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Abstract—NAND-based flash memory has become a prevalent
storage media due to its low access latency and high performance.
By setting up different incremental step pulse programming
(ISPP) values and threshold voltages, the tradeoffs between
lifetime and access latency in NAND-based flash memory can
be exploited. The existing studies that exploit the tradeoffs
by using heuristic algorithms do not consider the dynamically
changed access latency due to wearing-out, resulting in low access
performance. In this paper, we proposed a new Elastic Flash
Management scheme, called EFM, to manage data in hybrid flash
memory, which consists of multiple physical regions with different
read/write latencies according to their ISPP values and threshold
voltages. EFM includes a Long-Term Classifier (LT-Classifier)
and a Short-Term Classifier (ST-Classifier) to accurately track
dynamically changed workloads by considering current quan-
titative differences of read/write latencies and workload access
patterns. Moreover, a reduced effective wearing management is
proposed to prolong the lifetime of flash memory by scheduling
write-intensive workloads to the region with a reduced threshold
voltage and the lowest write cost. Experimental results indicate
that EFM reduces the average read/write latencies by about
54% - 296% and obtain 17.7% lifetime improvement on average
compared to the existing studies.

I. INTRODUCTION

NAND flash memory is playing an important role in today’s

storage systems from mobile devices to large-scale data-

centers. Compared to other types of storage devices [1], [2], it

offers the advantages of high performance and lightweight.

The current trend of the flash memory is to increase its

density to achieve high capacity by introducing more levels

(holding several bits) in a cell, including multi-level cell

(MLC), triple-level cell (TLC), and quad-level cell (QLC).

However, with the increased bit-density, the reliability of

flash memory is decreased [3]. As a result, the lifetime of

flash memory is shortened due to a decreased maximum

Program-Erase (PE) cycle. To deal with this, researchers use

Error Correction Codes (ECC) such as Low-Density Parity-

Check Code (LDPC) to make data accessible with a high

Raw Bit Error Rate (RBER) and thus prolong the lifetime of

flash memory. However, these error corrections need a longer

duration to decode data, resulting in degraded flash access

performance.
According to NAND flash memory properties, the trade-

offs between lifetime and access latencies can be exploited

by setting different threshold voltages, incremental step pulse

programming (ISPP) values, etc. for different flash memory

regions. For example, different ISPP values [4], [5] can impact

both read and write latencies. With a larger ISPP value, the

program process (write operation) has fewer iterations and

achieves a lower write latency. However, a larger ISPP value

increases the RBER of programmed memory cells and thus

results in longer read latency. Another trade-off is between the

lifetime of NAND flash memory and its access latencies. With

a low program threshold voltage, the RBER of memory cells

generally increases and the maximum number of PE cycles of

those cells is also increased. Thus, a lower threshold voltage

causes a higher read latency but a longer lifetime of flash

memory. These trade-offs provide opportunities to improve the

performance and lifetime of NAND flash memory.

Many studies [5]–[9] used these trade-offs either to prolong

the lifetime of flash memory or to improve its performance.

For example, Li et al. [7] simply used a simple static heuristic

by classifying I/O requests with their most recent consecutive

access patterns. Pan et al. [5] explored a device model of

flash memory and re-setting ISPP values of flash memory

to improve its write performance. Luo et al. [9] proposed

the WARM scheme to improve flash memory lifetime by

separating data based on their write frequencies. However,

these schemes do not consider the changes of read and write

latencies in SSDs due to wearing out. For example, as flash

memory wears out, the access latencies of flash memory

are continuously changed. Existing allocation schemes based

on the initial classification cannot adapt to these changes,

resulting in longer access latencies due to less accurate data

allocation. Therefore, to obtain high performance and adapt

to dynamically changed latencies of flash memory, we have

to consider real and dynamically changed write/read latencies

under the current PE cycle.

