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Abstract—Channel decoder is a key component module in
many communication systems. Recently, neural networks-based
channel decoders have been actively investigated because of the
great potential of their data-driven decoding procedure. However,
as the intersection among machine learning, information theory
and hardware design, the efficient algorithm and hardware co-
design of deep learning-powered channel decoder has not been
well studied.

This paper is a first step towards exploring the efficient
DNN-enabled channel decoders, from a joint perspective of
algorithm and hardware. We first revisit our recently proposed
doubly residual neural decoder. By introducing the advanced
architectural topology on the decoder design, the overall error-
correcting performance can be significantly improved. Based on
this algorithm, we further develop the corresponding systolic
array-based hardware architecture for the DRN decoder. The
corresponding FPGA implementation for our DRN decoder on
short LDPC code is also developed.

Index Terms—channel decoder, belief propagation, deep neural
network, hardware architecture

I. INTRODUCTION

Because of their strong error-correcting capability, channel
codes have been wildly used in practice to improve the reliabil-
ity of data transmission. Nowadays various types of channel
codes, e.g., low-density parity-check (LDPC) [1], polar [2],
Turbo [3], BCH [4] and convolutional codes [5], have been
popularly adopted in tremendous wired and wireless systems
such as 3G/4G/5G, WIFI/Bluetooth, optical communication
and deep space communication etc.

Recently, motivated by the unprecedented success of AI
techniques (especially deep neural networks (DNNs)) in vari-
ous science and engineering applications, data-driven channel
coding has become a very attractive solution. To date, nu-
merous DNN-enabled channel codecs, a.k.a., neural channel
decoder, for different types of channel codes have been re-
ported in the literatures [6]–[17]. Despite their difference in the
technical details, these state-of-the-art works share the same
key idea – unfolding the classical iterative belief propagation
(BP) decoding procedure along the time dimension to form a
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feedforward neural network. Within this design framework,
the important scaling parameters of BP algorithm, which
were empirically determined before, can now be trained from
the data via the standard backward propagation. Such data-
driven parameter determination, evidently, brings better error-
correcting performance for the neural channel decoders.

Despite the current research prosperity of neural channel
decoders, several fundamental questions have not been fully
answered yet. For instance, whether we can further improve
the performance of the neural channel decoder beyond the
currently obtained progress or not? Meanwhile, considering
the channel decoders are typically implemented in the format
of customized hardware (e.g.. FPGA or ASIC) to satisfy
the real-time requirement of communication systems [18]–
[23], how should we explore and develop the corresponding
hardware architecture for the neural channel decoders in this
new design paradigm?

This paper is a first step towards exploring the uncharted
territory of efficient DNN-powered channel decoder design
when both the task performance (e.g., bit-error rate (BER))
and the hardware performance (e.g., latency and power) should
be co-considered. More specifically, built upon our recently
proposed low-cost high-performance doubly residual neural
(DRN) decoder [24], we investigate the efficient hardware
architecture design for channel decoder from the perspective of
AI hardware accelerator – a research field that has owned very
mature design methodology and comprehensive optimization
techniques. We believe such a perspective, which is not
typically adopted in the channel decoder hardware (and the
wider VLSI DSP) community, may unlock some new research
insights and opportunities. Although our current exploration
is only a case study for short LDPC decoder, it could be
potentially used in other types of channel decoders as well,
especially for block codes.

The rest of this paper is organized as follows. Section II
gives a brief introduction of channel codec, BP and neural
BP decoding algorithms. Our recently proposed DRN decoder
is revisited and described in Section III. Section IV presents
the example hardware architecture of DRN decoder for short
LDPC codes as a case study. The experimental results are
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reported in Section V. And Section VI draws the conclusions.

II. PRELIMINARIES

A. Channel codes

In general, linear block code C can be used to transmit a
k-bit binary message m over a noisy channel. To be specific,
it performs an injective mapping on m to generate an n-bit
codeword x via using a binary generator matrix G of size
k×n. Each G is associated with a binary parity-check matrix
H with the size of m× n, where m = n− k and GHT = 0.

