JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, AUGUST X 1

Polymorphic Accelerators for Deep Neural
Networks

Arash Azizimazreah, and Lizhong Chen, Senior Member, IEEE

Abstract—Deep neural networks (DNNs) come with many forms, such as convolutional neural networks, multilayer perceptron and
recurrent neural networks, to meet diverse needs of machine learning applications. However, existing DNN accelerator designs, when
used to execute multiple neural networks, suffer from underutilization of processing elements, heavy feature map traffic, and large area
overhead. In this paper, we propose a novel approach, Polymorphic Accelerators, to address the flexibility issue fundamentally. We
introduce the abstraction of logical accelerators to decouple the fixed mapping with physical resources. Three procedures are proposed
that work collaboratively to reconfigure the accelerator for the current network that is being executed and to enable cross-layer data reuse
among logical accelerators. Evaluation results show that the proposed approach achieves significant improvement in data reuse,
inference latency and performance, e.g., 1.52x and 1.63x increase in throughput compared with state-of-the-art flexible dataflow
approach and resource partitioning approach, respectively. This demonstrates the effectiveness and promise of polymorphic accelerator

architecture.

Index Terms—Deep Neural Networks, Accelerators, Configurable Processing Element (PE) Array, PE Array Utilization, Data Reuse.

<+

1 INTRODUCTION

Deep Neural Networks (DNNs) can achieve unprece-
dented accuracy in many machine learning tasks, and have
been deployed in many fields [5], [28], [37]. Due to the com-
putation and memory intensive nature of DNNSs, specialized
hardware has been designed for acceleration. Depending on
network topologies and structures of layers, different types of
DNNs can be formed such as Convolutional Neural Network
(CNN), Multilayer Perceptron (MLP), and Recurrent Neural
Network (RNN). These models have been widely used in
diverse DNN applications (e.g. 95% of inference workloads
in Google’s data centers [17], [21]). Thus, it is imperative to
design accelerators that can work well with different neural
networks.

In a DNN accelerator, a process element (PE) array (e.g.,
multipliers and adders) performs the actual computation of
the network, whereas on-chip buffers store various data such
as weights and feature maps. Underutilization of the PE array
is a major obstacle for many recent DNN accelerators (e.g. [2],
[21], [29], [30], [32], [45]) to achieve high performance. The
root cause for the underutilization problem is the mismatch
between the static shape of the PE array and the diverse
dimensions of layers. This may potentially result in very
low utilization especially with compact data types. For
instance, the PE array utilization for SqueezeNet in 16-bit
fixed-floating point is only around 24% [33].

The main approach to address the underutilization
problem is resource partitioning, where each partition is
optimized to process a specific set of layers. The coordination
of multiple partitions to process a network, however, is a chal-

o A. Azizimazreah was with the School of Electrical Engineering and
Computer Science, Oregon State University, USA.
E-mail: arash.a.mazreah@gmail.com

o L. Chen is with the School of Electrical Engineering and Computer Science,
Oregon State University, USA.
E-mail: chenliz@oregonstate.edu

Manuscript received mm, dd, yyyy; revised mm, dd, yyyy.

lenging task as complicated dataflows may be needed. Only
a few works [2], [12], [20], [33], [40], [44] have achieved this
successfully. Nevertheless, existing approaches of resource
partitioning suffer from two major issues. First, on-chip and
off-chip data traffic is increased considerably. Both on-chip
and off-chip data movements are costly in terms of energy
consumption, not to mention the large latency of off-chip
accesses. Second, existing resource partitioning dataflows
cannot process different DNNSs efficiently at runtime. This is
because those dataflows are optimized for a given DNN at
design time, without the ability to dynamically reconfigure
the dataflow. Therefore, it is difficult for those schemes to
support multiple networks effectively. Alternatively, some
works have been proposed to directly reconfigure the acceler-
ator, without partitioning/sharing resources among multiple
models. Unfortunately, this approach has resulted in hardly
acceptable overhead for both ASIC (e.g., 47% more area [22])
and FPGA platforms (more details in Section 3). Thus, it is
much needed to develop a fundamentally different way to
support multiple neural network models, while reducing
data traffic and achieving high PE array utilization.

In this work, we propose a novel Polymorphic architec-
ture, which achieves the runtime reconfigurability of DNN
accelerators and enables extensive cross-layer data reuse.
The proposed approach is based on a new abstraction that
we introduce called logical accelerators. To process different
network layers, multiple logical accelerators can be formed
dynamically from a pool of PE cells and memory banks on
the physical accelerator. This decoupling allows feature maps
to be shared among logical accelerators without physically
copying the data. Meanwhile, the flexibility of logical accel-
erators provides a way to match better with the diverse layer
dimensions across networks. On of top that, we develop
three procedures called Polymorph, Feature Map Push and
Feature Map Pull, which work collaboratively to orchestrate
a sequence of operations to allow variable sizes of logical

accelerators to process multiple layers simultaneously, while
increasing the data reuse opportunities. An offline routine is
developed to generate parameters that are required by the
logical accelerators and associated procedures for any given
set of DNNs that need to be accelerated on the hardware.
Evaluation results show that the proposed polymorphic
architecture is able to reduce off-chip traffic by 25.7% to 77.1%
depending on the network. The polymorphic design also
increases performance (throughput of inference operations)
by 1.52x and 1.63x compared with the state-of-the-art flexible
dataflow and resource partitioning approach, respectively,
under the same area constraint. The main contributions of
this work are the following;:

e Proposing a novel concept of logical accelerators to
enable dynamic reconfiguration of DNN accelerators;

e Developing cleverly designed procedures to allow
cross-layer data reuse among logical accelerators;

e Demonstrating the effectiveness of polymorphic ar-
chitecture through extensive evaluation.

The rest of this paper is organized as follows. Section
2 provides more background on DNN accelerators. Section
3 discusses the motivations and challenges of this work.
In section 4, we describe the proposed approach in detail.
The accelerator implementation methodology is explained in
Section 5, and evaluation results and analysis are presented
in Section 6. Finally, related work is summarized in Section
7, and Section 8 concludes this paper.

2 BACKGROUND

Typical DNN accelerators (e.g., [7], [21]) process a DNN in
its natural structure, one layer at a time. Generally, a DNN
accelerator consists of an array of process element (PE) cells
and different on-chip buffers. Fig. 1 presents the datapath of
a typical DNN accelerator. The PE array receives 1), input
feature maps (IFMs) from an input buffer, fetches 7}, x 15,
weights from weight buffer, computes T, output feature
maps (OFMs) and stores the output into an output buffer.
If the computation of OFMs needs several iterations, at the
beginning of each iteration, a partial sum (PSUM) might
be loaded into the output buffer. Then, at the end of each
iteration, the PE array writes new PSUMs or final OFMs
into the output buffer. A PE cell can be as small as a simple
multiplier-and-adder (fine-grained) such as in Google TPUs
[21], or as large as a vector-dot-engine (coarse-grained) such
as in Microsoft’s BrainWave NPUs [11], [26]. To increase
throughput and energy-efficiency, the techniques below are
commonly adopted.

Banked On-chip Buffers: Many state-of-the-art accelera-
tors on both ASIC and FPGA platforms have large on-chip
buffers. For example, Google’s TPU and Xilinx VU13P FPGA
have 28MB and 56MB on-chip buffer capacity, respectively
[10], [21]. By partitioning a large buffer into smaller banks,
high capacitance on long word-lines and bit-lines [42] can
be avoided. Furthermore, banked buffers provide more read
and write ports. This allows simultaneous accesses to IFMs,
weights and OFMs, thus being essential to high-bandwidth
data transfer between buffers and PE array.

Tiling: Tiling techniques are often used when feature
maps are larger than on-chip buffer banks. A feature map

PE Cellwr PE Array |EM Buffer
gL F =
= a / T) [
fo) = L :
£ & [1 » T H
S gus| | [0 x T FMs :]
% = H Weights - ‘B)
utrrer ban
g TPSUMSs Jeee H T, PSUM/OFMs
Off-chip Transfer| | D DD D D
Module —

OFM Buffer

Fig. 1. A typical DNN accelerator datapath.

N=#IFMs, M=#0FMs, R=#Rows, C=#Columns Accelerator’s Core

Off-Chip Memory __——————_____ Input Buffer
y - ?B o - \\t S ~f=

'R N AY: N IEI
\] |] lBus IFMsl Weightsl
[!

| } B,

]V\\ I “‘\l I ‘\‘\Br/ | PE Array |
- =y

\ - C M B ,‘*\ psum] Psum /oFms |

Output Feature Maps

Input Feature Maps
B Active Bank [Jinactive Bank

7

RN 0000

Output Buffer

Fig. 2. Tiling and Double Buffering techniques.

is divided into smaller pieces so they can fit into an on-
chip buffer bank. Fig. 2 shows an example of tiling for
a three dimensional CNN layer, where the unrolling is
determined by tiling factors B,,, B, and B.. It may take
multiple iterations to load all the IFM tiles that are needed
to calculate one OFM tile.

