
Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization

Bingqing Chen
∗

Carnegie Mellon University

Pittsburgh, PA, USA

bingqinc@andrew.cmu.edu

Priya L. Donti
∗

Carnegie Mellon University

Pittsburgh, PA, USA

pdonti@cs.cmu.edu

Kyri Baker

University of Colorado, Boulder

Boulder, CO, USA

kyri.baker@colorado.edu

J. Zico Kolter

Carnegie Mellon University

Pittsburgh, PA, USA

zkolter@cs.cmu.edu

Mario Bergés

Carnegie Mellon University

Pittsburgh, PA, USA

marioberges@cmu.edu

ABSTRACT
While reinforcement learning (RL) is gaining popularity in energy

systems control, its real-world applications are limited due to the

fact that the actions from learned policies may not satisfy functional

requirements or be feasible for the underlying physical system. In

this work, we propose PROjected Feasibility (PROF), a method

to enforce convex operational constraints within neural policies.

Specifically, we incorporate a differentiable projection layer within

a neural network-based policy to enforce that all learned actions

are feasible. We then update the policy end-to-end by propagating

gradients through this differentiable projection layer, making the

policy cognizant of the operational constraints. We demonstrate

our method on two applications: energy-efficient building oper-

ation and inverter control. In the building operation setting, we

show that PROF maintains thermal comfort requirements while

improving energy efficiency by 4% over state-of-the-art methods.

In the inverter control setting, PROF perfectly satisfies voltage con-

straints on the IEEE 37-bus feeder system, as it learns to curtail as

little renewable energy as possible within its safety set.

CCS CONCEPTS
•Hardware→ Smart grid; Energy generation and storage; • Com-
puting methodologies→ Reinforcement learning.

KEYWORDS
safe reinforcement learning, implicit layers, differentiable optimiza-

tion, inverter control, smart building

ACM Reference Format:
Bingqing Chen, Priya L. Donti, Kyri Baker, J. Zico Kolter, and Mario Bergés.

2021. Enforcing Policy Feasibility Constraints through Differentiable Projec-

tion for Energy Optimization. In The Twelfth ACM International Conference
on Future Energy Systems (e-Energy ’21), June 28-July 2, 2021, Virtual Event,

∗
These authors contributed equally.

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8333-2/21/06.
https://doi.org/10.1145/3447555.3464874

Italy. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3447555.

3464874

1 INTRODUCTION
There has been increasing interest in using learning-based methods

such as reinforcement learning (RL) for applications in energy

systems control. However, a fundamental challenge with many of

these methods is that they do not respect the physical constraints

or functional requirements associated with the systems in which

they operate. Therefore, there have been many calls for embedding

safety guarantees into learning-based methods in the context of

energy systems applications [20, 29, 65].

One common proposal to address this challenge is to provide

machine learning methods with “soft penalties” to encourage them

to learn feasible solutions. For instance, the authors of [14, 64]

incentivize their RL-based building HVAC controller to satisfy ther-

mal comfort constraints by adding a constraint violation penalty to

the reward function. While such approaches often involve tuning

some weight on the penalty term, recent work has proposed more

theoretically-grounded approaches to choosing these weights; for

instance, in the setting of approximating AC optimal power flow,

the authors of [13, 25] interpret the weight on their constraint

violation penalty as a dual variable, and learn it via primal-dual

updates. Gupta et al. [32] adopt a similar approach in an inverter

control problem. However, a challenge with these types of “soft

penalty” methods in general is that while they incentivize feasibil-
ity, they do not strictly enforce it, which is potentially untenable in

safety-critical applications.

Given this limitation, a second class of approaches has aimed

to strictly enforce operational constraints. For instance, in some

cases, the outputs of a machine learning algorithm can be clipped

post-hoc in order to make them feasible. However, a challenge is

that such post-hoc corrections are not taken into account during

the learning process, potentially negatively impacting overall per-

formance. More recent approaches based in deep learning have

therefore aimed to enforce simple classes of constraints in a way

that can be taken into account during learning; for instance, Za-

mzam and Baker [62] train a neural network to approximate AC

optimal power flow (OPF), and enforce box constraints on certain

variables via sigmoid activations in the last layer of the neural net-

work. In general, however, existing approaches have only been able

199

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3447555.3464874
https://doi.org/10.1145/3447555.3464874
https://doi.org/10.1145/3447555.3464874
https://creativecommons.org/licenses/by/4.0/

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Bingqing Chen, Priya L. Donti, Kyri Baker, J. Zico Kolter, and Mario Bergés

1

Differentiable Projection,
𝝅𝜽 = 𝓟"𝓒𝒌 ∘ %𝝅𝜽

Neural Network, %𝝅𝜽

Policy, 𝝅𝜽 Environment

𝐮 ∼ 𝝅𝜽

Policy Gradient,
−𝛁𝜽𝑱(𝜽)

Forward Pass Backpropagation

Forward Pass

.𝓒𝒌

* !𝝅𝜽 * 𝝅𝜽 ★ 𝒖⋆

Backpropagation

*
*
*

.𝓒𝒌 ★

"𝒇𝒌(𝒙𝒌, 𝒖𝒌, 𝒘𝒌)

𝒇(𝒙𝒌, 𝒖𝒌,𝒘𝒌)

Figure 1: The PROF framework. Our policy consists of a neural network followed by a differentiable projection onto a con-
vexified set of operational constraints, ˆC𝑘 (which is constructed via an approximate model, ˆ𝑓𝑘 , of the environment). The dif-
ferentiable projection layer enforces the constraints in the forward pass, and induces policy gradients that make the neural
network cognizant of the constraints in its learning.

to accommodate simple sets of constraints, prompting a need for

methods that can incorporate broader classes of constraints.

In this work, we propose a method to enforce general convex

constraints into RL-based controllers in a way that can be taken

into account during the learning process. In particular, we construct

a neural network-based policy that culminates in a projection onto

a set of constraints characterized by the underlying system. While

the “true” constraints associated with the system may be somewhat

complex, we observe that simple, approximate physical models

are often available for many systems of interest, allowing us to

specify convex approximations to the relevant constraints. The

projections onto these (approximate) sets can thus be characterized

as convex optimization problems, allowing us to leverage recent

developments in differentiable convex optimization [2, 5] to train

our neural network and projection end-to-end using standard RL

methods. The result is a powerful neural policy that can flexibly

optimize performance on the true underlying dynamics, while still

satisfying the specified constraints.

We demonstrate our PROjected Feasibility approach, PROF, on

two settings of interest. Specifically, we explore a building operation

setting in which the goal is to reduce energy consumption during

the heating season, while ensuring the satisfaction of thermal com-

fort constraints. We additionally explore an inverter control setting

where the goal is to mitigate curtailment, while satisfying inverter

operational constraints and nodal voltage bounds. In both settings,

we find that our controller achieves good performance with respect

to the control objective, while ensuring that relevant operational

constraints are satisfied.

To summarize, our key contributions are as follows:

• Aframework for incorporating convex constraints.We

propose a projection-based method to flexibly enforce con-

vex constraints within neural policies (as summarized in

Figure 1). By examining the gradient fields of the differen-

tiable projection layer, we recommend the incorporation

of an auxiliary loss for more robust results. We also show

in an ablation study (Section 5.3) that propagating gradi-

ents through the differentiable projection layer is indeed

conducive to policy learning.

• Demonstration on building control. In the building con-

trol setting, we show that PROF further improves energy

efficiency by 10% and 4%, respectively, compared to the best-

performing RL agents in [64] and [14]. By using a locally-

linear assumption to approximate the building thermody-

namics and thereby formulating the constraints as a poly-

tope [15, 66], we largely maintain the temperature within

the deadband, except when the control is saturated.

• Demonstration on inverter control. In the inverter con-

trol setting, PROF satisfies the voltage constraints 100% of

the time over more than half a million time steps (1 week

at one second per time step), with a randomly initialized

neural network, compared to 22% over-voltage violations

incurred by a Volt/Var control strategy. With respect to the

objective of minimizing renewable generation curtailment,

PROF performs as well as possible within its conservative

safety set after learning safely for a day.

2 RELATEDWORK
Our approach relies on recent developments in implicit neural

network layers, and is thematically similar to several recent works

in safe RL. We briefly discuss these topics, and refer interested

readers to [20, 22, 29, 49, 65] for comprehensive reviews of relevant

work in power and energy systems application domains.

