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Keywords: In recent years, Earth system sciences are urgently calling for innovation on improving accuracy, enhancing
Geosphere model intelligence level, scaling up operation, and reducing costs in many subdomains amid the exponentially
Hydml‘;fy accumulated datasets and the promising artificial intelligence (AI) revolution in computer science. This paper
Atr{l‘?SP ere . . presents work led by the NASA Earth Science Data Systems Working Groups and ESIP machine learning cluster to
Artificial intelligence/machine learning . ; . . . L. .

Big data give a comprehensive overview of Al in Earth sciences. It holistically introduces the current status, technology,
Cyberinfrastructure use cases, challenges, and opportunities, and provides all the levels of Al practitioners in geosciences with an

overall big picture and to “blow away the fog to get a clearer vision” about the future development of Earth AL
The paper covers all the majorspheres in the Earth system and investigates representative Al research in each
domain. Widely used AI algorithms and computing cyberinfrastructure are briefly introduced. The mandatory
steps in a typical workflow of specializing Al to solve Earth scientific problems are decomposed and analyzed.
Eventually, it concludes with the grand challenges and reveals the opportunities to give some guidance and pre-
warnings on allocating resources wisely to achieve the ambitious Earth Al goals in the future.
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Z. Sun et al.
1. Introduction

With countless sensors deployed all over the globe, human knowl-
edge about earth systems is growing explosively. Every day these sensors
capture huge amounts of geolocated data to help us gain a deeper un-
derstanding of the natural environment, human society, and outer space.
The information is critical to (1) learn and understand natural systems,
(2) foresee trends and consequences of human activities, and (3) assess
hazards to human society and the Earth. Despite numerous tools,
methods, and theories, we are still incapable of efficiently and fully
utilizing this huge data mine. Current theories about how the earth will
respond to global change are full of unrealistic and subjective assump-
tions due to the manual configuration and handling of data.

Artificial intelligence (AI) models have outperformed conventional
data handling in many cases, like recognizing street views, extracting
roads, and comprehending medical images. The first generation of Al
research in the 1980s resulted in many classic theories and methods, but
the earliest models took too long to train due to computing limitations.
With the recent rapid development of hardware and software, Al has
accelerated scientific advances and discoveries in medicine, biology,
and economics.

Nowadays, Al is no longer a lab concept but used practically in many
daily scenarios such as banking, camera object identification, telecom-
munications, household robot cleaners, recommendation systems,
autonomous driving, self-checkout, etc. All of these applications depend
on computer algorithms that digest information and solve problems by
mimicking brain nervous systems. However, unlike human brains that
can differentiate many objects by only deductively learning one object,
Al algorithms must learn thousands of patterns before making accurate
decisions (Qiu et al., 2016). Owing to the vital role big data plays in
building AI, manipulating big data is critical to designing reliable
Al-based workflows (Mayer-Schonberger and Cukier, 2013).

Geoscientists led the development of tools bridging gaps between
geoscientific data and Al models (Fig. 1). Here, we probed the modern
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cyberinfrastructure for conducting AI research in geosciences. The
breakthroughs in both theory and infrastructure will carry geoscience
into the next phase: Earth Artificial Intelligence (Earth AI). We envision
Earth Al to be a huge combination of systems to automatically monitor
and forecast nature, help adapt human society to environmental
changes, guide humans to make planet-wise policies and decisions, and
protect us from geohazards. Earth AI will be a significant tool to confront
grand challenges such as exploding population, food security, and
climate change. This paper will overview the current status of Earth Al,
list the grand challenges, and foresee the big opportunities in Earth
sciences. Section 2 describes the popular Al techniques at present, and
their applications in geosciences will be introduced in Section 3. Section
4 summarizes the generic steps in Earth Al workflows, and section 5
talks about the useful tools and services. Section 6 discusses the primary
challenges Earth Al practitioners face and the opportunities coming
along, and it is concluded in section 7.

2. AI techniques

The term Al, a buzzword used in so many different places, can be
confusing for geoscientists. The scope of Al techniques is vastly bigger
than the popular ones like machine learning (ML) and deep learning
(DL). Generally, ML is a subset of AI, and DL is a subset of ML. Since it is
impractical to cover the entire AI universe, this section will briefly
introduce the milestone techniques that are widely used in geosciences.

2.1. Knowledge-based system

Before ML became viral, rule-based systems dominated data digest-
ing and decision support techniques, and still perform critical data
analysis today. Rule-based approaches rely on a set of rules, each
depicting some contextual knowledge (Clancey, 1983), typically
appearing as IF/THEN expressions. For example, if the river reaches an
action (flood) stage, the weather agency must take mitigation action in
preparation for possible significant hydrologic activity (NWS, 2021). As
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Fig. 1. Earth Al overview.
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the rules are common knowledge and contain less ambiguous judgment,
rule-based systems have very good stability and certainty and are
commonly seen in many industries.

2.2. Probabilistic machine learning

Probabilistic ML offers a practical method for engineering machines
that can evolve by learning realistic data (Ghahramani, 2019). Most ML
models are using probabilistic theory to tackle uncertainty challenges.
Probability theory can be utilized to express many forms of variances
and noises and prevent excessive errors in prediction (Ghahramani,
2019). In ML, a probabilistic reasoner can infer the probability function
given input data and eventually make predictions with control over
uncertainty (Pearl, 1988).

2.3. Unsupervised learning

Unsupervised learning searches for hidden patterns in a dataset with
neither annotations nor intervention (Ferran et al., 2013). Different from
supervised learning heavily subject to manual labels, unsupervised
learning probes the general probability densities simply based on the
inputs. One of the common examples is clustering analysis entrenched in
Earth scientific analysis, e.g., geochemical sample grouping (Templ
et al.,, 2008). The clusters are automatically grouped using distance
metrics like Euclidean distance in a feature space and algorithms like K
Means, Hidden Markov, etc.

2.4. Supervised learning

Most current Al applications involve supervised learning which
builds a transformer connecting outputs with inputs. It can be further
categorized into two subtypes: regression and classification. Regression
could output any continuous number in a range (such as atmospheric
pressure, surface temperature, precipitation). Classification model out-
puts are limited to a collection of pre-fixed numbers. Supervised learning
has an extensive method collection including K nearest neighbor (KNN)
(Henley and Hand, 1996), Decision Tree (DT) (Safavian and Landgrebe,
1991), Support Vector Machine (SVM), Random Forest (RF) (Breiman,
2001), Artificial Neural Network (ANN) (Gurney, 2014), etc. Meta al-
gorithms like Bagging (bootstrapping) (Breiman, 1996) or Boosting (i.e.,
AdaBoost) can be used to further advance accuracy and stability (Freund
and Schapire, 1997).

2.5. Deep learning

Deep learning (DL) refers to a powerful group of neural networks
with more hidden layers and complex architecture compared to their
ancestors (i.e. Multilayer Perceptron). DL can be used in supervised,
unsupervised, and semi-supervised fashion. Deep convolutional neural
networks (DCNN) are commonly used for feature extraction and
dimensionality reduction (Krizhevsky et al., 2012). The power of CNNs
in learning representation usually results in a better performance on
prediction. However, superior performance comes with a limitation that
DL is more data-hungry and its application is often limited to cases when
large amounts of high-quality labeled data are available (Mousavi et al.,
2019).