In this paper, the proposed Elastic Flash Management

scheme (EFM) targets to improve the overall performance

by allocating data to several physical regions with different

write/read latencies. A Long-Term Classifier (LT-Classifier) is

proposed to separate incoming requests based on the quantita-

tive difference of current read/write latencies between physical

regions and long-term accumulated read/write sizes. Then, a

Short-Term Classifier (ST-Classifier) calibrates LT-Classifier

based on short-term access patterns. Moreover, as the NAND
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flash memory wears out, the LT-Classifier of EFM will be

dynamically adjusted to adapt to the changed access latencies.

The outcomes of both classifications are considered to decide

where to allocate a given data. Consequently, EFM is capable

of more accurately predicting where to allocate/migrate incom-

ing requests. A migration checker is also developed to reduce

migration overhead by filtering out unnecessary data migra-

tions. Additionally, reduced effective wearing management is

used to improve the lifetime of the NAND flash memory

by scheduling write-intensive workloads to the region with

a reduced threshold voltage and the lowest write cost.

The rest of the paper is organized as follows. Section II

describes the backgrounds of flash memory. The discussion of

motivations is introduced in Section III. Section IV discusses

the structure and algorithm of the proposed EFM scheme.

Section V shows the experimental results of EFM compared to

the existing schemes. Finally, some conclusions are presented

in Section VI.

II. BACKGROUND

A. Background of Flash Memory

NAND flash memory stores N-bits in a cell by injecting

electrons into the memory cell. As shown in Figure 1, N-

bit data in the NAND flash memory are presented by 2N

voltage states. Each voltage state follows a wide Gaussian-like

distribution [5] and can be approximately modeled by Eq. (1).

Pe(x) =
1

σe

√
2π

e
− (x−μe)2

2σ2
e (1)

where μe and σe are the mean and standard deviations of the

erased state threshold voltage respectively.

To write data, the Incremental Step Pulse Program (ISPP)

programs flash memory cells iteratively following sequential

program-and-verify steps until a certain target voltage is

achieved [10]. In each step, the step size ΔVpp (ISPP value)

determines write latency. To reach the same target threshold

voltage, a larger ΔVpp needs a less number of steps resulting in

shorter write latency, but introduces a higher error rate due to

a narrower noise margin between two adjacent states. Figure 1

indicates an ideal voltage distribution. Practically, the voltage

distribution is affected by many factors such as PE cycles and

cell-to-cell interference [4], [11]. As flash memory wears out

(the PE cycle of flash memory increases), any two adjacent

voltage states will have a smaller separation margin or even

be overlapped resulting in low reliability.

To read data, the voltage levels of a cell need to be correctly

sensed. Due to errors in a cell induced by many factors such

as wearing-out and cell-to-cell interference, error correction

codes such as Bose–Chaudhuri–Hocquenghem (BCH) [12]

and LDPC [13] are used. The decoding process of ECC codes

is to sense the probability information of a cell by comparing

a series of reference voltages. The number of iterations of

comparing reference voltages determines read latency. With

a higher error rate/RBER, more sensing iterations are needed

resulting in a longer read latency.

Fig. 1: Ideal voltage distribution for 3-bit memory cell.

Fig. 2: Simulated latencies and RBER changes as increasing

PE cycles with the same ΔVpp based on the flash memory

device model [5].

B. Performance Tradeoffs in Flash Memory

There are trade-offs in flash memory between read/write

latencies and its lifetime. The relationship between ISPP and

program (write) latency can be found in Eq. (2) [14].

tp ∝ γ × 1

ΔVpp
(2)

where tp is the program latency, γ is a constant value, and

ΔVpp is the ISPP value. Thus, we can find that the program

latency is inversely proportional to ΔVpp. A large ΔVpp can

reduce the program latency but introduce a narrow margin

between two adjacent voltage states, thus, resulting in a high

RBER. For a read, the read latency is based on the error rate

of the memory cell and the speed of ECC decoding. An ECC

scheme such as BCH [12] or LDPC [13], [15] code is needed

to correct the sensed data. With the same correction capacity

of an ECC scheme, if a cell has a high RBER, the ECC scheme

takes a longer time to correct the data. The RBER is related

to ΔVpp, PE cycle, cell-to-cell interference, etc. [4], [5], [16],

and the error model is shown in Eq. (3).