Implicit layers. A neural network can be viewed as a composi-

tion of functions, or layers, with parameters that can be adjusted to

improve performance on some task. While many of the layers com-

monly used within neural networks (e.g., convolutions or sigmoid

functions) represent explicit functions that provide a direct mapping

between inputs and outputs, there has recently been a great deal of

interest in expanding the set of commonly-used layers to include

those representing implicit functions [39]. This has included the cre-
ation of layers capturing optimization problems [2, 5, 19, 30, 56, 59],

200

Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

physical equations [17, 18, 31], sequence modeling processes [6],

and games [41]. In this work, we leverage advances in differentiable

optimization in particular, namely by incorporating a differentiable

convex optimization layer into our neural policy in order to project

proposed control actions onto the feasible set of constraints.

Safe reinforcement learning. While (deep) RL methods in general

lack safety or stability guarantees, there has been recent interest in

learning RL-based controllers that attempt to maintain some notion

of safety during training and/or inference – e.g., to satisfy physical

constraints or avoid particularly negative outcomes [28]. These

include methods that aim to determine “safe” regions of the state

space by making smoothness assumptions on the underlying dy-

namics [3, 10, 57, 58], methods that combine concepts from RL and

control theory [12, 21, 33, 42, 44, 46, 63], approaches based on for-

mal verification logics [27, 34, 35], and methods that aim to bound

some (discounted) cost function characterizing violations of safety

constraints [1, 4, 54, 61]. While the particular notion of “safety”

considered varies between settings, relevantly to the present work,

several of these prior works employ some form of differentiable pro-

jection within the loop of deep RL. For instance, within the context

of constrainedMarkov decision processes (C-MDPs), Yang et al. [61]

project neural network-based policies onto a linearly-constrained

set of policies with bounded cumulative discounted cost. In the

context of asymptotic stability, Donti et al. [21] project the actions

output by their controller onto a convex set of actions satisfying

stability specifications obtained via robust control. In the setting

of robotic motion planning, Pham et al. [45] project actions onto

a linear set of robotic operational constraints, and apply separate

updates to the neural network based on both pre-projection and

post-projection actions. Similarly to this prior work, our approach

employs differentiable projections within a neural network policy

to enforce operational constraints over some planning horizon.

3 PRELIMINARIES
We now present background on technical concepts used by PROF,

namely reinforcement learning and differentiable projection layers.

3.1 Reinforcement Learning
The goal of RL is to learn an optimal control policy through direct

interaction with the environment. The problem is usually formu-

lated as a Markov decision process (MDP). At each time step 𝑘 ,

the agent selects an action 𝑢𝑘 given the current state 𝑥𝑘 , using its

policy 𝜋𝜃 (Equation 1). In many modern RL techniques, the policy

is commonly represented by a neural network parameterized by 𝜃 .

When the agent takes the action 𝑢, the state transitions to 𝑥 ′ based
on the system dynamics 𝑓 (Equation 2), and the agent receives a

reward 𝑟𝑘 (or equivalently, incurs a cost 𝑐𝑘 = −𝑟𝑘).
𝑢 ∼ 𝜋𝜃 (𝑢𝑘 |𝑥𝑘), (1)

𝑥 ′ ∼ 𝑓 (𝑥𝑘 , 𝑢𝑘). (2)

RL algorithms optimize for a policy that maximizes the expected

cumulative reward, or equivalently, minimizes the expected cumu-

lative cost, where 𝛾 is a temporal discount factor:

𝜃★ = argmax

𝜃
E𝜋𝜃

[∞∑
𝑙=0

𝛾𝑙𝑟𝑘+𝑙

]
= argmin

𝜃
E𝜋𝜃

[∞∑
𝑙=0

𝛾𝑙𝑐𝑘+𝑙

]
. (3)

To simplify notation, we will denote the expected cumulative cost

as 𝐽 (𝜃), i.e.,

𝐽 (𝜃) = E𝜋𝜃

[∞∑
𝑙=0

𝛾𝑙𝑐𝑘+𝑙

]
. (4)

There are three general approaches to RL, namely value-based

methods, policy gradient methods, and actor-critic methods. Value-

based methods, e.g., Q-learning and its variants, update the value

function of state-action pairs using the Bellman equation and take

the action that maximizes the value of an action selection policy

(the Q function) through exploration. Policy gradient methods, e.g.,

Proximal Policy Optimization (PPO) [51], directly search for an

optimal policy 𝜋★
𝜃
using estimates of policy gradients. Denoting

the policy gradient as 𝑔 := ∇𝜃 𝐽 (𝜃), the core idea of policy gradient

algorithms is that they update 𝜃 based on an estimate, 𝑔, of the

gradient, i.e.,

𝜃 ←− 𝜃 − 𝛼𝑔 (5)

for some learning rate 𝛼 . Different algorithms vary in how they

obtain 𝑔. For instance, the learning objective for PPO, which we

use in our building control experiment (Section 5), is given by the

following equation, where𝐴𝑡 is the generalized advantage estimate

that can be estimated via any of the estimators in [50]:

𝐽PPO (𝜃) = ˆE𝑘
[
min(𝑤𝑘 (𝜃)𝐴𝑘 , clip(𝑤𝑘 (𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑘)

]
,

𝑤𝑘 (𝜃) =
𝜋𝜃 (𝑢𝑘 |𝑥𝑘)
𝜋𝜃𝑜𝑙𝑑 (𝑢𝑘 |𝑥𝑘)

,
(6)

and the estimate 𝑔 is constructed based on this learning objective.

Actor-critic methods, e.g., Advantage Actor-Critic (A2C), are hy-

brids of the value-based and policy gradient approaches, using a

policy network to select actions (the actor) and a value network to

evaluate the action (the critic).

3.2 Differentiable Projection Layers
As previously described, a neural network is a composition of pa-

rameterized functions (layers) whose parameters are adjusted dur-

ing training via backpropagation (a class of gradient-based methods).

Any function can be incorporated into a neural network as a layer

provided that it satisfies two main conditions. The first condition is

that it must have a forward procedure to map from inputs to outputs

(i.e., do inference). The second is that it must have a backwards proce-
dure to compute gradients of the outputs with respect to the inputs

and function parameters, in order to enable backpropagation.

With that in mind, consider the 𝐿2-norm projection PC : R𝑛 →
C that maps from some point in 𝑢 ∈ R𝑛 to its closest point in some

constraint set C ⊆ R𝑛 as follows:

PC (𝑢) = argmin

𝑢∈C

1

2

∥𝑢 − 𝑢∥2
2
. (7)

In cases where C is convex, Equation 7 is a convex optimization

problem. The forward procedure of this operation can then be im-

plemented by simply solving the optimization problem, e.g., using

standard convex optimization solvers. Perhaps less evidently, it is

also possible to construct a backwards procedure for this problem

by using the implicit function theorem [40], as described in previous

work (e.g., [2, 5]).

As an example, consider the case where C characterizes linear

constraints, i.e., C ≡ {𝑢 : 𝐴𝑢 = 𝑏,𝐺𝑢 ≤ ℎ} for some𝐴 ∈ R𝑛eq×𝑛
,𝑏 ∈

201

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Bingqing Chen, Priya L. Donti, Kyri Baker, J. Zico Kolter, and Mario Bergés

R𝑛eq
, 𝐺 ∈ R𝑛ineq×𝑛

, and ℎ ∈ R𝑛ineq
. It is then possible to efficiently

compute gradients through Equation 7 by implicitly differentiating

through its KKT conditions, i.e., conditions that are necessary and

sufficient to describe its optimal solutions. In particular, as described

in [5], the KKT conditions for stationarity, primal feasibility, and

complementary slackness for this case are given by

𝑢★ − 𝑢 +𝐴𝑇𝜈★ +𝐺𝑇 𝜆★ = 0

𝐴𝑢★ − 𝑏 = 0

diag(𝜆★) (𝐺𝑢★ − ℎ) = 0,

(8)

where 𝑢★, 𝜆★, and 𝜈★ are the optimal primal and dual solutions.

By the implicit function theorem, we can then take derivatives

through these conditions at the optimum in order to obtain relevant

gradients. Specifically, the total differentials of these KKT conditions

are given by

d𝑢 − d𝑢 + d𝐴𝑇𝜈★ +𝐴𝑇 d𝜈 + d𝐺𝑇 𝜆★ +𝐺𝑇 d𝜆 = 0

d𝐴𝑢★ +𝐴d𝑢 − d𝑏 = 0

diag(𝐺𝑢★ − ℎ)d𝜆 + diag(𝜆★) (d𝐺𝑢★ +𝐺d𝑧 − dℎ) = 0.

(9)

As described in [5], these equations can then be rearranged to solve

for the Jacobians of any of the solution variables 𝑢★, 𝜆★, 𝜈★ with

respect to any of the problem parameters𝑢,𝐴,𝑏,𝐺, ℎ (or, in practice,

to solve directly for these Jacobians’ left matrix-vector product with

some backward pass vector, in order to reduce space complexity).