Double Buffering: In order to hide the large off-chip
memory access latency, many DNN accelerators (e.g., [2],
[3], [21], [22], [29], [32], [33], [39], [45]) adopt a decoupled
access/execute architecture [34] to overlap the communica-
tion latency of data loading with computation time. This
is referred to double buffering. As shown in Fig. 2, during
each iteration, the input and output buffers that are being
used by the PE array are called active input and active output
buffers (represented as black rectangles), respectively. The
other set of buffers are called inactive input and output
buffers (represented as white rectangles in Fig. 2). As the
PE array is doing computation on the current B,, IFM tiles,
the inactive input buffer is being used to preload the next
B,, IFM tiles needed for the next iteration. Meanwhile, the
inactive output buffer temporarily keeps the computed B5,,
OFM tiles from the previous iteration while those tiles are
still being written back to off-chip memory. A similar manner
is used for weight buffers but are omitted for clarity.

Additionally, in this work, the dimension of a PE array is
defined by a tuple (1}, T,,)', where T, and T}, are unrolling
factors of OFMs and IFMs, respectively, as shown in Fig. 1.

3 MOTIVATION AND CHALLENGES
3.1 PE Array Underutilization

A major issue with many recent accelerators (e.g., [21],
[29], [30], [32], [45]) is the underutilization of the PE array.
Specifically, the dimensions of layers may be different across

1. The PE array shape can be generalized to four dimensions (To, T,
T, Te); the proposed approach is applicable as well.

Legend Layers
|

||:|PE Array Layer \\\\1dle Resources| L1 L2-a L3-aiL3-b i
:)
(a) Single PE Array 12-b
N) IR =
L1 §§§\\ 22\ [1afzb
OO MMM !
(b) Multiple PE Arrays
N
11 |[13-a | |L2-2
2 Iterations
i+1 i+2 i+4 i+5

Fig. 3. Underutilization of PE array (a), and the improvement from
resource partitioning (b).

a network, but the dimension of the PE array is static in the
sense that its numbers of inputs and outputs are fixed after
design time. A typical approach is to optimize the PE array
shape (dimension) for all the layers as a whole, e.g., Google
TPU uses a systolic array with a fixed dimension (256 x256) to
process different deep learning models [21]. However, some
underutilization is inevitable [22], [33]. Fig. 3a illustrates an
example where a single PE array processes three layers of the
same network one by one. Due to the dimension mismatch
and fragmentation, the PE array is severely underutilized. it
has been shown that, when implemented on a Xilinx Virtex-
7 690T FPGA, the overall PE array utilization is 76.4% for
32-bit floating-point SqueezeNet and less than 24% for 16-bit
fixed-point AlexNet [33]. Using more compact data types
is equivalent to having larger computational units under a
given hardware resource, thus exacerbating the issue.

3.2 Need for Resource Partitioning

To address the PE array underutilization problem, state-of-
the-art works have proposed resource partitioning. The basic
idea is that, instead of optimizing the PE array dimension for
all the layers, hardware resources are divided into multiple
coarse-grained partitions. Each partition can be considered
as a separate accelerator, and the PE array dimension in
each partition is optimized for a subset of layers. Fig. 3b
revisits the previous example, but with hardware resources
partitioned into two PE arrays with different dimensions to
process the three layers — one PE array for layers 1 and 2, and
the other for layer 3. It can be seen that the utilization of PE
arrays is increased considerably compared with the single
PE array case and the overall processing can be completed
in fewer number of iterations (5 vs. 3). Note that the layers
are still processed in order in Fig. 3b, e.g., the input to layer
3 comes from previous iterations (not shown) where layers
1 and 2 are processed. Thus, the layer processing is done in
pipeline.

3.3 Problems in State-of-the-art Designs

Because resource partitioning involves the coordination of
multiple partitions, the design of its dataflow can be quite
complicated and challenging. To date, only a few works have
successfully realized such dataflow [2], [12], [20], [33], [40],
[44], but all come with significant inefficiency and limitation.
In the design of accelerators, dataflow is a crucial element.
It describes the communication patterns between PE cells

and memory resources. In other words, the dataflow defines
that, given the datapath of an accelerator such as the one
shown in Fig. 1 and Fig. 2, when and where various data
(weights, IFMs, PSUMs and OFMs) are transferred between
on/off-chip memories and PE cells [24]. For example, in the
Weight Stationary (WS) dataflow [7], weights are stored in
the local buffers of PE cells. The weights are “stationary” in
the sense that the same weights are reused multiple times,
while different IFMs are loaded and processed from off-chip
memory. In contrast, in the Output Stationary (OS) dataflow
[7], PSUMs are stationary in the local buffers of PE cells and
reused multiple times for different IFMs and weights.

There are two key issues that remain to be addressed in
existing works. First, both off-chip and on-chip traffic are
greatly increased. Resource partitioning in general creates
more off-chip traffic, as IFMs to a partition are reused only
by the PE cells in that partition but not the PE cells in
other partitions. Also, the on-chip buffer allocated to each
partition is smaller, which leads to more off-chip traffic
(analogous to smaller cache size for the same working set).
Our experiments have shown that, for a simple AlexNet with
five CNN layers, resource partitioning increases the off-chip
feature map traffic by 20.3%. The situation becomes worse
for deeper models. For example, this percentage increases
to 30.6% for SqueezeNet with 26 layers (2 CNN layers, plus
8 fire modules each having 3 layers). Some existing works
try to mitigate this issue by forwarding data from the output
buffer of the current partition to the input buffer of the next
partition (inter-layer reuse [2], [12]). While these works can
reduce the off-chip traffic, a significant portion of the off-chip
traffic still remains, and the on-chip traffic is increased due
to data forwarding. It is worth noting that both off-chip and
on-chip traffic are very costly. Prior research has revealed
that a 32-bit floating-point addition needs only 1p]J, whereas
getting access to a 32-bit word in DRAM consumes 640p]
and performing a single pair of 32-bit on-chip reading and
writing consumes 100p]J in 45nm CMOS technology [15], [19].
Therefore, it is important to reduce data traffic in accelerators
to increase the efficiency.

Second, existing resource partitioning dataflows can-
not support different neural network models efficiently
at runtime. Previously proposed dataflows for resource
partitioning can be optimized for a given model at design
time, but they do not have the flexibility to reconfigure
dynamically [12], [44]. This reconfigurability is critical to
efficiency. We have characterized several mainstream deep
learning models using the average operational density, and
observed that it can vary by hundreds to thousands of times
among the models, e.g., from 1 operation/byte in MLP, to 50
in LSTM, to 8,754 in AlexNet. This is because CNN models
(e.g., AlexNet) are computation-intensive, thus performing
more operations per data (e.g., feature maps and/or weights)
than memory-intensive MLP and LSTM models. It is, thus,
critical to design dataflow accordingly. For example, consider
an LSTM or MLP model in real-time Al applications where no
batching is available. The Weight Stationary dataflow would
perform poorly as there is little opportunity for weight reuse.
Instead, a dataflow based on reusing outputs or PSUMs
would be more appropriate. Therefore, in order to run
multiple neural network models efficiently on an accelerator,
flexible dataflow is needed to match with different models,

which may be processed simultaneously across partitions.
This means an approach is needed where while it provides
partitioning for parallel processing, each partition can be
dynamically reconfigured during run-time to match with
layer requirements in different networks. Unfortunately, none
of the current resource partitioning approaches provides such
flexibility.

3.4 High Cost in Reconfigurable Platforms

In addition to resource partitioning, another approach to
increase PE array utilization is to directly reconfigure the
dataflow to match with the current model that is being
executed (without partitioning/sharing resources among
multiple models). This has been achieved on both AISC and
FPGA platforms, albeit at very high costs.

The latest and best approach so far on realizing re-
configurable ASIC DNN accelerators is via reconfigurable
interconnects [22]. It indeed allows the use of different
dataflows to process different deep learning models. How-
ever, the approach relies on a complex network-on-chip
(NoC) architecture to connect various adders, multipliers
and local buffers together. In some sense, this approach shifts
the challenging task of providing reconfigurable accelerators
to the NoC designs, rather than proposing a fundamental
solution to achieve reconfigurability. This leads to a dramatic
overhead for the interconnects and accelerator, with 47%
more area than the baseline design with a systolic PE array
[22].

Meanwhile, FPGAs are often used for machine learning
acceleration as a reconfigurable platform. Although the
prevalent belief is that they can be reconfigured for each
layer or a subset of layers for higher performance, the
reconfiguration overhead can be so high that it might not be
productive in terms of net performance improvement. Fig. 4
shows one of our interesting experiments on the throughput
improvement of SqueezeNet, when three Xilinx FPGAs are
used for reconfiguration. In this experiment, for each layer
if a new configuration leads to an overall performance
improvement by considering the reconfiguration latency
overhead, the new configuration is issued; otherwise the
system continues with its current configuration. As can be
seen, if the batch size is less than 24, regardless of the
FPGA size, no reconfiguration is issued because there is
no net performance benefit. For smaller FPGAs (485T and
690T), they have fewer number of DSP slices and require a
smaller bit-stream (reconfiguration data) to be loaded into the
reconfiguration memory of FPGA. Hence, the reconfiguration
overhead is easier to be amortized by increasing the batch
size. For the large VU9P FPGA, the breakeven point is
not reached even when the batch size is 64. The large
reconfiguration overhead of FPGA makes it a less attractive
option, especially for cases where batch sizes are small, e.g.,
real-time Al (batch size is 1) [11].

