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Abstract—NAND-based flash memory has become a prevalent
storage media due to its low access latency and high performance.
By setting up different incremental step pulse programming
(ISPP) values and threshold voltages, the tradeoffs between
lifetime and access latency in NAND-based flash memory can
be exploited. The existing studies that exploit the tradeoffs
by using heuristic algorithms do not consider the dynamically
changed access latency due to wearing-out, resulting in low access
performance. In this paper, we proposed a new Elastic Flash
Management scheme, called EFM, to manage data in hybrid flash
memory, which consists of multiple physical regions with different
read/write latencies according to their ISPP values and threshold
voltages. EFM includes a Long-Term Classifier (LT-Classifier)
and a Short-Term Classifier (ST-Classifier) to accurately track
dynamically changed workloads by considering current quan-
titative differences of read/write latencies and workload access
patterns. Moreover, a reduced effective wearing management is
proposed to prolong the lifetime of flash memory by scheduling
write-intensive workloads to the region with a reduced threshold
voltage and the lowest write cost. Experimental results indicate
that EFM reduces the average read/write latencies by about
54% - 296% and obtain 17.7 % lifetime improvement on average
compared to the existing studies.

[. INTRODUCTION

NAND flash memory is playing an important role in today’s
storage systems from mobile devices to large-scale data-
centers. Compared to other types of storage devices [1], [2], it
offers the advantages of high performance and lightweight.
The current trend of the flash memory is to increase its
density to achieve high capacity by introducing more levels
(holding several bits) in a cell, including multi-level cell
(MLQ), triple-level cell (TLC), and quad-level cell (QLC).
However, with the increased bit-density, the reliability of
flash memory is decreased [3]. As a result, the lifetime of
flash memory is shortened due to a decreased maximum
Program-Erase (PE) cycle. To deal with this, researchers use
Error Correction Codes (ECC) such as Low-Density Parity-
Check Code (LDPC) to make data accessible with a high
Raw Bit Error Rate (RBER) and thus prolong the lifetime of
flash memory. However, these error corrections need a longer
duration to decode data, resulting in degraded flash access
performance.

According to NAND flash memory properties, the trade-
offs between lifetime and access latencies can be exploited
by setting different threshold voltages, incremental step pulse

programming (ISPP) values, etc. for different flash memory
regions. For example, different ISPP values [4], [S] can impact
both read and write latencies. With a larger ISPP value, the
program process (write operation) has fewer iterations and
achieves a lower write latency. However, a larger ISPP value
increases the RBER of programmed memory cells and thus
results in longer read latency. Another trade-off is between the
lifetime of NAND flash memory and its access latencies. With
a low program threshold voltage, the RBER of memory cells
generally increases and the maximum number of PE cycles of
those cells is also increased. Thus, a lower threshold voltage
causes a higher read latency but a longer lifetime of flash
memory. These trade-offs provide opportunities to improve the
performance and lifetime of NAND flash memory.

Many studies [5]-[9] used these trade-offs either to prolong
the lifetime of flash memory or to improve its performance.
For example, Li et al. [7] simply used a simple static heuristic
by classifying I/O requests with their most recent consecutive
access patterns. Pan er al. [5] explored a device model of
flash memory and re-setting ISPP values of flash memory
to improve its write performance. Luo er al. [9] proposed
the WARM scheme to improve flash memory lifetime by
separating data based on their write frequencies. However,
these schemes do not consider the changes of read and write
latencies in SSDs due to wearing out. For example, as flash
memory wears out, the access latencies of flash memory
are continuously changed. Existing allocation schemes based
on the initial classification cannot adapt to these changes,
resulting in longer access latencies due to less accurate data
allocation. Therefore, to obtain high performance and adapt
to dynamically changed latencies of flash memory, we have
to consider real and dynamically changed write/read latencies
under the current PE cycle.