While the above example is for the case of a linearly-constrained

projection operation, these kinds of gradients can be computed

for convex projection problems in general. For instance, Donti

et al. [21] compute gradients through a projection onto a second

order cone by differentiating through the fixed point equations of

their solver, and Agrawal et al. [2] provide a method and library

for differentiable disciplined convex programs. A key benefit of

using these kinds of projection layers for constraint enforcement

is that they allow gradients through the enforcement procedure to

flow back to the neural network, thereby informing the parameter

updates of this network during training.

4 APPROACH
We now describe PROF, which incorporates differentiable projec-

tions onto convex(ified) sets of operational constraints within a

neural policy.

4.1 Problem Formulation
Consider a discrete-time dynamical system

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ,𝑤𝑘), (10)

where 𝑥𝑘 ∈ R𝑠 is the state at time 𝑘 , 𝑢𝑘 ∈ R𝑎 is the control input,

𝑤𝑘 ∈ R𝑑 is an uncontrollable disturbance (which we assume to

be observable), and 𝑓 : R𝑠 × R𝑎 × R𝑑 → R𝑠 denotes the system
dynamics. Letting X𝑘 andU𝑘 denote the allowable state and action

space, respectively, we can define the set of all feasible actions over

the planning horizon 𝑇 as C𝑘 , where

C𝑘 =

{
𝑢𝑘 :𝑘+𝑇−1

����� 𝑥𝑖+1 = 𝑓 (𝑥𝑖 , 𝑢𝑖 ,𝑤𝑖),
𝑥𝑖 ∈ X𝑖 , 𝑢𝑖 ∈ U𝑖

∀𝑖 ∈ {𝑘, ..., 𝑘 +𝑇 − 1}
}
.

(11)

Our goal is then to learn a policy that optimizes the control objective,

𝐽 , while enforcing the operational constraints. To simplify notation,

we denote u = 𝑢𝑘 :𝑘+𝑇−1. In the case of a deterministic policy, i.e.,

u = 𝜋𝜃 , the learning problem is simply

min

𝜃
𝐽 (𝜃) s.t. 𝜋𝜃 ∈ C𝑘 . (12)

In the case of a stochastic policy, e.g. u ∼ N(𝝁, diag(𝝈2)), [𝝁,𝝈] =
𝜋𝜃 (𝑥𝑘), we can write the problem as

min

𝜃
𝐽 (𝜃) s.t. u, 𝝁 ∈ C𝑘 . (13)

In this case, it is necessary to sample actions around 𝝁 in order to

estimate policy gradients. At the same time the actions sampled

from 𝜋𝜃 might fall outside of C𝑘 . Thus, we enforce that both 𝝁 and

the sample action u satisfy the constraints.

4.2 Approximate Convex Constraints
In practice, there are two key challenges inherent in solving Equa-

tions 12–13 as written. The first is that the disturbances 𝑤𝑖 are

not known ahead of time, meaning that the optimization problem

must be solved under uncertainty. One approach to addressing

this, from the field of robust control [67], involves constructing

an uncertainty set over the disturbance, and then optimizing for

worst-case or expected cost under this uncertainty set. Here, we

simply assume a predictive model of the disturbances is available.

(By re-planning frequently, we observe that the prediction errors

have limited empirical impact on performance in the two applica-

tions we study.) We will use the notation 𝑤̂𝑘 to denote our forecast

of the disturbance if 𝑘 is a future time step, and the true value of

the disturbance if 𝑘 is the present or a prior time step.

The second challenge pertains to the form of the set C𝑘 , which
may be poorly structured or otherwise difficult to optimize over.

In particular, our framework relies on obtaining convex approx-

imations to the constraints in order to enable differentiable pro-

jections (see Section 3.2). Fortunately, for many energy systems

applications, some approximate model
ˆ𝑓𝑘 is often available based on

domain knowledge that allows C𝑘 to be approximated as a convex

set, despite the complex nature of the true dynamical system.

Thus, letting
ˆ𝑓𝑖 denote our approximations of the dynamics and

𝑤̂𝑖 denote the (forecast or known) disturbance at each 𝑖 = 𝑘, . . . , 𝑘 +
𝑇 − 1, we define our approximate convex constraint set as

ˆC𝑘 =

{
𝑢𝑘 :𝑘+𝑇−1

����� 𝑥𝑖+1 = ˆ𝑓𝑖 (𝑥𝑖 , 𝑢𝑖 , 𝑤̂𝑖),
𝑥𝑖 ∈ X𝑖 , 𝑢𝑖 ∈ U𝑖

∀𝑖 ∈ {𝑘, ..., 𝑘 +𝑇 − 1}
}
.

(14)

We note that 𝑓 and𝑤 are approximated solely for the purposes of

constructing approximate constraint sets, and are not used other-

wise during training and inference (i.e., our neural policy interacts

with the true dynamics and disturbances during training and infer-

ence).

4.3 Policy Optimization
Let 𝜋𝜃 be any (e.g., fully-connected or recurrent) neural network

parameterized by 𝜃 . Our policy entails passing the output from the

neural network to the differentiable projection layer P
ˆC𝑘 charac-

terized by the approximate constraints, which enforces that the

202

Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

Algorithm 1 PROF

1: proceduremain(env, 𝐽) // input: environment, control objective
2: init neural network 𝜋𝜃 , replay memoryM
3: specify RL algorithm A, batch size𝑀 , update interval 𝐾

4: specify planning horizon 𝑇

5: // online execution
6: for 𝑘 = 1, . . . do
7: observe state 𝑥𝑘
8: predict future disturbances 𝑤̂𝑘 :𝑘+𝑇−1
9: construct constraint set ˆC𝑘 , policy 𝜋𝜃 = P

ˆC𝑘 ◦ 𝜋𝜃
10: compute 𝑢𝑘 = inference(𝜋𝜃 , 𝑥𝑘 , 𝑇)

11: execute action env.step(𝑢𝑘)

12: save memory.append(𝑥𝑘 , 𝑢𝑘 , 𝑤̂𝑘 :𝑘+𝑇−1)
13: // update policy every 𝐾 time steps
14: if mod (𝑘, 𝐾) = 0 then
15: 𝜋𝜃 = train(𝜋𝜃 , 𝐽 ,M, A)

16: end if
17: end for
18: end procedure
19:

20: procedure inference(𝜋𝜃 , 𝑥𝑘 , 𝑇)
21: // input: neural policy, current state, planning horizon
22: select action 𝑢𝑘 :𝑘+𝑇−1 ∼ 𝜋𝜃

// only return the current action; replan at each time step
23: return 𝑢𝑘
24: end procedure
25:

26: procedure train(𝜋𝜃 , 𝐽 ,M, A)

27: // input: neural policy, objective, replay memory, RL algorithm
28: init L(𝜃) = 0

29: for 𝑖 = 1, . . . , 𝑀 do
30: sample 𝑥,𝑢,𝑤 ∼ M
31: construct constraint set ˆC𝑘 , policy 𝜋𝜃 = P

ˆC𝑘 ◦ 𝜋𝜃
32: compute training loss

L(𝜃) += 𝐽 (𝜃) + 𝜆∥𝜋𝜃 (𝑥) − 𝜋𝜃 (𝑥)∥22
33: end for
34: train 𝜋𝜃 via A to minimize L
35: return 𝜋𝜃
36: end procedure

resultant action is feasible with respect to these constraints. The

overall (differentiable) neural policy is then given by

𝜋𝜃 (𝑥𝑘) = P ˆC𝑘 ◦ 𝜋𝜃 (𝑥𝑘) .
1

(15)

The key benefit of embedding a differentiable projection into

our policy is that it enforces constraints in a way that is visible to

the neural network during learning. In this work, we implement

the differentiable projection using the cvxpylayers library [2].

We construct the following loss function, which is a weighted

sum of the control objective 𝐽 and an auxiliary loss term to be

explained shortly in this section. 𝜆 > 0 is a hyperparameter.

