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ABSTRACT

While reinforcement learning (RL) is gaining popularity in energy
systems control, its real-world applications are limited due to the
fact that the actions from learned policies may not satisfy functional
requirements or be feasible for the underlying physical system. In
this work, we propose PROjected Feasibility (PROF), a method
to enforce convex operational constraints within neural policies.
Specifically, we incorporate a differentiable projection layer within
a neural network-based policy to enforce that all learned actions
are feasible. We then update the policy end-to-end by propagating
gradients through this differentiable projection layer, making the
policy cognizant of the operational constraints. We demonstrate
our method on two applications: energy-efficient building oper-
ation and inverter control. In the building operation setting, we
show that PROF maintains thermal comfort requirements while
improving energy efficiency by 4% over state-of-the-art methods.
In the inverter control setting, PROF perfectly satisfies voltage con-
straints on the IEEE 37-bus feeder system, as it learns to curtail as
little renewable energy as possible within its safety set.
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1 INTRODUCTION

There has been increasing interest in using learning-based methods
such as reinforcement learning (RL) for applications in energy
systems control. However, a fundamental challenge with many of
these methods is that they do not respect the physical constraints
or functional requirements associated with the systems in which
they operate. Therefore, there have been many calls for embedding
safety guarantees into learning-based methods in the context of
energy systems applications [20, 29, 65].

One common proposal to address this challenge is to provide
machine learning methods with “soft penalties” to encourage them
to learn feasible solutions. For instance, the authors of [14, 64]
incentivize their RL-based building HVAC controller to satisfy ther-
mal comfort constraints by adding a constraint violation penalty to
the reward function. While such approaches often involve tuning
some weight on the penalty term, recent work has proposed more
theoretically-grounded approaches to choosing these weights; for
instance, in the setting of approximating AC optimal power flow,
the authors of [13, 25] interpret the weight on their constraint
violation penalty as a dual variable, and learn it via primal-dual
updates. Gupta et al. [32] adopt a similar approach in an inverter
control problem. However, a challenge with these types of “soft
penalty” methods in general is that while they incentivize feasibil-
ity, they do not strictly enforce it, which is potentially untenable in
safety-critical applications.

Given this limitation, a second class of approaches has aimed
to strictly enforce operational constraints. For instance, in some
cases, the outputs of a machine learning algorithm can be clipped
post-hoc in order to make them feasible. However, a challenge is
that such post-hoc corrections are not taken into account during
the learning process, potentially negatively impacting overall per-
formance. More recent approaches based in deep learning have
therefore aimed to enforce simple classes of constraints in a way
that can be taken into account during learning; for instance, Za-
mzam and Baker [62] train a neural network to approximate AC
optimal power flow (OPF), and enforce box constraints on certain
variables via sigmoid activations in the last layer of the neural net-
work. In general, however, existing approaches have only been able
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Figure 1: The PROF framework. Our pohcy consists of a neural network followed by a differentiable projection onto a con-
vexified set of operational constraints, Cr (which is constructed via an approximate model, fk, of the environment). The dif-
ferentiable projection layer enforces the constraints in the forward pass, and induces policy gradients that make the neural

network cognizant of the constraints in its learning,.

to accommodate simple sets of constraints, prompting a need for
methods that can incorporate broader classes of constraints.

In this work, we propose a method to enforce general convex
constraints into RL-based controllers in a way that can be taken
into account during the learning process. In particular, we construct
a neural network-based policy that culminates in a projection onto
a set of constraints characterized by the underlying system. While
the “true” constraints associated with the system may be somewhat
complex, we observe that simple, approximate physical models
are often available for many systems of interest, allowing us to
specify convex approximations to the relevant constraints. The
projections onto these (approximate) sets can thus be characterized
as convex optimization problems, allowing us to leverage recent
developments in differentiable convex optimization [2, 5] to train
our neural network and projection end-to-end using standard RL
methods. The result is a powerful neural policy that can flexibly
optimize performance on the true underlying dynamics, while still
satisfying the specified constraints.

We demonstrate our PROjected Feasibility approach, PROF, on
two settings of interest. Specifically, we explore a building operation
setting in which the goal is to reduce energy consumption during
the heating season, while ensuring the satisfaction of thermal com-
fort constraints. We additionally explore an inverter control setting
where the goal is to mitigate curtailment, while satisfying inverter
operational constraints and nodal voltage bounds. In both settings,
we find that our controller achieves good performance with respect
to the control objective, while ensuring that relevant operational
constraints are satisfied.

To summarize, our key contributions are as follows:

o Aframework for incorporating convex constraints. We
propose a projection-based method to flexibly enforce con-
vex constraints within neural policies (as summarized in
Figure 1). By examining the gradient fields of the differen-
tiable projection layer, we recommend the incorporation
of an auxiliary loss for more robust results. We also show
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in an ablation study (Section 5.3) that propagating gradi-
ents through the differentiable projection layer is indeed
conducive to policy learning.

e Demonstration on building control. In the building con-
trol setting, we show that PROF further improves energy
efficiency by 10% and 4%, respectively, compared to the best-
performing RL agents in [64] and [14]. By using a locally-
linear assumption to approximate the building thermody-
namics and thereby formulating the constraints as a poly-
tope [15, 66], we largely maintain the temperature within
the deadband, except when the control is saturated.