In this paper, the proposed Elastic Flash Management
scheme (EFM) targets to improve the overall performance
by allocating data to several physical regions with different
write/read latencies. A Long-Term Classifier (LT-Classifier) is
proposed to separate incoming requests based on the quantita-
tive difference of current read/write latencies between physical
regions and long-term accumulated read/write sizes. Then, a
Short-Term Classifier (ST-Classifier) calibrates LT-Classifier
based on short-term access patterns. Moreover, as the NAND
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flash memory wears out, the LT-Classifier of EFM will be
dynamically adjusted to adapt to the changed access latencies.
The outcomes of both classifications are considered to decide
where to allocate a given data. Consequently, EFM is capable
of more accurately predicting where to allocate/migrate incom-
ing requests. A migration checker is also developed to reduce
migration overhead by filtering out unnecessary data migra-
tions. Additionally, reduced effective wearing management is
used to improve the lifetime of the NAND flash memory
by scheduling write-intensive workloads to the region with
a reduced threshold voltage and the lowest write cost.

The rest of the paper is organized as follows. Section II
describes the backgrounds of flash memory. The discussion of
motivations is introduced in Section III. Section IV discusses
the structure and algorithm of the proposed EFM scheme.
Section V shows the experimental results of EFM compared to
the existing schemes. Finally, some conclusions are presented
in Section VI

II. BACKGROUND
A. Background of Flash Memory

NAND flash memory stores N-bits in a cell by injecting
electrons into the memory cell. As shown in Figure 1, N-
bit data in the NAND flash memory are presented by 2%
voltage states. Each voltage state follows a wide Gaussian-like
distribution [5] and can be approximately modeled by Eq. (1).

1 _(m—pe)?
— e 272
o2m
where p. and o, are the mean and standard deviations of the
erased state threshold voltage respectively.

To write data, the Incremental Step Pulse Program (ISPP)
programs flash memory cells iteratively following sequential
program-and-verify steps until a certain target voltage is
achieved [10]. In each step, the step size AV, (ISPP value)
determines write latency. To reach the same target threshold
voltage, a larger AV},, needs a less number of steps resulting in
shorter write latency, but introduces a higher error rate due to
a narrower noise margin between two adjacent states. Figure 1
indicates an ideal voltage distribution. Practically, the voltage
distribution is affected by many factors such as PE cycles and
cell-to-cell interference [4], [11]. As flash memory wears out
(the PE cycle of flash memory increases), any two adjacent
voltage states will have a smaller separation margin or even
be overlapped resulting in low reliability.

To read data, the voltage levels of a cell need to be correctly
sensed. Due to errors in a cell induced by many factors such
as wearing-out and cell-to-cell interference, error correction
codes such as Bose—Chaudhuri-Hocquenghem (BCH) [12]
and LDPC [13] are used. The decoding process of ECC codes
is to sense the probability information of a cell by comparing
a series of reference voltages. The number of iterations of
comparing reference voltages determines read latency. With
a higher error rate/RBER, more sensing iterations are needed
resulting in a longer read latency.
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Fig. 1: Ideal voltage distribution for 3-bit memory cell.
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Fig. 2: Simulated latencies and RBER changes as increasing
PE cycles with the same AV, based on the flash memory
device model [5].

B. Performance Tradeoffs in Flash Memory

There are trade-offs in flash memory between read/write
latencies and its lifetime. The relationship between ISPP and
program (write) latency can be found in Eq. (2) [14].

(@)

1
tp o<y X AV,
where t, is the program latency, v is a constant value, and
AV, is the ISPP value. Thus, we can find that the program
latency is inversely proportional to AV),. A large AV}, can
reduce the program latency but introduce a narrow margin
between two adjacent voltage states, thus, resulting in a high
RBER. For a read, the read latency is based on the error rate
of the memory cell and the speed of ECC decoding. An ECC
scheme such as BCH [12] or LDPC [13], [15] code is needed
to correct the sensed data. With the same correction capacity
of an ECC scheme, if a cell has a high RBER, the ECC scheme
takes a longer time to correct the data. The RBER is related
to AVp,, PE cycle, cell-to-cell interference, etc. [4], [5], [16],
and the error model is shown in Eq. (3).