3.5 Challenges

From the above discussions, it is evident that a new approach
is much needed that can provide flexible configurations
for different neural network models while reusing data
efficiently in resource partitioning. This section analyzes

5 U 485T (Small FPGA)

-§, . 1.08 _4 90T (Larger than 485T)

_g g 1.06 -@-VU9P (Relatively Large FPGA)
= C 1.04

T3

8 510

© £

g= 1

6

S o9

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Batch size

Fig. 4. Normalized throughput improvement when reconfiguration is used
for SqueezeNet.

major limiting factors and challenges to realize such an
approach.

Dynamic Reconfiguration: While sounds exciting,
achieving efficient reconfiguration in terms of PE array
dimensions, buffer shapes, dataflow and partition sizes
is a difficult task for several reasons. First, in existing
partitioning approaches, resources are allocated physically
to partitions at design time. In order to provide the flexi-
bility in allocation, we need a way to decouple partitions
from physical resources. Second, as the resources of each
partition are changing dynamically, some method is needed
to efficiently track and update partition information during
runtime and, more importantly, enforce the partitioning in
the hardware physically. Third, the shapes of the PE array
and buffers in a partition need to match with the requirement
of network layers. This demands coordination of resources
and data distribution within and across partitions. Finally,
the reconfiguration scheme needs to have good extensibility
that can support new DNN models even after the accelerator
has been implemented.

Data Reuse and Sharing: To reduce off-chip traffic,
feature map data should be shared and reused among
partitions as much as possible. The challenge, however, lies
in two aspects. First, it is challenging to store the forwarded
reusable data without using additional buffers. These data
might take several iterations to consume. This requires
careful coordination between partitions to somehow use
existing buffers to store the data without compromising the
original functionality of input/output and active/inactive
buffers. Second, for feature map data that can be shared, it
is still costly to copy data between partitions, even on-chip.
Therefore, we need a more efficient way to share the data
without actually copying data between the buffers of PE
cells.

4 PROPOSED APPROACH
4.1

To address the above issues, we propose Polymorphic accel-
erators, a novel approach to achieve the reconfigurability
that is needed to efficiently execute diverse neural networks
on the same accelerator. To achieve that, we introduce the
abstraction of Logical Accelerators, which can be constructed
dynamically from a pool of physical PE cells and memory
banks to match different layer dimensions in a network, as
shown in Fig. 5. Specifically, for each of the neural networks
that needs to be accelerated, an offline software routine is run

Basic Idea

(a) R:Read Port W:Write Port _Index Physical PE Cells

Logical Accelerator 1 / Logical Accelerator n
K L
eoe LN
L O L
Interconnect
14
ANKE 17| Physical |31 AWEE
1 E oo |y 1 X Banks Y Y+if ®®® (7.1 z
/ _ Buffers eee Buffers N\
VA AV
Index’ vl ilControIs ¥ [Memory Bank
Layer Unit 1 - Layer Unit M
Operations Operations

(Element-wise, Batch Norm,
Pooling, activation functions)

(b) (c)

PE Cell

) (Element-wise, Batch Norm,

Pooling, activation functions)

Control Unit

ﬁﬁﬁﬂﬁﬁ

T,, Words 4~

(%]
S
=) Controls 2
«\ 1
[} & Indices Reordering|
Sl) In
=1 s To Interconnect
= |- T Controls Indices
4 o
7 i PE Cell Indi
T Wordsl_ Controlling ef
Parameter
Active 1/0 bank

Tree Adder| Registers

Weights
\ / Inactive 1/0 bank|Indices

Polymorphic Tables

Fig. 5. Proposed polymorphic approach.

once to generate the best configuration for the network (e.g.,
the optimal number of logical accelerators, the dimension
of each logical accelerator, and other parameters that are
needed at runtime). The configurations, one for each network,
are passed on and stored in a control unit in hardware.
During runtime reconfiguration (i.e., when the accelerator
needs to execute a particular neural network), the control
unit simply loads the corresponding configuration and
enforces the configuration in hardware. The enforcement (i.e.,
reconfiguration) is achieved by maintaining and updating a
polymorphic table (Fig. 5c) for each logical accelerator that
stores the indices of the constituent physical PE cells and
memory banks.

The core of the polymorphic design is three procedures,
namely Polymorph, feature map Push (FM Push), and feature
map Pull (FM Pull), that work together to orchestrate a
sequence of operations to allow variable sizes of logical
accelerators to process multiple layers simultaneously, while
maximizing the opportunity for cross-layer data reuse among
the logical accelerators.

In a nutshell, the proposed accelerator is made poly-
morphic by (1) having an offline routine to generate the
needed configuration for each neural network, and (2)
augmenting components in the accelerator to switch to
(and enforce) any particular configuration online. Note that
this reconfiguration is fundamentally different from using
a reconfigurable platform (e.g., FPGA). In the FPGA case,
the accelerator needs to be re-compiled if accelerating a
different neural network, thus being slow. In contrast, the
proposed polymorphic accelerator has fixed hardware after
manufacturing, but still be able to reconfigure by loading
and enforcing different configurations, thus being fast and

LA: Logical Accelerator

LA1 Polymorphic Table LA2 Polymorphic Table
PE Index=1 PE Index=2 PE Index=3
Group In | out Group
1 | Active 5,6 1
Inactive | 1
::ycs:I:;I ‘r._+ -F.—‘I' E 3 | [Jmactive data
W: Write Port 2 1 2 1k 2 .Active data

RReadPart
t 1+ 1 ¢ 1 *1 ¢

I e R

Fig. 6. Multiple logical accelerators can be defined on the hardware by
using polymorphic tables.

Physical
Banks

requiring no compiler support.

In the remainder of this section, we present the details of
the polymorphic architecture, the three runtime procedures,
the offline routine, the interconnect structure, and how the
design can be easily extended to support new networks that
need to be accelerated.

4.2 Logical Accelerators

The key element in the proposed polymorphic accelerator
architecture is logical accelerators. A logical accelerator consists
of one or multiple groups of hardware resources, where each
group contains a subset of physical PE cells and physical
memory banks (hereafter, unless otherwise stated, PE cells
and memory banks mean the actual physical resources). Dur-
ing runtime, logical accelerators are constructed dynamically.
Each logical accelerator is assigned to process a layer. Thus,
multiple logical accelerators can process multiple layers
simultaneously.

Fig. 6 illustrates an example where two logical accelera-
tors are formed from a subset of the PE cells and memory
banks. Each logical accelerator has a polymorphic table in
the control unit in Fig. 5c that defines the configuration of
the logical accelerator. A group in an logical accelerator is
defined by one row in the polymorphic table which contains
the indices of PE cells and memory banks. For instance,
consider the second logical accelerator (LA2 in green). The
logic PE array of LA2 consists of PE cell 2 and PE cell 3. Each
PE cell has its own four types of logic buffers (i.e. active
input, inactive input, active output, and inactive output) and
the indices of the physical memory banks for each logic
buffer are stored in the polymorphic table. In this example,
LAZ2 has only one group, but in general, a logical accelerator
that processes a layer might have several groups and thus
several rows in the polymorphic table.

Logical accelerators can be reconfigured during runtime
by updating the indices in the polymorphic tables. Specifi-
cally, during a given round (e.g., an iteration or a cycle), the
finite state machines (FSMs) in the control unit calculate the
updated indices of the polymorphic tables for the next round.
Those indices determine which PE cells should be physically
connected to which memory banks during the next round.
This is implemented by setting the interconnect accordingly
(e.g., crosspoints in the crossbar) by the control unit at the
beginning of the next round to reflect the new configuration.

Besides the flexibility in forming logical accelerators that
can match better with the shapes of the layers, the abstraction

Fig. 7. Configurable PE array.

of logical accelerators also allows data to be reused more
efficiently. By exchanging indices in the polymorphic tables,
reusable data can be fed to another logical accelerator without
physically copying the data between memory banks. Those
advantages and properties provide the basis for our proposed
Polymorph, FM Push and FM Pull procedures.