According to data flows, DL can be generally bifurcated into two
main branches: feedforward neural networks (FNN), and recurrent
neural networks (RNN). The former is simple with information moving
in one single forward direction. The latter has information moving in a
circle, meaning the output of the previous step shall be inputted to the
ongoing step. Each branch has numerous variants and forms a wide
variety of advanced networks such as ResNet (He et al., 2016), U-Net
(Ronneberger et al., 2015), PSP (Zhao et al., 2017), SegNet (Badrinar-
ayanan et al., 2017), VGG-16, DenseNet (landola et al., 2014), YOLO
(Redmon and Farhadi, 2018), R-CNN (Girshick, 2015), Mask RCNN (He
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et al., 2017), DeepLab (Chen et al., 2017).
2.6. Reinforcement learning

Reinforcement learning finds an optimal way to maximize a nu-
merical reward signal (Sutton and Barto, 2018). The learning module
must select actions by its own decisions to find the best path (not unique)
with the most reward. It differs from supervised and unsupervised
learning requiring neither training dataset nor finding hidden structure
in collections of unlabeled data. A key feature is that it explicitly con-
siders goal-directed problems by agents interacting with an uncertain
environment and countless potential solutions. The term “agent” is not
necessarily a real robot but could be a virtual program to explore data.
Reinforcement learning is suitable for situations where it is unrealistic to
retrieve data of desired behaviors that are both correct and holistic for
all the possibilities that the agents might act.

3. Existing Earth Al research
3.1. Geosphere

Human population growth raises daunting challenges in requiring
natural resources to sustain the population but increases vulnerability
by exposing more people to natural (e.g. tectonic earthquakes, volcanos,
landslides) and anthropogenic (e.g. induced earthquakes, dam failures)
geohazards. Sustaining infrastructure in the face of these challenges
requires a deeper understanding of these phenomena and the physical
mechanisms behind them, provided by earth scientists. Although it is far
from becoming fully realized, Al is now becoming widespread in all
areas of geology, including the search for minerals (Saliu et al., 2020)
and energy (Koroteev and Tekic, 2021).

Here is an overview of major practices in applying Al toward this
goal (Table 1).

(1) Earthquake

Despite their frequency and devastating consequences, much re-
mains unknown about earthquake generation mechanisms and effects.
Earthquake forecasting, the Grail of Seismology, has been a topic of
interest for extensive applications of Al techniques. Feedforward (Lin
and Chiou, 2019) and recurrent neural networks (Adeli and Panakkat,
2009) are among the most used ML approaches for this task. In these
approaches, neural networks predict the magnitude and location of
future earthquakes (Karasozen and Karasozen, 2020)- in a time or
spacetime window - often based on the time series of previous earth-
quake characteristics such as occurrence time, magnitude, or focus
location. Despite recent progress in developing advanced DL, there are
still challenges as to how it will be effectively applied to Al-based
earthquake predictions (Mignan and Broccardo, 2020). This is caused
by the fact that most earthquake catalogs are recorded in plain tabular
format and limited features are available for training more complex
models. However, DL methodologies have accelerated the development
of more reliable and efficient algorithms for earthquake monitoring
(Mousavi et al., 2020). Al-based earthquake monitoring methods can
result in advancing seismic hazard safety in two folds: by empowering
Earthquake Early Warning (EEW) systems (Bose et al., 2008) with faster
and more reliable estimations of earthquake parameters and by
providing more complete and precise earthquake catalogs used for
improving long-term seismic hazard assessments (Mousavi and Beroza,
2018).

(2) Volcano
In volcanology, manual analyses of gas emissions, deformation

measurement, and seismic signals have been used for decades to
monitor, mitigate, and minimize risks associated with volcanic hazards
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Table 1

Literature review summary.

Earth Spheres Al Techniques Research Topics
Atmosphere (39) SVM (10) Ozone (5)
RF (7) Hurricane (4)
BRT (1) Dust (3)
ANN (12) Wildfire (5)
DL (17) Drought (4)
Cubist (1) Air Quality and Pollutants (6)
Precipitation (11)
Dew Point (1)
Geosphere (15) ANN (6) Earthquake (7)
Hidden Markov (1) Volcano (2)
DT (1) Mineral (1)
DL (3) Landslide (4)
SVM (2) Soil Erosion (1)

Logistic Regression (2)

Hydrology (22) DL (5) Water forecasting (7)
ANN (13) Water quality (3)
SVM (5) Groundwater (7)
RF (4) Rainfall-runoff (4)
Cubist (2) River sediment (1)
River discharge (2)
Cryosphere (14) DL (5) Glacier (2)
RF (4) Sea ice (9)
SVM (3) Snow (3)
DT (2)
Oceanography (15) DL (10) Sea surface temperature (4)
ANN (5) Surface process (2)
Eddy (7)
Deep current (1)
Subsurface temperature (1)
Biosphere (16) DL (15) Animal behavior (6)
SVM (1) Microorganism (6)

Plant disease (1)
Agriculture (5)

(Tilling, 1989). A major application of AI in volcano monitoring is
discriminating between seismic volcanic tremors and similar events
including earthquakes, landslides, lava fountains, wind, and thunder.
The successfully tested ML techniques include ANN (Scarpetta et al.,
2005), SVM (Masotti et al., 2006), Hidden Markov models (Beyreuther
et al., 2008), and Fuzzy Logic (Hibert et al., 2014). Short-period fore-
casting of sudden steam-driven eruptions can also be done using AI/ML
by detecting precursors from the streaming seismic data (Dempsey et al.,
2020). The capability of Al in identifying the energy bursts happening
from a few hours to several days ahead of large eruptions is enlightening
and has proven that ML could issue life-saving short-term volcano alerts
in future.

(3) Landslides

Landslides in mountainous areas cause billions of dollars in losses
annually. AT applications in landslide studies have been mainly devoted
to risk estimation efforts (Mousavi et al., 2011). Landslide susceptibility
mapping has experimented with ML approaches like logistic regression
(Umar et al., 2014), ANN (Nefeslioglu et al., 2008), and SVM (Peng
et al., 2014). A set of control variables like land slope, vegetation cover,
precipitation, soil mass, and hydrologic setting, are measured and used
as ML inputs to calculate landslide likelihoods. Another group of Al
applications is the automation of landslide identification on remote
sensing (RS) imagery. For instance, CNN is evaluated in accomplishing
automatic landslide detection in Nepal, concluding that CNN is “still in
its infancy” for landslide detection (Ghorbanzadeh et al., 2019). Accu-
rately predicting the place and time of landslides remains a vital chal-
lenge (Korup and Stolle, 2014). Although our knowledge about the
underlying mechanism of slope failure could be weaved into physics
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models, the inadequate high-resolution observation of soil and
groundwater restricts us from effectively running the models or
enhancing the precision. Input data quality and potential overfitting
remain major issues influencing the accuracy of models in real-world
forecasting scenarios. Nevertheless, data mining and ML methods are
increasingly popular in addressing landslide forecasting.

3.2. Hydrosphere

Hydrosphere research has greatly benefitted from AI methods and
applications (Hu et al., 2018; Kratzert et al., 2018; Mo et al., 2019;
Mohajerani et al., 2019; Naganna et al., 2019; Shen, 2018). This section
will elaborate on three aspects: rainfall, surface water, and groundwater.

(1) Rainfall

Rainfall forecasting involves learning complex nonlinear patterns in
the data. Methods proposed for rainfall forecasting include using the
combinations of RNNs and SVMs (Hong, 2008; Lin et al., 2009) or Sin-
gular Spectrum Analysis (SSA) and SVMs (Sivapragasam et al., 2001).
This multi-model approach was extended to include ANN, KNN, and
radial basis SVM to forecast the daily or monthly precipitation (Sumi
et al., 2012). Other examples include the use of convolutional LSTMs
(Shi et al., 2015), RF to retrieve rainfall rates from optical satellite im-
ages (Kiihnlein et al., 2014), and the combination of ANN, SVM, and DT
for short-term rainfall prediction (Ingsrisawang et al., 2008).