RBER = Z(/ p(x)®dx + /+OC
k
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where p(¥) is the voltage density distribution of k-th state [5]
with a random telegraph noise (RTN) [16] and cell-to-cell
interference [11]. So, according to Eq. (1) and Eq. (3), as flash
memory wears out (the PE cycle of flash memory increases),
the RBER will be increased and thus ECC decoders need to
take more iterations to read correct data out [4]. Consequently,
the read latency is increased. A high AV, can shorten
the program latency but increase the RBER. Therefore, by
following the constraints of the required retention time (one
year) [17], flash memory needs to take more iterations to
decode data and it results in a longer read latency.

III. DESIGN MOTIVATION

As the flash memory wears out following Eq. (2) and Eq. (3)
(i.e., the PE cycle of NAND flash memory increases), the read
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latency is increased since more ECC decoding iterations are
needed as mentioned in Section II. The program (write) latency
is proportional to the ISPP [6] since the program procedure
will stop when the number of program pulses reaches its limit.
To reach the same threshold voltage level under the same pro-
gram speed (AV),;,) and the same maximum threshold voltage
(Vp), the program latency can be the same. We simulated the
latencies and RBER changes as PE cycle increases. As shown
in Figure 2, with flash memory continuously wearing out, the
read latency keeps low in the early stage, and then it starts to
increase from the middle stage of the lifetime of flash memory.

With the change of the access latencies, a static allocation
scheme for SSDs cannot deliver good performance at all times.
A type of mixed read/write workloads may have the best
overall performance in one region at the beginning. However,
with the change of read latency, the current workload should
be allocated to another region to obtain a better performance.
Therefore, a data classification scheme may need to be ad-
justed based on the current wearing-out stage of NAND flash
memory. Moreover, flash memory with a high areal density
becomes more and more popular. As the areal density of flash
memory increases such as from SLC to QLC, the latency
become more sensitive to the PE cycle. In other words, the
latency will be changed more significantly with a small PE
cycle increase for the flash memory with higher areal densities
such as TLC and QLC. Thus, the wear-out aware management
is more needed for those high areal density flash memory. In
Section IV, we introduce a dynamically changed classifier to
adapt to the wear-out process of flash memory for the hybrid
SSDs.

IV. DESIGN AND IMPLEMENTATION

In this section, we introduce the overall design and com-
ponents of the proposed EFM scheme. The flash memory can
contain N physical regions with different read/write latencies
by using different ISPP values and threshold voltages. In this
paper, we simplify the discussion by taking N=3, the same as
in the most relevant work [7]. For other N values, under the
same maximum threshold voltage, the difference of latencies
between some regions becomes smaller as the number of
regions increases. So, the results of more than three regions
might be similar to the case of three regions. Thus, a further
discussion of one to three regions can be found in Section V-E.

A. Overall Architecture

In this paper, the access latencies of three physical regions
and workload access patterns are used to classify data and
to decide in which region the data is stored. Moreover,
an adaptive scheme is proposed to adapt to the changing
read/write latencies due to flash memory wearing. The overall
architecture of EFM is shown in Figure 3. There are four basic
components in EFM. An I/O monitor collects I/O information
which is used for building a classifier. We use two different
types of classifiers. One is called Long-Term Classifier (LT-
Classifier) as a major classifier to focus on the long-term
data access patterns by quantitatively distinguishing read/write
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Fig. 3: The overall architecture of EFM.

latencies. The other classifier called Short-Term Classifier (ST-
Classifier) assists and calibrates LT-Classifier to obtain a more
accurate classification. A migration checker is responsible
for filtering out unnecessary migration. A latency sensor is
to check the flash memory wearing and senses the changed
latencies of read and write. The observed latencies will be
used to adjust LT-Classifier to make it wearing-out aware.