RBER =
∑
k

(

∫ V (k)
p

−∞
p(x)(k)dx+

∫ +∞

V
(k+1)
p

p(x)(k)dx) (3)

where p(k) is the voltage density distribution of k-th state [5]

with a random telegraph noise (RTN) [16] and cell-to-cell

interference [11]. So, according to Eq. (1) and Eq. (3), as flash

memory wears out (the PE cycle of flash memory increases),

the RBER will be increased and thus ECC decoders need to

take more iterations to read correct data out [4]. Consequently,

the read latency is increased. A high ΔVpp can shorten

the program latency but increase the RBER. Therefore, by

following the constraints of the required retention time (one

year) [17], flash memory needs to take more iterations to

decode data and it results in a longer read latency.

III. DESIGN MOTIVATION

As the flash memory wears out following Eq. (2) and Eq. (3)

(i.e., the PE cycle of NAND flash memory increases), the read
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latency is increased since more ECC decoding iterations are

needed as mentioned in Section II. The program (write) latency

is proportional to the ISPP [6] since the program procedure

will stop when the number of program pulses reaches its limit.

To reach the same threshold voltage level under the same pro-

gram speed (ΔVpp) and the same maximum threshold voltage

(Vp), the program latency can be the same. We simulated the

latencies and RBER changes as PE cycle increases. As shown

in Figure 2, with flash memory continuously wearing out, the

read latency keeps low in the early stage, and then it starts to

increase from the middle stage of the lifetime of flash memory.

With the change of the access latencies, a static allocation

scheme for SSDs cannot deliver good performance at all times.

A type of mixed read/write workloads may have the best

overall performance in one region at the beginning. However,

with the change of read latency, the current workload should

be allocated to another region to obtain a better performance.

Therefore, a data classification scheme may need to be ad-

justed based on the current wearing-out stage of NAND flash

memory. Moreover, flash memory with a high areal density

becomes more and more popular. As the areal density of flash

memory increases such as from SLC to QLC, the latency

become more sensitive to the PE cycle. In other words, the

latency will be changed more significantly with a small PE

cycle increase for the flash memory with higher areal densities

such as TLC and QLC. Thus, the wear-out aware management

is more needed for those high areal density flash memory. In

Section IV, we introduce a dynamically changed classifier to

adapt to the wear-out process of flash memory for the hybrid

SSDs.

IV. DESIGN AND IMPLEMENTATION

In this section, we introduce the overall design and com-

ponents of the proposed EFM scheme. The flash memory can

contain N physical regions with different read/write latencies

by using different ISPP values and threshold voltages. In this

paper, we simplify the discussion by taking N=3, the same as

in the most relevant work [7]. For other N values, under the

same maximum threshold voltage, the difference of latencies

between some regions becomes smaller as the number of

regions increases. So, the results of more than three regions

might be similar to the case of three regions. Thus, a further

discussion of one to three regions can be found in Section V-E.

A. Overall Architecture

In this paper, the access latencies of three physical regions

and workload access patterns are used to classify data and

to decide in which region the data is stored. Moreover,

an adaptive scheme is proposed to adapt to the changing

read/write latencies due to flash memory wearing. The overall

architecture of EFM is shown in Figure 3. There are four basic

components in EFM. An I/O monitor collects I/O information

which is used for building a classifier. We use two different

types of classifiers. One is called Long-Term Classifier (LT-
Classifier) as a major classifier to focus on the long-term

data access patterns by quantitatively distinguishing read/write

Fig. 3: The overall architecture of EFM.

latencies. The other classifier called Short-Term Classifier (ST-
Classifier) assists and calibrates LT-Classifier to obtain a more

accurate classification. A migration checker is responsible

for filtering out unnecessary migration. A latency sensor is

to check the flash memory wearing and senses the changed

latencies of read and write. The observed latencies will be

used to adjust LT-Classifier to make it wearing-out aware.

B. EFM Scheduling Algorithm

In the design, we assume three physical regions. Region-1

is low-cost (high performance) for writes and high-cost (low

performance) for reads, Region-3 is high-cost for writes and

low-cost for reads, and Region-2 is mid-cost for both reads and

writes. The read and write latencies for each region are known.