(2) Surface water

Al-based methods have been frequently exercised on modeling non-
linear hydrological problems (Fathian et al., 2019; Yaseen et al., 2015).
ML-based approaches like neuron-wavelet hybrid systems show similar
performances for predicting streamflow (Anctil and Tape, 2004),
monitoring coastal water quality (Kim et al., 2014), and discovering
complex relationships between water level and discharge (Bhattacharya
and Solomatine, 2005). FNN, generalized regression NN, and Fuzzy
Logic are also helpful to populate the under-measured water-level data
(Turan and Yurdusev, 2009). River researchers use ANN, adaptive
network-based fuzzy inference system (ANFIS), and wavelet-coupled NN
for predicting sediment load (Olyaie et al., 2015) and water level (Seo
etal., 2015), and finding that ML techniques are more efficient. Coupled
approaches like the ensemble of ANN, Bayesian, and Genetic Algorithms
(GA) are tested and yield improvement (by 3-11%) (Perea et al., 2019).
RNN like LSTM was used in discovering polluting substances in water
(Wang et al., 2019b). Remote sensing data like Landsat 8 images provide
rich data sources for ML to quantify concentrations of different surface
water quality parameters (Sharaf El Din et al., 2017). Considering
water-society research, ML models have been utilized successfully in
forecasting water consumption around Indianapolis (Shah et al., 2018)
and many other scenarios.

(3) Groundwater

As groundwater is hard to measure at scale, Al-based algorithms are
useful in deriving information and making predictions crucial for
groundwater management. ML has successfully created ground water
management maps (Barzegar et al., 2018), assessing risks of nitrate
contamination (Nolan et al., 2015; Sajedi-Hosseini et al., 2018) and
predicting groundwater levels (Sahoo et al., 2017). ML models including
SVM, RF, and GA optimized random forest, can assess groundwater
potential by locations (Naghibi et al., 2017). It noticed that RF out-
performs classification and regression trees (CART) in large-scale nitrate
concentration prediction (Knoll et al., 2019). Ensembled ML models are
practical alternatives to sophisticated conventional models to perceive
the subsurface water patterns. Regarding city underground water net-
works, ML (e.g., extreme learning machine - ELM) (Sattar et al., 2019)
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can help in estimating the potential failures on individual pipes to pre-
vent future tragic events.

3.3. Atmosphere

This section highlights the progress of Al development in atmo-
spheric phenomena. In addition to addressing the specific atmospheric
geohazards below, Al is of growing importance in essentially all aspects
of meteorology, especially for improving the skill and efficiency of nu-
merical weather forecasting, and in assimilating and interpreting the
huge amounts of data contained in weather satellite observations
(Boukabara et al., 2021).

(1) Hurricane

Tropical cyclones (hurricanes, typhoons, etc.) are amongst the most
costly of all the disasters (Klotzbach et al., 2018). ML was used to predict
hurricane path and assess damage using reanalysis data (Giffard-Roisin
et al., 2018) and satellite images (Cao and Choe, 2020; Yu et al., 2019).
The damage annotation ML model achieved >97% accuracy for Hurri-
cane Harvey. Time-series forecasting models like RNN and ConvLSTM
can learn hurricane behavior and calculate trajectories (Alemany et al.,
2019; Kim et al., 2019). Extensive experiments using 20 years of climate
reanalysis data show that ConvLSTM has higher accuracy than other
approaches. Other data sources like passive microwave satellite data are
also used together with DL for monitoring tropical cyclones (Wimmers
et al., 2019). To simplify the problem by removing small-scale low--
impact events, DL has successfully detected only severe storms (Maskey
et al., 2018). From the social impact perspective, some researchers used
ML to rapidly identify hurricane-critical Tweets (Shams et al., 2019).

(2) Meteorological Drought

Drought is a complex natural hazard causing tremendous global
economic, social and environmental damages every year (Wilhite,
2016). Efforts have applied ML for drought prediction in Africa
(Belayneh et al., 2016), Australia (Deo and Sahin, 2015), the USA
(Agana and Homaifar, 2018), and China (Chen et al., 2012). Some
studies used ML to predict drought indicators (Sutanto et al., 2019), such
as SPEI and SPI (Belayneh and Adamowski, 2012; Maca and Pech, 2016)
and estimate drought severity at ungauged sites (Sadri and Burn, 2012).
ML-powered a high-resolution drought forecasting model using remote
sensing data (Rhee and Im, 2017). On product processing, different ML
methods are compared in downscaling hourly reanalysis precipitation to
monthly data, and relevance vector machines work best (Sachindra
et al., 2018).

(3) Wildfire

Wildfires are increasing in many countries, imposing adverse effects
on human health and the economy. Early fire detection and intervention
are vital for wildfire damage minimization. Various AI/ML methods
have been applied to improve fire detection and prediction (Jain et al.,
2020), classify and map wildfire severity (Brewer et al., 2005), and
automatically detect wildfires on UAVs or satellite images (Zhao et al.,
2018). High-profile studies used Al in improving smoke plume fore-
casting combining ML with satellite (e.g., CALIPSO) observations (Yao
et al., 2018) and infer ozone expansion and distribution (Watson et al.,
2019). Other applications include identifying wildfires on RS images
(Sayad et al., 2019) and assessing human health issues connected to poor
air quality (Reid et al., 2016). Meanwhile, scientists use ML to trace
human-caused wildfires and found RF is currently the most accurate
among those tested (Rodrigues and de la Riva, 2014).

(4) Dust storm
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Dust sources are associated with multiple health effects and socio-
economic impacts, including infectious diseases (Tong et al., 2017) and
highway safety (Ashley et al., 2015). ML is increasingly used to detect
dust sources, transport, and wind erosion susceptibility at various scales
(Boloorani et al., 2022; Gholami et al., 2021; Lin et al., 2020). ML was
utilized in inverse emission modeling to improve accuracy and out-
performed a traditional chemical transport model (Jin et al., 2020). A
Dust Source Susceptibility Map (DSSM) was developed using RS and ML
to show dust sources 2005-2016 in Iran (Boroughani et al., 2020).
Various ML models were benchmarked to investigate soil susceptibility
to dust, finding RF performs best (Gholami et al., 2021). On a global
scale ML is still applicable (Lee et al., 2021).

(5) Anthropogenic Air Pollutants

Air pollution is associated with over seven million premature deaths
each year (WHO, 2021). A majority of them stem from exposure to O3
(ozone) and PMy s (fine particles). However, the ever-changing dy-
namics make it extremely difficult for computer models to predict air
quality. Al has been involved to address these challenges, particularly
for predicting O3, PM, 5 and nitrogen oxides, a precursor chemical that
contributes to the formation of O3 and PMy 5 (Nowack et al., 2018; Wang
et al., 2003; Wu et al., 2017; Zhang et al., 2012). Earlier works often
utilize neural network methods to improve air quality forecasting
(Abdul-Wahab and Al-Alawi, 2002; Kolehmainen et al., 2001; Ruiz--
Suarez et al., 1995). Recently, more advanced ML algorithms are used to
enhance O3 and NO;, prediction and SVM is better than NN in predicting
daily maximum O3 concentrations (Chelani, 2010). For small-grain air
quality forecasting, DL can complete common tasks like mosaicking,
inserting missing values, or selecting features (Du et al., 2018; Fan et al.,
2017; Qi et al., 2018).

3.3.1. Biosphere

The biosphere represents the living parts of the Earth system. This
section briefly introduces the status of Al in life sciences under three
themes: plant, animal, and microorganism.