4.3 Polymorph Procedure

The Polymorph procedure consists of a cleverly designed
sequence of steps that operate a set of small PE cells as if
there is only one large (logical) PE cell. Precisely, given a total
number of Npg PE cells each with dimension (7},, T},), they
can be divided into Tr number of groups. As illustrated in
Fig. 7a, a large logical PE cell with dimension (T, Tn) can
be formed by grouping p PE cells, where
p= NPE/TRvTM =pX Ty, ITn =pxT,

The resulting T’r large logical PE cells operate in parallel
to process a layer. This creates a 3-D shape vector-dot-engine
(a logical PE array), which receives an input window of
Tr x Ty IFMs and computes an output window of T'r x Ty
OFMs as shown in Fig. 7b. By changing Tr, the size of the
input and output processing windows can be adjusted to
match with the layer dimensions in different networks to
increase PE cell utilization. The main challenge, however,
is how to orchestrate individual fine-grained PE cells to
distribute and share data efficiently. For example, by the
definition of convolution, each of the Ty IFMs of the large
logical cells needs to be multiplied by the weights in each of
its constituent small PE cells, so each PE cell cannot simply
process T, IFMs and discard them.

The Polymorph procedure executes two steps repeatedly
to achieve the above objective: Reuse-Compute/Preload (RCP)
and Rotate. In the RCP step, the IFMs in the active input
buffers are first reused. Then, while the PE cells are comput-
ing the OFMs/PSUMs, the next tiles of IFMs are preloaded
into the inactive input buffers. In the Rotate step, the indices
of the memory banks in the active input buffers of a group
are rotated. This allows IFMs to be shared among the PE
cells. The RCP and Rotate steps are repeated p times in total
to maximize data reuse and make time for the next iteration
of IFMs to be fully preloaded.

Fig. 8 demonstrates how the Polymorph procedure is
executed to construct a logical accelerator with a shape of
(Tv, Tn), using one group of p PE cells where each PE
cell has T}, IFM inputs and 7, OFM outputs. If the logical
accelerator has more than one group, a similar execution
flow is used for other groups. In this example, the logical

accelerator needs to process a layer with 2 x p x T,, IFMs
and p x T;,, OFMs. Each small vertical rectangle represents a
memory bank. The buffers closer to the PE cells are the active
buffers, and the inactive buffers are beneath the active ones.
If each bank stores one feature map, in one IFM iteration, the
logical accelerator can read p x T}, IFMs and compute p x T},
OFMs. Therefore, two IFM iterations are needed to load all
the 2 x p x T}, IFMs required to compute all p x T3, OFMs.
Each IFM iteration needs to execute the RCP and Rotate steps
p times, as explained below.

Fig. 8-Label@ shows the status of each bank and PE cell
at the beginning of the Polymorph procedure. The active
input buffers are labeled by ”I1” to “Ip”, and they contain
IFMs (indicated by the blue rectangles) which can be used
to perform the first round of RCP. These IFMs are reusable
data brought into the active input buffers by the FM Pull
procedure in the previous iteration (explained in the next
subsection). Thus, for the first IFM iteration, no IFM needs
to be actually loaded from off-chip.

The first IFM iteration starts by the first round of RCP
step as shown in Label@. The PE cells are highlighted in
yellow to show that they have started the computation to
calculate the PSUMs in the active output buffers (represented
by the yellow rectangles). While the PE cells are performing
the computation, the first tile of the IFMs required for the
next (second) IFM iteration is preloaded from off-chip into
an inactive input buffer as indicated by the red rectangles
and red arrow. After finishing the computation, as shown
in Label@), the Rotate step is executed to rotate the memory
banks among the active input buffers in order to reuse the
on-chip IFMs among PE cells, i.e., the old I1 becomes the
new 12, old 12 becomes new I3, and so on. After executing
the Rotate step, in Label@, another round of computation is
performed by the PE cells to calculate their OFMs with new
IFMs after rotation. Again, while the PE cells are calculating,
the next tile of IFMs required for the second IFM iteration
are preloaded into the inactive input buffers.

The process of executing the RCP and Rotate steps
continues for another p — 2 rounds in order to reuse and
process all the on-chip IFMs in the active input buffers. At
this time, the first IFM iteration of OFM computation is
completed. More importantly, the inactive input buffers have
been preloaded with the IFMs needed by the second IFM
iteration. To use these data, the bank indices of the active
input buffers are exchanged with the bank indices of the
inactive input buffers. Then, the RCP and Rotate steps are
executed for another p rounds to finish the computation
for the second IFM iteration and consequently for OFMs as
shown in Fig. 8. In the final state in the figure, all the IFMs
in the active input buffers are consumed by the PE cells and
marked as empty banks, represented as the white rectangles.
The computed OFMs are stored in the active output buffers
as indicated by the black rectangles®. As mentioned earlier,
the rotates and exchanges are done through updating the
indices in polymorphic tables, not copying data physically
between memory banks, thus reducing both off-chip and
on-chip memory operations.

2. This can easily be generalized if several OFM iterations are needed.

How to group several PEs together

(1) Grou o G

1[I0 0000 |2 (0-0||0T-00 || v (@000 || v (00| O0=~00) |r2(@--00| (D000 || o [0~0]||[00-00
|0--0l|([o0---00] | (0--{0}}{[00---00) [0--00]||[00---00 I1)||[00--D0] | (0--0])\(00--~D0] gg---00
In Out In Out In Out

Off-Chip Memory

ao0--00 0--[}||[00---00
— Off-Chip Memory
p-2 Rounds of Rotate and | xchange active input,), P Rounds of Rotate
[> Rcp with inactive input and RCP [> m Group
First IFM Iteration Second IFM Iteration T T

Bank Status n m

[inactive & Empty [l'nactive & Contain Pre-loaded IFM Ip n IP'I
lAct'ive&Contain OFM [JActive & Contain PSUM ||:|m|:|| ||:||:|...|:||:|| ||:|m|:|| ||:||:|...|:||:|| X ||:|m|:|| “:”]m[”:”
[Active & Empty D Active & Contain IFM

Group

1p-1[[-]

—
—
—
—

—
—
—
—

Fig. 8. lllustration of the Polymorph procedure for a group to build a logical PE array and process a layer.

(a)|6 LA b) (1) FM Push is.running FM Pull is running
T"Tm T"Tm Tn T,,Il-) l-lTn T
00--00]|, {001 |[00--~00 7 a1
00--00 0000 Sl =

Off-Chip Memory

FM Push is running

. ! TT FM Pull is r.unning
ToT S slEcly, r g,y ey, E e VO W
00-00]). . 0000 T o] e e
0000 00--00 [V R | O {0~} T -
[

‘;’:,:tf\tztgsmntain OFM [Final | T —

ctive & Empt I- I
Eﬁctiveiio:t;:n IFM LA: Logical T" Tm T, @ T Tn T Tn T
.Inactive&Contain Pre-loaded IFM Accelerator I]...I]u.l]...l] . I]...I]o-.l]...[l D...D...D...D .. [I"'[I"'I]“'I]
H:::z:“::iimzn I R -0 000 000

Fig. 9. (a) Feature Map Pull procedure, and (b) Feature Map Push procedure.

4.4 Feature Map Push and Pull Procedures

The Feature Map Push and Pull procedures initialize logical
accelerators and enable cross-layer feature map reuse.

Feature Map Pull (or Pull procedure for short) has two
main functions: (1) initialize the polymorphic table, and (2)
prepare IFMs for the Polymorph procedure by loading from
off-chip or reusing on-chip. The first function is achieved
straightforwardly by initializing the polymorphic table using
the FSM in the control unit. As discussed, for each layer,
T'r determines the number of groups in a logical accelerator.
The FSM creates T rows in the polymorphic table, one
row for each group. The format of each row is shown in
Fig. 6. For every execution of the Pull procedure, the rows
are initialized with indices of the corresponding PE cells and
memory banks.

For the second function, depending on which layer is
being processed, there are two cases. In the first case, this
is the first layer of the network assigned to the logical
accelerator. The Pull procedure has to load the IFMs from
off-chip memory since there is no cross-layer feature map

reuse opportunity for the first layer. Fig. 9a illustrates the
execution of the Pull procedure for this case. As shown in
Fig. 9a-Label@, the off-chip IFMs are loaded into the inactive
input buffers and then exchanged with the active input
buffers (through indices exchange, not copying physically)
as denoted by the bidirectional red arrow. Label@ shows the
final state after the Pull procedure execution. The active input
buffers contain IFMs (blue rectangles) which can be used for
the layer computation. This final state has the same format as
the initial state of the Polymorph procedure in Fig. 8-Label@.
Thus, the Polymorph procedure can be started immediately
after the Pull procedure. In the second case, this is not the
first layer, so the IFMs can be obtained from the Feature Map
Push procedure of the previous layer (logical accelerator), as
described below.

Feature Map Push (or Push procedure) works in pair
with the Pull procedure. The main objective is to reuse the
computed OFMs as IFMs between two logical accelerators.
For a clear explanation of how the Push procedure works,
consider two logical accelerators, where one is assigned to

process layer i-1 and the other is assigned to process layer
i. Therefore, for each input data, the computed OFMs of
logical accelerator i-1 can be reused as the IFMs for logical
accelerator i. This requires the Push procedure to be run on
logical accelerator i-1 to “push” feature map data to logical
accelerator i where the Pull procedure runs on to “pull” the
data into the input buffers. Again, all the data exchange is
through manipulating indices in polymorphic tables.

