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In Brief  
Advances in neurotechnology for exponential growth of neural data present both opportunities 
and challenges in systems neuroscience. Chen and Pesaran argue that active, adaptive 
closed-loop experiments offer a solution to improve scalability for knowledge discovery and 
overcome the dimensionality bottleneck. 
 
 
Summary  
Emerging technologies to acquire data at increasingly greater scales promise to transform 
discovery in systems neuroscience. However, current exponential growth in the scale of data 
acquisition is a double-edged sword. Scaling up data acquisition can speed up the cycle of 
discovery, but can also misinterpret the results or possibly slow down the cycle due to 
challenges presented by the curse of high-dimensional data. Active, adaptive, closed-loop 
experimental paradigms employ hardware and algorithms optimized to enable time-critical 
computation to provide feedback that interprets the observations and tests hypotheses, to 
actively update the stimulus or stimulation parameters. In this perspective, we review important 
concepts of active and adaptive experiments, and discuss how selectively constraining the 
dimensionality and optimizing strategies at different stages of discovery loop can help mitigate 
the curse of high-dimensional data. Active and adaptive closed-loop experimental paradigms 
can speed up discovery in spite of an exponentially increasing data scale, offering a roadmap 
to timely and iterative hypothesis revision and discovery in an era of exponential growth in 
neuroscience. 
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Introduction  
 
Systems neuroscience faces the daunting challenge of understanding brain networks of 
complex and poorly understood topologies. Over the last decade, however, a technological 
revolution in neuroscience has enabled tremendous growth in volume and quality of scientific 
data. Experimental tools allowing measurements of large-scale in vivo neuronal population 
activity at high-resolution using multiple (e.g. electrical, optical, magnetic) modalities and 
across multiple brain regions are becoming widespread. Alongside advances in 
instrumentation, methods to efficiently preprocess, characterize and fit models to large-scale 
neuroscientific data are also being developed (Stevenson and Kording, 2011; Paninski and Cunningham, 
2018). How should we use large-scale neurotechnologies to understand brain network 
mechanisms? This Perspective reviews the state-of-the-art in neurotechnology through the 
lens of the curse of high-dimensional neural data analysis. The curse of high-dimensional data 
arises from the consequences of scaling data dimensionality (Vershynin, 2018; Wainwright, 2019) 
and leads to exponentially increasing computation time. We propose that a new generalization 
of closed-loop experiments, which we term active, adaptive closed-loop (AACL) experiments, 
will be important to successfully mitigating the scalability in neuroscience, especially for 
discovering brain network mechanisms. 
 
       Discovery is a process of obtaining new knowledge based on multiple steps of verification. 
In systems neuroscience, knowledge can be expressed in multiple forms, ranging from the 
understanding of the animal’s behavior, the effectiveness of experimental stimuli, the regularity 
of the neural response, to the causal link between neural codes to behavior. Discovery can 
revise the existing theories or hypotheses, or even create a paradigm shift in the research 
practice. The standard discovery cycle features data acquisition, analysis and interpretation to 
test hypotheses and update concepts, which is fundamental to scientific progress (Conceive-
Acquire-Analyze-Test-Revise; Figure 1A). However, the concept of “loop” is underemphasized 
in discovery cycle for two important reasons: first, there is no nested internal loop containing 
feedback; second, there is no strict time constraint between steps. Large-scale neuroscience 
presents a challenge for the cycle of discovery. Counterintuitively, the growth of neuroscience 
data (in dimensionality, volume and size) can slow and even impede the cycle of discovery. 
High-dimensionality of data can overwhelm the analysis because of the bandwidth bottleneck 
and efforts to address the bottleneck can effectively decrease statistical power. The loss of 
statistical power is because unless simplification (such as averaging or subsampling) is 
assumed, the statistical estimate of model variables may become increasingly biased, which 
may further misinterpret the results. The alternative involves increasing the recording duration 
to account for the increased dimensionality (thereby increasing the acquisition time), or 
processing all collected data sequentially without time constraints (thereby increasing the 
analysis time), either of which can slow down the hypothesis testing or revision and progress 
toward the scientific goals. This is particularly disruptive in neuroscience because the nervous 
system is dynamic and plastic. We cannot revise and test important classes of hypotheses, 
such as specificity and causality, until we verify the steps to complete an iteration. For instance, 
if the tested hypothesis is circuit A is responsible for behavior B, even we observe that a 
neurostimulation (as perturbation of “A”) disrupts a task (“B”), we still need to verify several 
important questions to fully test the hypothesis: first, whether neurons collected from A show 
significantly changed patterns that correlate with the behavior; second, what types of neurons 
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and how many of them contribute to such changes; third, how does the specific stimulation 
input (e.g., timing and intensity) causally alter the task behavior. Much like how we cannot step 
into the same river twice, by the time the original hypothesis has been tested the context within 
which the results were obtained cannot be revisited. This substantially limits, and can 
potentially even make impossible, our ability to test alternative hypotheses.  
 
