phase diffusers, the success of our
experimental results with 3D-printed diffusers indicate
the robustness of this framework to more complex dif-
fuser structures not included in the training.

4 Conclusions

We presented an all-optical diffractive network-based
computational imaging platform to see through random
diffusers at the speed of light, without any digital image
reconstruction or a computer. Extensions of this work
to all-optically reconstruct object information pass-
ing through volumetric diffusers might form the basis
of a new generation of imaging systems that can see
through e.g., tissue scattering, clouds, fog, etc. at the
speed of light, without the need for any digital computa-
tion. Hybrid systems that utilize diffractive networks as
a front-end of a jointly-trained electronic neural network
(back-end) [74] is another exciting future research direc-
tion that will make use of the presented framework to
see through more complicated, dynamic scatters. Appli-
cation of the presented framework and the underlying
methodology to design broadband diffractive networks
[66, 67, 76] is another exciting future research direction
that can be used to reconstruct multi-color images dis-
torted by unknown, random diffusers or other aberration
sources. Finally, our results and presented method can
be extended to other parts of the electromagnetic spec-
trum including e.g., visible/infrared wavelengths, and will
open up various new applications in biomedical imaging,
astronomy, astrophysics, atmospheric sciences, security,
robotics, and many others.

5 Methods

5.1 Terahertz continuous wave scanning system

The schematic diagram of the experimental setup is given
in Fig. le. Incident wave was generated through a WR2.2
modular amplifier/multiplier chain (AMC), and out-
put pattern was detected with a Mixer/AMC, both from
Virginia Diode Inc. (VDI). A 10 dBm sinusoidal signal at
11.111 GHz (fRF1) was sent to the source as RF input sig-
nal and multiplied 36 times to generate continuous-wave
(CW) radiation at 0.4 THz, and another 10 dBm sinusoi-
dal signal at 11.083 GHz (fRF2) was sent to the detector
as a local oscillator for mixing, so that the down-con-
verted signal was at 1 GHz. A horn antenna compatible
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with WR 2.2 modular AMC was used. We electrically
modulated the source with a 1 kHz square wave. The
source was put far enough from the input object so that
the incident beam can be approximated as a plane wave.
A customized reflector is added to the horn antenna to
further suppress the reflection noise. The resulting dif-
fraction pattern at the output plane of the network was
scanned by a single-pixel detector placed on an XY posi-
tioning stage. This stage was built by placing two linear
motorized stages (Thorlabs NRT100) vertically to allow
precise control of the position of the detector. The out-
put IF signal of the detector was sent to two low-noise
amplifiers (Mini-Circuits ZRL-1150-LN+) to amplify
the signal by 80 dBm and a 1 GHz (£10 MHz) bandpass
filter (KL Electronics 3C40-1000/T10-O/O) to get rid of
the noise coming from unwanted frequency bands. The
amplified signal passed through a tunable attenuator (HP
8495B) and a low-noise power detector (Mini-Circuits
7X47-60), then the output voltage was read by a lock-in
amplifier (Stanford Research SR830). The modulation
signal was used as the reference signal for the lock-in
amplifier. We performed calibration for each measure-
ment by tuning the attenuation and recorded the lock-in
amplifier readings. The raw data were converted to linear
scale according to the calibration.

5.2 Random diffuser design

A random diffuser is modeled as a pure phase mask,
whose transmittance ¢p (x, y) is defined using the refrac-
tive index difference between air and diffuser material
(An = 0.74) and a random height map D(x, y) at the dif-
fuser plane, i.e.,

tp(x,9) = exp (A1 D(x,5) ) @

where j = +/—1 and 4 = 0.75 mm. The random height
map D (x, y) is further defined as [11]

D(x,y) = W(x,5) * K(0) (3)

where W (x, y) follows normal distribution with a mean p
and a standard deviation oy, i.e.