First, we investigate a simple scenario to allocate data into two

regions (Region-1 (good for writes) and Region-3 (good for

reads)). These two physical regions have different read and

write latencies due to different physical configurations such

as different ΔVpp and Vp. We assume that one (Region-1)

has tp and tr for write and read latencies, respectively. The

other (Region-3) has t′p and t′r for write and read latencies,

respectively. A data in a workload consisting of x reads and

y writes will be allocated to one of these two regions. If we

want to achieve that the data allocated to Region-1 has shorter

latencies than that in Region-3, it needs to satisfy Eq. (4).

Y × tp +X × tr < Y × t′p +X × t′r

=>

⎧⎨
⎩

Y
X <

t′r−tr
tp−t′p

, if tp > t′p
Y
X >

t′r−tr
tp−t′p

, otherwise

(4)

where X and Y are the accumulated read and write sizes of

the data in the workload in an observed duration. Therefore,

if the data access patterns follow Eq. (4), the data should be

assigned to Region-1 to obtain a lower overall execution time.

Otherwise, the data should be allocated to Region-3.

Therefore, with the awareness of read/write latencies and

their accumulated sizes, LT-Classifier follows Eq. (4). The

details of EFM are shown in Algorithm 1. We use a flash

memory block as a logical block of I/O monitoring. First,

EFM keeps accumulating the access patterns of the workload

and store the read and write sizes of each logical block in

Read TBL and Write TBL, respectively. Meanwhile, the
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Algorithm 1 EFM Scheduling Algorithm with N=3

1: procedure ADAPTIVE CLASSIFICATION

2: Record Tstarttime

3: N=3 /*N is the number of physical regions*/
4: while t < T do
5: Compute logical block number i of Reqk
6: if Reqk is Read then
7: Read TBL[i] = Read TBL[i] +Reqk.size
8: MRO[i] = MRO[i] << 1|1
9: else

10: Write TBL[i] = Write TBL[i] +Reqk.size
11: MRO[i] = MRO[i] << 1|0
12: if |LT − Classifier()− ST − Classifier()| < 2 then
13: classification = LT-Classifier()
14: else
15: classification = 2
16: if Reg mapping[i] ! = 3 and classification = 3 then
17: migration[i] = migration[i] + 1

18: if currOp == 0 then /* current operation is write*/
19: Write Reqk: Region[classification] ← Reqk
20: Reg mapping[i] = classification
21: migration[i] = 0
22: else
23: Read Reqk
24: if migration[i] >= mig threshold then
25: Migrate the block i to Region[classification]
26: Reg mapping[i] = classification
27: migration[i] = 0

28: if t == T then
29: while for all i do
30: Read TBL[i] = Read TBL[i] ∗ 0.2
31: Write TBL[i] = Write TBL[i] ∗ 0.2
32: t = 0
33: end

Algorithm 2 LT-Classifier()

Input: Write TBL[i], Read TBL[i]
Output: RegionN /* Region number*/

1: if Write TBL[i]
Read TBL[i]

< tr2−tr1
tp1−tp2

then
2: RegionN = 1

3: else if Write TBL[i]
Read TBL[i]

< tr3−tr2
tp2−tp3

then
4: RegionN = 2
5: else
6: RegionN = 3

7: return RegionN

Algorithm 3 ST-Classifier()

Input: MRO[i]
Output: RegionN /* Region number*/

1: if MRO[i].count(”1”) >= 5 then /*Read-intensive*/
2: RegionN = 3
3: else if MRO[i].count(”1”) <= 2 then /*Write-intensive*/
4: RegionN = 1
5: else
6: RegionN = 2

7: return RegionN

Most Recent Operations (MRO) on each logical block are

stored in the MRO table. ”0” indicates write (W) and ”1”

is read (R). For example, ”110” indicates the sequence of

requests is ”R,R,W”. LT-Classifier in Algorithm 2 follows

Eq. (4) to determine which region a request for a logical

block is supposed to be allocated. The latencies of the three

regions associated with the accumulated read and write sizes

are used as parameters to classify access patterns. As shown at

Lines 6-11 of Algorithm 1, ST-Classifier uses the most recent

seven operations to indicate the short-term access patterns of

the workload on each logical block. More than or equal to

four writes or four reads out of seven requests are regarded

as short-term write-intensive or read-intensive logical block,

respectively. Otherwise, the requests for the block will be

classified as an interleaved read and write by ST-Classifier.