        AACL experiments are different from open-loop or passive closed-loop experiments in 
that not only strict time constraints are imposed on every step (e.g., acquisition, analysis, 
stimulation), but also an optimization procedure is employed in some or even all steps based 
on active feedback (Figure 2A). AACL feedback signals can be iteratively used for many 
purposes: to optimize experimental stimuli and other experimental parameters (Walker et al.., 
2019; Ponce et al., 2019), to select neural channels for recording and/or telemetry (Choi et al., 2020), 
to perform decoder adaptation (Dangi et al., 2013), to optimize stimulation parameters (Tafazoli et 
al., 2020), and to optimize objective functions and other aspects of control policies (Bolus et al., 
2018). In principle, each step of an AACL experiment may contain nested inner loops. In contrast, 
passive closed-loop experiments employ a fixed policy. The experimental stimulus is 
predetermined and cannot adapt. The decoder is fixed. Control and stimulation parameters are 
predetermined. 
 
        In this Perspective, we discuss how jointly scaling up data acquisition and data analysis 
in an active and adaptive manner can speed up the cycle and enable AACL experiments. We 
first review the scalability in neurotechnology and instrumentation, highlighting how multiple 
trends increase the size, volume and dimensionality of experimental observations. We then 
point to our main thesis - that scaling is a double-edged sword: it can speed up the cycle of 
discovery in systems neuroscience, but involves defining and following a sequence of 
predetermined experimental steps. In considering the cycle of discovery, each step in an AACL 
experiment has a respective “scaling-speed limit”. The overall rate of discovery is limited by the 
slowest factor in each step (Figure 1D), and can be exacerbated by large data volumes and 
high dimensionality, which can overwhelm our capacity for analysis and interpretation. 
Consequently, the lack of scalability of data analytic tools introduces barriers to scientific 
discovery. Finally, we discuss the features and limitations of AACL experiments, and review 
strategies to speed up data analysis.  
 
 
Size, Depth, and Multi-site in Neurophysiological and Imaging Recordings 
 
Neurotechnologies employ a range of physical modalities spanning sound, light, electricity, 
magnetism as well as multimodal mechanisms such as optoacoustics/photoacoustics and 
magnetoacoustics (Marblestone et al., 2013; Gottschalk et al., 2019). Modern neural interfaces that 
can record and/or stimulate the nervous system are dramatically expanding the number of 
neural signal channels that can be monitored and manipulated. When the word “scale” is used, 
we refer to the dimensionality/size/volume of neural signals, which should not be confused with 
the spatial or temporal granularity at which data are acquired.  
 
        Accessing brain tissue at single cell resolution has traditionally involved implanting 
electrodes directly into the brain. Multielectrode array recording devices remain the gold-
standard approach to recording in vivo electrophysiological cellular activity (Hong and Lieber, 
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2019). Growth in the number of simultaneously-recordable signal channels has been driven by 
electrode fabrication, packaging, materials, and implementation. Neuron density, brain area 
size and tissue displacement due to wiring and other physical device properties impose 
fundamental limits on the number of recordable neurons. New neural recording technologies 
that exploit nanoscale features and integrated electronics are significantly increasing the 
number of single cells that can be recorded concurrently in single or multi-sites of the brain. 
Two fundamental factors are paving the way towards large-scale neurophysiology. One factor 
is to increase the number of electrode/channels through advanced packaging and new 
materials (Sholvin et al., 2016). To date, hundreds to thousands of electrodes have been implanted 
to record neural activity in vivo (Figure 1B; Berenyi et al., 2014; Shobe et al., 2015; Jun et al., 2017; 
Chung et al., 2019; Steinmetz et al., 2018; Chiang et al., 2020). The other factor develops 3D electrode array 
technologies, by combining laminar and movable penetrating electrodes and 2D electrode 
arrays, to record depth- and layer-specific areas in brain circuits (Hoogerwerf and Wise, 1994; Rios 
et al., 2016).  
 