L(𝜃, 𝑥𝑘) = 𝐽 (𝜃) + 𝜆∥𝜋𝜃 (𝑥𝑘) − 𝜋𝜃 (𝑥𝑘)∥22 . (16)

1
We use the notation 𝑓 ◦ 𝑔 (𝑥) B 𝑓 (𝑔 (𝑥)) to denote function composition.

(a) (b)

π̂

π = PC ◦ π̂
u•

u?
−∇π̂||π − u•||22
−∇π̂||π̂ − π||22

C

Figure 2: Illustrative example of gradients from the differen-
tiable projection layer. 𝑢• and 𝑢★ denote unique optimal ac-
tions minimizing some convex control objective 𝐽 in the un-
constrained and constrained settings, respectively; ∇𝜋 ∥𝜋 −
𝑢•∥2

2
is thus a proxy for ∇𝜋 𝐽 . (a) 𝑢• ∉ C. The gradients ∇𝜋 𝐽

point towards 𝑢★ as desired, such that 𝜋 = P
ˆC ◦ 𝜋 will reach

this optimal point. (b) 𝑢• = 𝑢★ on the interior of C. The gra-
dients ∇𝜋 𝐽 do not cause 𝜋 (or its projection) to update to-
wards the interior. Adding a weighted auxiliary loss term,
e.g., ∥𝜋 − 𝜋 ∥, can help direct updates towards the interior.

We then train our policy (Equation 15) to minimize this cost us-

ing standard approaches in deep reinforcement learning. The full

algorithm is presented in Algorithm 1.

4.3.1 Visualization of gradient fields. To provide more intuition

on the differentiable projection layer and our cost function, we

visualize the gradient fields in a hypothetical example with a deter-

ministic policy and a planning horizon of𝑇 = 1. Specifically, for the

purposes of illustration, let 𝑢• and 𝑢★ denote unique optimal ac-

tions minimizing some convex control cost 𝐽 in the unconstrained

and constrained settings, respectively:

𝑢• ∼ 𝜋𝜃• ; 𝜃• = argmin

𝜃
𝐽 (𝜃)

𝑢★ ∼ 𝜋𝜃★ ; 𝜃★ = argmin

𝜃
𝐽 (𝜃) s.t. 𝑢 ∈ C𝑘 .

In Figure 2, we then plot the gradient fields in two cases: (a)𝑢• ∉ C𝑘 ,
and (b)𝑢• ∈ C𝑘 . Note that𝑢• and𝑢★ are assumed to be known here

for illustrative purposes only, and are not known during training.

In particular, we plot the gradients (black arrows) of ∥𝑢• −PC𝑘 ◦
𝜋 ∥2

2
with respect to the output of the neural network 𝜋 . These

indicate the direction in which the neural network would be in-

centivized to update in order to minimize the system cost. If no

differentiable projection were embedded within the policy, all the

gradients would point towards𝑢• without regard for the constraints.
Instead, in the case of𝑢• ∉ C𝑘 (Figure 2a), the gradients through the

differentiable projection layer point towards 𝑢★ instead of 𝑢•. More

specifically, if 𝜋𝜃 (𝑥𝑘) ∈ C𝑘 , then the projection layer is simply the

identity, and the gradients point directly towards 𝑢★; otherwise,

the gradients point along the boundary of C𝑘 in the direction of

𝑢★.

203

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Bingqing Chen, Priya L. Donti, Kyri Baker, J. Zico Kolter, and Mario Bergés

This case is of particular interest, as in many practical applica-

tions some operational constraint will be binding. As a concrete

example, the ultimate energy-saving strategy for building oper-

ations is to keep all mechanical systems off (i.e., 𝑢• = 0), which

obviously violates occupants’ comfort requirements and is outside

the set of allowable actions (i.e., 𝑢• ∉ C𝑘). Thus, the problem is to

find a policy that uses the mechanical system as little as possible

without violating comfort requirements. Given the common case

where the control objective is convex, this then lies on the boundary

of the constraint set (i.e., 𝑢★ = PC𝑘 ◦ 𝑢•).
We also depict the case where the solution of the unconstrained

problem already satisfies the constraints, i.e., 𝑢• = 𝑢★ ∈ 𝐶𝑘 (Fig-

ure 2b). If this is generally the case for a particular application, we

note that a constraint enforcement approach (ours or otherwise)

is likely not needed, and indeed utilizing gradients through the

projection layer may actually degrade performance. Specifically, if

𝜋𝜃 (𝑥𝑘) ∉ C𝑘 , the gradients do not point towards the interior of the

constraint set, meaning that 𝜋𝜃 (𝑥𝑘) = PC𝑘 ◦ 𝜋𝜃 (𝑥𝑘) will lie on the

boundary of the constraints despite the optimal solution being in

the interior. This can be amended by augmenting the loss function

with a (weighted) auxiliary term such as ∥𝜋𝜃 (𝑥𝑘)−𝜋𝜃 (𝑥𝑘)∥22 whose
gradients (blue arrows) point towards the interior.

It may not be known a priori whether or not 𝑢• is in the con-

straint set in general or at any given time, except when domain

experts are fully clear on the structure of the solutions for specific

applications. In particular, C𝑘 is time-varying, making it difficult

to know for sure whether or not the constraints will indeed be

binding at any given time. For robustness, we therefore recommend

incorporating the auxiliary loss ∥𝜋𝜃 (𝑥𝑘) − 𝜋𝜃 (𝑥𝑘)∥22 within the

RL training cost, unless it is known from domain knowledge that

the constraints will certainly be active. As such, we formulate the

training cost function as previously given in Equation 16.

5 EXPERIMENT 1: ENERGY-EFFICIENT
BUILDING OPERATION

There is significant potential to save energy through more efficient

building operation. Buildings account for about 40% of the total

energy consumption in the United States, and it is estimated that

up to 30% of that energy usage may be reduced through advanced

sensing and control strategies [24]. However, this potential is largely

untapped, as the heterogeneous nature of building environments

limits the ability of control strategies developed for one building to

scale to others [14]. RL can address this challenge by adapting to

individual buildings by directly interacting with the environment.

The most important constraint in building operation is to main-

tain a satisfactory level of comfort for occupants, while minimiz-

ing energy consumption. It is common in the RL-based building

control literature to penalize thermal comfort violations [14, 64],

which incentivizes but does not guarantee the satisfaction of these

comfort requirements. In comparison, our proposed neural policy

can largely maintain temperature within the specified comfortable

range, except when the control is saturated.

We evaluate our policy in the same simulation testbed as [14, 64],

following the same experimental setup as [14]. Specifically, we first

pre-train the neural policy by imitating a proportional-controller

(P-controller). We then evaluate and further train our agent in the

simulation environment, using a different sequence of weather data.

5.1 Problem Description
Simulation testbed. We utilize an EnergyPlus (E+) model of a

600m
2
multi-functional space (Figure 3a), based on the Intelligent

Workplace (IW) on Carnegie Mellon University (CMU) campus,

located in Pittsburgh, PA, USA. The system of interest is the water-

based radiant heating system, of which a schematic is provided in

Figure 3b. In this experiment, we control the supply water tempera-
ture so as to maintain the state variable, i.e., the zone temperature,
within a comfortable range during the heating season. In the exist-

ing control, the supply water (SW) is maintained at a constant flow

rate, and its temperature is managed by a P-controller. For more

information on the simulation testbed, refer to [64].

Approximate system model. We approximate the environment as

a linear system as follows:

𝑥𝑘+1 ≈ ˆ𝑓 (𝑥𝑘 , 𝑢𝑘 ,𝑤𝑘) = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑑𝑤𝑘 , (17)

where 𝑥𝑘 represents the zone temperature and 𝑢𝑘 represents the

supply water temperature.𝑤𝑘 includes distributions from weather

and occupancy. While building thermodynamics are fundamentally

nonlinear, the locally-linear assumption works well for many con-

trol inputs [47]. We identify the approximate model parameters 𝐴,

𝐵𝑢 , and 𝐵𝑑 with prediction error minimization [47] on the same

data used to pre-train the RL agent (see Section 5.2). The root mean

squared error (RMSE) of this model on a unseen test set is 0.14
o
C.

Objective. Since our goal is to minimize energy consumption,

we define the control cost at each time step as the agent’s control

action, i.e. supply water temperature, which is linearly proportional

to the heating demand, i.e., 𝑐𝑘 = 𝑢𝑘 .

In contrast to the objectives in [14, 64], which are defined as

weighted sum of energy cost and some penalty on thermal comfort

violations, we consider the thermal comfort requirement as hard

constraints, in the form of Equation 13.

Constraints. To maintain a satisfactory comfort level, we require

the zone temperature to be within a deadband X = {𝑥 | 21.9o𝐶 ≤
𝑥 ≤ 25.5o𝐶} when the building is occupied, based on the building

code requirement of 10% Predicted Percentage of Dissatisfied (PPD)

[23]. We allow for a wider temperature range during unoccupied

hours. For the action, the allowable range of supply water tempera-

ture for the physical system isU = {𝑢 | 20o𝐶 ≤ 𝑢 ≤ 65
o𝐶}.