Fig. 9b shows how the two procedures work together. As
shown in Label@), feature map forwarding is realized by
exchanging memory banks in the active output buffers of
LA i-1 (which contains computed OFMs indicated by the
black rectangles) with memory banks in the active input
buffers of LA i. However, it is possible that the number of
banks in the active output buffers of LA i-1 is larger than
the number of banks in the active input buffers of LA i. To
reuse the remaining computed OFMs, note that the inactive
input and output buffers of LA i must be empty by now. This
is because LA i has already processed all the IFMs in the
previous iteration and is running the Pull procedure to get
more data. Consequently, the remaining OFMs from LA i-1
are forwarded to the inactive buffers of LA i through bank
index change, as shown in Label@. In case that some OFMs
still remains after using the inactive buffers of LA i, those
OFMs are written back to off-chip memory for future uses,
as shown in the red arrow to off-chip memory in Label @.

The final outcome after executing the Push and Pull
procedures is also shown in Fig. 9b. For LA i-1, the active
output buffers are marked as empty (white rectangles) as
the computed OFMs have been forwarded to LA i. Note
that, this might not be the final state of LA i-1, as its active
and inactive input buffers might be loaded with reusable
data from LA i-2, through the Push-Pull procedures between
LA i-2 and LA i-1. For LA i, this is indeed the final state
where reusable IFMs are loaded into the active input buffers
(blue rectangles) and potentially the inactive buffers (striped
blue rectangles). After this, the Polymorph procedure of LA
i can start immediately. With reusable IFMs in the inactive
buffers, the off-chip preloading operations in the Polymorph
procedure (red arrows in Fig. 8) do not happen until the IFMs
in the corresponding inactive buffers are consumed first.

4.5 Simultaneous Layer Processing

Fig. 10a illustrates how the proposed polymorphic accelerator
uses the above three procedures to process a network.
Without loss of generality, three logical accelerators (LA1,
LA2, and LA3) are created to process a network for three
segments of input data, represented as different colors. At
time slot t1, LAl runs the Pull procedure (“PLL” in the
figure) to initialize the polymorphic table and load the IFMs
of the first layer from off-chip memory. At t2, LA1 runs the
Polymorph procedure to form the PE array and its buffers
to process the first layer. At the end of layer processing at t3,
the Push procedure of LA1 (“PSH” in the figure) and the Pull
procedure of LA2 work as a pair to initialize the polymorphic
table of LA2 as well as reuse the computed OFMs of LA1 as
the IFMs of LA2 for the second layer processing. At the same
time at t3, the Pull procedure of LAl is executed to update
the polymorphic table and read the IFMs for the second
input data segment from off-chip memory (teal color). At t4,

8

LeEe“d“:llnput 1[Cinput 2[Jinput 3 \Nidle Cyclesl PSH : FM PUSH
PL

= =
m!

LA 1 [Layer1 || Layer 1 | Layer1 | [tayer 4§|
LA2 [PLL] [Layer 2 §§| :lS.H [Layer 2 §| === ([Layer 2 §|
LA3 [PLE+ TeLL |
Time Sime Siot [Layer3 | [Layer3 |
1l t2 t3 t4 t5 t6 t8

Fig. 10. Simultaneous processing of network layers.

both LA1 and AL2 run the Polymorph procedure to process
their corresponding data simultaneously. A similar pipelined
manner is followed to process other layers, e.g., at t7, three
pairs of Push-Pull are running to reuse cross-layer data.
Additionally, a logical accelerator is always used to
process the same layer but with different inputs consecutively,
e.g. LAl is used to process layer 1 from t1 to t7. Thus, the
same weights on the LA can be reused for different inputs.

4.6

Interconnects are used to support the communication for
PE cells to read IFMs and PSUMs and write OFMs/PSUMs
to/from buffers. As an example, consider implementing the
Polymorphic accelerator on the Xilinx Virtex-7 FPGA. One
good implementation, based on the offline routine that is
described in the next section, needs 14 PE cells, each having a
size of (T,,=17, T,,=3), and 560 memory banks. This translates
into having interconnect networks of size 14 x 560 between
PE cells and memory banks, and no interconnect is needed
between PE cells or between memory banks based on Fig. 5a.
The cost of such an interconnect network is very reasonable,
accounting for less than 10% of the power and area of the
accelerators.

This overhead is significantly less than existing config-
urable accelerator works (e.g., 47% additional area for the
interconnects in [22] over the baseline design with systolic
PE array). The main reason is that, those works need to
use complex interconnects to support reconfigurability. For
example, MAERI (a recent work) uses three configurable
interconnects, one for the distribution of weights and IFMs
among multipliers, one for the forwarding of IFMs between
multipliers, and one for the reduction of partial results.
This unnecessarily complicates the interconnect designs.
However, the interconnect in the Polymorphic accelerator
simply performs the function of the interconnect itself —
connecting PE cells to memory banks. Thus, a simple crossbar
may suffice. The connectivity at each crosspoint is set based
on the configuration for a given neural network.

Interconnects

5 IMPLEMENTATION METHODOLOGY

As mentioned previously, we develop an offline routine
to generate optimized configurations for different neural
networks. Fig.11 illustrates the flow chart of this routine.
The inputs to the routine include the layer details of the
networks, resource profile of the FPGA or specification of
the ASIC chip, data type format, overhead constraints, and
maximum memory bandwidth. The outputs of the offline

routine include two types of parameters. The first type is
static parameters such as the PE cell dimensions (1}, T},)
and total number of PE cells (Npg). These static parameters
are used to build the accelerator’s datapath (e.g., in HDL
or HLS codes) during implementation. The second type is
dynamic parameters. They act as input arguments for the
three procedures and provide required information such as
the number of logical accelerators (N7, 4), tiling parameters
for each layer, and number of rows in polymorphic tables
(T'r) for each layer. The routine considers the impact of
parameters on cycle count and off-chip traffic in two phases,
respectively.

The routine starts by enumerating all possible combina-
tions for (T',,, T\, Npg), and removes the ones that exceeds
the available hardware resources of the platform (e.g., LUT
counts, number of I/O ports, memory). For each viable
combination of (T',,, T, Npg), the routine enumerates the
number of logical accelerators Ny, 4. Then, network layers are
assigned to Ny 4 logical accelerators in a way that adjacent
layers are assigned to consecutive logical accelerators as
explained in Section 4.5. For each layer, the number of
operations (additions and multiplications) is estimated based
on the number of output neurons and layer type, from
which the number of PE cells allocated to each logical
accelerator can be calculated (i.e., proportional in order to
balance pipeline). Finally, using the expressions introduced
in prior work [30], [33], [45], the cycle count for each logical
accelerator during a layer processing can be estimated by:

cycle_count = [T%] X f%} X [%W xCxKxKxp

where M, N, R, and C are layer dimensions shown in Fig.2,
and T, TN,/ Tr, and p are PE array dimensions and number
of PE cell in each group, respectively, shown in Fig.7. The
routine selects (T',, T, Npg, N a) and T g that leads to the
minimum cycle count.

The second phase considers feature map off-chip traffic.
For a logical accelerator, there are four tiling parameters
(Bm, Bn, By, B.) shown in Fig. 2 which define tile sizes
and consequently buffer sizes and off-chip traffic. The tiling
parameters can be different for each layer. The routine
enumerates the combination of (B,,, B,, B, B.) and uses
the equation below to select the one that leads to the
minimum off-chip traffic while not exceeding the available
on-chip memory:

#of f_chip_accesses = vy, X Tiler, +vout X Tileoyt

where T'ile; is tile size and ; is the trip count for buffers. Trip
count refers to the number of times that a buffer is loaded
or stored from/into off-chip memory. It can be estimated
using a simple function that consists of four nested loops
(one loop for each layer dimension). The function counts the
number of times that buffers are loaded or stored for a given
combination of tiling parameters during layer processing by
considering the Push and Pull procedures.

Due to the limited ranges of parameters, the above routine
is fast despite having several enumeration operations, and
usually completes under a minute. Note that having an
offline “helper” program has been commonly used in recent
accelerator works [12], [16], [22], [44], although the specific
functionality of the routine is different in this work.

Extensibility is another advantage of the proposed ap-
proach. If a new network needs to be executed on the

Inputs

details of networks,
resource profile, ...

| Enumerate T,, T, and N, |

[Remove cases that exceed available resources |

[

| For each (T,, T,,, Np) enumerate N, | Outputs
L 2

J

Layer assignment to logical
accelerators and PE cell allocation

Dynamic
Parameters

For each (T, T,,, Ny ,N,,) estimate cycle

n? “m?

count for different T, for each layer

Static Parameters

Accelerator Datapath
Implementation

Polymorphic
Accelerato

L 2
[select one with the minimum cycle count |

Enumerate tiling parameters
(B,.,B,,B,,B,.) for each layer

Trip count and feature map off-chip

traffic estimation for each layer Run Time
L 2 -
Polymorphic
Select (B,,,B,,B,,B.) for each layer "y, B .y
with minimum off-chip traffic N
Input _
Data
Determining bank sizes based
on the largest tile size output

Fig. 11. Routine for generating parameters.

accelerator, the routine is run on the host CPU to generate
the needed parameters for the new network. The host CPU
then updates the control unit in the accelerator with these
dynamic parameters, which are used to initialize logical
accelerators when the new network is executed.