        While electrophysiology traditionally has been used to collect neural activity of local brain 
area with high temporal resolution, various optical imaging techniques make possible  whole 
brain recordings, focusing on the network and circuit levels (Yan and Yuste, 2017). Multiphoton 
imaging also enables cellular-resolution chronic recordings of large-scale neuronal ensembles 
in vivo across days and weeks (Jercog et al., 2016; Kim et al., 2016; Huang et al. 2018; Pachitariu et al., 
2017; Weisenburger and Vaziri, 2018). Recently, modern technologies have also rapidly improved the 
spatiotemporal resolution and sampling speed of optical imaging and microscopy (Rumyantsev 
et al., 2020; Wu et al., 2020). Ultimately, physical constraints will impose a limit on the effectiveness 
of optical imaging, as any imaging techniques encounter the tradeoff between the imaging 
speed, field-of-view and depth.  
 
          For all neural interfaces that rely on electrophysiology or optical imaging, technological 
factors constrain the number of signal channels that can be recorded or controlled 
simultaneously (Marblestone et al., 2013; Kleinfeld et al., 2019). These constraints involve, for 
example, power and thermal dissipation for implanted wireless arrays (Zhou et al., 2019), 
sampling frequency or optical paths for microscopes (Figure 1C; Tsai et al., 2015; Sofroniew et al., 
2016; Stirman et al., 2016; Lecoq et al., 2019) and wiring constraints for electrode arrays (Marblestone et 
al., 2013; Hong and Lieber, 2019; Raducanu et al., 2017). Constraints on simultaneous access lead to 
a selection problem involving how to use the available signal channels to optimally monitor and 
manipulate the neural population of interest (Saxena and Cunningham, 2019; Moreaux et al., 2020). If 
there were no constraints, one could simply measure from all signal channels and there would 
be no selection problem. If there were too many constraints, there would be very few 
simultaneously accessible signal channels obviating the problem of selection. For most modern 
neurotechnologies, however, the space of possible selections is combinatorial. For example, 
Neuropixel electrode arrays contain 960 electrodes (Steinmetz et al., 2018); however, only 384 
recording channels can be acquired simultaneously. Subject to other constraints, there are 
2.5149 different possible selections for this array (Choi et al., 2020). Similarly, the two-photon 
random access mesoscope (2p-RAM) has a 5-mm field of view cellular-resolution microscope 
that makes available up to a million neurons in the transgenic mouse expressing GCaMP in 
neurons (Sofroniew et al., 2016). However, adaptive optics strategies are necessary to flexibly and 
rapidly deliver light and make available neurons for simultaneous investigation. For instance, a 
system using custom optics and independently repositionable temporally multiplexed imaging 



 5 

beams offers an expanded field-of-view (>9.5 mm2), with multi-site imaging of tens of 
thousands of neurons across multiple mouse cortical areas (Stirman et al., 2016). In each of the 
above-mentioned cases, modern instrumentation leads to a combinatorial explosion of possible 
selections.  
 
Chronic Experiments, Task Complexity, Naturalistic Behavior 
 
Increasingly, modern neurotechnologies are being deployed chronically in implanted systems 
(Schwartz et al., 2014; Tybrandt et al., 2018; Chiang et al., 2020). The main concerns of chronic 
electrophysiological recordings are the unit yield, longevity, stability and quality of neural 
signals (Juavinett et al., 2019; Luo et al., 2020). In all recording devices, the interfaces between the 
nervous system and a synthetic sensor involve innovations in advanced materials (Chen et al., 
2018). Advanced microelectrode technologies have been invented for recording interfaces to 
improve biocompatibility and stability (Fattachi et al., 2014), which enable us to repeatedly sample 
the activity of the same population of neurons. In addition, wireless recording devices have 
become increasingly available for chronic data acquisition.  
 