B. EFM Scheduling Algorithm

In the design, we assume three physical regions. Region-1
is low-cost (high performance) for writes and high-cost (low
performance) for reads, Region-3 is high-cost for writes and
low-cost for reads, and Region-2 is mid-cost for both reads and
writes. The read and write latencies for each region are known.
First, we investigate a simple scenario to allocate data into two
regions (Region-1 (good for writes) and Region-3 (good for
reads)). These two physical regions have different read and
write latencies due to different physical configurations such
as different AV, and V,,. We assume that one (Region-1)
has ¢, and ¢, for write and read latencies, respectively. The
other (Region-3) has t]’[, and ¢, for write and read latencies,
respectively. A data in a workload consisting of x reads and
y writes will be allocated to one of these two regions. If we
want to achieve that the data allocated to Region-1 has shorter
latencies than that in Region-3, it needs to satisfy Eq. (4).

Y Xty + X xt, <Y xt,+X xt,
%<k

Y
x>

—t,
tp—t.
rp
t—t,
tp—th”

if t, >t 4)
otherwise

where X and Y are the accumulated read and write sizes of
the data in the workload in an observed duration. Therefore,
if the data access patterns follow Eq. (4), the data should be
assigned to Region-1 to obtain a lower overall execution time.
Otherwise, the data should be allocated to Region-3.
Therefore, with the awareness of read/write latencies and
their accumulated sizes, LT-Classifier follows Eq. (4). The
details of EFM are shown in Algorithm 1. We use a flash
memory block as a logical block of I/O monitoring. First,
EFM keeps accumulating the access patterns of the workload
and store the read and write sizes of each logical block in
Read_TBL and Write_TBL, respectively. Meanwhile, the
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Algorithm 1 EFM Scheduling Algorithm with N=3

1: procedure ADAPTIVE CLASSIFICATION

2 Record Tstarttime

3 N=3 /*N is the number of physical regions*/

4: while ¢t <T do

S: Compute logical block number 7 of Regqy,

6: if Reqy is Read then

7 Read_TBL[i] = Read_TBL[i] + Regqy.size
8: MROJi] = MRO[i] << 1|1

9: else

10: Write_TBL[i] = Write_T BL[i] + Reqy,.size
11: MRO[i] = MROJi] << 1/0

12: if |[LT — Classifier() — ST — Classifier()] < 2 then
13: classification = LT-Classifier()

14: else

15: classification = 2

16: if Reg_mapping[i] ! = 3 and classification = 3 then
17: migration[i] = migration[i] + 1

18: if currOp == 0 then /* current operation is write*/
19: Write Regqy: Region[classification] <— Regqy
20: Reg_mapping][i] = classification

21: migration[i] = 0
22: else

23: Read Regy

24: if migration[i] >= mig_threshold then
25: Migrate the block ¢ to Region[classification]

26: Reg_mapping[i] = classification

27: migration[i] = 0

28: if t == T then

29: while for alli do

30: Read_TBL[i]| = Read_TBL[i] * 0.2

31: Write_TBL[i] = Write_TBL[i] * 0.2

32: t=0

33: end

Algorithm 2 LT-Classifier()

Input: Write_TBL|i], Read_T BL][i|
Output: RegionN /* Region number*/
Write_TBL[i]

. tro—ty
it ped B tp?—tp; then

2: RegionN = 1

. ;o Write TBL[i] _ ty3—t,

3 else if H o r T t,,;—t,,i then
4: RegionN =2

5: else

6: RegionN = 3

7: return RegionN

Algorithm 3 ST-Classifier()

Input: M RO[i]
Output: RegionN /* Region number*/
1 if MRO[i].count(”1”) >= 5 then /*Read-intensive*/
RegionN =3
: else if M RO[i].count(”1”) <=2 then /*Write-intensive*/
RegionN = 1
else
RegionN = 2
: return RegionN

A A ol b

Most Recent Operations (MRQO) on each logical block are
stored in the MRO table. ”0” indicates write (W) and 1"
is read (R). For example, ”110” indicates the sequence of
requests is "R,R,W”. LT-Classifier in Algorithm 2 follows
Eq. (4) to determine which region a request for a logical
block is supposed to be allocated. The latencies of the three
regions associated with the accumulated read and write sizes
are used as parameters to classify access patterns. As shown at
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Lines 6-11 of Algorithm 1, ST-Classifier uses the most recent
seven operations to indicate the short-term access patterns of
the workload on each logical block. More than or equal to
four writes or four reads out of seven requests are regarded
as short-term write-intensive or read-intensive logical block,
respectively. Otherwise, the requests for the block will be
classified as an interleaved read and write by ST-Classifier.