For implementation, we use FPGA as the evaluation
platform to demonstrate the effectiveness of the proposed
polymorphic approach. This allows us to assess the design
under different settings, and follow the transactions between
the accelerator’s core and off-chip memory precisely. We
model the accelerator using HLS (high-level-synthesis) in
Xilinx Vivado HLS. The implementation is parametrized, and
the parameters can be set to the optimal values generated
by the offline routine. Although the evaluation is conducted
using FPGA, a similar flow can be used to implement the
polymorphic architecture on ASIC. As mentioned earlier, the
reconfigurability of the proposed polymorphic accelerator is
not from the platform but rather from the architecture itself.

6 RESULTS AND ANALYSIS

We first compare the polymorphic (PM) architecture with
a baseline (BL) design in accelerating 7 neural networks to
illustrate various aspects of PM in detail. We then evaluate
against several state-of-the-art designs to highlight the
advantages of PM. Finally, the scalability of PM and the
impact of using compact data types are presented.

6.1

The evaluation in this section is carried out on Xilinx
Virtex UltraScale+ VU9P FPGA using 32-bit floating-point at
200MHz. The baseline is modeled after Section 2 that includes
banked buffers, tiling, and double buffing, and has fixed PE
array dimensions. To make the baseline more competitive,
we also augment it by implementing functional units that
perform operations such as pooling and activation function
in a pipelined fashion, so as to overlap their operations

Evaluation of Polymorphic Architecture

TABLE 1
Baseline (BL) vs. Polymorphic (PM)

Deep Learning Model Type Irregular CNN Regular CNN | Inception CNN | Residual CNN RNN Fully Connected
Network AlexNet SqueezeNet VGGNet-D GoogLeNet ResNet-34 LSTM MLP
Approach BL PM BL PM BL PM BL PM BL PM BL PM BL PM

DSP Usage 98% 98% 98% 98% 98% 98% 99% 98% 99% 98% 96% 95% 98% 99%
BRAM Usage 99% 98% 94% 98% 96% 97% 92% 91% 96% 86% 32% 31% 32% 29%
Latency (ms) 6.24 2.62 4.01 2.15 56.75 | 51.03 8.53 6.76 15.62 13.38 0.15 0.12 0.001 0.0009

Off-chip FM traffic (MB) 46.0 22.3 46.0 27.5 101 30.2 53.0 121 69.0 9.94 4.21 3.13 0.03 0.02
Throughput (GOPS) 214.6 | 510.6 | 280.0 | 523.1 | 479.8 | 533.5 | 416.6 525.5 455.2 531.4 423.6 | 512.5 | 350.7 467.7
TABLE 2 1 9 i .
Resource Partition (RP) vs. Polymorphic (PM) T, [N\ 033 Reduction XZ"U% Reduction
§ T ’ [l Off-chip
Approach RP [33] PM ‘}2 '-‘E 0.6 Control Unit
FPGA Virtex-7 690T | Virtex-7 690T 234 Interconnect
Frequency(MHz) 100 100 g ,—E Buffers .
Network AlexNet AlexNet & g 02 .Sge;il(zsh;ﬁéﬁk; » Signals,
Data Format (Floating-point) 32-bit 32-bit o0
DSP Usage 88% 89% BL PM BL PM
BRAM Usage 49% 37% AlexNet VGGNet-D
On-Chip Power (Watts) 10.2 11.3
Off-chip FMs (MB) 52.8 32.7 Fig. 12. Breakdown of power consumption.
Throughput(GOPS) 113.9 127.7
TABLE 3 inception CNNs (GoogLeNet), residual CNNs (ResNet-34),

Performance Comparison with state-of-the-art single-layer accelerator
on equivalent FPGAs

Approach Design in [25] PM
FPGA Arria-10 Virtex-7
GX 1150 485T
Frequency(MHz) 150 150
Network VGGNet-D VGGNet-D
Data Format (Fixed-point) 16-bit 16-bit
DSP Usage 100% 100%
BRAM Usage 70% 89%
Latency (ms) 47.97 41.32
On-Chip Power (Watts) 21.2 17.5
Off-chip FMs Traffic (MB) | Not Reported 32.6
Throughput(GOPS) 645.3 809.0

with PE array computation. The offline routine described in
the previous section is used to generate optimal parameters
such as PE array dimensions and buffer size for the baseline
design. In other words, the baseline design can be considered
as a special case of polymorphic design where it has only
one logical accelerator with one PE cell and one group.
Consequently, by setting Np4, Npg, and T, to one, the
offline routine can generate optimized parameters for the
baseline design. Therefore, the baseline is optimized and
tailored for each specific network to improve the throughput
and reduce the off-chip traffic. However, the proposed PM is
designed to work with multiple DNNs.

Table 1 summarizes the results. Seven networks are
selected in a way that covers major deep learning models,
including CNNs with irregular dimensions (AlexNet and
SqueezeNet), CNNs with regular dimensions (VGGNet-D),

10

a large scale LSTM model (non-CNN) [38] and a large scale
MLP (non-CNN) [8]. The first two rows of numbers show
the resource usage of BL and PM for the computing resource
(DSPs) and on-chip memory resource (BRAMs). We aim to
use the same amount of BRAMs and DSPs in both designs for
fair comparison, although slight differences in some cases are
inevitable due to the internal fragmentation when mapping
PE arrays and buffers to DSPs and BRAMs, respectively.

The last three rows in the table present the main perfor-
mance metrics including latency, off-chip feature map traffic,
and throughput. It can be seen that, the proposed PM has
significant improvement in all of these metrics. For the infer-
ence latency, the reduction of PM over BL ranges from 10.0%
for MLP to 58.0% for AlexNet. The off-chip traffic reduction
varies from 25.7% for LSTM to 85.6% for GoogLeNet. Most
importantly, for the accelerator as a whole, the throughput
improvement can be as high as 2.37x for AlexNet and 1.87x
for SqueezeNet, with at least 11.2% (for VGGNet-D) across
the networks. The large and consistent improvement for all
the major neural network models clearly demonstrate the
effectiveness of the polymorphic architecture. In addition, it
can be observed that the networks with irregular dimensions
of layers (e.g., AlexNet and SqueezeNet) tend to have greater
improvement on PM. This is because irregular networks have
more mismatch in the baseline, whereas PM is specifically
proposed to address this issue.

Fig. 12 shows the normalized power consumption of
BL and PM for AlexNet and VGGNet-D. We present the
results for these two networks here as they represent the
highest (AlexNet) and the lowest (VGGNet-D) throughput
improvement, and the trend of other networks falls some-
where between them. The main overhead of PM is a control
unit and an interconnect between the PE cells and memory

banks. The control unit in PM accounts for 4.0% and 3.6%
of the total power for AlexNet and VGGNet-D, respectively.
The interconnect in PM accounts for 9.3% and 7.6% of the
total power for AlexNet and VGGNet-D, respectively. These
overheads are higher than those in BL, but the benefits are the
flexibility of logical accelerators and the substantial reduction
in off-chip traffic. This leads to 12.03% reduction in the total
power for AlexNet and 22.27% reduction VGGNet-D, when
compared with BL.

6.2 Comparison with State-of-the-Art

In this subsection, we compare the proposed Polymorphic
accelerator with three most related state-of-the-art designs.
Comparisons are based on the metrics, configurations, and
workloads that are reported in the original works. The first
compared design is resource partitioning (RP) [33]. Table 2
lists the results of RP and PM for AlexNet on Xilinx Virtex-7
690T FPGA with 32-bit floating-point at 100MHz. Again, the
workload and frequency are selected to match with [33]; PM
can support different networks, higher frequencies, smaller
PE cells, and compact data types.

For an inference operation, the off-chip feature map data
transfer is reduced from 52.8MB in RP to only 32.7MB in PM,
which is a significant reduction of 38.1%. Throughput is also
increased from 113.9 GOPS in RP to 127.7 GOPS in PM, which
improves by 12.1%. The main reasons for the improvement
are the dynamic adjustment of PE array dimensions and the
faster access of feature maps due to FM Push-Pull procedures.
On-chip power consumption is slightly higher in PM because
PM processes more data per second. However, the reduction
in off-chip traffic can likely offset this and result in a lower
overall power (due to the lack of information on RP, we could
not estimate off-chip power precisely, but the overall power
should be lower in PM given the breakdown distribution in
Fig. 12). We also evaluate the benefits of PM over RP when
several networks need to be processed by a single accelerator.
Both RP and PM designs are optimized to process VGGNet-
D, SqueezeNet, and AlexNet under the same setup. We have
observed an average of 1.63x improvement in throughput for
PM compared with RP. The reason for this large improvement
is that, when RP is optimized for multiple networks, each
partition should be optimized for a greater number of layers
compared with the single network case. Thus, it is more likely
that a partition may not match well with the dimensions
of layers in different networks. In contrast, PM is able to
reconfigure for different networks, thereby having a higher
overall performance. Note that the BRAM usage 49% is
smaller than that in Tablel because RP does not need to use
all the memory in Virtex-7 690T. We limit the offline routine
of PM to not exceed this number. The resulting PM uses less
memory while improving throughput.