          The challenge of neuroscience data analysis is further magnified by the complexity of 
behavior. New technologies allow complex, naturalistic and unconstrained behaviors to be 
measured with increasing detail at the individual and group levels (Tseng et al., 2018). Some 
behaviors, such as navigation, can involve multiple animals in social interactions (Danjo et al. 
2018) or in three-dimensional spaces (Omer et al., 2018). Skeletal movements involve joint 
rotations with as many as 27 different joint angles for the primate arm and hand. Other task 
behaviors, such as motor learning, can last hours, days and even weeks (Sandler, 2008). As the 
temporal duration increases, the task complexity also scales up.   
 

Naturalistic behavior introduces additional issues. To be considered naturalistic, a 
behavior should not depend on training to follow experimenter-defined instructions.  In the 
absence of instructions, however, preferred behaviors will be acquired and behavioral 
stereotypy can emerge; namely, subjects can choose to repeatedly make the same, potentially 
optimal, action sequences, such as “look-then-reach” when picking up a cup. To more 
completely study the underlying neural mechanisms, investigations of naturalistic behaviors 
may need to adaptively deliver instructions in an AACL experiment. In active sampling 
behaviors (such as sniffing or shifting gaze), subjects actively use attention and active sensing 
strategies to sample relevant cues for information seeking or decision making. While animals 
can learn a sampling policy through attentional learning and reward maximization, it poses a 
challenge for experimenters to study the neural correlates underlying such behaviors.  

 
 

Subsampling and Resampling of Neural Space 
 
As the number of simultaneously recorded neurons from electrophysiology or calcium imaging 
becomes very large (e.g., 10,000-1,000,000), redundancy will arise. Given a specific recorded 
brain target, identification of a high- or low-dimensional neural code will vary according to the 
question of interest. For instance, the visual cortex may have a high-dimensional 
representation for visual signals, yet a low-dimensional representation for other nonvisual 
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behavioral variables (Stringer et al., 2019a, 2019b). Random sampling is a widely used statistical 
strategy for estimating the properties of a large network or system. Supported by the law of 
large numbers and distribution invariance, subsampling assumes exchangeability and 
ergodicity of a stochastic dynamical system. In data acquisition, large-scale sampling of neural 
signals enables us to examine the resampling axis in order to assess neural dimensionality and 
coding sufficiency. For instance, a theoretical question regarding the neural code is “what is 
the dimensionality of odor space?” (Meister, 2015), or “what is the intrinsic multi-neuronal 
dimensionality or the complexity of dynamics that relates to the task behavior?” (Gao and Ganguli, 
2015; Gao et al., 2017). Unlike traditional data-replacement resampling techniques, sequential 
neural resampling opens the door to measuring neuronal populations in an integrated manner 
to generate datasets that are sufficient to rigorously test hypotheses about brain functions. 
Additionally, researchers may test if subsampling of neuronal populations can preserve the 
invariant structure of network structure or neural dynamics (Chen et al. 2014; Williamson et al., 2016; 
Gao et al. 2017; Liu et al., 2019).  

 
 

 
Curse of High-Dimensional Data Analysis 
 
        The combination of task complexity, multimodality, and large-scale chronic experimental 
paradigms can quickly generate high-dimensional, structured neural and behavioral data 
whose analysis and interpretation can outpace computational capabilities. A statistical curse of 
dimensionality (CoD) arises to impede the discovery cycle within the Analyze step. 
  
          The common theme of CoD problems is that when the dimensionality increases, the 
volume of the space increases so rapidly that the available data become very sparse. For 
instance, to study d-dimensional behavioral variables, we design N experimental trials and 
record m neurons. If we increase d and m separately or jointly while keeping N unchanged, the 
insufficient sample size will make it difficult to relate a neural space Rm to a behavioral space 
Rd. In this case, in order to establish statistical significance, the number of samples (trial-by-
duration) needed to support the result often grows exponentially with the dimensionalities d 
and m.  
 