¢ Demonstration on inverter control. In the inverter con-
trol setting, PROF satisfies the voltage constraints 100% of
the time over more than half a million time steps (1 week
at one second per time step), with a randomly initialized
neural network, compared to 22% over-voltage violations
incurred by a Volt/Var control strategy. With respect to the
objective of minimizing renewable generation curtailment,
PROF performs as well as possible within its conservative
safety set after learning safely for a day.

2 RELATED WORK

Our approach relies on recent developments in implicit neural
network layers, and is thematically similar to several recent works
in safe RL. We briefly discuss these topics, and refer interested
readers to [20, 22, 29, 49, 65] for comprehensive reviews of relevant
work in power and energy systems application domains.

Implicit layers. A neural network can be viewed as a composi-
tion of functions, or layers, with parameters that can be adjusted to
improve performance on some task. While many of the layers com-
monly used within neural networks (e.g., convolutions or sigmoid
functions) represent explicit functions that provide a direct mapping
between inputs and outputs, there has recently been a great deal of
interest in expanding the set of commonly-used layers to include
those representing implicit functions [39]. This has included the cre-
ation of layers capturing optimization problems [2, 5, 19, 30, 56, 59],
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physical equations [17, 18, 31], sequence modeling processes [6],
and games [41]. In this work, we leverage advances in differentiable
optimization in particular, namely by incorporating a differentiable
convex optimization layer into our neural policy in order to project
proposed control actions onto the feasible set of constraints.

Safe reinforcement learning. While (deep) RL methods in general
lack safety or stability guarantees, there has been recent interest in
learning RL-based controllers that attempt to maintain some notion
of safety during training and/or inference - e.g., to satisfy physical
constraints or avoid particularly negative outcomes [28]. These
include methods that aim to determine “safe” regions of the state
space by making smoothness assumptions on the underlying dy-
namics [3, 10, 57, 58], methods that combine concepts from RL and
control theory [12, 21, 33, 42, 44, 46, 63], approaches based on for-
mal verification logics [27, 34, 35], and methods that aim to bound
some (discounted) cost function characterizing violations of safety
constraints [1, 4, 54, 61]. While the particular notion of “safety”
considered varies between settings, relevantly to the present work,
several of these prior works employ some form of differentiable pro-
jection within the loop of deep RL. For instance, within the context
of constrained Markov decision processes (C-MDPs), Yang et al. [61]
project neural network-based policies onto a linearly-constrained
set of policies with bounded cumulative discounted cost. In the
context of asymptotic stability, Donti et al. [21] project the actions
output by their controller onto a convex set of actions satisfying
stability specifications obtained via robust control. In the setting
of robotic motion planning, Pham et al. [45] project actions onto
a linear set of robotic operational constraints, and apply separate
updates to the neural network based on both pre-projection and
post-projection actions. Similarly to this prior work, our approach
employs differentiable projections within a neural network policy
to enforce operational constraints over some planning horizon.

3 PRELIMINARIES

We now present background on technical concepts used by PROF,
namely reinforcement learning and differentiable projection layers.

3.1 Reinforcement Learning

The goal of RL is to learn an optimal control policy through direct
interaction with the environment. The problem is usually formu-
lated as a Markov decision process (MDP). At each time step k,
the agent selects an action uy given the current state x, using its
policy 7y (Equation 1). In many modern RL techniques, the policy
is commonly represented by a neural network parameterized by 6.
When the agent takes the action u, the state transitions to x” based
on the system dynamics f (Equation 2), and the agent receives a
reward ry. (or equivalently, incurs a cost ¢ = —rg).

u ~ 7 (ug|xk), 1)

X'~ f (e we). )

RL algorithms optimize for a policy that maximizes the expected
cumulative reward, or equivalently, minimizes the expected cumu-

lative cost, where y is a temporal discount factor:

(e8] (o)

0* = arg méix Er, ylrk+l} = arg m@in Exp ylck+l] . 3

1=0 1=0
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To simplify notation, we will denote the expected cumulative cost
as J(0), ie.,

o)

J(0) =Er, 4)

chk+l } .
1=0

There are three general approaches to RL, namely value-based
methods, policy gradient methods, and actor-critic methods. Value-
based methods, e.g., Q-learning and its variants, update the value
function of state-action pairs using the Bellman equation and take
the action that maximizes the value of an action selection policy
(the Q function) through exploration. Policy gradient methods, e.g.,
Proximal Policy Optimization (PPO) [51], directly search for an
optimal policy Jfg using estimates of policy gradients. Denoting
the policy gradient as g := Vg J (), the core idea of policy gradient
algorithms is that they update 6 based on an estimate, ¢, of the
gradient, i.e.,

0 —0-ag (5)
for some learning rate «. Different algorithms vary in how they
obtain §. For instance, the learning objective for PPO, which we
use in our building control experiment (Section 5), is given by the
following equation, where A, is the generalized advantage estimate
that can be estimated via any of the estimators in [50]:

Jopo(0) = By [min(wy (0)Ay, clip(wi (0),1— 6,1+ €)Ay)],
wi(0) = 7o (ki)

70,1 (Wi XK)

and the estimate g is constructed based on this learning objective.

Actor-critic methods, e.g., Advantage Actor-Critic (A2C), are hy-

brids of the value-based and policy gradient approaches, using a

policy network to select actions (the actor) and a value network to
evaluate the action (the critic).