While it may appear from this description that we have only

simple box constraints on both the state and action, we highlight

the fact that actions are coupled over time through the building

thermodynamics [66]. More concretely, a future state depends on all

past actions. Thus, a box constraint on 𝑥𝑘+𝑙+1 is in fact a constraint

on𝑢𝑘 :𝑘+𝑙 . In this case, assuming
ˆ𝑓 to be a linear system,

ˆC𝑘 is then a

set of linear inequalities, which can be geometrically interpreted as

a polytope.
2
We refer interested readers to [15, 66] for more details

on this formulation. In fact, it was experimentally demonstrated in

[15] that projecting actions onto the polytope constructed with an

approximate linear model was sufficient to maintain temperature

2
A polytope can be characterized as a set S = {𝑥 ∈ R𝑛 |𝐴𝑥 ≤ 𝑏 }.

204

Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

(a) Geometric view
(b) System schematic

Figure 3: Building simulation testbed (reproduced from
[14]).

within the deadband in a real-world residential household (though

[15] did not then differentiate through this projection).

Control time step. The EnergyPlus model has a 5-minute simu-

lation time step. Following [14, 64], we use a 15-min control time

step (i.e., each action is repeated 3 times) and a planning horizon of

𝑇 = 12 (i.e., a 3 hour look-ahead).

5.2 Implementation Details
Offline pre-training. We pre-train a long short-term memory

(LSTM) recurrent policy (without a subsequent projection) by imi-

tating a P-controller operating under the Typical Meteorological

Year 3 (TMY3) [60] weather sequence, from Jan. 1 to Mar. 31. We

min-max normalize all of the state, action, and disturbance, and use

a learning rate of 10
−3
. Specifically, we use the pre-trained weights

after training on the expert demonstrations for 20 epochs following

the same procedures as [16]. We refer readers to [16] for more de-

tails on the neural network architecture, training procedures, loss,

and performance evaluation.

Online policy learning. We optimize the policy with PPO [51]

over the weather sequence in 2017 from Jan. 1 to Mar. 31. We use

𝜆 = 10 (see Equation 16), a learning rate of 5 × 10−4, and RMSprop

[55] as the optimizer.
3
We update the policy every four days, by

iterating over those samples for 8 epochs with a batch size of 32.

For hyperparameters, we use a temporal discount rate of 𝛾 = 0.9, 𝜖

= 0.2 (see Equation 6), and a Gaussian policy (see Equation 13) with

𝜎 linearly decreased from 0.1 to 0.01.

5.3 Results
After pre-training on expert demonstrations from the baseline P-

controller, our agent directly operated the simulation testbed based

on actual weather sequences in Pittsburgh from Jan. 1 to Mar. 31 in

2017. Figure 4a shows the behavior of our agent at the onset of de-

ployment over a 3-day period. The baseline P-controller reactively

turns on heating when the environment switches from unoccupied

to occupied, which results in thermal comfort violations in the

mornings. In comparison, PROF preheats the environment such

that the environment is already at a comfortable temperature when

occupants arrive in the morning. Notably, the differentiable projec-

tion layer manages to enforce this preheating behavior despite this

behavior not being present in the expert demonstrations.

3
The code is available at https://github.com/INFERLab/PROF.

18

22

26

S
ta
te
s

Z
on

e
T

em
p.

(◦
C

)

01-02 01-03 01-04 01-05
20

35

50

65

A
ct
io
n
s

S
W

T
em

p.
(◦

C
)

0

1

Baseline P-Controller

Deadband

PROF

Unoccupied

(a) The differentiable projection layer enforces preheating behavior
to ensure deadband constraints are never violated, even though this
behavior is not present in the expert demonstrations.

18

22

26

S
ta

te
s

Z
on

e
T

em
p.

(◦
C

)

02-01 02-02 02-03 02-04
20

35

50

65

A
ct

io
n

s
S

W
T

em
p.

(◦
C

)

0

1

Baseline P-Controller

Deadband

PROF

Unoccupied

Gnu-RL

(b) The agent has found a more energy-efficient control strategy by
maintaining temperature at the lower end of the deadband.

Figure 4: Behavior of our proposed agent (a) at the onset
of deployment, with pre-trained weights based on expert
demonstrations and (b) after a month of interacting with
and training on the environment.

Figure 4b shows the behavior of our agent in comparison with

Gnu-RL [14], having interacted with and trained on the environ-

ment for a month. Gnu-RL is updated via PPO, similarly to the

current work, and incorporates domain knowledge on system dy-

namics. In comparison to Gnu-RL [14], which ends up trying to

maintain temperature at the setpoint, PROF learns an energy-saving

behavior by maintaining the temperature at the lower end of the

deadband. This explains the further energy savings compared with

Gnu-RL [14]. However, we also notice that the temperature require-

ment may be violated on cold mornings. This happens when the

control action is saturated, i.e., full heating over the 3-hour planning

horizon is not sufficient to bring temperature back to the comfort-

able range. (In principle, even these constraint violations could be

mitigated by increasing the length of the planning horizon.)

Table 1 summarizes the performance of our agent with compar-

ison to the RL agents in [14, 64]. Our proposed agent (averaged

205

https://github.com/INFERLab/PROF

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Bingqing Chen, Priya L. Donti, Kyri Baker, J. Zico Kolter, and Mario Bergés

Table 1: Performance comparison. Ourmethod saves energy
while incurring minimal comfort violations.

Heating PPD
Demand Mean SD
(kW) (%) (%)

Existing P-Controller [64] 43709 9.45 5.59

Agent #6 [64] 37131 11.71 3.76

Baseline P-Controller [14] 35792 9.71 6.87

Gnu-RL [14] 34687 9.56 6.39

LSTM & Clip + No Update 37938 8.55 3.39

LSTM & Clip 36068 ± 2187 9.18 ± 0.67 3.49

PROF (ours) 33271 ± 1862 9.68 ± 0.48 3.66

over 5 random seeds) saves 10% and 4% energy compared to the

best-performing agents in [64] and [14], respectively.

We also compare our method to two ablations: (1) LSTM & Clip
+ No Update, which uses the same pre-trained weights and the

projection layer to enforce feasible actions, but does not update

the policy, and (2) LSTM & Clip, which uses the same pre-trained

weights and the projection layer to enforce feasible actions during

inference, but does not propagate gradients through the differen-

tiable projection layer in the policy updates. We find that LSTM &
Clip slightly improves upon LSTM & Clip + No Update, but is less
performant compared to PROF. This affirms our hypothesis that the

gradients through the differentiable projection layer are cognizant

of the constraints and are thus conducive to policy learning.

6 EXPERIMENT 2: INVERTER CONTROL
Distributed energy resources (DERs), e.g., solar photovoltaic (PV)

panels and energy storage, are becoming increasingly prevalent

in an effort to curb carbon dioxide emissions and combat climate

change. However, DERs interfacing with the power grid via power

electronics, such as inverters, also introduce unintended challenges

for grid operators. For instance, over-voltages have become a com-

mon occurrence in areas with high renewable penetration [53],

and power electronics-interfaced generation has low-inertia and

requires active control at much faster timescales compared to tradi-

tional synchronous machines [43].

To alleviate these issues, IEEE standard 1547.8-2018 [9] recom-

mends a Volt/Var control strategy in which the reactive power

contribution of an inverter is based on local voltage measurements.

As will be clear in our empirical evaluation, this network-agnostic

heuristic based on local information alleviates, but does not avoid,

over-voltage issues. Given that the optimal solution needs to be ob-

tained at the system-level and that the problem needs to be solved

at very short timescales, a common paradigm is to address the

problem in a quasi-static fashion [38] adopted in works such as

[7, 32, 38], where one chooses a policy over the next time period,

e.g., 15 minutes-1 hour, and uses the policy without update for fast

inference. In this work, we adopt the same paradigm and consider

real-time control on a 1-second timescale of both active (P) and

reactive (Q) power setpoints at each inverter.

We envision that a neural policy can learn from its prior expe-

riences, in contrast to the traditional fit-and-forget approach [20],

1

23

4
5

6

7

8
910

11 12 13

14

1516

17

18

19

20

21

2223

24

25

26

272829

30

31

32

33

34 3536

37

Figure 5: IEEE 37-bus feeder system, where the solar PV sys-
tems are indicated by green rectangles.

and is capable of making decisions faster compared to solving opti-

mization problems. Our primary contribution compared to existing

work is the ability to enforce physical constraints within the neural

network. In fact, we successfully enforce voltage constraints 100%

of the time with a randomly initialized neural network, over more

than half a million time-steps (i.e., 1 week with a one-second time

step). The assumed control and communication scheme is consis-

tent with the new definitions for smart inverter capabilities under

IEEE standard 1547.1-2020 [37].