          High-dimensional neural data imposes a CoD across many statistical analyses. First, 
neural data analysis depends on second and higher-order computations critical to 
understanding networks, such as functional connectivity. However, the number of trials and 
duration of trials needed for a reliable statistical estimate does not scale with data 
dimensionality. Statistical estimation of the covariance matrix in a principal component analysis 
(PCA) can suffer strong bias and/or high variance when the sample size is insufficient given 
the data dimensionality (BOX 1). Second, statistical estimation, either by model-free or model-
based approach, can be ill-posed when analyzing high-dimensional data. While model-free 
approximations can have a small number of parameters, they may lack neuroscientific validity. 
In contrast, model-based approaches can involve many parameters, but pose challenges for 
model fitting when the data are high-dimensional. Therefore, incorporation of hypothesis-driven 
theories, priors, and constraints into the model may help solve ill-posed estimation problems. 
Dimensionality reduction techniques are important tools to tackle large-scale neural recordings 
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on a single-trial basis (BOX 2; Cunningham and Yu, 2014). Third, the complexity and long timescales 
of task behaviors will introduce plasticity or non-stationarity in neural recordings, posing 
additional estimation challenges.  
 
        Scaling data acquisition and analysis should accelerate the rate of discovery (Figure 1E). 
However, the curse of high-dimensional data exponentially increases the time necessary to 
obtain each discovery. As a result, the discovery rate may saturate as data acquisition and 
analysis increase in scale. The challenge is to maintain an increasing rate of discovery while 
increasing the scale of data acquisition and analysis. As we discuss below, AACL experiments 
may offer a solution. 
 
 
AACL Experimental Paradigms 
 
Closed-loop experiments represent a paradigm shift from open-loop experiments. In closed-
loop experiments, neural signals are processed to algorithmically generate feedback signals 
that are delivered to the subject according to a policy (Zrenner et al., 2016; Yang and Shanechi, 2016; 
Ciliberti et al., 2018; Srinivasan et al., 2018; Kane et al. 2020; Bolus et al., 2018; Walker et al., 2019; Ponce et al., 
2019; Tafazoli et al., 2020; see also reviews in Potter et al., 2014; El Hady, 2016). Traditionally, feedback 
in a closed-loop experiment can take a variety of forms. If the purpose of a brain-machine 
interface (BMI) is to control an external actuator, the feedback can be the delivery of stimulation 
to the nervous system; if the goal of BMI is to control sensory feedback, the feedback can be 
the timing of sensorimotor information. However, in all closed-loop BMIs, data acquisition is 
subject to a signal bandwidth constraint, and analysis and feedback are subject to a time 
constraint. The timescale of feedback is often on the order of milliseconds or seconds that map 
from circuit functions to behavior. Here we argue that passive closed-loop experiments are still 
insufficient and inefficient. Specifically, we introduce AACL experiments which generalize 
concepts familiar to traditional closed-loop experimental designs and include active feedback 
that is based on multiple stages of knowledge discovery. The terms “active” and “adaptive” are 
subtly different yet often exchangeable in the literature. By “active”, the experimenter can 
manipulate the instrumentation or experimental stimuli according to a predefined or optimized 
policy. Unlike passive feedback that arises automatically regardless of the user’s intention, 
active feedback emphasizes the effort of seeking valuable information from the feedback signal, 
and then iteratively optimizes the discovery process at various stages (e.g., sampling, 
resampling analysis, stimulation). By “adaptive”, the experimenter can modify the decoder or 
stimulation parameters over time based on feedback or error-correction learning.  
 
        AACL experiments enable the testing of hypotheses that cannot be tested by non-AACL 
experiments in two distinct ways. Some hypotheses can, in principle, be tested using both 
AACL and non-AACL experiments but non-AACL experiments are sufficiently inefficient that, 
in practice, the hypothesis cannot be tested due to lack of time. For example, hypotheses that 
depend on neurostimulation efficacy which requires estimating a map of responses to 
stimulation at different stimulation sites. Other examples of new knowledge acquired in practice 
by AACL experiments include neuron-stimulus sensitivity, maximal electrode channel unit 
yields, and system controllability. Other hypotheses cannot be tested by non-AACL 
experiments even in principle and require the use of AACL experiments. For example, 
hypotheses that depend on learning especially when learning occurs rapidly and when learning 
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is irreversible. When both AACL and non-AACL experiments can be performed in principle, 
then the nature of knowledge gained is similar except that AACL experiments obtain knowledge 
at a faster rate due to their improved efficiency. In cases where AACL experiments cannot be 
performed by non-AACL experiments, the nature of knowledge gained is distinct. 
 