(6)

3.2 Differentiable Projection Layers

As previously described, a neural network is a composition of pa-
rameterized functions (layers) whose parameters are adjusted dur-
ing training via backpropagation (a class of gradient-based methods).
Any function can be incorporated into a neural network as a layer
provided that it satisfies two main conditions. The first condition is
that it must have a forward procedure to map from inputs to outputs
(i.e., do inference). The second is that it must have a backwards proce-
dure to compute gradients of the outputs with respect to the inputs
and function parameters, in order to enable backpropagation.

With that in mind, consider the Ly-norm projection P¢ : R” —
C that maps from some point in & € R” to its closest point in some
constraint set C C R" as follows:

Po(@) = argmin [lu - a3 %
ueC

In cases where C is convex, Equation 7 is a convex optimization
problem. The forward procedure of this operation can then be im-
plemented by simply solving the optimization problem, e.g., using
standard convex optimization solvers. Perhaps less evidently, it is
also possible to construct a backwards procedure for this problem
by using the implicit function theorem [40], as described in previous
work (e.g., [2, 5]).

As an example, consider the case where C characterizes linear
constraints, i.e., C = {u : Au = b,Gu < h} for some A € R™a*" p ¢
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R™a, G € RMnea*" and h € R™nea, Tt is then possible to efficiently
compute gradients through Equation 7 by implicitly differentiating
through its KKT conditions, i.e., conditions that are necessary and
sufficient to describe its optimal solutions. In particular, as described
in [5], the KKT conditions for stationarity, primal feasibility, and
complementary slackness for this case are given by

F-a+ ATV +GT* =0
Au* -b=0
diag(A*)(Gu* - h) =0,

®)

where u*, 1*, and v* are the optimal primal and dual solutions.

By the implicit function theorem, we can then take derivatives

through these conditions at the optimum in order to obtain relevant

gradients. Specifically, the total differentials of these KKT conditions
are given by

du — di + dATv* + ATdv + dGTA* + GTdA =0

dAu* + Adu—db =0

diag(Gu* — h)dA + diag(1*)(dGu* + Gdz — dh) = 0.

©

As described in [5], these equations can then be rearranged to solve
for the Jacobians of any of the solution variables u*, A*, v* with
respect to any of the problem parameters i, A, b, G, h (or, in practice,
to solve directly for these Jacobians’ left matrix-vector product with
some backward pass vector, in order to reduce space complexity).

While the above example is for the case of a linearly-constrained
projection operation, these kinds of gradients can be computed
for convex projection problems in general. For instance, Donti
et al. [21] compute gradients through a projection onto a second
order cone by differentiating through the fixed point equations of
their solver, and Agrawal et al. [2] provide a method and library
for differentiable disciplined convex programs. A key benefit of
using these kinds of projection layers for constraint enforcement
is that they allow gradients through the enforcement procedure to
flow back to the neural network, thereby informing the parameter
updates of this network during training.

4 APPROACH

We now describe PROF, which incorporates differentiable projec-
tions onto convex(ified) sets of operational constraints within a
neural policy.

4.1 Problem Formulation

Consider a discrete-time dynamical system

X1 = f (Xgs g, wi)s (10)

where x; € R® is the state at time k, uj € R? is the control input,
wi € R4 is an uncontrollable disturbance (which we assume to
be observable), and f : R® x R? x RY — RS denotes the system
dynamics. Letting X} and Uy denote the allowable state and action
space, respectively, we can define the set of all feasible actions over
the planning horizon T as Ci, where

xiv1 = f (i, ui, wi),

i€ X u; € U Viel{k,...,k+T—-1};.

(11)

Ck = {uk:k+T1
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Our goal is then to learn a policy that optimizes the control objective,
J, while enforcing the operational constraints. To simplify notation,
we denote u = up.p,7_1. In the case of a deterministic policy, i.e.,
u = 7y, the learning problem is simply

mein J(0) st mg € Ck. (12)
In the case of a stochastic policy, e.g. u ~ N (p, diag(o?)), [p, o] =
7g(xx ), we can write the problem as

mein J(@) st oupeC. (13)
In this case, it is necessary to sample actions around p in order to
estimate policy gradients. At the same time the actions sampled
from 7y might fall outside of Cy. Thus, we enforce that both p and
the sample action u satisfy the constraints.

4.2 Approximate Convex Constraints

In practice, there are two key challenges inherent in solving Equa-
tions 12-13 as written. The first is that the disturbances w; are
not known ahead of time, meaning that the optimization problem
must be solved under uncertainty. One approach to addressing
this, from the field of robust control [67], involves constructing
an uncertainty set over the disturbance, and then optimizing for
worst-case or expected cost under this uncertainty set. Here, we
simply assume a predictive model of the disturbances is available.
(By re-planning frequently, we observe that the prediction errors
have limited empirical impact on performance in the two applica-
tions we study.) We will use the notation wy. to denote our forecast
of the disturbance if k is a future time step, and the true value of
the disturbance if k is the present or a prior time step.

The second challenge pertains to the form of the set Cy, which
may be poorly structured or otherwise difficult to optimize over.
In particular, our framework relies on obtaining convex approx-
imations to the constraints in order to enable differentiable pro-
jections (see Section 3.2). Fortunately, for many energy systems
applications, some approximate model fk is often available based on
domain knowledge that allows Cy. to be approximated as a convex
set, despite the complex nature of the true dynamical system.