Before transmission, the binary message m is encoded into
the codeword x = mG. During the transmission, x is corrupt
by the channel noise and hence at the receiver end the received
codeword changes to r. To recover x from r, different types
of decoding strategies, such as hard-decision or soft-decision
schemes, can be used for different specific channel codes.

Our case study focuses on LDPC codes, a type of channel
codes that have been used in 5G standard. According to [25],
a LDPC code can be defined via its Tanner graph G. As
illustrated in Fig. 1, a Tanner graph consists of a set of n
variable nodes VNs V (that corresponds to the bits in x) and
a set of m check nodes CNs C (that corresponds to the parity-
check equations). For simplicity, we use v to denote the v-th
variable node in V and c to denote the c-th check node in C,
respectively. VNs and CNs are connected via a set of edges
E = {e(c,v) = (c, v) : H(c, v) = 1, v ∈ V, c ∈ C}. Each
e(c,v) connecting the c-th check node and the v-th variable
node corresponds to one elements ”H(c, v) = 1” in a given
H matrix. Hence as indicated in Fig. 1, for each LDPC code
its Tanner graph and H matrix is a one-to-one mapping.
In addition, practical systems typically adopt regular LDPC
codes, where the H matrix has the fixed number of ”1”s (dc)
in each row and the fixed number of ”1”s (dv) in each column.

B. BP algorithm

Modern LDPC codes are typically decoded via belief prop-
agation (BP) algorithm. As revealed by its name, the BP
algorithm propagates the belief messages through the edges
in G between VNs and CNs in an iterative way (see Fig. 1).
To be specific, after the BP decoder receives the log-likelihood
ratios (LLRs) l ∈ Rn of the received message r as

lv = log
Pr(xv = 1|rv)
Pr(xv = 0|rv)

, (1)

the VNs and CNs iteratively update the to-be-sent LLR mes-
sages during the entire BP process. Assume utv→c and utc→v

denote the message transmitted from the v-th variable node to
the c-th check node and from the v-th variable node to the c-th
check node at the t-th iteration, respectively. Then the update
principle of LLR message is as follows:

utv→c = lv +
∑

c′∈N(v)\c

ut−1c′→v, (2)

utc→v = 2 tanh−1 [
∏

v′∈M(c)\v

tanh (
utv′→c

2
)], (3)

Fig. 1. Parity check matrix, corresponding Tanner graph and Trellis graph
for an LDPC code.

where N(v) = {c ∈ C : e(c,v) ∈ E} and M(c) = {v ∈ V :
e(c,v) ∈ E}. Then, the final soft output after the t-th iteration
can be calculated as:

stv = lv +
∑

c′∈N(v)

utc′→v. (4)

C. Neural BP algorithm

The classical BP algorithm described above can precisely
calculate the posterior LLRs to provide the optimal decision
of r if no girth exists in the Tanner graph. However, the
practically used codes (such as LDPC) are always associated
with the girth. In such a case, the classical BP algorithm is
not guaranteed to achieve the best performance.

Recently, by adopting a data-driven strategy, the neural
BP decoding algorithm [14] provides a potential solution to
improve the performance beyond classical BP. As shown in
Fig. 1, the neural BP method is essentially inspired by the
”Deep Unfolding” [26] methodology. To be specific, it unfolds
the Tanner graph of channel codes to a Trellis graph, which can
be then interpreted as a neural network. Here the neurons in the
odd and even layers represent uv→c and uc→v , respectively.
In other words, the neural BP decoder views the decoding
process as a forward propagation of neural network. From
this perspective, the connections between uv→c and uc→v are
the trainable weights instead of the fixed 1 or 0 – a type of
relaxation of the original ”connected or not” in the classical BP
decoder. Accordingly, the LLR update principles are changed
as follows:

utv→c = f(wt
v,inlv +

∑
c′∈N(v)\c

wt
c′→vu

t−1
c′→v), (5)

utc→v = g(
∏

v′∈M(c)\v

utv′→c), (6)
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stv = σ(wt
v,outlv +