6.1 Problem Description
The problem we are considering here is to control active and re-

active power setpoints at each inverter in order to maximize uti-

lization (i.e., minimize curtailment) of renewable generation, while

satisfying the maximum and minimum grid voltage requirements.

Here, we first define the considered test case and input data, and

describe the model of the network. We refer readers to [7] for more

details on the problem set-up.

IEEE 37-bus test case. We evaluate our method on the IEEE 37-bus

distribution test system [36], with 21 solar PV systems indicated

by green rectangles in Figure 5. We utilize a balanced, single-phase

equivalent of the system, and simulate the nonlinear AC power

flows using PYPOWER [48]. For the simulation, the solar generation

and loads are based on 1-second solar irradiance and load data

collected from a neighborhood in Rancho Cordova, CA [8] over a

period of one week (604800 samples).

Approximate system model. Denote the number of buses, exclud-

ing the slack bus (e.g., the distribution substation), as 𝑁 , the net

active and the reactive power as p ∈ R𝑁 and q ∈ R𝑁 , and the

voltage at all buses as v ∈ R𝑁 . We linearize the AC power flow

equations around the flat voltage solution, i.e. v̄ = 1, using the

method in [11]. The reference active and reactive power corre-

sponding to v̄ = 1 is denoted as p̄ and q̄. The linearized grid model,

206

Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

ˆ𝑓 , is given by Equation 18, where R, B ∈ R𝑁×𝑁 represent system-

dependent network parameters that can be either estimated from

linearization (e.g., [11]) or data-driven methods:

v ≈ ˆ𝑓 (p, q) = v̄ + R(p − p̄) + B(q − q̄)

= v̄ + [R,B]︸︷︷︸
H

[
p − p̄,
q − q̄

]
︸ ︷︷ ︸

u

. (18)

A notable advantage of the method in [11] is that the resulting

model has bounded error with respect to the true dynamics. By

incorporating the error bound when constructing the safety set, the

safety set is guaranteed to be a conservative under-approximation

of the true safety set, and thus allow us to satisfy voltage constraints

100% of the time.

Policy. Our policy takes as input the voltage from the previ-

ous time-step, load, and generation at all the buses, and outputs

active and reactive power setpoints at each inverter. (This is a de-

terministic policy; see Equation 12.) Note that while the grid model

(Equation 18) contains all 𝑁 buses, only those with inverters are

controllable.

Our neural architecture is similar to the one used in [32], which

consists of a utility-level network, and inverter-level networks for

individual inverters. The utility-level network collects information

from all nodes, and broadcasts an intermediate representation to

all inverter-level networks. Using this information along with its

local observations, each inverter makes its local control decisions,

which are then projected onto the constraints (discussed below).

Objective. The objective is to minimize the curtailment of solar

generation, or equivalently to maximize the utilization of the avail-

able solar power, 𝑝𝑎𝑣 . Specifically, letting I denote the set of buses

with inverters, the objective is

𝐽 (𝜃) = min

pI ,qI

∑
𝑖∈I
[𝑝𝑎𝑣,𝑖 − 𝑝𝑖]+, where

[
pI qI

]
= 𝜋𝜃 (19)

Constraints. For an individual inverter, 𝑖 , with rated power 𝑠𝑖
and an available power (from available solar generation) 𝑝𝑎𝑣,𝑖 , the

feasible action space is

U𝑖 (𝑘) = {(𝑝𝑖 , 𝑞𝑖) : 0 ≤ 𝑝𝑖 ≤ 𝑝𝑎𝑣,𝑖 (𝑘), 𝑝2𝑖 + 𝑞
2

𝑖 ≤ 𝑠
2

𝑖 }
U(𝑘) := U1 (𝑘) × · · · × U|I | (𝑘).

At the same time, the voltage at each bus should remain between

0.95-1.05 𝑝.𝑢. The primary challenge of satisfying voltage con-

straints is that the voltage at each bus depends on actions of neigh-

boring nodes, i.e.

X = {𝑣 | 0.95 × 1 ≤ v ≈ v̄ + Hu ≤ 1.05 × 1},
where the sparsity pattern of 𝐻 is characterized by the admittance

matrix. We jointly project actions from all inverters at each time

step 𝑘 onto the constraintsU(𝑘) ∩ X.

6.2 Implementation Details
We evaluate PROF by executing it over the 1-week dataset (at 1

second) once. Similarly to other quasi-static approaches, we update

the policy every 15-minutes. Similarly to [32], we optimize the

neural policy with stochastic samples by directly differentiating

through the objective (Equation 19) and the linearized grid model

(Equation 18). However our method differs in that Gupta et al. [32]

characterized the constraints as a regularization term, and learned

the policy via primal-dual updates. We incorporate the constraints

directly via the differentiable projection layer and thus guarantee

constraint satisfaction.

We use 𝜆=10 (see Equation 16), a learning rate of 10
−3
, and

RMSprop [55] as the optimizer. At every 15 minutes, we sample 16

batches of data with size of 64 from the replay memory. We keep a

replaymemory size of 86400, i.e., samples from the previous day. For

the both the utility-level network and the inverter-level network, we

use fully-connected layers with ReLU activations. The utility-level

network has hidden layer sizes (256, 128, 64), and each inverter-

level network has hidden layer sizes (16, 4) and outputs active and

reactive power. On top of the neural network, we implement the

differentiable projection layer, following the constraints described

in Section 6.1.

We compare our methods to three baselines, (1) a Volt/Var strat-

egy following IEEE 1547.8 [9], (2) the optimal solution with respect

to the linearized grid model, and (3) the optimal solution with

respect to the true AC power flow equations.

6.3 Results
The performance of PROF in comparison to the three baselines

is summarized in Figure 6. For clarity, we only show the maxi-

mum voltage over all buses; under-voltage is not a concern for this

particular test case.

We see that the Volt/Var strategy violates voltage constraints

22.3% of time, mostly around noon when the solar generation is

high and there is a surplus of energy. Since the Volt/Var baseline

does not adjust active power, there is no curtailment.

In comparison, PROF satisfies the voltage constraints through-

out the experiment, even with a randomly initialized neural policy.

While PROF performs poorly on the first morning, it quickly im-

proves its policy. In fact, the behavior of PROF is barely distinguish-

able from the optimal solution with respect to the linearized grid

model, after learning safely for a day. This implies that PROF learned

to control inverters as well as possible given its approximate model,

which constructs a conservative under-approximation of the true

safety set.

The optimal baseline with respect to the true AC power flow

equations unsurprisingly achieves the best performance with re-

spect to minimizing curtailment, as it can push the maximum volt-

age to the allowable limit in order to maximally reduce the amount

of curtailed energy. However, inverter control is a task that requires

near real-time inputs, and we find that running this baseline can be

prohibitively slow. Specifically, we evaluate the computation time

of different operations by averaging over 1000 randomly sampled

problems from our dataset on a personal laptop. For PROF, on aver-

age, a forward pass in the neural network (excluding the projection

layer) took 4.5 ms and the differentiable projection operation took

8.6 ms. The computation cost of the differentiable projection could

be further reduced by using customized projection solvers such

as the ones in [5, 21] that avoid the “canonicalization” costs intro-

duced by general-purpose solvers such as the one we use [2]. In

comparison, solving the optimization baseline with respect to the

207

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Bingqing Chen, Priya L. Donti, Kyri Baker, J. Zico Kolter, and Mario Bergés

0

2000

4000

A
va

ila
bl

e
S

ol
ar

(k
W

)

1.00

1.05

M
ax

V
ol

ta
ge

(p
.u

.)

0 1 2 3 4 5 6 7
Time (Day)

0

200

400

C
ur

ta
ilm

en
t

(k
W

)

Volt-Var PROF Optimal w.r.t. f̂ Optimal

Figure 6: PROF satisfies voltage constraints throughout the experiment, and learns tominimize curtailment as well as possible
within its conservative safety set, 𝐶𝑘 , after learning safely for a day.

true AC power flow equations took 1.02s on the same machine,

which is even longer than the 1s control time-step.

7 DISCUSSION AND CONCLUSIONS
In this work, we have presented a method, PROF, for integrating

convex operational constraints into neural network policies for

energy systems applications. In particular, we propose a policy that

entails passing the output of a neural network to a differentiable

projection layer, which enforces a convex approximation of the

operational constraints. These convex constraint sets are obtained

using approximate models of the system dynamics, which can be

fit using system data and/or constructed using domain knowledge.

We can then train the resultant neural policy via standard RL al-

gorithms, using an augmented cost function designed to effect

desirable policy gradients. The result is that our neural policy is

cognizant of relevant operational constraints during learning, en-

hancing overall performance.