W (x,) ~ N (1, 00). (4)

K (o) is the zero mean Gaussian smoothing kernel with
standard deviation of o. ‘+” denotes the 2D convolution
operation. In this work, we chose u = 25/, o9 = 84 and
o = 4/ to randomly generate the training and testing dif-
fusers, mimicking glass-based diffusers used in the visible
part of the spectrum. For this choice of diffuser param-
eters, we further calculated the mean correlation length
(L) using a phase-autocorrelation function R, (, ) that is
defined as [86]
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Ry(x,y) = exp(—m (¥* + %) /L?) . (5)

Based on 2000 randomly generated diffusers with
the above described parameters and their correspond-
ing phase-autocorrelation functions, we determined the
average correlation length as ~ 10/4. Different from these
diffusers, for Additional file 1: Fig. S5, we used 0 = 24 to
randomly generate phase diffusers with an average cor-
relation length of L =~ 54.

The difference between two randomly-generated dif-
fusers are quantified by the average pixel-wise absolute
phase difference, ie, A¢ = |(¢1— 1) — (d2 — b2)
where ¢; and ¢, represent the 2D phase distributions of
two diffusers, and ¢; and ¢, are the mean phase values of
each. When we randomly generate new phase diffusers, it
can be regarded as a novel/unique diffuser when A¢>m/2
compared to all the existing diffusers randomly created
before that point.

’

5.3 Forward propagation model

A random phase diffuser defined in Eq. (2) positioned at
zo provides a phase distortion tp (x, y). Assuming that a
plane wave is incident at an amplitude-encoded image
h(x,y,z = 0) positioned at z =0, we modeled the dis-
turbed image as:

uo(%,%,20) = tp(%,) - [h(%,9,0) xw(x,5.20)]  (6)

where,
2.
w(nyz) = 5 (s + & e (27) %

is the propagation kernel following the Rayleigh-Som-

merfeld equation [71] with r = \/x2 +y% +2z2. The
distorted image is further used as the input field to the
subsequent diffractive system. The transmission of layer
m (located at z = z,,) of a diffractive system provides a
field transmittance:

tm = exp(jd (%, y,2m)). (8)

Being modulated by each layer, the optical field
Uy (%, Y, Zm) right after the m'™ diffractive layer positioned
at z = z,, can be formulated as

i (%9, 2m) = tm (%9, Zm) * (U1 (%, Zm—1) * W (5,9, Az )]

)

where Az, is the axial distance between two successive

diffractive layers, which was selected as 2.7/ in this paper.

After being modulated by all the M diffractive layers, the

light field is further propagated by an axial distance of

Azyz = 9.3/ onto the output plane, and its intensity is cal-
culated as the output of the network, i.e.,
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o(x,y) = |uM * w(x,y, Azd) |2.

5.4 Network training

The diffractive neural networks used in this work were
designed for A~0.75 mm coherent illumination and con-
tain 240x240 pixels on each layer providing phase-only
modulation on the incident light field, with a pixel size
(pitch) of 0.3 mm. During the training, each hand-written
digit of the MNIST training dataset is first upscaled from
28x%28 pixels to 160x160 pixels using bilinear interpo-
lation, then padded with zeros to cover 240x240 pixels.
B=4 different randomly selected MNIST images form
a training batch. Each input object /;(x, y) in a batch is
numerically duplicated # times and individually disturbed
by a set of n randomly selected diffusers. These distorted
fields are separately forward propagated through the dif-
fractive network. At the output plane, we get #n different
intensity patterns: 0p1,0p3 - . . 0p,. All B X n output pat-
terns are collected to calculate the loss function:

S0 = =P oy ) +E (0pirhy))
Bxn

Loss = (11)

In Eq. (11) P(oy;, hp) denotes the PCC between the out-
put and its ground truth image /;, calculated based on
Eq. (1). Furthermore, E(0y;, hp,) denotes an object-specific
energy efficiency-related penalty term, defined as:

S o1 o)

E(opishp) = S
X))

(12)

In Eq. (12) hAb is a binary mask indicating the transmit-
tance area on the input object, defined as:

~ 1,
hh(x,y) = {O,

where o and B are hyper-parameters that are optimized
to be 1 and 0.5 respectively.