Thus, letting f; denote our approximations of the dynamics and
w; denote the (forecast or known) disturbance ateachi = k,..., k+
T — 1, we define our approximate convex constraint set as

xiv1 = fi (i, ui, Wi),
Xj € Xi, uj € (L[i

ék = {uk:k+T—1 Vi e {k, ok +T — l}} .

(14)
We note that f and w are approximated solely for the purposes of
constructing approximate constraint sets, and are not used other-
wise during training and inference (i.e., our neural policy interacts
with the true dynamics and disturbances during training and infer-
ence).

4.3 Policy Optimization

Let 7zg be any (e.g., fully-connected or recurrent) neural network
parameterized by 6. Our policy entails passing the output from the
neural network to the differentiable projection layer $5 charac-
terized by the approximate constraints, which enforces that the
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Algorithm 1 PROF

1: procedure MAIN(env, J) //input: environment, control objective
2 init neural network 7y, replay memory M

3 specify RL algorithm A, batch size M, update interval K
4 specify planning horizon T

5: // online execution

6 fork=1,...do

7 observe state xj.

8 predict future disturbances Wk 71

9 construct constraint set ék, policy mg = Pék o Ty
10: compute uj = INFERENCE(7g, xg, T)

11 execute action ENV.STEP(uy)

12: save MEMORY.APPEND(X, Uj, Wk:k+T—1)
13: // update policy every K time steps
14: if mod(k, K) = 0 then
15: #g = TRAIN(%g, J, M, A)
16: end if
17: end for
18: end procedure
19:
20: procedure INFERENCE(7g, Xg, T)
21: // input: neural policy, current state, planning horizon
22: select action up. ;. 7_1 ~ g

// only return the current action; replan at each time step
23: return uy
24: end procedure
25:
26: procedure TRAIN(7%y, J, M, A)
27: // input: neural policy, objective, replay memory, RL algorithm
28: init £(0) =0
29: fori=1,...,Mdo
30: sample x,u,w ~ M
31 construct constraint set C’k, policy mg = Pék oy
32: compute training loss

L(6) +=J(0) + Allmg (x) = A(x) I

33: end for
34: train 7y via A to minimize £
35: return 7y

36: end procedure

resultant action is feasible with respect to these constraints. The
overall (differentiable) neural policy is then given by

(15)

The key benefit of embedding a differentiable projection into
our policy is that it enforces constraints in a way that is visible to
the neural network during learning. In this work, we implement
the differentiable projection using the cvxpylayers library [2].

We construct the following loss function, which is a weighted
sum of the control objective J and an auxiliary loss term to be
explained shortly in this section. A > 0 is a hyperparameter.

L(0,xg) = J(0) + Mmg(xi) — 7ig (xp) I3

7o (xk) = P, © g (xx).!

(16)

1We use the notation f o g(x) := f(g(x)) to denote function composition.
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Figure 2: Illustrative example of gradients from the differen-
tiable projection layer. u* and u* denote unique optimal ac-
tions minimizing some convex control objective J in the un-
constrained and constrained settings, respectively; V|7 —
u'||§ is thus a proxy for V;J. (a) u® ¢ C. The gradients V;/
point towards u* as desired, such that r = P o will reach

this optimal point. (b) u® = u* on the interior of C. The gra-
dients V;J do not cause 7 (or its projection) to update to-
wards the interior. Adding a weighted auxiliary loss term,
e.g., ||r — ||, can help direct updates towards the interior.

We then train our policy (Equation 15) to minimize this cost us-
ing standard approaches in deep reinforcement learning. The full
algorithm is presented in Algorithm 1.

4.3.1 Visualization of gradient fields. To provide more intuition
on the differentiable projection layer and our cost function, we
visualize the gradient fields in a hypothetical example with a deter-
ministic policy and a planning horizon of T = 1. Specifically, for the
purposes of illustration, let u® and u* denote unique optimal ac-
tions minimizing some convex control cost J in the unconstrained
and constrained settings, respectively:

u® ~mge; 0° = argmgin J(9)

u* ~ mgx; 0* = argmein J(6) st uecCy.

In Figure 2, we then plot the gradient fields in two cases: (a) u® ¢ C,
and (b) u® € Ci. Note that u® and u* are assumed to be known here
for illustrative purposes only, and are not known during training.

In particular, we plot the gradients (black arrows) of [|u® — P¢, o
fr||g with respect to the output of the neural network 7. These
indicate the direction in which the neural network would be in-
centivized to update in order to minimize the system cost. If no
differentiable projection were embedded within the policy, all the
gradients would point towards u® without regard for the constraints.
Instead, in the case of u® ¢ Cy. (Figure 2a), the gradients through the
differentiable projection layer point towards u* instead of u®. More
specifically, if g (x) € Ck, then the projection layer is simply the
identity, and the gradients point directly towards u*; otherwise,
the gradients point along the boundary of C in the direction of
u*.
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This case is of particular interest, as in many practical applica-
tions some operational constraint will be binding. As a concrete
example, the ultimate energy-saving strategy for building oper-
ations is to keep all mechanical systems off (i.e., u® = 0), which
obviously violates occupants’ comfort requirements and is outside
the set of allowable actions (i.e., u® ¢ Ci). Thus, the problem is to
find a policy that uses the mechanical system as little as possible
without violating comfort requirements. Given the common case
where the control objective is convex, this then lies on the boundary
of the constraint set (i.e., u* = Pg, ou®).