(1) Plant (Botany)

Phytogeography, the study of plant distribution, is an active area in
Earth AI research, and using RS imagery and ML, especially DL, has
become the mainstream technique due to the low cost and the high
accuracy of ML classification. Al-derived maps are proliferating in
biogeographic studies. DCNN, trained on a public dataset of leaves to
distinguish fourteen crops and twenty-six diseases, can achieve 99.35%
accuracy (Mohanty et al., 2016; Sun et al., 2019a). Agriculture has many
profound use scenarios for Al like disease detection, crop yield predic-
tion, and irrigation recommendation (Kamilaris et al., 2017). Coupled
RNN-CNN model can predict corn yield in the midwestern U.S (Sun
et al., 2019b) and can be a low-cost reliable alternative in guiding irri-
gation (Vij et al., 2020).

(2) Animal (Zoology)

Advances in sensing technologies provide big data of animals like
GPS and video surveillance. Together with data manually collected by
professionals and citizen scientists, a huge dataset exists on wild ani-
mals’ location, movements, behaviors, and well-being. Similarly, big
data is becoming a norm in animal agriculture (Neethirajan, 2020).
Based on these datasets, the application of Al in zoology focuses on
detecting, counting, and describing animals and their behavior from
images. DL has been proven efficient in recognizing wild animals on
camera-trap imagery (Chen et al., 2014), attributing wildlife behaviors
(Norouzzadeh et al., 2018), detecting ultrasonic calls of bats (Mac
Aodha et al., 2018), and projecting diving of cormorants (Browning
et al,, 2018). For urban animals, DL can analyze city audio data
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(Fairbrass et al., 2019) and animal trajectories (Maekawa et al., 2020).
However, despite progress, Al in zoology is still in an experimental phase
and hasn’t fully penetrated the zoological community.

(3) Microorganisms

Similar to zoology, Al is intensively studied in microbiology (Egli
et al., 2020). DL has identified 30 common bacterial pathogens (Ho
et al., 2019), detected pathogenic bacteria in food and water on
time-lapse holograms (Wang et al., 2020a), and achieved an overall
accuracy of 99% for 80-diatom classification (Kloster et al., 2020;
Pedraza et al., 2017). DL-driven workflow can automatically recognize
microscopic images of viruses, bacteria, fungi, and parasites (Zhang
et al., 2021). Scientists also use Al in predicting the evolution of mi-
croorganisms, estimating optimal growth temperature for bacteria,
archaea, and microbial eukaryotes, (Li et al., 2019), and predicting
sgRNA activity in Escherichia coli (Wang and Zhang, 2019). However,
since ML requires a lot of work to obtain adequate training labels,
pre-trained models can be repurposed to classify environmental micro-
organisms to lower the cost (Kosov et al., 2018).

3.3.2. Cryosphere

Polar science studies the Earth’s frozen zones, which are more highly
subject to environmental changes than the planet as a whole. Despite
years of efforts on modeling, precisely forecasting changes and conse-
quences is still an unsolved challenge for the cryosphere community.

(1) Sea Ice

AI/ML has been used to map the ice shelves in Antarctica from
Sentinel-1 (Baumhoer et al., 2019), estimate Arctic sea ice thickness
(Tiemann et al., 2018), and evaluate its melting speed on SAR images
(Lee et al., 2016; Wang et al., 2016) and distinguish water from ice
(Leigh et al., 2013). It can help identify ages/types of sea ice as radar
backscattering signals of sea ice are composed of scattering from both
the rough surface as well from underneath ice according to radar signal
penetration (Ghanbari et al., 2019; Lohse et al., 2019; Park et al., 2020).
GNSS images and ML can be harmonized for sea ice detection (Yan and
Huang, 2018). The ambiguous connections between microseisms and
sea ice activities are also suitable for AI/ML (Cannata et al., 2019).

(2) Snow

Snow research has two main indicators: snow water equivalent
(SWE) and snow depth; both can be monitored and forecasted by AI/ML
with decent reliability (Holt et al., 2015; Wang and Zhang, 2019).
SVM-derived snow depth products from microwave satellites can pass
the validation tests by stationary observation with higher precision
while effectively suppressing the saturation effects (Xiao et al., 2018).
Advanced DL methods such as deep residual networks show excellence
over RF, SVM, and NN in snow detection from satellite imagery (Xia
et al., 2019). Meantime, AI/ML is intensively experimented to differ-
entiate snow from cloud at the pixel level (Zhan et al., 2017).

3.4. Oceanography

The turbulent ocean contains small-scale eddies that imprint on
oceanographic observables like sea surface height (SSH), color, rough-
ness, and temperature (SST). Identifying these features with ML is a hot
study area. Oceanic mesoscale eddies (~300 km diameter) are usually
identified by physics-based algorithms and previous seminal work pro-
duced an eddy database (Chelton et al., 2011) as a robust benchmark for
ML. So far, CNN has been used in eddy identification with SSH (Franz
et al., 2018; Santana et al., 2020), SAR images (Du et al., 2019; Huang
et al., 2017), high-frequency radar (HFR) data (Liu et al., 2021) and SST
images (Moschos et al., 2020).
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SAR provides unprecedented detail of ocean surface roughness at
fine resolutions (~10-25 m). With higher-quality Sentinel-1 succeeding
the earlier Radarsat-1 and Envisat missions, ML efforts are increasing on
SAR ocean imagery to identify and map many surface features beyond
eddies (Wang et al., 2019a). Submesoscale eddies (on the order of 5-30
km diameter) are more fully captured on standard SAR imagery in
coastal regions under low to moderate wind speeds due to multiple dark,
curvilinear slicks within each eddy. An early application of ML in SAR
ocean detection was mapping oil spills arising out of petroleum seeps
(Garcia-Pineda et al., 2009, 2013).

Satellite ocean surface observations are intrinsically gappy due to
cloud cover or sparse ground tracks such as the conventional nadir al-
timeters and upcoming SWOT (Durand et al., 2010) altimeter mission.
AI/ML can address the gappy issue in synthetic SWOT SSH data
demonstrating the feasibility of Al-based interpolation algorithms in
filling gaps containing small-scale ocean eddies (Manucharyan et al.,
2020). One step further, the CNN-based algorithm can be applied to
reconstruct fluxes induced by those eddies (Bolton and Zanna, 2019;
George et al., 2021). These algorithms will be useful in parameterizing
eddy fluxes not resolved in coarse resolution climate models.

Since ocean circulation is three-dimensional, Al-based algorithms
can also retrieve deep-ocean information based on surface satellite fields
(Ali et al., 2007; Cheng et al., 2021; Wang et al., 2021). Other methods
include a self-organizing map (Chapman and Charantonis, 2017; Wu
et al., 2012), CCN (Han et al., 2019), neural net with fruit fly optimi-
zation algorithm (Bao et al., 2019), and RF (Su et al., 2018).

Oceanography is transiting from a state of data scarcity to a state of
extreme data abundance. How to utilize a sea of data on a scale of
petabytes and distill useful information for either new scientific dis-
coveries or applications of a direct societal impact on the “blue econ-
omy” is a new challenge for the community (Watson-Wright and
Snelgrove, 2021). Al-based algorithms will foreseeably play a compel-
ling role in the transition.

4. Workflow
4.1. Data preparation

In most supervised ML research, a training dataset includes two
components: input observations and associated labels. Inputs are fully
observed and cyclic data sources like RS images, stationary data, model
simulations, etc. Output variables are usually less-observed but critical
for understanding Earth system processes, such as emissions, land cover,
soil moisture, etc. Several problems arise in the process:

(1) Time Series

The time axis is a fundamental characteristic of Earth data for trend
analysis and forecasting. Earth observations are discrete sequences of
numbers (e.g., samples per second, minute, hour, etc) in which data gaps
and time-varying noise are common. Bandpass filtering, down sampling,
up sampling, detrending, interpolation, and smoothing are commonly
applied to preprocess time series data.