Table 3 compares PM with the state-of-the-art single CNN
layer dataflow [25]. This dataflow reduces the off-chip data
movement and increases the PE array utilization only for
CNN layers (e.g., does not work for LSTM or MLP). However,
to the best of our knowledge, among the approaches that
focus on single CNN layer processing, this work achieves
the best results. The single layer dataflow is implemented
on Altera Arria-10 GX 1150 FPGA. For a fair comparison, an
equivalent Xilinx FPGA chip in terms of on-chip memory and

11

the number of DSPs is used in this comparison. As shown in
Table 3, the single CNN layer dataflow has a throughput of
645.3 GOPS; whereas PM reaches 809.0 GOPS, which equals
an improvement of 25.4%. Again, dynamic adjustment and
faster access to data play the main roles here for achieving
the improvement.

We have also evaluated the proposed polymorphic ac-
celerator against MAERI [22], an accelerator with flexible
dataflow mapping capability. MAERI is aimed for imple-
mentation on ASIC. Therefore, we have projected the poly-
morphic design to an ASIC implementation for comparison.
The area and power of different hardware resources such
as multiplier, adders, and memory banks are obtained from
Synopsys Design Compiler, and then imported to the routine
explained in section 5 for projection at same technology node
(28nm). Under the same area constraint (6m/m?) and other
settings, we have observed an 1.52x throughput improve-
ment for AlexNet at 200MHz compared with the results from
the MAERI paper. This improvement mainly comes from
the fact that PM achieves reconfigurability through logicial
accelerators and polymorphism, thus has a much smaller
area for interconnects. In contrast, MAERI requires a complex
interconnect between adders, multipliers, and local buffers.

6.3 Scalability

In this subsection, we investigate the scalability of the
polymorphic approach when more resources are provided.
Here, resources refer to the computing resources (i.e., DSP
slices) and on-chip memory resources (i.e., BRAMs and
URAMs). Two extreme cases are considered: an FPGA with
a small resource budget (Xilinx Virtex-7 485T [9]) and an
FPGA with a large resource budget (Xilinx Virtex UltraScale+
VU13P [10]). Due to the lack of access to advanced FPGAs,
the throughput is projected for BL and PM following the
models and methodology in Section 5.

Fig. 13 compares the normalized throughput for both
designs in 32-bit floating-point. The results for the small and
large FPGAs are separated by the red line. It can be seen that
scaling resources leads to higher throughput improvement of
PM over BL for every network, with the largest change
observed on AlexNet (1.4x throughput improvement on
485T to 2.95x on VU13P). This excellent scalability of PM is
attributed to two factors. First, on the PM side, more PE cells
give better flexibility and more choices for PM to match PE
array dimensions with layer dimensions. Second, on the BL
side, when a large number of PE cells is available, it is more
prone to have a mismatch between PE array dimensions and
layer dimensions, thereby resulting in more idle PE cells.

6.4 Compact Data Type

Using compact data types is a major trend to improve
the efficiency of DNN accelerators [27]. To investigate the
effectiveness of the proposed PM approach for compact
data types, we examine the PM design for 16-bit fixed-point
representation on VU13P FPGA, with same methodology
used in previous subsections. The throughput is improved
by 9.6x for AlexNet, 4.53x for SqueezeNet, 1.53x for VGGNet-
D, 2.21x for GoogLeNet, 1.92x ResNet-34, 1.82x for LSTM and
2.29x for MLP. These results are expected because by using
compact data types, more computing units are available for

BL: Baseline PM: Polymorphic

5 3
255
¥ 2
£1s
o1
wldopod pedodd
= 9
[- - - - - - - o - - - - - -
EEEEEE RN EE R
2 28 2% 25 9 9% £Z 33 |28 28 28 &2 °% £ 33
%2 92 92 8¢ $T g- 23 xZ @9Z 9Z g w.L alp 25
I3 32 B3 =z =& ~3 23 88 w3 5=z =8 32
<z 93 ow PG g2 <2 $3 ¥w 95 %2
< 33 g9 So &8 < 38 g9 So &8
gg 00 > -3 gg L'JL,, > <
485T 13VPU
FPGA with Small #DSPs FPGA with Large #DSPs
Fig. 13. Comparisons for scalability.

PM to utilize and adjust. Thus, the proposed PM works well
with lower precision data types.

6.5 Discussion on Dataflow Extension

As discussed in Section 3.3, dataflow describes the com-
munication patterns between compute units and memory
resources [16], [22]. In the proposed polymorphic accelerator,
the polymorphic table defines how PE cells and memory
banks are connected, and the finite state machine (FSM)
defines when data transfers happen between them. Together,
the polymorphic table and FSM define the communication
patterns. From this perspective, different dataflows can be
realized by setting the polymorphic tables and programming
FSM appropriately. For example, consider a typical CNN
layer, depending on how loops are ordered and unrolled,
different dataflow have been developed [6], [16], [22], [25].
The loop order defines the order that the tiles are processed
by the PE array, and the loop unrolling defines the PE
array shape. In the polymorphic accelerator, the IFMs and
PSUMs/OFMs tiles used by the PE array are stored in the
active input buffers and active output buffers, respectively.
Thus, depending on the order that the indices are updated in
the RCP step in the polymorphic table, different loop orders
can be implemented. Similarly, different loop unrolling can
be realized by changing how the PE cells are grouped to
form different PE array shapes.

7 RELATED WORK

Due to the increasing importance of DNN accelerators, a
number of works have been proposed recently on this topic
in the computer architecture community (e.g., [1], [3], [4], [13],
[14], [18], [23], [41]). These works propose novel approaches
that have advanced the field of DNN accelerators greatly.
Most of them, however, are complementary to this work. The
rest of this section discusses the most related work in terms
of resource partitioning, fixed single-layer dataflow, flexible
dataflow mapping, and cross-layer dataflow.

Resource partitioning is a main approach to address PE
array underutilization. Different versions of this approach
have been implemented [2], [12], [20], [33], [40], [44]. How-
ever, as discussed in Section 3, these implementations have
major limitations on data efficiency and flexibility, which the
polymorphic architecture is specifically proposed to address.

Several papers have focused on single-layer dataflow to
reduce off-chip traffic and increase PE array utilization [7],

12

[24], [25], [39], [45]. However, their focus is on fixed dataflow
mostly for CNN layers without cross-layer data reuse. In
contrast, the proposed approach can process different DNN
models with substantial cross-layer data reuse. We have
compared with the best single CNN layer dataflow so far in
Section 6.

To address the issue of fixed dataflow in DNN ac-
celerators, MAERI [22] is proposed, which has been dis-
cussed and compared in previous sections. Morph [16] is
another configurable accelerator that is designed for video
understanding applications based on 3D CNNs. Similar to
MAERLI, the design mostly relies on an NoC to address
the underutilization problem. Morph can also be used to
process some popular 2D CNNs such as AlexNet. In that case,
however, the processing is layer-by-layer without resource
partitioning or cross-layer data reuse, and would perform
similarly to the baseline.

A cross-layer dataflow called Fused-layer is proposed in
[2] for CNNs and has been supported by other works such
as [22], [43]. The main drawback of this approach is the large
on-chip memory requirement to store intermediate results.
This limits application of the approach to CNNs with only
a few layers. Moreover, data reuse is through copying the
intermediate results between buffers, thus not being very
efficient. TANGRAM [12] is based on dataflow optimiza-
tions to address two main inefficiencies including 1-data
duplication (e.g. feature maps) which leads to large on-chip
memory requirements, 2-latency due to data dependencies.
One of these optimizations is a cross-layer dataflow named
Alternate Layer Loop Ordering to alleviate the problem
of large on-chip memory requirements. However, it can
only be applied to two adjacent layers and the intermediate
results should be stored for the next layer. In comparison,
the polymorphic design mainly focuses on developing a
dynamically configurable architecture rather than dataflow
optimizations while it can reuse data across all the layers
for different DNNs without physical data copying. In [3], an
accelerator with a flexible buffer architecture is proposed for
cross-layer feature map reuse in DNNs. However, the design
still suffers from PE array underutilization due to fixed PE
dimensions.