LT-Classifier as a major classifier determines the region of

allocation. The ST-Classifier assists LT-Classifier when the

results of two classifiers have the difference of region values

by 2 (at Lines 12-13 in Algorithm 1). In other words, if the

classifications of long-term patterns and short-term patterns

have a big contradiction with each other, the decision is made

for the middle region (i.e., Region-2). If a read request for one

logical block locates in high-cost read regions (like Region-1

or Region-2) and EFM classifies the logical block to the low-

cost read region (Region-3), the migration checker will check

whether multiple reads happened on this logical block based

on the migration[i] (at Lines 24-26). mig threshold is set

to
Costmigration

2∗Gainread
. This indicates that if the potential gain of

migration is bigger than half of the migration cost, we should

migrate it. If so, all logical pages in this block will be migrated

to Region-3 to achieve a lower read latency in the future.

Meanwhile, the region mapping table (Reg mapping) of the

block is also updated to indicate which region the logical block

is classified to. Otherwise, the read request is a normal read

and no extra action is taken. For each period T , Read TBL
and Write TBL will be updated (at Lines 28-32). The

coefficient 0.2 indicates the weight of the current period of

information. By doing that, parts of workload information at

previous periods keep in the two tables and can improve the

accuracy of collecting the blocks of the workload.

Moreover, the monitoring function is responsible for period-

ically (e.g., for each 500 PE cycles) updating the flash memory

information such as the read and write latencies of different

regions. As indicated in Figure 2, at the early stages of flash

memory, the read latency grows up slowly. Therefore, we set

a longer duration to update the latencies of flash memory in

LT-Classifier. As flash memory wears out, the increase of read

latency becomes quicker. Thus, a shorter duration of updating

latencies can be used to update the changed read latencies in

time. To improve the lifetime of flash memory, the reduced

threshold voltage will be applied to Region-1 which has the

shortest write latency. By doing so, it can not only potentially

gain the benefits of low write latency, but also can maximize

the lifetime of flash memory by reducing the effective wearing

of a large number of writes.

Figure 4 indicates an example of EFM with three regions.

According to Algorithm 1, the two blue lines are drawn by

LT-Classifier according to Eq. (4). Their slopes are based on

the access latencies of different regions and request sizes. The

red curves are based on the ST-Classifier which calibrates

LT-Classifier from Region-1 or Region-3 to Region-2 when

facing conflict decisions between short-term and long-term

classifiers. Moreover, the reduced threshold voltage V
′
p is

applied to Region-1 to prolong the lifetime of flash memory.
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Fig. 4: One example of the classification of EFM with three

physical regions (N=3).

Finally, based on the wear-out aware management, the slopes

of LT-Classifier will be adjusted based on the latencies updated

by the monitoring function (green arrows). In Figure 4, one

example of a logical block is classified into Region-3 based on

its accumulated access patterns of workloads. Therefore, write

requests on this logical block will be scheduled to Region-3.

For read requests, if a migration of this logical block occurs

as indicated in Algorithm 1, all read requests will be read

from Region-3. Otherwise, read requests will happen in their

original regions.

C. Overhead Discussion

The overhead of EFM is mainly from the following three

aspects. One is space overhead from recording block in-

formation including Write TBL, Read TBL, MRO, and

migration tables. Assume that 250GB flash memory is with

4KB page size and each block contains 128 pages. The record-

ing granularity of those tables is one block. The sizes of the

tables Write TBL and Read TBL depend on the maximum

accumulated size for each block. If we set the maximum

accumulated size for one period to 400MB. Then, the storage

capacity overhead of all those tables is about 3MB. Compared

to the page-level mapping table size (≈512MB) located in the

Flash Translation Layer (FTL), the storage capacity overhead

of those tables is really small and acceptable.