(2) Format

Almost every major data provider or professional software has an
exclusive self-defined format. For example, HDF is the official format in
NASA, NetCDF is commonly used in NOAA and climate communities,
and GeoTiff is popular for georeferenced imagery. Furthermore, each
format has various versions that might cause compatibility issues in I/O
programs. Libraries like GDAL/OGR and NCO could address these
problems. However, disparate formats still create a headache in aggre-
gating multiple source datasets, requiring extra effort.

(3) Projection & Grid
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Multisource datasets usually have various coordinate systems. NASA
products use Sinusoidal projection, netCDF uses a 4-D Grid space sys-
tem, OpenStreetMap uses EPSG:5070, and many public datasets use
WGS84 (EPSG:4326). To integrate data from different sources within the
same region/location, data needs to be re-projected or re-gridded into
the same coordinate system. Any displacement can result in erroneous
misleading conclusions. GDAL, Proj4, ESMF Regridding Toolkit, are
common tool solutions for re-projection and re-gridding.

(4) Metadata

Metadata is an important part of data acquisition and sharing. By
providing information like naming conventions, variable units, resolu-
tion, projection, observation time, contact information, and data file
versions in a comprehensive and standardized manner, can potentially
enable more efficient reuse of datasets. However, if metadata is not
standardized, the underlying datasets may be misused if users are un-
familiar with the data or don’t fully understand the provenance of the
data contained within files (e.g., that precipitation is reported in inches
or centimeters) (Mons 2020). A recent survey suggests that most re-
searchers do not use or are unfamiliar with metadata standardization
protocols for their disciplines (Tenopir et al., 2020).

4.2. Model building

Building an appropriate ML model for a specific problem in Earth
sciences is tricky, requiring much comparison and experimentation.
Specialists must gain expertise with several models and compare their
performance characteristics before choosing one best meeting their
objectives.

As an example, given a problem description, there is no generic
methodology to assess a priori about the optimal setup of neurons and
layers for an ANN model. A common approach starts with a rough guess
based on prior experience about networks employed on similar prob-
lems. This supposition could be user’s experience, or second/third-hand
experience learned from a training course, blog, or research paper. At
that point, the researcher may try some variations and carefully assess
the performance of the model before deciding on a strategy. The size and
depth of neural networks interact with other hyperparameters and
changing one variable can affect the other hyperparameters. A simple
stepwise guide is:

@ Create a network with hidden layers of similar size to the input.

@ Try varying network widths and depths.

@ Try dropping out some nodes and other solutions (e.g., dropout,
learning rate decay, regularization, optimization algorithm, loss
function, etc).

@ After a few adjustments, settle on an overall better model.

Users shouldn’t get lost in tuning ML models as there will always be
better models. Exploring the data helps form a reasonable expectation of
accuracy. Attempt simple linear approaches first to create benchmarks
to surpass. Considering a different ML algorithm may be mind-changing,
faster, and more effective than your original pick.

4.3. Training, testing & validation

Most ML models need three datasets: training, validation, and
testing. In practice, the overall dataset is first fractionated into the
learning dataset and test dataset. The learning data is further split into a
training dataset and validation dataset. Training datasets are used to fit
the model. Validation datasets provide a real-time evaluation of the
model during training. Test datasets provide an out-of-box evaluation of
the final model. There is no fixed optimal ratio to allocate the three
datasets. To ensure the model is unbiased, the splitting is repeated N
times, and the accuracy is averaged, which is called N-fold cross-
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validation.
4.4. Sensitivity analysis

Sensitivity analysis is a series of methods used to quantify ML un-
certainty. It studies the feature importance of each input variable for the
outputs. To measure the influence of each input variable, a comparison
is made on model outputs with all variables in place and the model with
one variable excluded or fixing the values of all other variables, only
tuning the weight of one input factor to discover how the model output
changes. Sensitivity analysis is mandated for practical use of ML in the
real world; it explicitly reveals the level of dependence of model output
on each variable, and hands more control to practitioners, especially
when the new observations are extreme events and could be extra out-
liers exceeding the prediction capacity of models.

5. Tooling and services

The big data nature of Earth science and the high complexity of Al
algorithms demand powerful computing. This section overviews popu-
lar hardware and software for Earth Al

5.1. Computing device

Commonly used ML devices are Central Processing Unit (CPU),
Graphics Processing Unit (GPU), Field-Programmable Gate Array
(FPGA), and specialized accelerators (e.g., TPU - Tensor Processing
Unit). GPUs are dominant due to their performance in speeding up the
calculation of convolution and matrix operation. In DL the weights are
updated in every cycle and are stored in a memory or local cache to be
carried over from iteration to iteration. GPUs have higher memory
bandwidths than CPUs and are optimized for more intensive workloads
and streaming memory models.

In addition, scientists actively explore the next revolution in Al
computing. After R. Feynman proposed the idea of a quantum computer,
quantum computing is believed to be the next potential big break-
through by producing the statistical patterns that are computationally
difficult for a classical computer to produce (Biamonte et al., 2017;
Deutsch, 1985; Feynman, 2018). Edge computing is another way around
by leveraging the Internet of Things (e.g., endpoints, gateways, smart
watches, smartphones, sensors, etc) with embedded Al techniques to
process data locally without transmitting much data, which can reduce
reliance on networks and increase the AI’s resilience and practicality (Li
et al., 2018).

Individual researchers can set up their workstations by assembling
GPUs into a computer. Research groups and institutes can purchase
more powerful pre-built servers configured by professionals. Self-
maintaining workstations cost less if the experiments will last long.
However, maintainers are required to build and sustain the rig. They
need to find appropriate GPUs, compatible motherboard, CPU, and
memory and fix any problems observed like GPU collapse, memory leak,
disk failures, etc. This solution is suggested for people with experiences
on servers.

5.2. Cyberinfrastructure

Manipulating large-scale high-resolution Earth datasets requires
massive computational power beyond the capacity of personal com-
puters or even self-built DL workstations. Private companies with large
computing power have developed some public cyberinfrastructure as
the ultimate solutions. One typical example is Google Earth Engine
(GEE) (Gorelick et al., 2017), which has digested petabyte-scale archives
of publicly available RS imagery and model-simulated data. It optimizes
Google’s computational infrastructure for the parallel processing of
geospatial data. Utilizing provided APIs with basic ML algorithms in
Javascript and Python, GEE has powered many breakthroughs in
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RS-based Earth scientific researches like natural resource management,
climate change monitoring, and disaster prediction and evaluation
(Amani et al., 2020; Campos-Taberner et al., 2018; Tamiminia et al.,
2020).

To exercise Al techniques on GEE, Colab (Bisong, 2019), a
Jupyter-notebook-like interactive coding environment, can be used to
program deep neural networks or other complicated ML models. Colab
allows people to write and execute Python in web browsers with zero
configuration required and easy sharing. With Colab, Earth scientists
now can work with large datasets, build complex Al models, train them
at lower cost and share the results seamlessly with others.

As a major competitor to the GEE ecosystem, Amazon is developing
Al capability rooted in its AWS (Amazon Web Service) ecosystem.
SageMaker (Januschowski et al., 2018) is their recent product and
advertised as a managed web service to create and deploy ML models
faster. SageMaker could be considered as an AutoML solution for sci-
entists who are less technical and want less coding.

5.3. Software

The recommended operating system is Linux-derived systems with
active long-term technical support. At present Ubuntu is the bellwether
with many built-in dependencies for Al It is easy for users to install GPU
drivers, like CUDA (a software allowing coding for NVIDIA GPUs), and
Python package manager (i.e., Conda, Pip) can facilitate the package
installation. To interact with the machines remotely, Jupyter server
(Kluyver et al., 2016) (either of notebook, Lab, or Hub) is highly rec-
ommended. It allows Earth scientists to create and share their experi-
ments, from codes to full result reports in one single document to
streamline their work and enable more productivity and easy
collaboration.