We also depict the case where the solution of the unconstrained
problem already satisfies the constraints, i.e., u® = u* € Cy (Fig-
ure 2b). If this is generally the case for a particular application, we
note that a constraint enforcement approach (ours or otherwise)
is likely not needed, and indeed utilizing gradients through the
projection layer may actually degrade performance. Specifically, if
7tg(xx) € Cy, the gradients do not point towards the interior of the
constraint set, meaning that g (x) = P, o 7g(x) will lie on the
boundary of the constraints despite the optimal solution being in
the interior. This can be amended by augmenting the loss function
with a (weighted) auxiliary term such as ||y (xg) — 7o (xx) ||§ whose
gradients (blue arrows) point towards the interior.

It may not be known a priori whether or not 4* is in the con-
straint set in general or at any given time, except when domain
experts are fully clear on the structure of the solutions for specific
applications. In particular, Cy, is time-varying, making it difficult
to know for sure whether or not the constraints will indeed be
binding at any given time. For robustness, we therefore recommend
incorporating the auxiliary loss ||zg(xx) — g (xk)||§ within the
RL training cost, unless it is known from domain knowledge that
the constraints will certainly be active. As such, we formulate the
training cost function as previously given in Equation 16.

5 EXPERIMENT 1: ENERGY-EFFICIENT
BUILDING OPERATION

There is significant potential to save energy through more efficient
building operation. Buildings account for about 40% of the total
energy consumption in the United States, and it is estimated that
up to 30% of that energy usage may be reduced through advanced
sensing and control strategies [24]. However, this potential is largely
untapped, as the heterogeneous nature of building environments
limits the ability of control strategies developed for one building to
scale to others [14]. RL can address this challenge by adapting to
individual buildings by directly interacting with the environment.

The most important constraint in building operation is to main-
tain a satisfactory level of comfort for occupants, while minimiz-
ing energy consumption. It is common in the RL-based building
control literature to penalize thermal comfort violations [14, 64],
which incentivizes but does not guarantee the satisfaction of these
comfort requirements. In comparison, our proposed neural policy
can largely maintain temperature within the specified comfortable
range, except when the control is saturated.

We evaluate our policy in the same simulation testbed as [14, 64],
following the same experimental setup as [14]. Specifically, we first
pre-train the neural policy by imitating a proportional-controller
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(P-controller). We then evaluate and further train our agent in the
simulation environment, using a different sequence of weather data.

5.1 Problem Description

Simulation testbed. We utilize an EnergyPlus (E+) model of a
600m? multi-functional space (Figure 3a), based on the Intelligent
Workplace (IW) on Carnegie Mellon University (CMU) campus,
located in Pittsburgh, PA, USA. The system of interest is the water-
based radiant heating system, of which a schematic is provided in
Figure 3b. In this experiment, we control the supply water tempera-
ture so as to maintain the state variable, i.e., the zone temperature,
within a comfortable range during the heating season. In the exist-
ing control, the supply water (SW) is maintained at a constant flow
rate, and its temperature is managed by a P-controller. For more
information on the simulation testbed, refer to [64].

Approximate system model. We approximate the environment as
a linear system as follows:

17)

where xj. represents the zone temperature and uy represents the
supply water temperature. wy. includes distributions from weather
and occupancy. While building thermodynamics are fundamentally
nonlinear, the locally-linear assumption works well for many con-
trol inputs [47]. We identify the approximate model parameters A,
By, and By with prediction error minimization [47] on the same
data used to pre-train the RL agent (see Section 5.2). The root mean
squared error (RMSE) of this model on a unseen test set is 0.14°C.

Xp1 ~ f (g ug, wi) = Axg + Buug + Bgwg,

Objective. Since our goal is to minimize energy consumption,
we define the control cost at each time step as the agent’s control
action, i.e. supply water temperature, which is linearly proportional
to the heating demand, i.e., cp = ug.

In contrast to the objectives in [14, 64], which are defined as
weighted sum of energy cost and some penalty on thermal comfort
violations, we consider the thermal comfort requirement as hard
constraints, in the form of Equation 13.

Constraints. To maintain a satisfactory comfort level, we require
the zone temperature to be within a deadband X = {x | 21.9°C <
x < 25.5°C} when the building is occupied, based on the building
code requirement of 10% Predicted Percentage of Dissatisfied (PPD)
[23]. We allow for a wider temperature range during unoccupied
hours. For the action, the allowable range of supply water tempera-
ture for the physical system is U = {u | 20°C < u < 65°C}.

While it may appear from this description that we have only
simple box constraints on both the state and action, we highlight
the fact that actions are coupled over time through the building
thermodynamics [66]. More concretely, a future state depends on all
past actions. Thus, a box constraint on xj,j,; is in fact a constraint
on ug.x4;- In this case, assuming f to be a linear system, ék isthena
set of linear inequalities, which can be geometrically interpreted as
a polytope.? We refer interested readers to [15, 66] for more details
on this formulation. In fact, it was experimentally demonstrated in
[15] that projecting actions onto the polytope constructed with an
approximate linear model was sufficient to maintain temperature

2 A polytope can be characterized as a set S = {x € R"|Ax < b}.
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Figure 3: Building simulation testbed (reproduced from

[14]).

within the deadband in a real-world residential household (though
[15] did not then differentiate through this projection).

Control time step. The EnergyPlus model has a 5-minute simu-
lation time step. Following [14, 64], we use a 15-min control time
step (i.e., each action is repeated 3 times) and a planning horizon of
T =12 (i.e., a 3 hour look-ahead).