The second overhead is from classifying and updating tables

as indicated in Algorithm 1. The main operations involved in

the classification are addition, multiplication and division. We

investigated the overhead in a system with Intel(R) Xeon(R)

CPU E5-2620 v3 2.4GHz processors. The result indicates that

the classification for each operation only needs about 19ns. For

each period T , the time for table updates needs about 85ns.

Compared to the read/write latencies, the computing overhead

is much smaller. Moreover, modern SSDs contain more com-

puting resources (e.g., with multi-core CPU). Therefore, the

proposed EFM only consumes a small amount of computing

resource and running the proposed scheme in SSDs will not

be a practical issue.

The third overhead is from hardware implementation for

multiple threshold voltages, ISPP values, and latency monitor-

ing. This overhead has been already investigated and verified

by several previous studies [5], [6], [13]. So, the hardware

overhead is tolerable.

TABLE I: Configurations of traces

Number of IOs (Millions) Total request size (GB)
Write Read Write Read

mds 1 0.12 1.52 1.54 87.17
web2 5.14 0.04 0.78 262.82
usr 1 3.86 41.43 56.13 2079.23
usr 2 1.99 8.58 26.47 415.28
proj 1 2.50 21.14 25.58 750.36
ts 0 1.49 0.32 11.34 4.13

hm 0 2.58 1.42 20.48 9.96
prxy 0 12.14 0.38 53.80 3.05
syn1 3.93 1.31 15.00 5.00
syn2 4.10 1.02 16.00 4.00

OLTP1 4.10 1.24 14.57 2.65
OLTP2 0.65 3.05 1.82 6.62

TABLE II: Latencies of read and write with different reduced

effective wearing for different PE cycles

Region-1 Region-2 Region-3

Regular
Read (us) 270 170 70
Write (us) 450 600 800

Effective wearing Read (us) 310 210 -
(reduced 0.8) Write (us) 450 600 -

V. EXPERIMENTAL RESULTS

A. Environmental Setup

We evaluated different algorithms based on the SSDsim

simulator [18] with the extension of different read and write

latencies of 3 physical regions. The latencies are obtained from

the device model in [5]. The flash memory in the simulation

has 256GB capacity with a page size of 4KB. Each block

contains 128 pages. The access latencies of flash memory in

physical regions are indicated in Table II. The traces used

in the experiments are the MSR Cambridge traces [19], two

synthetic traces (syn1 and syn2), and two OLTP application

traces [20] as shown in Table I. Three existing schemes, i.e.,

WARM [9], HOTIS [21], and TOS18 [7] are used as baselines

to make comparisons with the proposed EFM scheme.

B. Overall Performance

First, we make a comparison between four schemes with

all 12 traces. The latencies of three regions used the regular

configuration are shown in Table II. The overall performance

comparison is shown in Figure 5. We can find that EFM

obtains the lowest average latencies compared to the other

three baselines. On average, EFM delivers 53.9%, 87%, and

296% latency reductions compared to HOTIS, WARM, and

TOS18, respectively. There are two major reasons that EFM

outperforms the others. One is that the previous schemes

misclassify the data access patterns such that data are allocated

to the regions which have longer read or write latencies. The

other reason is that the baseline schemes face a large overhead

of migrations. For these schemes, the performance gain of

migrating data to a region with a lower write/read latency is

less than the migration overhead itself, thus resulting in a lower

overall performance.

Two typical examples of breakdown analysis are demon-

strated in Figure 6. We did not present the results of other
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Fig. 5: Overall performance comparison between four

schemes.

(a) usr 1 (b) hm 0

Fig. 6: Latency breakdown analysis.

traces since they have similar results. ”Optimal R+W” indi-

cates that read and write operations access the regions with

the lowest read or write latency respectively. For example,

a write located in Region-1 having the lowest write latency

is denoted as ”Optimal W”. ”Non-optimal R” and ”Non-

optimal W” indicate that data are not located in their best

regions when the requests arrive. ”Migration” indicates the

overhead of migration contributing to the overall latency. In

Figure 6, EFM contains the largest ”Optimal R+W” portion

for these two traces. For the WARM scheme, it faces a large

overhead of ”Non-optimal W” and ”Non-optimal R” due to its

misclassification. The HOTIS and TOS18 schemes have a large

migration overhead because they pre-allocate data to the low-

read latency region but do not have many read requests arrived

in the near future. As a consequence, the large migration

overhead does not bring too much benefit of low read latency

and results in a large overall performance degradation.