LT-Classifier as a major classifier determines the region of
allocation. The ST-Classifier assists LT-Classifier when the
results of two classifiers have the difference of region values
by 2 (at Lines 12-13 in Algorithm 1). In other words, if the
classifications of long-term patterns and short-term patterns
have a big contradiction with each other, the decision is made
for the middle region (i.e., Region-2). If a read request for one
logical block locates in high-cost read regions (like Region-1
or Region-2) and EFM classifies the logical block to the low-
cost read region (Region-3), the migration checker will check
whether multiple reads happened on this logical block based
on the migration[i] (at Lines 24-26). mig_threshold is set
to C;fgglim This indicates that if the potential gain of
migration is bigger than half of the migration cost, we should
migrate it. If so, all logical pages in this block will be migrated
to Region-3 to achieve a lower read latency in the future.
Meanwhile, the region mapping table (Reg_mapping) of the
block is also updated to indicate which region the logical block
is classified to. Otherwise, the read request is a normal read
and no extra action is taken. For each period T', Read_TBL
and Write_TBL will be updated (at Lines 28-32). The
coefficient 0.2 indicates the weight of the current period of
information. By doing that, parts of workload information at
previous periods keep in the two tables and can improve the
accuracy of collecting the blocks of the workload.

Moreover, the monitoring function is responsible for period-
ically (e.g., for each 500 PE cycles) updating the flash memory
information such as the read and write latencies of different
regions. As indicated in Figure 2, at the early stages of flash
memory, the read latency grows up slowly. Therefore, we set
a longer duration to update the latencies of flash memory in
LT-Classifier. As flash memory wears out, the increase of read
latency becomes quicker. Thus, a shorter duration of updating
latencies can be used to update the changed read latencies in
time. To improve the lifetime of flash memory, the reduced
threshold voltage will be applied to Region-1 which has the
shortest write latency. By doing so, it can not only potentially
gain the benefits of low write latency, but also can maximize
the lifetime of flash memory by reducing the effective wearing
of a large number of writes.

Figure 4 indicates an example of EFM with three regions.
According to Algorithm 1, the two blue lines are drawn by
LT-Classifier according to Eq. (4). Their slopes are based on
the access latencies of different regions and request sizes. The
red curves are based on the ST-Classifier which calibrates
LT-Classifier from Region-1 or Region-3 to Region-2 when
facing conflict decisions between short-term and long-term
classifiers. Moreover, the reduced threshold voltage V; is
applied to Region-1 to prolong the lifetime of flash memory.
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Fig. 4: One example of the classification of EFM with three
physical regions (N=3).

Finally, based on the wear-out aware management, the slopes
of LT-Classifier will be adjusted based on the latencies updated
by the monitoring function (green arrows). In Figure 4, one
example of a logical block is classified into Region-3 based on
its accumulated access patterns of workloads. Therefore, write
requests on this logical block will be scheduled to Region-3.
For read requests, if a migration of this logical block occurs
as indicated in Algorithm 1, all read requests will be read
from Region-3. Otherwise, read requests will happen in their
original regions.

C. Overhead Discussion

The overhead of EFM is mainly from the following three
aspects. One is space overhead from recording block in-
formation including Write_T BL, Read_T'BL, M RO, and
magration tables. Assume that 250GB flash memory is with
4KB page size and each block contains 128 pages. The record-
ing granularity of those tables is one block. The sizes of the
tables Write_T BL and Read_T BL depend on the maximum
accumulated size for each block. If we set the maximum
accumulated size for one period to 400MB. Then, the storage
capacity overhead of all those tables is about 3MB. Compared
to the page-level mapping table size (=512MB) located in the
Flash Translation Layer (FTL), the storage capacity overhead
of those tables is really small and acceptable.