∑
c′∈N(v)

wt
c′→vu

t
c′→v), (7)

where f(·), g(·) and σ(·) denote the tanh, arctanh and
sigmoid function, respectively. Here the trainable weights
wt

v,in, w
t
c′→v, w

t
v,out and wt

c′→v can be optimized by mini-
mizing the cross entropy(CE) loss as:

loss =
N∑

v=1

−[rv log sv + (1− rv) log(1− sv)]. (8)

III. REVIEW OF DOUBLY RESIDUAL NEURAL DECODER

In this section we briefly review our recently proposed
doubly residual neural (DRN) decoder [24], a type of new
neural BP approach that can significantly improve the error-
correcting performance with reduced decoding latency. More
details can be referred to [24].

The key idea of DRN is to impose the famous residual block
[27] on the structure of neural BP decoder design. This critical
change is motivated by the grand success of ResNet: the use of
residual block can efficiently mitigate the notorious vanishing
gradient problems in deep neural networks. As indicated in
Fig. 1, the unfolded neural BP decoders are typically very
deep – their depths are twice the number of the iterations.
So a simple feedforward architecture, highly probable, would
suffer a vanishing gradient problem and thereby fail to achieve
very high error-correcting performance. Therefore, a residual
structured neural BP decoder, inherently, can be trained in a
more stable way and potentially exhibit better BER perfor-
mance.

Unlike the classical ResNet that is equipped with one type of
residual connection, the DRN decoder used in channel coding
contains two types of residual operations. First, the residual
between sv and utc→v is calculated and serves as the input of
the residual block:

acv = sv − utc→v. (9)

Notice that here we do not include the information carried
by lv . This is because as indicated in Eq. (7), sv contains
the most up-to-date LLR information than lv during the entire
iterative process. Therefore, merging lv into sv will not impact
the overall decoding performance with the use of residual
learning.

The second residual operation exists in the building block.
Similar to the mechanism used in the ResNet, acv is input to
a residual block and is combined with trainable weights w to
generate the output as below:

bcv = acv + h(w, acv′), (10)

where h(·) denotes the activation function as the combination
of f(·) and g(·) in Eq. (5) and Eq. (6). Overall, using the
two types of residual operation (residual input and residual
learning), the trainable weights w can be properly optimized
with the standard backward propagation. In addition, to further

reduce the computational cost, the min-sum approximation
[28] can be used to simplify the calculation of tanh and arctanh
as:

y = 2arctanh[tanh(
p

2
) tanh(

q

2
)]

≈ sign(p) · sign(q) ·min(|p|, |q|).
(11)

And hence h(·) can be reformulated as below:

h(w, acv) = w min
v′∈M(c)\v

|acv′ |
∏

v′∈M(c)\v

sign(acv′). (12)

Table I lists the negative logarithm of BER performance
among different decoding methods. A higher number that
corresponds to a lower BER denotes better performance. It is
seen that for different LDPC codes, the built-in doubly residual
structure enables our DRN algorithm to obtain better error-
correcting capability than the classical BP algorithm and the
state-of-the-art neural BP algorithm. Notice that here for a fair
comparison, 5 iterations are set for all the listed algorithms.