The dominance of Python in the AI world is largely credited to its
thriving, openly accessible, and pro-collaborative library ecosystem.
Table 2 lists some widely used open-source libraries. Generally, those
tools can be categorized into six types: DL, non-DL ML, non-ML AI, data
manipulation, parallel computing, and visualization. These tools play a
significant role in recent scientific breakthroughs, i.e., plotting the first
blackhole photo (Numpy, 2020), confirming the existence of the gravi-
tational waves (Biwer et al., 2019), the mission to fly a helicopter on
Mars (Vaughan-Nichols, 2021), etc. Many tools are for processing Earth
scientific datasets, such as Rasterio, Shapely, Geopandas, ESMPy, which

Table 2
Python ecosystem for earth AL

Computers and Geosciences 159 (2022) 105034

make the infusion between Earth science and Al techniques possible.
6. Challenges and opportunities

This section highlights some major challenges and potential oppor-
tunities (shown in Fig. 2).

6.1. Model development

Model development is the process of choosing one suitable model or
customizing a coupled model for one or multiple training datasets.
Candidate off-the-shelf models include single models such as Neural
Network, SVM, and Decision Tree, as well as ensemble models like RF,
XGBoost, and most DL models. Finding optimal models or coupling new
models is time-consuming and might never be satisfactory, which
created a strong demand for AutoML that does not require expert
knowledge or manual tuning. For example, OptiML, AutoScikit-learn,
and AutoWeka use Bayesian parameter optimization for predicting the
model’s performance on a given dataset, assuming the performance of
an ML algorithm is data-dependent. For instance, OptiML, after auto-
matically trying a few models, can learn a regression model to predict
the performance of other not yet tested models to save time. Auto-
sklearn’s hyperparameter tuning also uses Bayesian optimization, meta-
learning, and ensemble construction. However, unsolved serious issues
remain. First, the best metrics used for selecting models should be
different according to various use cases. Second, the cross-validation
technique performs poorly on big data training. Third, performance on
accuracy should not be the only factor: stability, reliability, computa-
tional cost, and generalizability are all very important and often over-
looked in seeking solutions.

A good AutoML solution should automatically produce a model
addressing all the concerns on scenario adaption, big data, and
comprehensive metrics besides accuracy performance. The shortage of
ML experts in industry and academia has been widely acknowledged, yet
highly skillful ML experts are rare to find and hard to train. AutoML can
bridge that gap and could derive many new opportunities in the Al job
market, including Earth science. With AutoML, model selection would
be easy and quick, and the barrier of shopping around ML models will be
greatly reduced. Al-powered value-added services would no longer be
the privilege of tech giants. Small groups will also be able to quickly put
solid models together to simulate the real world, extract actionable

Category Name Description License Github Repo
DL Keras A friendly API running on top of Tensorflow MIT keras-team/keras
PyTorch Multidimensional array (tensor) computation with strong GPU acceleration, BSD pytorch/pytorch
for deep neural networks
Tensorflow A powerful open-source platform for ML Apache-2.0 tensorflow
Chainer DL framework aiming at flexibility MIT chainer/chainer
Caffe Fast DL BSD BVLC/caffe
Mxnet Efficient and flexible DL Apache 2.0 apache/incubator-mxnet
ML Scikit-learn ML built on SciPy BSD scikit-learn/scikit-learn
OpenCV Computer vision and ML BSD opencv/opencv
Non-ML Al PyKe Knowledge-based inference engine MIT e-loue/pyke
Data I/0 Numpy A basic package to provide N-d arrays, and linear algebra methods, and BSD numpy/numpy
mathematical transforms for conveniently manipulating N-d arrays.
Pandas Support various data operations like reshape, merge, slice, extract, clean, etc. BSD pandas-dev/pandas
Xarray Simple labeled multi-dimensional arrays Apache pydata/xarray
Zarr Chunked, compressed, N-dimensional arrays MIT zarr-developers/zarr-python
Shapely Manipulation and analysis of planar geometric objects BSD Toblerity/Shapely
Geopandas Support for geographic data in pandas BSD geopandas/geopandas
Rasterio Read and write gridded or raster datasets, with API based on N-D arrays BSD mapbox/rasterio
Parallel Computing Dask Parallel computing with task scheduling BSD dask/dask
Ray Building and running fast distributed applications Apache-2.0 ray-project/ray
Visualization Matplotlib Static, animated, and interactive visualizations PSF matplotlib/matplotlib
Plotly.py Interactive, open-source, and browser-based graphing and apps MIT plotly/plotly.py
hvPlot Interactive plotting and apps directly from your xarray, pandas, dask, or geopandas data BSD holoviz/hvplot
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Challenges and Opportunities in Earth Al
The complexity of Earth system makes it challenging to realize fully operational Al systems.
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Fig. 2. Challenges and opportunities.

information, and guide climate and environmental policy making. New
doors will be opened for the next generation of Earth Al

6.2. Data preparation

The majority of an Earth Al project is typically spent on data prep-
aration. Acquiring a large-scale labeled dataset in Earth science is very
costly as labeling is usually manually done by in-house labor. A popular
tactic is to crowdsource hand labeling tasks using services like Amazon
Mechanical Turk. Despite unprecedented amounts of data to analyze, a
lack of openly available curated and labeled training data is an obstacle
to realizing efficient Al in the earth sciences (Maskey et al., 2018;
Reichstein et al., 2019). Standardized training and testing datasets
launched the Al revolution in other disciplines (e.g., imagnet, MNIST),
yet training datasets capturing the diversity of geoscience data are being
developed, and where they exist are heavily used. For example, Space-
net, an online hub for satellite imagery, algorithms, and tools, provides
RS data with labeled information for ML. This leaves inexperienced
modelers with the time-consuming and difficult task of locating, inte-
grating, and labeling disparate datasets. Other times earth scientists
must go outside of their domains to train their models. Right now, the
incentive structure has scientists focused on ‘building a better algorithm’
rather than curating datasets (Hutchinson et al., 2021).

With more data producers, repositories, and publishers embracing
calls for FAIR data, community-developed data standards (Sansone
etal., 2019) are being developed where no international standards exist.
OGC standards have been developed by international members to make
geospatial information and services FAIR. There is a movement in the
Earth and Environmental Sciences to create libraries of standardized and
benchmark datasets (ESIP, 2021). These benchmark datasets can be
used to efficiently evaluate how newly developed algorithms perform
compared to already existing models on a common, standardized data-
set. Standardization of benchmark datasets can lift data curation bur-
dens by offering ready-to-use data for modelers (Reichstein et al., 2019).

6.3. Training optimization

Tuning Al models is an essential but painful experience step for many

beginners. It is a process of adjusting hyperparameters to minimize the
cost function. Optimizers are algorithms for changing the attributes like
weights and learning rates to lower the losses. Commonly used opti-
mizers include Gradient Descent, Nesterov’s Accelerated Gradient,
Adaptive Moment Estimation, AdaDelta, etc. One common challenge of
gradient-based optimizers is that most found minimum points are local
minima. The global minima are hard to locate as the gradient becomes
smaller when the training goes further and the learning rate is too large
to get closer to the right answer. Another way is the genetic algorithm
that applies the theory of evolution to ML. The process is repeated many
times and only the best models survive at the end of the process. All the
optimization methods have flaws. No one-size-for-all method can adapt
to any dataset and speed up the learning to reach minima faster. An ideal
ultimate solution should make the training quickly converge to the point
with minimum loss within fewer iterations/epochs. The gradient van-
ishing problem (the gradient is too small to update the weight in the next
loop) should be well addressed.