5.2 Implementation Details

Offline pre-training. We pre-train a long short-term memory
(LSTM) recurrent policy (without a subsequent projection) by imi-
tating a P-controller operating under the Typical Meteorological
Year 3 (TMY3) [60] weather sequence, from Jan. 1 to Mar. 31. We
min-max normalize all of the state, action, and disturbance, and use
a learning rate of 1073, Specifically, we use the pre-trained weights
after training on the expert demonstrations for 20 epochs following
the same procedures as [16]. We refer readers to [16] for more de-
tails on the neural network architecture, training procedures, loss,
and performance evaluation.

Online policy learning. We optimize the policy with PPO [51]
over the weather sequence in 2017 from Jan. 1 to Mar. 31. We use
A = 10 (see Equation 16), a learning rate of 5 X 10~%, and RMSprop
[55] as the optimizer3 We update the policy every four days, by
iterating over those samples for 8 epochs with a batch size of 32.
For hyperparameters, we use a temporal discount rate of y = 0.9, €
= 0.2 (see Equation 6), and a Gaussian policy (see Equation 13) with
o linearly decreased from 0.1 to 0.01.

5.3 Results

After pre-training on expert demonstrations from the baseline P-
controller, our agent directly operated the simulation testbed based
on actual weather sequences in Pittsburgh from Jan. 1 to Mar. 31 in
2017. Figure 4a shows the behavior of our agent at the onset of de-
ployment over a 3-day period. The baseline P-controller reactively
turns on heating when the environment switches from unoccupied
to occupied, which results in thermal comfort violations in the
mornings. In comparison, PROF preheats the environment such
that the environment is already at a comfortable temperature when
occupants arrive in the morning. Notably, the differentiable projec-
tion layer manages to enforce this preheating behavior despite this
behavior not being present in the expert demonstrations.

3The code is available at https://github.com/INFERLab/PROF.
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26

States
Zone Temp.(°C)

01-02 01-03 01°04 01-05
---- Baseline P-Controller —— PROF
Deadband Unoccupied

(a) The differentiable projection layer enforces preheating behavior
to ensure deadband constraints are never violated, even though this
behavior is not present in the expert demonstrations.

26

States
Zone Temp.(°C)

02-03
—— PROF
Unoccupied

0202
Baseline P-Controller
Deadband

(b) The agent has found a more energy-efficient control strategy by
maintaining temperature at the lower end of the deadband.

Figure 4: Behavior of our proposed agent (a) at the onset
of deployment, with pre-trained weights based on expert
demonstrations and (b) after a month of interacting with
and training on the environment.

Figure 4b shows the behavior of our agent in comparison with
Gnu-RL [14], having interacted with and trained on the environ-
ment for a month. Gnu-RL is updated via PPO, similarly to the
current work, and incorporates domain knowledge on system dy-
namics. In comparison to Gnu-RL [14], which ends up trying to
maintain temperature at the setpoint, PROF learns an energy-saving
behavior by maintaining the temperature at the lower end of the
deadband. This explains the further energy savings compared with
Gnu-RL [14]. However, we also notice that the temperature require-
ment may be violated on cold mornings. This happens when the
control action is saturated, i.e., full heating over the 3-hour planning
horizon is not sufficient to bring temperature back to the comfort-
able range. (In principle, even these constraint violations could be
mitigated by increasing the length of the planning horizon.)

Table 1 summarizes the performance of our agent with compar-
ison to the RL agents in [14, 64]. Our proposed agent (averaged
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Table 1: Performance comparison. Our method saves energy
while incurring minimal comfort violations.

Heating PPD
Demand Mean SD
(kW) (%) (%)
Existing P-Controller [64] 43709 9.45 5.59
Agent #6 [64] 37131 11.71 3.76
Baseline P-Controller [14] 35792 9.71 6.87
Gnu-RL [14] 34687 9.56 6.39
LSTM & Clip + No Update 37938 8.55 3.39
LSTM & Clip 36068 + 2187 9.18 £ 0.67 3.49
PROF (ours) 33271 + 1862 9.68 £ 0.48 3.66

over 5 random seeds) saves 10% and 4% energy compared to the
best-performing agents in [64] and [14], respectively.

We also compare our method to two ablations: (1) LSTM & Clip
+ No Update, which uses the same pre-trained weights and the
projection layer to enforce feasible actions, but does not update
the policy, and (2) LSTM & Clip, which uses the same pre-trained
weights and the projection layer to enforce feasible actions during
inference, but does not propagate gradients through the differen-
tiable projection layer in the policy updates. We find that LSTM &
Clip slightly improves upon LSTM & Clip + No Update, but is less
performant compared to PROF. This affirms our hypothesis that the
gradients through the differentiable projection layer are cognizant
of the constraints and are thus conducive to policy learning.

6 EXPERIMENT 2: INVERTER CONTROL

Distributed energy resources (DERs), e.g., solar photovoltaic (PV)
panels and energy storage, are becoming increasingly prevalent
in an effort to curb carbon dioxide emissions and combat climate
change. However, DERs interfacing with the power grid via power
electronics, such as inverters, also introduce unintended challenges
for grid operators. For instance, over-voltages have become a com-
mon occurrence in areas with high renewable penetration [53],
and power electronics-interfaced generation has low-inertia and
requires active control at much faster timescales compared to tradi-
tional synchronous machines [43].