IV. HARDWARE ARCHITECTURE OF DRN DECODER

A. Analysis of Design Strategy

In this section, we explore the efficient hardware architec-
ture for DRN decoder. Different from the conventional design
strategy for channel decoder hardware, here we propose to
adopt systolic array, the commonly used architecture option
for AI accelerator, to build the DRN decoder hardware. This
choice is based on two considerations. First, systolic array is
a very mature technique and its effectiveness has been widely
demonstrated in several silicon products. Its inherent high data
throughput and sufficient data reuse are very attractive for
DNN-included hardware implementations. Second, systolic ar-
ray inherently provides high reconfigurability to different DNN
workloads. Considering the modern communication systems
typically use various types of channel codes with different
code-lengths and code rates, the high reconfigurability of the
underlying hardware is very important and useful for practical
deployment. Beyond that, because currently many other DSP
modules can now also be re-designed using DNNs [29], [30],
choosing the general systolic array architecture brings the
future potentials of unifying the entire baseband processing
hardware.

A major challenge of using systolic array for implementing
DRN decoder is the sparsity issue. Though systolic array can
perfectly execute dense matrix multiplication, its efficiency
will be significantly degraded when processing sparse matrix
multiplication, which is the component operation in the DRN
decoder. Therefore, how to properly processing sparse com-
putation should be carefully considered.

Next we have a detailed analysis of the computing procedure
of DRN decoder. Based on the description in Section III, the
Tanner graph of an example LDPC codes in Fig. 1 can be
now unfolded to a doubly residual neural network as shown
in Fig. 2. Here the 6 dotted-line neurons in the first column
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Decoder Conventional BP Neural BP DRN (Ours)
SNR (dB) 4 5 6 4 5 6 4 5 6

LDPC (49, 24) 5.36 7.26 10.03 5.29 7.67 10.27 5.77 7.86 11.28
LDPC (121, 60) 4.76 7.20 11.07 4.96 8.00 12.35 5.26 8.37 13.20
LDPC (121, 70) 5.85 8.93 13.75 6.43 9.53 13.83 6.39 10.10 15.43
LDPC (121, 80) 6.54 9.64 14.78 7.04 10.56 14.97 7.31 11.24 17.00

TABLE I
NEGATIVE LOGARITHM OF BER PERFORMANCE OF DIFFERENT CHANNEL DECODING ALGORITHMS.

correspond to the 6 variable nodes in sv . And the 12 edges in
the Tanner graph correspond to the 12 black neurons in each
layer. The initial utc→v corresponds to the 12 green neurons in
the first layer. Starting from the second layer, the green and
black lines have the fixed weight as −1 and 1, respectively. In
addition, the minsum(·) operation is denoted with blue lines
starting at the third layer. Since in this example dc = 3, so
for each calculation process, we choose 3 neurons in s′v as
matrix A and 3 neurons in utc→v as matrix B as indicated by
the blue dotted-line rectangle in Fig. 2. To be specific, for A
=
[
a1 a2 a3

]
and B =

[
b1 b2 b3

]
we have: b1 = minsum(a2, a3),

b2 = minsum(a1, a3),
b3 = minsum(a1, a2).

(13)

Regarding the processing schedule, for each layer the
blue line-connected neurons that are involved with processing
utc→v(f(x)) are updated; while the other neurons simply
receive the values through shortcut from the previous layer
(indicated by the curved arrow). To decide which neurons to
be updated, the edges in the Tanner graph are divided into
different groups, and the edges in the same column belong to
the same group because they are referred to the same variable
node in sv . Since during each A to B computation there is
only one edge involved in each group but the updated value
should be applied to the whole group (see Eq. 10), multiple
times of sub-update are needed to form an entire iteration of
the DRN decoding. For instance, in this example the number
of rows of H is 4, so 4 times of sub-update are required as
shown in Fig. 2.