The resulting loss value (error) is then back-propagated
and the pixel phase modulation values are updated using
the Adam optimizer [87] with a decaying learning rate
of Lr = 0.99" x 1073, where Ite denotes the current
iteration number. Our models were trained using Python
(v3.7.3) and TensorFlow (v1.13.0, Google Inc.) for 100
epochs with a GeForce GTX 1080 Ti graphical process-
ing unit (GPU, Nvidia Inc.), an Intel® Core™ i9-7900X
central processing unit (CPU, Intel Inc.) and 64 GB of
RAM. Training of a typical diffractive network model
takes ~24 h to complete with 100 epochs and #n=20 dif-
fusers per epoch. The phase profile of each diffractive
layer was then converted into the height map and cor-
responding.stl file was generated using MATLAB, and

hy(x,5) > 0

otherwise (13)
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subsequently 3D printed using Form 3 3D printer (Form-
labs Inc., MA, USA).

5.5 Quantification of the reconstructed resolution test
target period

For an amplitude-encoded, binary resolution test target

(with a period of p) the transmission function can be

written as:

by =4 € (3 -ir) U585 U ()
0, otherwise

(14)

The diftractive network forms the reconstructed image

o(x,y) of the resolution test target at the output field-of-

view, over an area of XxY mm? To quantify/measure

the period of the reconstructed test targets, the intensity

was first averaged along the y axis, yielding a 1D intensity
profile:

Y
I(x) = jFL;c,y)dy. (15)
Subsequently we fit a curve F(x) to /(x) by solving:
argmin (Z ’F(x) — l(x)‘2), (16)
ay,a2,a3,b1,b2,b3,¢1,¢2,¢3
where
X — b1 2
F(x) =ajexp| —
C1
(17)

X — bz 2
+ azexp| —
€2
X — bg 2
+ azexp| — .
c3

The measured/resolved period (p) at the output image
plane is then calculated as:

max(by,by,b3) —min(by,b3,b3)
5 .

p= (18)

5.6 Image contrast enhancement

For the purpose of better image visualization, we digi-
tally enhanced the contrast of each experimental meas-
urement using a built-in MATLAB function (imadjust),
which by-default saturates the top 1% and the bottom
1% of the pixel values and maps the resulting image
to a dynamic range between 0 and 1. The same default
image enhancement is also applied to the results shown
in Figs. 1b, ¢, 4 and Additional file 1: Figs. S2 and S5. All
quantitative data analyses, including PCC calculations
and resolution test target period quantification results,
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are based on raw data, i.e., did not utilize image contrast
enhancement.

5.7 Lens-based imaging system simulation

We numerically implemented a lens-based imaging sys-
tem to evaluate the impact of a given random diffuser on
the output image; see e.g., Fig. 1b and Additional file 1:
Fig. S2. A Fresnel lens was designed to have a focal length
(f) of 145.6 X\ and a pupil diameter of 104 \ [88]. The
transmission profile of the lens 7 was formulated as:

t(Ax, Ay) = A(Ax, Ay)exp (—]/7{7 (Ax* + Ay2)>,
(19)
where Ax and Ay denote the distance from the center