C. Wear-out Aware Management

As discussed in previous sections, with flash memory con-

tinuously wearing out, the read performance will be degraded

due to high RBERs and long decoding latency. In this sub-

section, we investigate the performance of different strategies

at different PE cycles. As seen in Table III, according to

the device model [5], [22], [23], four stages are used for

demonstrating the flash memory wearing-out process. From

Stage-1 (the smallest PE cycles) to Stage-4 (the largest PE

cycles), the read latencies of two regions (Region-1 and

Region-2) are decreased and the read latency in Region-3

keeps the same since Region-3 uses a smaller ΔVpp which

TABLE III: Latencies of read and write with different reduced

effective wearing for different PE cycles

PE cycle: Stage-1 Stage-2 Stage-3 Stage-4

Region-1
Read (us) 150 210 270 350
Write (us) 450

Region-2
Read (us) 110 150 170 210
Write (us) 600

Region-3
Read (us) 70 70 70 70
Write (us) 800

resulting in low RBERs. The write latencies remain the same

due to using the same ΔVpp in the ISPP process as discussed

in Section III.

Four baselines are used to make comparisons with EFM.

EFM-static uses the initial setup at Stage-1 and its LT-

classifier will not be updated. These four baselines keep the

same configurations of the classifiers during the wearing-

out process. EFM will adjust LT-classifier and the migration

checker accordingly as indicated in Algorithm 1. We select

four representative traces and the conclusions of other traces

are similar to the four traces. As shown in Figure 7, the

average latencies of the four baselines are increased as flash

memory wears out. This is because under the static allocation,

the read latencies are increased resulting in larger overall

latencies. However, these four schemes obtain different rates

of latency increase for different traces. For example, TOS18

only has 0.8% - 2.2% latency increases for OLTP2 trace, but

HOTIS, WARM, and EFM-static obtain 25.1% - 81.7%, 23.3%

- 70.9%, and 7.5% - 21.7% latency increases, respectively. The

reason is that the physical regions have different performance

degradation. So, if one scheme allocates more read requests

to Region-3, it will obtain less performance degradation.

The wear-out aware management can help decrease the

average latency while the flash memory wears out. The reason

is that with the updated LT-classifier, EFM can classify some

specific access patterns more accurately than before and thus

achieves lower average latencies as shown in Figure 7a and

Figure 7b. In some cases, such as prxy 0 and OLTP2 traces,

EFM obtains a similar performance as flash memory wears

out. There are two reasons for this. One reason is that if a

trace is a write-intensive workload like prxy 0, flash memory

wearing has little influence on performance. The other reason

is that EFM already accurately allocates most of the I/O

requests. Thus, although the classifier and migration checker

are updated, most of the requests are still classified to the same

region and suffer little performance degradation. In summary,

using the designed wear-out management, EFM can further

improve the flash memory performance on average by 17.3%.

D. Lifetime Improvement

The lifetime improvement of flash memory is investigated

in this subsection by reducing the threshold voltage. To reduce

the wearing effect on flash memory, write-intensive workloads

should be scheduled to a region with a reduced threshold volt-

age. We make a comparison with three baselines. As indicated
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(a) usr 1 (b) proj 1

(c) prxy 0 (d) OLTP2

Fig. 7: Performance comparison with flash memory wearing

out for different schemes.

in [7], the TOS18 scheme stores the wearing effective write

requests in Region-2. EFM, WARM, and HOTIS schemes

use the reduced threshold voltage for Region-1. The effective

wearing coefficient is set to 0.8. The latency configurations

are shown as the effective wearing in Table II.