To alleviate these issues, IEEE standard 1547.8-2018 [9] recom-
mends a Volt/Var control strategy in which the reactive power
contribution of an inverter is based on local voltage measurements.
As will be clear in our empirical evaluation, this network-agnostic
heuristic based on local information alleviates, but does not avoid,
over-voltage issues. Given that the optimal solution needs to be ob-
tained at the system-level and that the problem needs to be solved
at very short timescales, a common paradigm is to address the
problem in a quasi-static fashion [38] adopted in works such as
[7, 32, 38], where one chooses a policy over the next time period,
e.g., 15 minutes-1 hour, and uses the policy without update for fast
inference. In this work, we adopt the same paradigm and consider
real-time control on a 1-second timescale of both active (P) and
reactive (Q) power setpoints at each inverter.

We envision that a neural policy can learn from its prior expe-
riences, in contrast to the traditional fit-and-forget approach [20],
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Figure 5: IEEE 37-bus feeder system, where the solar PV sys-
tems are indicated by green rectangles.

and is capable of making decisions faster compared to solving opti-
mization problems. Our primary contribution compared to existing
work is the ability to enforce physical constraints within the neural
network. In fact, we successfully enforce voltage constraints 100%
of the time with a randomly initialized neural network, over more
than half a million time-steps (i.e., 1 week with a one-second time
step). The assumed control and communication scheme is consis-
tent with the new definitions for smart inverter capabilities under
IEEE standard 1547.1-2020 [37].

6.1 Problem Description

The problem we are considering here is to control active and re-
active power setpoints at each inverter in order to maximize uti-
lization (i.e., minimize curtailment) of renewable generation, while
satisfying the maximum and minimum grid voltage requirements.
Here, we first define the considered test case and input data, and
describe the model of the network. We refer readers to [7] for more
details on the problem set-up.

IEEE 37-bus test case. We evaluate our method on the IEEE 37-bus
distribution test system [36], with 21 solar PV systems indicated
by green rectangles in Figure 5. We utilize a balanced, single-phase
equivalent of the system, and simulate the nonlinear AC power
flows using PYPOWER [48]. For the simulation, the solar generation
and loads are based on 1-second solar irradiance and load data
collected from a neighborhood in Rancho Cordova, CA [8] over a
period of one week (604800 samples).

Approximate system model. Denote the number of buses, exclud-
ing the slack bus (e.g., the distribution substation), as N, the net
active and the reactive power as p € RN and q € RV, and the
voltage at all buses as v € RN. We linearize the AC power flow
equations around the flat voltage solution, i.e. ¥ = 1, using the
method in [11]. The reference active and reactive power corre-
sponding to v = 1 is denoted as p and q. The linearized grid model,
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f, is given by Equation 18, where R, B € RN*N represent system-
dependent network parameters that can be either estimated from
linearization (e.g., [11]) or data-driven methods:

v~ f(p.q) =v+R(p-p) +B(q- Q)
v+ [R,B]

4]
——la-a]
H —
u
A notable advantage of the method in [11] is that the resulting
model has bounded error with respect to the true dynamics. By
incorporating the error bound when constructing the safety set, the
safety set is guaranteed to be a conservative under-approximation
of the true safety set, and thus allow us to satisfy voltage constraints
100% of the time.

(18)

Policy. Our policy takes as input the voltage from the previ-
ous time-step, load, and generation at all the buses, and outputs
active and reactive power setpoints at each inverter. (This is a de-
terministic policy; see Equation 12.) Note that while the grid model
(Equation 18) contains all N buses, only those with inverters are
controllable.

Our neural architecture is similar to the one used in [32], which
consists of a utility-level network, and inverter-level networks for
individual inverters. The utility-level network collects information
from all nodes, and broadcasts an intermediate representation to
all inverter-level networks. Using this information along with its
local observations, each inverter makes its local control decisions,
which are then projected onto the constraints (discussed below).

Objective. The objective is to minimize the curtailment of solar
generation, or equivalently to maximize the utilization of the avail-
able solar power, pgy. Specifically, letting 7 denote the set of buses
with inverters, the objective is

0) = mi i — Pil+ hy = 19
J(0) = min Zf[p pils, where[pr ar]=m (19)

Constraints. For an individual inverter, i, with rated power s;
and an available power (from available solar generation) pgy i, the
feasible action space is

Ui (k) = {(pi-q0) 0 < pi < pavi(k). p} +4} < 57}
(Ll(k) = ([Jl(k) X X 7/[‘]|(k)
At the same time, the voltage at each bus should remain between
0.95-1.05 p.u. The primary challenge of satisfying voltage con-

straints is that the voltage at each bus depends on actions of neigh-
boring nodes, i.e.

X={0]095Xx1<vav+Hu<105x1},
where the sparsity pattern of H is characterized by the admittance

matrix. We jointly project actions from all inverters at each time
step k onto the constraints U (k) N X.

6.2 Implementation Details

We evaluate PROF by executing it over the 1-week dataset (at 1
second) once. Similarly to other quasi-static approaches, we update
the policy every 15-minutes. Similarly to [32], we optimize the
neural policy with stochastic samples by directly differentiating
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through the objective (Equation 19) and the linearized grid model
(Equation 18). However our method differs in that Gupta et al. [32]
characterized the constraints as a regularization term, and learned
the policy via primal-dual updates. We incorporate the constraints
directly via the differentiable projection layer and thus guarantee
constraint satisfaction.