of the lens in lateral coordinates. A(Ax, Ay) is the pupil
function, i.e.,

A(Ax, Ay) = L \/Ax®+ Ay? <521

) (20)
0, otherwise

The lens was placed 2 f (291.24) away from the input
object. The input object light was first propagated axially
for zp = 534 to the random diffuser plane using the angu-
lar spectrum method. The distorted field through the
diffuser was then propagated to the lens plane, and after
passing through the lens the resulting complex field was
propagated to the image plane (2f behind the lens), also
using the angular spectrum method. The intensity profile
at the image plane was calculated as the resulting image,
seen through an aberration-free lens, distorted by a ran-
dom phase diffuser.
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Figure S1. Phase patterns of the transmissive layers corresponding to the diffractive network that
was trained using n=20 diffusers at each epoch.
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Figure S2. Numerical and experimental results showing the image distortion generated by
a random phase diffuser. To exemplify the image distortion generated by a phase diffuser, the
intensity distribution at the output field-of-view was numerically simulated as a result of the free
space propagation (FSP) of the input object *7°, without and with the presence of the diffuser K1
that was randomly generated (first and second panels in the second row, respectively); imaging
of the same input object through the diffuser using an aberration-free lens is also shown in the
third panel. All-optical reconstruction of the trained diffractive network and its experimental
counterpart are also shown in the last two panels on the right. For better visualization, the
contrast of all the panels is enhanced using the default MATLAB function (imadjust) (see the
Methods section of the main text for details).
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Figure S3. Overlap map of phase islands on successive diffractive layers. After training, the
converged diffractive layers consist of multiple smooth phase islands, as shown in the first row. Layers
corresponding to the diffractive network that was trained using n=20 diffusers at each epoch were used
here as an example. Binary spatial maps were generated to mark the locations of these phase islands on
each layer (second row). The summation of two consecutive spatial maps was used to illustrate the
overlap between the phase islands on successive diffractive layers (as well as between phase islands on
the first and last layers), as displayed in the third row with the overlapped regions marked in red.
Similarly, an overlap map among all four diffractive layers is depicted in the last row.
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Figure S4. Comparison of diffractive network output images under different levels of pruning.
Pruning of neurons outside the phase islands of each diffractive layer was conducted and the resulting
diffractive layers were used to image through unknown random diffusers. The output images of the
diffractive network that was trained using n=20 diffusers at each epoch are shown in the first row as a
baseline. The PCC values of the output images of handwritten digit ‘2’ distorted by a known and new
diffuser were calculated to be 0.7797 and 0.7932, respectively. The intensity distribution of the output
field-of-view without the presence of the diffractive layers is also shown (second row) and the
corresponding PCC values were calculated to be 0.5321 and 0.5350 with a known and a new diffuser,
respectively. The spatial maps presented in Figure S3 were used to prune the diffractive layers by
dropping out the neurons outside the phase islands, i.e., only keeping the phase modulation provided by
those phase islands and assuming that other neurons provide zero phase modulation. The pruned
diffractive layers and the corresponding output images are shown in the third row, and the PCC values of
the output images of handwritten digit ‘2° distorted by a known and new diffuser were calculated to be
0.5487 and 0.5452 with a known and a new diffuser, respectively. Further dilation of the binary spatial
maps to include neurons right adjacent to the phase islands failed to significantly improve the
reconstruction fidelity (fourth row), yielding PCC values of 0.5627/0.5344. Using all the neurons/pixels
within the contour defined by the phase islands, the reconstructed images still contained some artifacts as
shown in the fifth row, providing PCC values of 0.7543/0.7340. Finally, using all the pixels on each layer

5



within a circular aperture of 804 diameter further improved the output images, yielding PCC values of
0.7797/0.7934. A more complicated input object and its reconstruction results are also presented in the
right two columns. This type of object was not included in our training phase, which only involved
handwritten digits (MNIST).
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Figure SS. Imaging through random diffusers with different correlation lengths (L).
Diffractive networks designed/trained with a larger correlation length (L = 104) were used to
blindly reconstruct images distorted by an unknown, new diffuser with a smaller correlation
length (L = 524). Although these diffractive networks were solely trained using random phase
diffusers with L = 104, they were still successful in all-optical imaging through a random
diffuser with L = 54; see e.g., the network that used n = 20, the bottom row. For better



visualization, the contrast of the diffractive images is enhanced using the default MATLAB
function (imadjust) (see the Methods section of the main text for details).
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