B. Hardware Architecture

Fig. 3 shows the corresponding overall hardware architec-
ture of DRN decoder, which contains three main components:
memory(SRAM and buffers), controller and computation mod-
ule. Next we describe them in details.

a) Memory: Because the above discussed update process
requires frequent memory access and multiple neurons need
to be updated after each calculation, the weight and input data
are initially stored in the SRAM and then they are outputted
into the weight buffer and input buffer at the beginning of
the neural network inference phase, respectively. s′v is first
temporarily stored in the input buffer and it is then outputted
back to the SRAM once the decoding process ends. By
adopting this strategy we can reduce unnecessary SRAM
access and update the neurons simultaneously.

b) Transform Matrix Buffer: An individual transform
matrix buffer is used to store the transform matrix illustrated in
Eq. 13. In the example raised in Eq. 13, the transform matrix

T =

0 1 1
1 0 1
1 1 0

. Notice that here T is a special dc× dc-size

symmetric matrix whose diagonal entries are 0 and all the
other entries are 1. It is initialized by the main controller and
then it is stored in the transform matrix buffer in a column-
wise way.

c) Systolic Array: An one-dimension systolic array is
adopted in this case study. Here array size is set as dc × 1
to perform the computation of Eq. 13 in each clock cycle.
During the execution, the systolic array receives the serial
input data xi from the input buffer, the broadcast weight data
wi and transform matrix data ti from the weight buffer and the
transform matrix buffer, respectively. The dataflow is designed
in an output stationary style, which means the output values
utc→v are stored in the processing elements (PEs). By adopting
this strategy, the systolic array is essentially in charge of the
computation of the dense part of each layer instead of the
entire sparse layer, thereby avoiding the potential performance
degradation.

d) Processing Element: The inner architecture of PE is
shown in Fig. 4. Here x is the input from the input buffer
and it goes through D1 register to be sent to the adjacent PE.
Meanwhile, its absolute value |x| is extracted and feed into
a comparator which is enabled by control signal. In this way
the partial result of minsum(·) can be stored in D2 register
only when needed. When the update process starts, the partial
result is output from D2 to the multiplier, which performs the
multiplication with w stored in the weight buffer. The product
is then sent input to an XOR operator.

e) Routing Network: After the computation in the sys-
tolic array finishes, the temporary result uc→v is simultane-
ously output from the PEs into the routing network. Through
the routing network, the uc→v are added up and the final
results are sent into the input buffer to finish the update
process. Fig. 5 shows part of the routing network. Here the
routing network itself consists of multiple sets of adders that
are directly attached to the registers in the input buffers. One
set of adders corresponds to one group of edges. In this way
we can achieve simultaneous update for multiple neurons.

V. FPGA IMPLEMENTATION RESULT

Based on the above described hardware architecture, we
implement an example 16-bit FPGA prototype on Xilinx
PYNQ-Z1 board . Here the chosen LDPC code has a parity
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Fig. 2. Each iteration of DRN consists of multiple sub-update in the format of neural network.

Fig. 3. Overall hardware architecture of DRN decoder.

Fig. 4. The internal architecture of processing element.

Fig. 5. Part of routing network.

Utilization Available Utilization %
LUT 5600 53200 10.52

FF 7600 106400 7.15
DSP 11 220 5

TABLE II
FPGA UTILIZATION RESULT ON XILINX PYNQ-Z1

check matrix 55×121-size H with dc = 11 and dv = 5. In our
design each PE contains one DSP to perform the multiplication
so totally 11 PEs are allocated in the architecture. Since the
maximum iteration is set as 5 iterations and Hr = 55, so there
are 275 weights in the DRN decoder in total. Accordingly,
the weight buffer has the size of 550B and the input buffer is
1.2KB. So the overall required SRAM size is about 2KB. Table
II shows the resource utilization results. Here the total on-chip
power consumption is 0.14W under the clock frequency as
237MHz.
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VI. CONCLUSION

This paper explores the algorithm and hardware co-design
for deep learning-powered channel decoder. We first revisit
our recently proposed doubly residual neural (DRN) decoder
to achieve very strong error-correcting performance. Then, a
regular systolic array based hardware architecture is developed
to accelerate the processing of the modified decoding algo-
rithm. An example FPGA implementation is also developed to
support the execution of DRN decoder on short LDPC codes.
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