The second overhead is from classifying and updating tables
as indicated in Algorithm 1. The main operations involved in
the classification are addition, multiplication and division. We
investigated the overhead in a system with Intel(R) Xeon(R)
CPU E5-2620 v3 2.4GHz processors. The result indicates that
the classification for each operation only needs about 19ns. For
each period 7', the time for table updates needs about 85ns.
Compared to the read/write latencies, the computing overhead
is much smaller. Moreover, modern SSDs contain more com-
puting resources (e.g., with multi-core CPU). Therefore, the
proposed EFM only consumes a small amount of computing
resource and running the proposed scheme in SSDs will not
be a practical issue.

The third overhead is from hardware implementation for
multiple threshold voltages, ISPP values, and latency monitor-
ing. This overhead has been already investigated and verified
by several previous studies [5], [6], [13]. So, the hardware
overhead is tolerable.
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TABLE I: Configurations of traces

Number of 10s (Millions) | Total request size (GB)
Write Read Write Read
mds_1 0.12 1.52 1.54 87.17
web2 5.14 0.04 0.78 262.82
usr_1 3.86 4143 56.13 2079.23
usr_2 1.99 8.58 26.47 415.28
proj_1 2.50 21.14 25.58 750.36
ts_0 1.49 0.32 11.34 4.13
hm_0 2.58 1.42 20.48 9.96
prxy_0 | 12.14 0.38 53.80 3.05
synl 3.93 1.31 15.00 5.00
syn2 4.10 1.02 16.00 4.00
OLTP1 4.10 1.24 14.57 2.65
OLTP2 | 0.65 3.05 1.82 6.62

TABLE II: Latencies of read and write with different reduced
effective wearing for different PE cycles

Region-1 | Region-2 | Region-3
Regular Read (us) 270 170 70
Write (us) 450 600 800
Effective wearing | Read (us) 310 210 -
(reduced 0.8) Write (us) 450 600 -

V. EXPERIMENTAL RESULTS
A. Environmental Setup

We evaluated different algorithms based on the SSDsim
simulator [18] with the extension of different read and write
latencies of 3 physical regions. The latencies are obtained from
the device model in [5]. The flash memory in the simulation
has 256GB capacity with a page size of 4KB. Each block
contains 128 pages. The access latencies of flash memory in
physical regions are indicated in Table II. The traces used
in the experiments are the MSR Cambridge traces [19], two
synthetic traces (synl and syn2), and two OLTP application
traces [20] as shown in Table I. Three existing schemes, i.e.,
WARM [9], HOTIS [21], and TOS18 [7] are used as baselines
to make comparisons with the proposed EFM scheme.

B. Overall Performance

First, we make a comparison between four schemes with
all 12 traces. The latencies of three regions used the regular
configuration are shown in Table II. The overall performance
comparison is shown in Figure 5. We can find that EFM
obtains the lowest average latencies compared to the other
three baselines. On average, EFM delivers 53.9%, 87%, and
296% latency reductions compared to HOTIS, WARM, and
TOS18, respectively. There are two major reasons that EFM
outperforms the others. One is that the previous schemes
misclassify the data access patterns such that data are allocated
to the regions which have longer read or write latencies. The
other reason is that the baseline schemes face a large overhead
of migrations. For these schemes, the performance gain of
migrating data to a region with a lower write/read latency is
less than the migration overhead itself, thus resulting in a lower
overall performance.