6.4. Parallel computing

Parallel computing, which improves the efficiency of Al training and
running, is a valuable tool in Earth AL The first reason is the ever-
increasing size of available Earth data due to advances in both RS
techniques and numerical Earth simulation. For example, total available
climate data may increase exponentially from 100 PB in 2020 to about
350 PB in 2030 (Overpeck et al., 2011). The second reason is the
increasing complexity of Al models. Advances in ML models, especially
DL models, are more and more complex to achieve prediction accuracy.
For instance, the Turing natural language generation model from
Microsoft has 17 billion parameters. Because of the two reasons, it could
take weeks or even months for a complex Al model to train without
parallelization (Johnsirani Venkatesan et al., 2019).

There have been many efforts on studying how to support parallel
ML from different perspectives. (Verbraeken et al., 2020; Wang et al.,
2020b). We summarize three opportunities for parallel ML below, the
first general to all ML tasks, the second and third unique to Earth Al The
first opportunity is the requirement of developing a unified system
combining parallel hyperparameter tuning and parallel deep model
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training. Currently, these two tasks are often done via different systems,
for example, Spark for parallel hyperparameter tuning and Tensorflow
supporting parallel DL. A more integrative way/platform supporting
both efficiently is still needed. The second opportunity is the support for
parallel learning on top of array-based Earth system datasets including
HDF and NetCDF. Xarray and Dask are recent community efforts on
accessing/processing HDF and NetCDF datasets efficiently. But it is still
not clear how to integrate these techniques with machine/DL. The last
opportunity is parallel ML support for spatiotemporal data, typifying
Earth system datasets. Unlike traditional independent and identically
distributed (IID) datasets, partitioning spatiotemporal data would break
their spatial/temporal correlation and dependence. Therefore, special
attention should be considered for parallel ML with spatiotemporal
Earth data.

6.5. Explainable AI

Compared to basic or tree-structured ML models (e.g. linear regres-
sion, DT, Bayesian, RF), complex ML models (e.g., DNN, SVM) cannot
provide a self-explainable theory for their results. Many Earth scientists
called for adding explanation into ML models to facilitate understanding
of the ML models and build user trust. Explainable AI (XAI) tools provide
a way to look into the original “black-box” model with “explanations”
providing a qualitative understanding of relationships between model
features and predictions. This process answers questions about the
model, such as what features are the most important and why some
features are more responsible for driving decisions than others. It also
provides insights allowing for meaningful changes to the models. An
overview of common explainable methods can be found in Molnar et al.
(2020). Decisive factors in selecting XAI methods may include the need
for model-agnostic or model-specific methods, the extent of the expla-
nation required, and spatiotemporal or computational constraints.

Limitations of current XAI methods include that they cannot tell the
problems in the training dataset, and they focus on RGB images and are
user-friendly for high dimensional images (Krishnan, 2019). Despite the
problems, opportunities exist with XAI for improving geoscientific
models. Artifacts that create errors in numeric models could be revealed
by XAL

6.6. Generalization

The conventional goal of generalization is to make trained Al models
perform better on the test data. However, it becomes complicated as the
Earth dataset is tremendous and the training dataset is only a tiny
portion. In Earth Al it is no longer simply finding a balancing point
between overfitting and underfitting: models trained in one place at one
time may not apply in another place at another time. However, a root
cause of common Al failures is that current empirically trained models
do not generalize well on new samples with different distributions.
Finding a good generalization strategy to make models fit beyond the
training dataset is a major bottleneck for applying Al in Earth science.
The developing field of generalization theory may hold promise in
solving these problems.

Al generalization has been studied for decades. Ockham’s Razor
principle (Ariew, 1976) proves the less complex a model is, the more
likely a good empirical result is not just due to the peculiarities of the
chosen samples. The edges between under-learning and over-learning
the training samples are obscure. One of the classic methods to detect
underfitting or overfitting is to separate samples into two parts: training
subset and testing subset. During each iteration in the training, the
program will run the trained model on the testing subset to calculate the
prediction accuracy on samples that are outside the original training
pool. If the accuracy of testing data starts to gradually decrease, it means
the model is overfitting. On the contrary, if the testing accuracy hasn’t
reached the peak, it means the model is still underfitting. A method is
needed to find a balance between bias (underfitting) and variance
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(overfitting). One common solution is cross-validation to ensure no
coincidental training bias is in place. Regularization is another tech-
nique used to make the learning algorithm generalizes better. It focuses
on reducing the impacts of noise samples that don’t reflect the real
characteristics of the dataset, but random errors and coincidences. It
discourages training a more sophisticated model to reduce the risk of
poor generalization. Dropout is a recently proposed approach dedicated
for neural networks to randomly drop units to force the subsequent
layers to rely on all their connections to previous layers. However, no
method can avoid intensive endless tuning to optimize the model with
better generalization.

An attractive feature of Artificial Intelligence is that model perfor-
mance will improve when a model is fed with larger datasets. However,
it will eventually reach some limits posed by the model capacity that is
capable of learning. Many DL models are over-parameterized and likely
to become biased after learning more noise samples. Addressing the
generalization problem will make AI models of the Earth system much
more stable and noise-proof in a long-time operational run. A future
solution would be to run an automatic algorithm to self-adjust in
adopting samples by judging their quality. Those samples which might
destabilize the model should be automatically given less consideration
in the propagation and their impacts on the future updating should be
reduced.

6.7. Uncertainties

ML models are fundamentally algorithms composed of a set of rules,
which involve random number generation and optimization to deter-
mine model parameters. Therefore, ML models developed on the same
dataset are almost always different. The uncertainty of ML applications
is a combination of uncertainties from two sources: data and knowledge.
The uncertainty associated with the inherent noise of the real data is also
known as aleatory uncertainty, which is not caused by the model but
irreducible (Hiillermeier and Waegeman, 2021). The uncertainty caused
by inadequate knowledge and data is also called epistemic uncertainty,
which is often a result of the mismatch between the data in model
training and prediction.

To quantify the aleatory uncertainty, we need to estimate the un-
certainty of all the inputted data of ML models and understand how
uncertainty propagates through the model. This can be challenging for
DL models because of the high model complexity. A small permutation
in input data for a DL model can lead to notable changes in final model
outputs. The epistemic uncertainty is related to the issue of generaliza-
tion. Most ML applications are developed based on a specific set of data,
thus the model may not be easily generalized to other conditions that are
not covered in the original dataset. Because of the lack of representation
in the original data set, it can be very challenging to accurately quantify
the uncertainty related to generalization.

Accurate uncertainty quantification is essential to enhance users’
trust and increase the usability of ML applications. To address uncer-
tainty quantification (UQ), many statistical and computational methods
have been proposed. The most commonly used methods can be grouped
into two categories — Bayesian UQ and ensemble UQ. Bayesian UQ ap-
proaches focus on approximating the posterior probability distribution
given the training dataset (Abdar et al., 2021). Ensemble UQ means
training multiple models, calculating their synthesized prediction (e.g.,
mean), and measuring uncertainty using deviation. Recently, there have
been different variations of Monte Carlo (MC) simulation (Ferrenberg
and Swendsen, 1989) for UQ, such as MC Dropout (Gal, 2016), to
characterize prediction uncertainty more efficiently.