We find in both the building energy optimization and inverter

control settings that PROF successfully enforces relevant constraints

while improving performance on the control objective. In partic-

ular, in the building thermal control setting, we find that our ap-

proach achieves a 4% energy savings over the state of the art while

largely maintaining the temperature within the deadband. In the

inverter control setting, our method perfectly satisfies the voltage

constraints over more than half a million time steps, while learning

to minimize curtailment as much as possible within the safety set.

While these results demonstrate the promise of our method, a

key limitation is in its computational cost. In particular, computing a

projection during every forward pass of training and inference is de-

cidedly more expensive than running a “standard” neural network.

A fruitful area for future work – both in the context of our method,

and in the context of research in differentiable optimization layers

as a whole – may be to improve the speed of such differentiable

projection layers. For instance, this might entail developing special-

purpose differentiable solvers [5, 21] for optimization problems

commonly encountered in energy systems applications, developing

approximate solvers that do not rely on obtaining optimal solutions

in order to compute reasonable gradients, or employing cheaper

projection schemes such as 𝛼-projection [52] where possible.

Additionally, the success of our method (and many other con-

straint enforcementmethods) depends fundamentally on the quality

of the approximate model used to characterize the constraint sets.

In particular, this determines the extent to which the resultant

approximate constraint sets are a good representation of the true

operational constraints. While we were able to employ reasonably

high-quality approximation schemes in the context of this work,

future work on safely updating the models or the constraint sets

directly [26] may greatly improve the quality of the solutions.

More generally, while our work highlights one approach to en-

forcing physical constraints within learning-based methods, we

believe this is only the start of a broader conversation on closely in-

tegrating domain knowledge and control constraints into learning-

based methods. In particular, strictly enforcing physical constraints

will be paramount to the real-world success of these methods in

energy systems contexts, and we hope that our paper will serve to

spark further inquiry into this important line of work.

8 ACKNOWLEDGMENTS
This material is based, in part, on work supported by Carnegie Mel-

lon University’s College of Engineering Moonshot Award for Au-

tonomous Technologies for Livability and Sustainability (ATLAS).

This work was also supported by the U.S. Department of Energy

Computational Science Graduate Fellowship (DE-FG02-97ER25308),

the Center for Climate and Energy Decision Making through a co-

operative agreement between the National Science Foundation and

Carnegie Mellon University (SES-00949710), the Computational

Sustainability Network, and the Bosch Center for AI. The work of

K. Baker is supported by the National Science Foundation CAREER

award 2041835.

REFERENCES
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In Proceedings of the 34th International Conference onMachine
Learning.

208

Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

[2] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond,

and J Zico Kolter. 2019. Differentiable Convex Optimization Layers. In Advances
in Neural Information Processing Systems. 9558–9570.

[3] Anayo K. Akametalu, Shahab Kaynama, Jaime F. Fisac, Melanie Nicole Zeilinger,

Jeremy H. Gillula, and Claire J. Tomlin. 2014. Reachability-based safe learning

with Gaussian processes. In 53rd IEEE Conference on Decision and Control, CDC
2014.

[4] Eitan Altman. 1999. Constrained Markov Decision Processes. Vol. 7. CRC Press.

[5] Brandon Amos and J Zico Kolter. 2017. OptNet: Differentiable Optimization as a

Layer in Neural Networks. In Proceedings of the 34th International Conference on
Machine Learning. 136–145.

[6] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019. Deep equilibrium models.

arXiv preprint arXiv:1909.01377 (2019).

[7] Kyri Baker, Andrey Bernstein, Emiliano Dall’Anese, and Changhong Zhao. 2017.

Network-cognizant voltage droop control for distribution grids. IEEE Transactions
on Power Systems 33, 2 (2017), 2098–2108.

[8] J. Bank and J. Hambrick. 2013. Development of a high resolution, real time,

distribution-level metering system and associated visualization modeling, and

data analysis functions. (2013). National Renewable Energy Laboratory, Tech.

Rep. NREL/TP-5500-56610.

[9] T.S. Basso. 2014. In IEEE 1547 and 2030 Standards for Distributed Energy Resources
Interconnection and Interoperability with the Electricity Grid. National Renewable
Energy Laboratory.

[10] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause.

2017. Safe Model-based Reinforcement Learning with Stability Guarantees. In

Advances in Neural Information Processing Systems.
[11] Saverio Bolognani and Florian Dörfler. 2015. Fast power system analysis via

implicit linearization of the power flow manifold. In 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, 402–409.

[12] Ya-Chien Chang, Nima Roohi, and Sicun Gao. 2019. Neural Lyapunov Control.

In Advances in Neural Information Processing Systems. 3245–3254.
[13] Minas Chatzos, Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hen-

tenryck. 2020. High-Fidelity Machine Learning Approximations of Large-Scale

Optimal Power Flow. arXiv preprint arXiv:2006.16356 (2020).
[14] Bingqing Chen, Zicheng Cai, and Mario Bergés. 2019. Gnu-RL: A precocial

reinforcement learning solution for building HVAC control using a Differentiable

MPC policy. In Proceedings of the 6th ACM International Conference on Systems
for Energy-Efficient Buildings, Cities, and Transportation. 316–325.

[15] Bingqing Chen, Jonathan Francis, Marco Pritoni, Soummya Kar, and Mario

Berg’es. 2020. COHORT: Coordination of Heterogeneous Thermostatically Con-

trolled Loads for Demand Flexibility. In Proceedings of the 7th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation.
31–40.

[16] Bingqing Chen, Ming Jin, Zhe Wang, Tianzhen Hong, and Mario Bergés. 2020.

Towards Off-policy Evaluation as a Prerequisite for Real-world Reinforcement

Learning in Building Control. In Proceedings of the 1st International Workshop on
Reinforcement Learning for Energy Management in Buildings & Cities. 52–56.

[17] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.

2018. Neural ordinary differential equations. In Advances in neural information
processing systems. 6571–6583.

[18] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and

J Zico Kolter. 2018. End-to-end differentiable physics for learning and control. In

Advances in Neural Information Processing Systems. 7178–7189.
[19] Josip Djolonga and Andreas Krause. 2017. Differentiable Learning of Submodular

Models. In Advances in Neural Information Processing Systems. 1013–1023.
[20] Roel Dobbe, Patricia Hidalgo-Gonzalez, Stavros Karagiannopoulos, Rodrigo

Henriquez-Auba, Gabriela Hug, Duncan S Callaway, and Claire J Tomlin. 2020.

Learning to control in power systems: Design and analysis guidelines for concrete

safety problems. Electric Power Systems Research 189 (2020), 106615.

[21] Priya L Donti, Melrose Roderick, Mahyar Fazlyab, and J Zico Kolter. 2021. Enforc-

ing robust control guarantees within neural network policies. In International
Conference on Learning Representations.

[22] Ján Drgoňa, Javier Arroyo, Iago Cupeiro Figueroa, David Blum, Krzysztof Arendt,

Donghun Kim, Enric Perarnau Ollé, Juraj Oravec, Michael Wetter, Draguna L

Vrabie, et al. 2020. All you need to know about model predictive control for

buildings. Annual Reviews in Control (2020).
[23] PO Fanger. 1986. Thermal environment—Human requirements. Environmentalist

6, 4 (1986), 275–278.

[24] Nicholas EP Fernandez, Srinivas Katipamula, Weimin Wang, YuLong Xie, Mingjie

Zhao, and Charles D Corbin. 2017. Impacts of commercial building controls on
energy savings and peak load reduction. Technical Report. Pacific Northwest

National Lab.(PNNL), Richland, WA (United States).

[25] Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hentenryck. 2020. Pre-

dicting AC optimal power flows: Combining deep learning and lagrangian dual

methods. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
630–637.

[26] Jaime F Fisac, Neil F Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J

Tomlin. 2019. Bridging hamilton-jacobi safety analysis and reinforcement learn-

ing. In 2019 International Conference on Robotics and Automation (ICRA). IEEE,
8550–8556.

[27] Nathan Fulton and André Platzer. 2019. Verifiably safe off-model reinforcement

learning. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 413–430.

[28] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe

reinforcement learning. Journal of Machine Learning Research 16, 1 (2015), 1437–

1480.

[29] Mevludin Glavic. 2019. (Deep) Reinforcement learning for electric power system

control and related problems: A short review and perspectives. Annual Reviews
in Control 48 (2019), 22–35.