Two typical examples of breakdown analysis are demon-
strated in Figure 6. We did not present the results of other
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Fig. 6: Latency breakdown analysis.

traces since they have similar results. ”Optimal R+W” indi-
cates that read and write operations access the regions with
the lowest read or write latency respectively. For example,
a write located in Region-1 having the lowest write latency
is denoted as “Optimal W”. “Non-optimal R” and “Non-
optimal W” indicate that data are not located in their best
regions when the requests arrive. "Migration” indicates the
overhead of migration contributing to the overall latency. In
Figure 6, EFM contains the largest "Optimal R+W” portion
for these two traces. For the WARM scheme, it faces a large
overhead of ”Non-optimal W” and ”Non-optimal R” due to its
misclassification. The HOTIS and TOS18 schemes have a large
migration overhead because they pre-allocate data to the low-
read latency region but do not have many read requests arrived
in the near future. As a consequence, the large migration
overhead does not bring too much benefit of low read latency
and results in a large overall performance degradation.

C. Wear-out Aware Management

As discussed in previous sections, with flash memory con-
tinuously wearing out, the read performance will be degraded
due to high RBERs and long decoding latency. In this sub-
section, we investigate the performance of different strategies
at different PE cycles. As seen in Table III, according to
the device model [5], [22], [23], four stages are used for
demonstrating the flash memory wearing-out process. From
Stage-1 (the smallest PE cycles) to Stage-4 (the largest PE
cycles), the read latencies of two regions (Region-1 and
Region-2) are decreased and the read latency in Region-3
keeps the same since Region-3 uses a smaller AV}, which
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TABLE III: Latencies of read and write with different reduced
effective wearing for different PE cycles

PE cycle:  Stage-1  Stage-2  Stage-3  Stage-4
Region- 1 Read (us) 150 210 270 350
Werite (us) 450
Region-2 Read (us) 110 150 170 210
Write (us) 600
. Read (us) 70 70 70 70
Region-3 —grite (us) 800

resulting in low RBERs. The write latencies remain the same
due to using the same AV, in the ISPP process as discussed
in Section III.

Four baselines are used to make comparisons with EFM.
EFM-static uses the initial setup at Stage-1 and its LT-
classifier will not be updated. These four baselines keep the
same configurations of the classifiers during the wearing-
out process. EFM will adjust LT-classifier and the migration
checker accordingly as indicated in Algorithm 1. We select
four representative traces and the conclusions of other traces
are similar to the four traces. As shown in Figure 7, the
average latencies of the four baselines are increased as flash
memory wears out. This is because under the static allocation,
the read latencies are increased resulting in larger overall
latencies. However, these four schemes obtain different rates
of latency increase for different traces. For example, TOS18
only has 0.8% - 2.2% latency increases for OLTP2 trace, but
HOTIS, WARM, and EFM-static obtain 25.1% - 81.7%, 23.3%
-70.9%, and 7.5% - 21.7% latency increases, respectively. The
reason is that the physical regions have different performance
degradation. So, if one scheme allocates more read requests
to Region-3, it will obtain less performance degradation.

The wear-out aware management can help decrease the
average latency while the flash memory wears out. The reason
is that with the updated LT-classifier, EFM can classify some
specific access patterns more accurately than before and thus
achieves lower average latencies as shown in Figure 7a and
Figure 7b. In some cases, such as prxy_0 and OLTP2 traces,
EFM obtains a similar performance as flash memory wears
out. There are two reasons for this. One reason is that if a
trace is a write-intensive workload like prxy_0, flash memory
wearing has little influence on performance. The other reason
is that EFM already accurately allocates most of the I/O
requests. Thus, although the classifier and migration checker
are updated, most of the requests are still classified to the same
region and suffer little performance degradation. In summary,
using the designed wear-out management, EFM can further
improve the flash memory performance on average by 17.3%.

D. Lifetime Improvement

The lifetime improvement of flash memory is investigated
in this subsection by reducing the threshold voltage. To reduce
the wearing effect on flash memory, write-intensive workloads
should be scheduled to a region with a reduced threshold volt-
age. We make a comparison with three baselines. As indicated
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Fig. 7: Performance comparison with flash memory wearing
out for different schemes.

in [7], the TOS18 scheme stores the wearing effective write
requests in Region-2. EFM, WARM, and HOTIS schemes
use the reduced threshold voltage for Region-1. The effective
wearing coefficient is set to 0.8. The latency configurations
are shown as the effective wearing in Table II.