Simba [31] is a DNN accelerator for inference operation
made of multiple chips for large-scale systems. Simba focuses
on building a large-scale DNN accelerator by connecting
coarse-grained DNN accelerators while it minimizes inter-
accelerator communication and improves locality. While this
work focuses on a standalone configurable DNN accelerator
design which can be used to build a large-scale system.
Recently, there has been a focus on proposing efficient
methods for partitioning the training of DNNs on the arrays
of accelerators [35], [36]. The proposed concepts in this work
such as logical accelerators can be used as a building block of
arrays of accelerators to provide more fixable infrastructure
for these methods.

8 CONCLUSION

Many neural network models have been proposed and each
may include many layers of various types and dimensions.
In order to design an accelerator that can work well with
multiple neural networks, in this paper, we propose a novel

polymorphic architecture. With the abstraction of logical
accelerators and three carefully designed procedures, the
proposed polymorphic accelerator is able to achieve dynamic
reconfiguration, enable data reuse, and reduce off-chip traffic.
Evaluation demonstrates significant advantages, with up to
77.1% reduction in off-chip traffic and up to 1.63x throughput
improvement, compared with state-of-the-art designs.

ACKNOWLEDGMENT

We sincerely thank the reviewers for their helpful comments
and suggestions. This research was supported, in part, by
the National Science Foundation (NSF) grant #1750047.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]
[10]

[11]

[12]

[13]

[14]

V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and
H. Esmaeilzadeh, “Snapea: Predictive early activation for reducing
computation in deep convolutional neural networks,” in 2018
ACMY/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), 2018.

M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
cnn accelerators,” in Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016.

A. Azizimazreah and L. Chen, “Shortcut mining: Exploiting cross-
layer shortcut reuse in dcnn accelerators,” in Proceedings of the
IEEE 25th International Symposium on High Performance Computer
Architecture (HPCA), 2019.

A. Azizimazreah, Y. Gu, X. Gu, and L. Chen, “Tolerating soft errors
in deep learning accelerators with reliable on-chip memory designs,”
in Proceedings of the IEEE International Conference on Networking,
Architecture and Storage (NAS), 2018.

C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving:
Learning affordance for direct perception in autonomous driving,”
in Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2015.

Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in
Proceedings of the ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 2016.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, 2017.
P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in
Proceedings of the ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 2016.

X. DS180, “7 series fpgas data sheet: Overview (v2. 6),” 2018.

X. DS890, “Ultrascale architecture and product data sheet:
Overview (v3. 7),” 2019.

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-
scale dnn processor for real-time ai,” in Proceedings of the ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA),
2018.

M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized coarse-grained dataflow for scalable nn accelerators,”
in Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2019.

S. Gudaparthi, S. Narayanan, R. Balasubramonian, E. Giacomin,
H. Kambalasubramanyam, and P-E. Gaillardon, “Wire-aware
architecture and dataflow for cnn accelerators,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2019.

J. Z. F. Q. H. Guo, L. Peng and L. Duan, “Fooling ai with ai:
An accelerator for adversarial attacks on deep learning visual
classification,” Proceedings of the 30th IEEE International Conference
on. Application-specific Systems, Architectures and Processors (ASAP),
2019.

13

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in neural
information processing systems, 2015.

K. Hegde, R. Agrawal, Y. Yao, and C. W. Fletcher, “Morph:
Flexible acceleration for 3d cnn-based video understanding,” in
Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

J. L. Hennessy and D. A. Patterson, Computer architecture: a
quantitative approach. Elsevier, 2017.

P. Hill, B. Zamirai, S. Lu, Y.-W. Chao, M. Laurenzano, M. Samadi,
M. Papaefthymiou, S. Mahlke, T. Wenisch, J. Deng et al., “Rethink-
ing numerical representations for deep neural networks,” arXiv
preprint arXiv:1808.02513, 2018.

M. Horowitz, “Energy table for 45nm process,” Stanford VLSI wiki,
2014.

Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and
Lingli Wang, “A high performance fpga-based accelerator for large-
scale convolutional neural networks,” in Proceedings of the 26th
International Conference on Field Programmable Logic and Applications
(FPL), 2016.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings
of ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017.

H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexi-
ble dataflow mapping over dnn accelerators via reconfigurable
interconnects,” in Proceedings of the 23rd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An efficient
hardware accelerator for sparse convolutional neural networks on
fpgas,” in Proceedings of the IEEE 27th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM),
2019.

W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A
flexible dataflow accelerator architecture for convolutional neural
networks,” in Proceedings of IEEE 23rd International Symposium on
High Performance Computer Architecture (HPCA), 2017.

Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop opera-
tion and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 25th ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2017.

T. P. Morgan. Drilling into microsoft brainwave soft deep learning
chip. [Online]. Available: https://www.nextplatform.com/2017/
08/24/ drilling-microsofts-brainwave-soft-deep-leaning-chip /

E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra et al.,
“Can fpgas beat gpus in accelerating next-generation deep neural
networks?” in in the Proceedings of the 25th ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2017.

B. Pourbabaee, M. J. Roshtkhari, and K. Khorasani, “Deep convo-
lutional neural networks and learning ecg features for screening
paroxysmal atrial fibrillation patients,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, no. 99, 2017.

J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the Proceedings of
the 24th ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2016.

A.Rahman, S. Oh, J. Lee, and K. Choi, “Design space exploration of
fpga accelerators for convolutional neural networks,” in Proceedings
of the Conference on Design, Automation & Test in Europe (DATE),
2017.

Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik,
N. Jiang, B. Keller, A. Klinefelter, N. Pinckney, P. Raina et al.,
“Simba: Scaling deep-learning inference with multi-chip-module-
based architecture,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019.

Y. Shen, M. Ferdman, and P. Milder, “Escher: A cnn accelerator
with flexible buffering to minimize off-chip transfer,” in Proceedings
of IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2017.

Y. Shen and M. P. Ferdman, Michael, “Maximizing cnn accelerator
efficiency through resource partitioning,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA),
2017.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. E. Smith, “Decoupled access/execute computer architectures,” in
ACM SIGARCH Computer Architecture News, vol. 10, no. 3, 1982.

L. Song, E. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Accpar:
Tensor partitioning for heterogeneous deep learning accelerators,”
in Proceedings of the 26th International Symposium on High Performance
Computer Architecture (HPCA), 2020.

L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Hypar:
Towards hybrid parallelism for deep learning accelerator array,” in
Proceedings of the 25th International Symposium on High Performance
Computer Architecture (HPCA), 2019.

M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang,]. Wang,
and T. Li, “In-situ ai: Towards autonomous and incremental deep
learning for iot systems,” in Proceedings of IEEE 24rd International
Symposium on High Performance Computer Architecture (HPCA), 2018.
I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural information
processing systems, 2014.

E. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep convolu-
tional neural network architecture with reconfigurable computation
patterns,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 8, 2017.

S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha,
A. Jagannathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and
A. Raghunathan, “Scaledeep: A scalable compute architecture
for learning and evaluating deep networks,” in Proceedings of
the ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017.

X. Wei, Y. Liang, P. Zhang, C. H. Yu, and J. Cong, “Overcoming data
transfer bottlenecks in dnn accelerators via layer-conscious mem-
ory managment,” in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2019.

N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2015.

Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring het-
erogeneous algorithms for accelerating deep convolutional neural
networks on fpgas,” in Proceedings of 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), 2017.

S.Yin, P. Ouyang, S. Tang, E. Tu, X. Li, S. Zheng, T. Ly, J. Gu, L. Liu,
and S. Wei, “A high energy efficient reconfigurable hybrid neural
network processor for deep learning applications,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 4, 2018.

14

[45] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing fpga-based accelerator design for deep convolutional neural
networks,” in Proceedings of the 23rd ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA), 2015.

Arash Azizimazreah received his Ph.D. in Elec-
trical and Computer Engineering from Oregon
State University, USA, in 2019. He is currently
working as a Senior ASIC Designer in the industry.
He has a Best Paper Award and one Best Paper
Nomination. His research interests are computer
architecture, machine learning accelerators, re-
configurable computing, and low-power VLSI
design.

Lizhong Chen received his Ph.D. in Computer
Engineering and M.S. in Electrical Engineering
a from the University of Southern California in
o 2014 and 2011, respectively, and B.S.E.E. from
Qe

Y

Zhejiang University in 2009. He is currently an

- Associate Professor in the School of Electrical

V Engineering and Computer Science at Oregon

) State University. His research interests are in the

board area of computer architecture, machine

learning accelerators, GPUs, interconnection net-

works, and emerging loT technologies. He is the

recipient of National Science Foundation CAREER Award, two Best

Paper Awards/Nominations, Chu Kochen Award from Zhejiang University,

and an inductee in the HPCA Hall of Fame. He is serving on the editorial

board of IEEE Transactions on Computers, and served on the program

committees of ISCA, HPCA, MICRO, DAC, ICS, IPDPS, IISWC, etc. He

founded the Annual International Workshop on Al-assisted Design for

Architecture (AIDArc), held in conjunction with ISCA. He is a Senior
Member of IEEE and ACM.