[30] Stephen Gould, Richard Hartley, and Dylan Campbell. 2019. Deep declarative

networks: A new hope. arXiv preprint arXiv:1909.04866 (2019).
[31] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. 2019. Hamiltonian neural

networks. In Advances in Neural Information Processing Systems. 15379–15389.
[32] Sarthak Gupta, Vassilis Kekatos, and Ming Jin. 2020. Deep Learning for Reactive

Power Control of Smart Inverters under Communication Constraints. In 2020 IEEE
International Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm). IEEE, 1–6.

[33] Minghao Han, Yuan Tian, Lixian Zhang, Jun Wang, and Wei Pan. 2019. 𝐻∞
Model-free Reinforcement Learning with Robust Stability Guarantee. CoRR
(2019).

[34] Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. 2020.

Deep reinforcement learning with temporal logics. In International Conference
on Formal Modeling and Analysis of Timed Systems. Springer, 1–22.

[35] Nathan Hunt, Nathan Fulton, Sara Magliacane, Nghia Hoang, Subhro Das, and

Armando Solar-Lezama. 2020. Verifiably safe exploration for end-to-end rein-

forcement learning. arXiv preprint arXiv:2007.01223 (2020).
[36] IEEE. [n.d.]. 37 node distribution test feeder. https://ewh.ieee.org/soc/pes/

dsacom/testfeeders/. Online.

[37] IEEE. 2020. IEEE Standard Conformance Test Procedures for Equipment In-

terconnecting Distributed Energy Resources with Electric Power Systems and

Associated Interfaces. IEEE Std 1547.1-2020 (2020), 1–282. https://doi.org/10.

1109/IEEESTD.2020.9097534

[38] Mana Jalali, Vassilis Kekatos, Nikolaos Gatsis, and Deepjyoti Deka. 2019. De-

signing reactive power control rules for smart inverters using support vector

machines. IEEE Transactions on Smart Grid 11, 2 (2019), 1759–1770.

[39] Zico Kolter, David Duvenaud, andMatthew Johnson. 2020. Tutorial: Deep Implicit

Layers - Neural ODEs, Deep Equilibirum Models, and Beyond. http://implicit-

layers-tutorial.org/.

[40] Steven G Krantz and Harold R Parks. 2012. The implicit function theorem: history,
theory, and applications. Springer Science & Business Media.

[41] Chun Kai Ling, Fei Fang, and J Zico Kolter. 2018. What game are we play-

ing? end-to-end learning in normal and extensive form games. arXiv preprint
arXiv:1805.02777 (2018).

[42] Biao Luo, Huai-Ning Wu, and Tingwen Huang. 2014. Off-Policy Reinforcement

Learning for 𝐻∞ Control Design. IEEE Transactions on Cybernetics 45, 1 (2014),
65–76.

[43] Federico Milano, Florian Dörfler, Gabriela Hug, David J Hill, and Gregor Verbič.

2018. Foundations and challenges of low-inertia systems. In 2018 Power Systems
Computation Conference (PSCC). IEEE, 1–25.

[44] Jun Morimoto and Kenji Doya. 2005. Robust Reinforcement Learning. Neural
Computation 17, 2 (2005), 335–359.

[45] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. 2018. Optlayer-

practical constrained optimization for deep reinforcement learning in the real

world. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 6236–6243.

[46] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. 2017. Ro-

bust Adversarial Reinforcement Learning. In Proceedings of the 34th International
Conference on Machine Learning. JMLR. org, 2817–2826.

[47] Samuel Privara, Jiří Cigler, Zdeněk Váňa, Frauke Oldewurtel, Carina Sagerschnig,

and Eva Žáčeková. 2013. Building modeling as a crucial part for building predic-

tive control. Energy and Buildings 56 (2013), 8–22.
[48] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas. 2011. MATPOWER:

Steady-State Operations, Planning and Analysis Tools for Power Systems Re-

search and Education. IEEE Transactions on Power Systems 26, 1 (2011), 12–19.
[49] David Rolnick, Priya L Donti, Lynn H Kaack, Kelly Kochanski, Alexandre Lacoste,

Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques,

Anna Waldman-Brown, et al. 2019. Tackling Climate Change with Machine

Learning. arXiv preprint arXiv:1906.05433 (2019).
[50] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

2015. High-dimensional continuous control using generalized advantage estima-

tion. arXiv preprint arXiv:1506.02438 (2015).
[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347

209

https://ewh.ieee.org/soc/pes/dsacom/testfeeders/
https://ewh.ieee.org/soc/pes/dsacom/testfeeders/
https://doi.org/10.1109/IEEESTD.2020.9097534
https://doi.org/10.1109/IEEESTD.2020.9097534
http://implicit-layers-tutorial.org/
http://implicit-layers-tutorial.org/

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Bingqing Chen, Priya L. Donti, Kyri Baker, J. Zico Kolter, and Mario Bergés

(2017).

[52] Sanket Shah, Sinha Arunesh, Varakantham Pradeep, Perrault Andrew, and Tambe

Milind. 2020. Solving online threat screening games using constrained action

space reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 2226–2235.

[53] N. Stringer, A. Bruce, I. MacGill, N. Haghdadi, P. Kilby, J. Mills, T. Veijalainen, M.

Armitage, and N. Wilmot. 2020. Consumer-Led Transition: Australia’s World-

Leading Distributed Energy Resource Integration Efforts. IEEE Power and Energy
Magazine 18, 6 (2020), 20–36. https://doi.org/10.1109/MPE.2020.3014720

[54] Majid Alkaee Taleghan and Thomas G. Dietterich. 2018. Efficient Exploration for

Constrained MDPs. In 2018 AAAI Spring Symposia.
[55] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning 4, 2 (2012), 26–31.

[56] Sebastian Tschiatschek, Aytunc Sahin, and Andreas Krause. 2018. Differentiable

Submodular Maximization. In Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence. 2731–2738.

[57] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. 2016. Safe Exploration

in Finite Markov Decision Processes with Gaussian Processes. In Advances in
Neural Information Processing Systems.

[58] AkifumiWachi, Yanan Sui, Yisong Yue, and Masahiro Ono. 2018. Safe Exploration

and Optimization of Constrained MDPs Using Gaussian Processes. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 32.

[59] Po-WeiWang, Priya Donti, BryanWilder, and Zico Kolter. 2019. SATNet: Bridging

deep learning and logical reasoning using a differentiable satisfiability solver. In

Proceedings of the 36th International Conference on Machine Learning. 6545–6554.
[60] Stephen Wilcox and William Marion. 2008. Users manual for TMY3 data sets.

National Renewable Energy Laboratory Golden, CO.

[61] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. 2020.

Projection-based constrained policy optimization. arXiv preprint arXiv:2010.03152
(2020).

[62] Ahmed S Zamzam and Kyri Baker. 2020. Learning optimal solutions for extremely

fast AC optimal power flow. In 2020 IEEE International Conference on Communi-
cations, Control, and Computing Technologies for Smart Grids (SmartGridComm).
IEEE, 1–6.

[63] Kaiqing Zhang, Bin Hu, and Tamer Basar. 2020. Policy Optimization for H2

Linear Control with H∞ Robustness Guarantee: Implicit Regularization and

Global Convergence. In Learning for Dynamics and Control. PMLR, 179–190.

[64] Zhiang Zhang and Khee Poh Lam. 2018. Practical Implementation and Evalu-

ation of Deep Reinforcement Learning Control for a Radiant Heating System.

In Proceedings of the 5th Conference on Systems for Built Environments (Shenzen,
China) (BuildSys ’18). ACM, New York, NY, USA, 148–157.

[65] Zidong Zhang, Dongxia Zhang, and Robert C Qiu. 2019. Deep reinforcement

learning for power system applications: An overview. CSEE Journal of Power and
Energy Systems 6, 1 (2019), 213–225.

[66] Lin Zhao, Wei Zhang, He Hao, and Karanjit Kalsi. 2017. A geometric approach

to aggregate flexibility modeling of thermostatically controlled loads. IEEE
Transactions on Power Systems 32, 6 (2017), 4721–4731.

[67] Kemin Zhou and John Comstock Doyle. 1998. Essentials of Robust Control. Vol. 104.
Prentice hall Upper Saddle River, NJ.

210

https://doi.org/10.1109/MPE.2020.3014720

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Reinforcement Learning
	3.2 Differentiable Projection Layers

	4 Approach
	4.1 Problem Formulation
	4.2 Approximate Convex Constraints
	4.3 Policy Optimization

	5 Experiment 1: Energy-efficient Building Operation
	5.1 Problem Description
	5.2 Implementation Details
	5.3 Results

	6 Experiment 2: Inverter Control
	6.1 Problem Description
	6.2 Implementation Details
	6.3 Results

	7 Discussion and Conclusions
	8 Acknowledgments
	References