We use 1=10 (see Equation 16), a learning rate of 103, and
RMSprop [55] as the optimizer. At every 15 minutes, we sample 16
batches of data with size of 64 from the replay memory. We keep a
replay memory size of 86400, i.e., samples from the previous day. For
the both the utility-level network and the inverter-level network, we
use fully-connected layers with ReLU activations. The utility-level
network has hidden layer sizes (256, 128, 64), and each inverter-
level network has hidden layer sizes (16, 4) and outputs active and
reactive power. On top of the neural network, we implement the
differentiable projection layer, following the constraints described
in Section 6.1.

We compare our methods to three baselines, (1) a Volt/Var strat-
egy following IEEE 1547.8 [9], (2) the optimal solution with respect
to the linearized grid model, and (3) the optimal solution with
respect to the true AC power flow equations.

6.3 Results

The performance of PROF in comparison to the three baselines
is summarized in Figure 6. For clarity, we only show the maxi-
mum voltage over all buses; under-voltage is not a concern for this
particular test case.

We see that the Volt/Var strategy violates voltage constraints
22.3% of time, mostly around noon when the solar generation is
high and there is a surplus of energy. Since the Volt/Var baseline
does not adjust active power, there is no curtailment.

In comparison, PROF satisfies the voltage constraints through-
out the experiment, even with a randomly initialized neural policy.
While PROF performs poorly on the first morning, it quickly im-
proves its policy. In fact, the behavior of PROF is barely distinguish-
able from the optimal solution with respect to the linearized grid
model, after learning safely for a day. This implies that PROF learned
to control inverters as well as possible given its approximate model,
which constructs a conservative under-approximation of the true
safety set.

The optimal baseline with respect to the true AC power flow
equations unsurprisingly achieves the best performance with re-
spect to minimizing curtailment, as it can push the maximum volt-
age to the allowable limit in order to maximally reduce the amount
of curtailed energy. However, inverter control is a task that requires
near real-time inputs, and we find that running this baseline can be
prohibitively slow. Specifically, we evaluate the computation time
of different operations by averaging over 1000 randomly sampled
problems from our dataset on a personal laptop. For PROF, on aver-
age, a forward pass in the neural network (excluding the projection
layer) took 4.5 ms and the differentiable projection operation took
8.6 ms. The computation cost of the differentiable projection could
be further reduced by using customized projection solvers such
as the ones in [5, 21] that avoid the “canonicalization” costs intro-
duced by general-purpose solvers such as the one we use [2]. In
comparison, solving the optimization baseline with respect to the
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Figure 6: PROF satisfies voltage constraints throughout the experiment, and learns to minimize curtailment as well as possible
within its conservative safety set, Cy, after learning safely for a day.

true AC power flow equations took 1.02s on the same machine,
which is even longer than the 1s control time-step.

7 DISCUSSION AND CONCLUSIONS

In this work, we have presented a method, PROF, for integrating
convex operational constraints into neural network policies for
energy systems applications. In particular, we propose a policy that
entails passing the output of a neural network to a differentiable
projection layer, which enforces a convex approximation of the
operational constraints. These convex constraint sets are obtained
using approximate models of the system dynamics, which can be
fit using system data and/or constructed using domain knowledge.
We can then train the resultant neural policy via standard RL al-
gorithms, using an augmented cost function designed to effect
desirable policy gradients. The result is that our neural policy is
cognizant of relevant operational constraints during learning, en-
hancing overall performance.

We find in both the building energy optimization and inverter
control settings that PROF successfully enforces relevant constraints
while improving performance on the control objective. In partic-
ular, in the building thermal control setting, we find that our ap-
proach achieves a 4% energy savings over the state of the art while
largely maintaining the temperature within the deadband. In the
inverter control setting, our method perfectly satisfies the voltage
constraints over more than half a million time steps, while learning
to minimize curtailment as much as possible within the safety set.

While these results demonstrate the promise of our method, a
key limitation is in its computational cost. In particular, computing a
projection during every forward pass of training and inference is de-
cidedly more expensive than running a “standard” neural network.
A fruitful area for future work - both in the context of our method,
and in the context of research in differentiable optimization layers
as a whole — may be to improve the speed of such differentiable
projection layers. For instance, this might entail developing special-
purpose differentiable solvers [5, 21] for optimization problems
commonly encountered in energy systems applications, developing
approximate solvers that do not rely on obtaining optimal solutions
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in order to compute reasonable gradients, or employing cheaper
projection schemes such as a-projection [52] where possible.

Additionally, the success of our method (and many other con-
straint enforcement methods) depends fundamentally on the quality
of the approximate model used to characterize the constraint sets.
In particular, this determines the extent to which the resultant
approximate constraint sets are a good representation of the true
operational constraints. While we were able to employ reasonably
high-quality approximation schemes in the context of this work,
future work on safely updating the models or the constraint sets
directly [26] may greatly improve the quality of the solutions.

More generally, while our work highlights one approach to en-
forcing physical constraints within learning-based methods, we
believe this is only the start of a broader conversation on closely in-
tegrating domain knowledge and control constraints into learning-
based methods. In particular, strictly enforcing physical constraints
will be paramount to the real-world success of these methods in
energy systems contexts, and we hope that our paper will serve to
spark further inquiry into this important line of work.
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