As shown in Figure 8, EFM obtains an average lifetime
improvement about 17.7%. It achieves a longer lifetime than
those of the three baselines — TOS18 (7.5%), HOTIS (5.6%),
and WARM (5.1%). The reason is that the lifetime improve-
ment management of EFM cooperates with the classifiers and
allocates write-intensive workloads to Region-1. Therefore, the
EFM scheme puts more writes in the effective wearing region
than the TOS18 scheme does. Another reason is that EFM
accurately schedules write-intensive workloads to Region-
1 and thus absorbs more writes in Region-1 than WARM
and HOTIS do. As a result, EFM effectively improves the
lifetime of flash memory than others. EFM shows less lifetime
improvement with three exceptional traces — synl, syn2, and
OLTP2. The reason is that these traces contain interleaved
writes and reads and are allocated to Region-1 to obtain a
shorter overall latency. Consequently, EFM achieves a much
better overall performance while obtains a slightly lower
lifetime improvement than others in these three traces.

Another advantage of EFM is that the read performance
degradation induced by effective wearing can be mitigated by
the large number of writes with the lowest write latency. As
indicated in Figure 9, the average latency of EFM with the
reduced threshold voltage is only increased at most 2%. In
summary, EFM is capable of improving the lifetime of the
flash memory while its performance decreases only slightly. To
further improve the flash memory lifetime, we can set a smaller
wearing effective coefficient while it may further sacrifice a
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bit performance.

E. Number of Physical Regions

In this subsection, we investigate the influence of the num-
ber of physical regions on the performance of flash memory
(one to three regions). In Figure 10, four representative traces
are used for comparison. All schemes obtain the same result
for one region case (denoted by “1R”). According to the
results, the traces can be roughly categorized into three groups.
One is that EFM with three regions (denoted by “EFM-
3R”) has a better performance than that with one or two
regions (denoted by "EFM-2R”) like trace usr_l. For this
type of traces, the scenario with three regions provides a fine-
grained management than that of one and two regions since
those traces contain many blocks with a small difference of
access patterns. Therefore, the fine-grained management can
distinguish the small difference of access patterns and schedule
them to the low-cost region with a shorter latency. For the
second group of traces including prxy_0 and OLTP1, EFM
with two and three regions has similar performance since
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these traces have obvious classification and the scheme with
the coarse-grained physical region partition is good enough
to classify those traces. The third category is that using less
regions can obtain a better performance including hm_0. The
reason is that the migration overhead dominates the overall
performance. Using more regions potentially induces a higher
migration overhead.

For other schemes, we obtain a similar conclusion as above.
However, those schemes deliver a big difference for some
traces. For example, TOS18-2R and TOS18-3R have a similar
situation with EFM for the trace prxy_0. While TOS18-3R
has much worse performance than TOS18-2R for usr_1 and
hm_0. A similar situation can be found for HOTIS-2R and
HOTIS-3R for usr_1. The reason for this is that these two
schemes suffer much higher migration overheads due to their
mis-classification and the results in Figure 6 validate this
conclusion. In summary, EFM can obtain a better performance
than other schemes with different number of regions. More-
over, to gain the best performance, we should determine the
number of physical regions in flash memory according to the
I/0 behaviors of their applications.

VI. CONCLUSION

In this paper, a newly proposed elastic flash management
scheme called EFM targets on improving the overall perfor-
mance and lifetime of flash memory by allocating data into
three physical regions with different write/read latencies. Two
types of classifiers are used in the EFM to achieve a more
accurate allocation to these regions for incoming requests.
Moreover, as flash memory wears out, the LT-Classifier of the
EFM will be adaptively updated to adapt to the performance
changes of read and write. Additionally, a reduced effective
wearing management is used to improve the lifetime of flash
memory by scheduling the write-intensive workloads to the
region with the reduced threshold voltage. Finally, the exper-
imental results indicate that the EFM scheme can improve
the overall performance 53.9% - 296% compared to some
previously proposed schemes.
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