6.8. Integration with physics-based models
Model-driven solutions based on known physical laws have long

been the main trend in applied sciences. Numerical modeling plays a
dominant role in Earth system science on scales ranging from
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performing density functional theory (DFT) calculations to predict
properties of molecules, to studying the climate using general circula-
tion models (Han and Zhang, 2020). However, difficulties remain within
developing efficient and accurate models. Unlike traditional
physics-based Earth science models requiring high flops and massive
CPU cores, ML, especially DL, can parallelize its processing by simply
using GPU, or custom processing units like TPU to achieve the same
effects as a stack of massive CPUs. Currently, there are two main trends
in approaching this problem: 1) partial use of Al or Al-platforms (like
Tensorflow and PyTorch) within traditional modeling frameworks to
improve computational efficiency and performance accuracy (Xu et al.,
2020); 2) incorporating physics laws into ML-based approaches to
improve the interpretability of data-driven models (Raissi et al., 2020).
In both cases, ML offers unprecedented opportunities for empowering
modeling capability in approximating complex functions. The emer-
gence of the physics-informed ML model (Kashinath et al., 2021) un-
derscores the importance of advancing cutting-edge algorithms.

6.9. Provenance, reproducibility, replicability, & reusability

Four broad and interrelated concerns for Earth Al research include:

@ Provenance: Where did the training data, AI model, software, and
hardware originate, and what transformations have the data un-
dergone before the findings were reported?

@ Reproducibility: Can an independent party replicate the precise Al
workflow and reported results, using the same data and algorithms?

@ Replicability: Can an independent party run similar (but not identical)
ML analyses on similar (but not necessarily the same) data and come
to the same conclusions?

@ Reusability: How easily can the trained AI models be applied to new
data or other new situations?

Earth scientists have proposed standards to document the prove-
nance of both data and scientific workflows (Sun et al., 2020a) including
ISO 19115:2003 and ISO 19115-2:2009, the Open Provenance Model
(Moreau et al., 2008), the data service standards of the Open Geospatial
Consortium, and the Provenance Ontology of W3C (Hills et al., 2015;
Lebo et al., 2013; Sun et al., 2013; Tilmes et al., 2013; Zhang et al.,
2020).

Software like Docker, Helm, Conda/Anaconda-project, Prov, Meta-
Clip, and Geoweaver can be used to record the Al workflow being used
so that it can be made available for later retrieval to understand, repli-
cate, reproduce, and reuse the trained Al models. As Earth scientists
increasingly embrace open data and managed workflow platforms, the
topics of provenance, reusability, replicability, and reproducibility have
received increased attention (Gil et al., 2019; Kedron et al., 2021).
Provenance is critical for Earth Al models to be understood and trusted
by the public, and a standardized provenance framework for AI would
be an ideal solution to address these concerns. Another challenge for
reusability is ensuring that data used for training and evaluating algo-
rithms are openly accessible (Neylon, 2012; Tenopir et al., 2020). As a
step toward more open data, researchers should archive their data in a
long-term repository (Duerr et al., 2018). Many of these repositories
provide templates and tools to enable the submission of metadata that
describes the data being archived and Al practitioners may benefit from
guidelines that suggest which files are most important to submit to
long-term repositories.

6.10. Full-stack workflow automation

Al engineering is an inclusive discipline involving many technolo-
gies, algorithms, tools, libraries, and its product pipelines are composed
of a series of links ranging from hardware to software, from a raw data
repository to actionable information dissemination, from web services
to endpoint software. Manually managing all the portions is unrealistic.
Automating all the processing steps are required to make Earth Al
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practical in real-world scenarios. However, full-stack automation of
Earth AI workflows is still under development. To maintain Al adoption
and scale, the Earth science community needs a better way to holistically
deploy and manage the lifecycle of deployed ML models.

MLOps (ML DevOps) is the process of deploying an experimental ML
model into a production web system. It manages the deployment,
monitoring, managing, and governing of production-level ML models.
There are many opportunities ahead for open source software de-
velopers to take on this task. Ongoing projects within the NASA Earth
community like Geoweaver (Sun et al., 2020b) already realized this
challenge and are working to deliver practically stable software as a
solution.

Running efficient and productive Earth AI models requires the
collaboration of various entities and resources, and involves various
programs, scripts, libraries, software, and platforms from automation of
data preparation, indigestion, training, validation, testing, deployment,
and production. It requires building a workflow, meaning a logically
chained flow of multiple processes to complete a big mission. Workflow
orchestration could be conducted in many ways, e.g., writing a Python
notebook, a Shell script, or using workflow management software like
Cylc. The basic components of workflows are similar. All the workflows
have atomic processes and connections among them. Once the workflow
is started, all the atomic processes will be executed automatically
without asking, which is called workflow automation. There are many
workflow management software (WfMS) developing to enable automa-
tion, i.e., Apache Airflow, Cylc, Galaxy, Pegasus-WMS, Geoweaver (Sun
et al., 2020b), and so forth. These WfMS can not only automate the
process but also record the provenance to improve the replicability and
reproducibility of Earth AI discovery.

6.11. Al ethics

Earth Al is designed to protect us with an unseen powerful capability
of forecasting the Earth’s future and navigating natural hazards and
resources in advance to save people and conserve the environment.
However, the power has a limit and it cannot save everyone equally, for
instance, in a geohazard or disruptive event. What if Earth AI mis-
calculates the situation, misses a region/group, underestimates the
harm, and results in more fatalities or greater damage? Earth Al is
intelligent but still a lifeless system, which is not a legal entity. Yet its
decisions impact society, and it behaves on a certain level of self-will.

There is a wealth of research focused on the ethical problems caused
by AI when it is in operation (Jobin et al., 2019). Critics have examined
the relationship between the role cultural bias plays in algorithmic
inequality (Eubanks, 2018) and how AI systems oppress racial minor-
ities and reinforce existing discrimination (Buolamwini and Gebru,
2018). We can foresee many regulations and laws regarding Earth Al
ethics soon. Here, we outline several of the many paths toward more
ethical Al in the earth and environmental sciences that include more
open datasets and unbiased algorithms. Engineers should develop Earth
Al ethics-related logic by partnering with social scientists, ethicists, and
philosophers who have been studying the social implications of Al in the
domain of policing, law, finance. This includes developing a guideline
for ML researchers to engage with ethics as not only a philosophical
project but also a pragmatic one where the collection of data and the use
of particular models over others have direct impacts on ecosystems and
humans. Last but not least, we believe that communicating one’s
application of any ML or Al application to the broader community it
impacts (for example, if an automated method for developing land cover
maps will directly impact on representations of Indigenous land) will be
necessary for achieving a fair and ethical movement in Al in geosciences.

6.12. Operation management

Operationalizing Al service cannot be simply fulfilled by one scien-
tist or one small Earth research group. Al products need maintainers and
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customer service after being deployed. A large corporation could pro-
duce gigantic volumes of business and log data. Transition to and sus-
tainment of AI operations is complicated by the rapid pace of
technological evolution. However, DevOps practices, which emphasize
close coordination between developers and operations, can mitigate
these difficulties, and even provide useful Al feedback from operations
into model evolution in some cases. Another potentially effective tech-
nique is internal capacity building, such as training the operations staff
in the basics of the Al technology in use, so that they can better recognize
issues and provide support to customers.

7. Summary

Focusing on applications to geosciences, this paper overviews the
cutting-edge technology and progress of Al research. Breakthroughs in
Earth AI theory and infrastructure will carry geoscience into the next
phase: Earth AL The geoscience community must catch up with the pace
of exploding observational datasets and quickly build useable Al models
at an affordable cost promptly with adequate accuracy. The research and
development of Earth Al are still at the infancy stage, and all the grand
challenges ranging from data to model to operation can derive numerous
opportunities in all sectors from academia to government and industry.
The future of Earth Al is bright and dramatically beneficial to the entire
human society and Earth system and should advance our civilization
into its next epic phase and transform the Earth into a more sustainable,
healthy planet.
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