As shown in Figure 8, EFM obtains an average lifetime

improvement about 17.7%. It achieves a longer lifetime than

those of the three baselines – TOS18 (7.5%), HOTIS (5.6%),

and WARM (5.1%). The reason is that the lifetime improve-

ment management of EFM cooperates with the classifiers and

allocates write-intensive workloads to Region-1. Therefore, the

EFM scheme puts more writes in the effective wearing region

than the TOS18 scheme does. Another reason is that EFM

accurately schedules write-intensive workloads to Region-

1 and thus absorbs more writes in Region-1 than WARM

and HOTIS do. As a result, EFM effectively improves the

lifetime of flash memory than others. EFM shows less lifetime

improvement with three exceptional traces – syn1, syn2, and

OLTP2. The reason is that these traces contain interleaved

writes and reads and are allocated to Region-1 to obtain a

shorter overall latency. Consequently, EFM achieves a much

better overall performance while obtains a slightly lower

lifetime improvement than others in these three traces.

Another advantage of EFM is that the read performance

degradation induced by effective wearing can be mitigated by

the large number of writes with the lowest write latency. As

indicated in Figure 9, the average latency of EFM with the

reduced threshold voltage is only increased at most 2%. In

summary, EFM is capable of improving the lifetime of the

flash memory while its performance decreases only slightly. To

further improve the flash memory lifetime, we can set a smaller

wearing effective coefficient while it may further sacrifice a

Fig. 8: Normalized lifetime improvement.

Fig. 9: Latency comparison between EFM and EFM without

reduced threshold voltage.

Fig. 10: Performance comparison between four schemes with

one to three physical regions.

bit performance.

E. Number of Physical Regions

In this subsection, we investigate the influence of the num-

ber of physical regions on the performance of flash memory

(one to three regions). In Figure 10, four representative traces

are used for comparison. All schemes obtain the same result

for one region case (denoted by ”1R”). According to the

results, the traces can be roughly categorized into three groups.

One is that EFM with three regions (denoted by ”EFM-

3R”) has a better performance than that with one or two

regions (denoted by ”EFM-2R”) like trace usr 1. For this

type of traces, the scenario with three regions provides a fine-

grained management than that of one and two regions since

those traces contain many blocks with a small difference of

access patterns. Therefore, the fine-grained management can

distinguish the small difference of access patterns and schedule

them to the low-cost region with a shorter latency. For the

second group of traces including prxy 0 and OLTP1, EFM

with two and three regions has similar performance since
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these traces have obvious classification and the scheme with

the coarse-grained physical region partition is good enough

to classify those traces. The third category is that using less

regions can obtain a better performance including hm 0. The

reason is that the migration overhead dominates the overall

performance. Using more regions potentially induces a higher

migration overhead.

For other schemes, we obtain a similar conclusion as above.

However, those schemes deliver a big difference for some

traces. For example, TOS18-2R and TOS18-3R have a similar

situation with EFM for the trace prxy 0. While TOS18-3R

has much worse performance than TOS18-2R for usr 1 and

hm 0. A similar situation can be found for HOTIS-2R and

HOTIS-3R for usr 1. The reason for this is that these two

schemes suffer much higher migration overheads due to their

mis-classification and the results in Figure 6 validate this

conclusion. In summary, EFM can obtain a better performance

than other schemes with different number of regions. More-

over, to gain the best performance, we should determine the

number of physical regions in flash memory according to the

I/O behaviors of their applications.

VI. CONCLUSION

In this paper, a newly proposed elastic flash management

scheme called EFM targets on improving the overall perfor-

mance and lifetime of flash memory by allocating data into

three physical regions with different write/read latencies. Two

types of classifiers are used in the EFM to achieve a more

accurate allocation to these regions for incoming requests.

Moreover, as flash memory wears out, the LT-Classifier of the

EFM will be adaptively updated to adapt to the performance

changes of read and write. Additionally, a reduced effective

wearing management is used to improve the lifetime of flash

memory by scheduling the write-intensive workloads to the

region with the reduced threshold voltage. Finally, the exper-

imental results indicate that the EFM scheme can improve

the overall performance 53.9% - 296% compared to some

previously proposed schemes.
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