         To use neurostimulation again as the example, traditional closed-loop stimulation is 
designed in an on/off stimulation fashion triggered by predetermined stimulation parameters. 
In contrast, AACL experiments can actively seek the feedback from neuronal firing and adjust 
the stimulation parameters or control policy to optimize the “natural” cost function (Choi et al., 
2016; Bolus et al., 2018; Tafazoli et al., 2020). The cost function is defined by the difference between 
the observed neural responses and predicted neural responses, where the predictor can be, 
for example, a simple linear-nonlinear Poisson (LNP) model, or an artificial neural network.  
 
         We propose that AACL experiments offer a natural solution to the scaling bottleneck and 
improve the scalability. In contrast to the standard “Conceive-Acquire-Analyze-Test-Revise” 
paradigm that does not impose strict time constraints on each step, AACL experiments collect 
and analyze neural data in a sequential manner with time constraints, and test adaptive 
hypotheses with timely neurofeedback that accounts for neural plasticity during the course of 
learning and adaptation (Figure 2A). The active and adaptive strategies can be implemented, 
independently or jointly, throughout the acquisition, analysis, and feedback steps. The form of 
feedback may be diverse, in terms of stimulus optimization, experimental design, decoder 
adaptation, neurostimulation, and other user-defined feedback control. The discovered 
knowledge accumulates with completion of each step. The discovery cycle continues until the 
experimental subject reaches the predefined experimental goal algorithmically according to the 
policy. Notably, certain stages of the AACL experiments accommodate many other names 
proposed in the literature as special cases, such as active experimental design, active stimulus 
selection, closed-loop feedback control, and closed-loop decoder adaptation. AACL 
experiments therefore generalize the concept of closed-loop experiments across time-scales 
for closing the loop and iterating the discovery cycle, as quickly as a fraction of a second, to 
chronic experimental preparations, as long as months and years.  
 

The concept of adaptive experiments is not new in neuroscience. For instance, design 
of adaptive experiments is a long-established standard for psychometric testing, such as the 
use of QUEST procedure (Watson and Pelli, 1983). At slower feedback time-scales, iterative 
closed-loop paradigms are already well-established in various domains within systems 
neuroscience. Neuronal stimulus selectivity in the ventral visual pathway exists in a high-
dimensional space of sensory stimuli. To assess ventral stream selectivity, Qian-Quiroga and 
colleagues systematically searched for responses of single neurons to stimuli (Qian-Quiroga et al., 
2005). The limited time available for experiments required closing the loop in two-stages of 
correlational studies. First, responses in a screening session were analyzed, and then used to 
select target stimuli for the testing session. While each stage was an open-loop experiment, 
closing the feedback loop across stages tamed the explosion of potential experiments and 
made possible a more focused investigation. Dramatic increases in the number of neural signal 
channels that can be monitored and manipulated means neuroscience investigations 
increasingly lie within a high-dimensional space of experimental designs. These capabilities 
are opening the door to new applications of closed-loop experimental paradigms to map 
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networks as part of large-scale investigations of multiregional communication (BOX 3). To 
follow the similar philosophy but with improved efficiency, an analogue of AACL experiment is 
to identify sensory stimuli that optimize visual neuronal responses at a fast, sub-second 
timescale. Specifically, Walker and colleagues developed “inception loops”, a closed-loop 
paradigm combining in vivo recording from thousands of neurons with in silico nonlinear 
response modeling (Walker et al., 2019). The closed-loop model-based response prediction 
enabled them to generate synthetic yet optimal stimuli (Figure 2B). Therefore, designing 
adaptive closed-loop image synthesis systems to explore the single or population neuronal 
response properties represents a new paradigm in visual neuroscience (Ponce et al., 2019; 
Bashivan et al., 2019).  
 
         Closed-loop BMIs can not only learn optimizing sensory stimuli, but also learn active 
sensing strategies (Richardson et al., 2019). Specifically, experimental manipulation of task-
relevant sensory feedback, provided by intracortical microstimulation (ICMS) that encoded 
egocentric bearing to the hidden goal direction, can reveal distinct motor strategy adaptation 
to match novel sensor properties for goal-directed behavior. Additionally, BMIs seek to deliver 
either neural feedback by stimulating neural activity (SENSE-STIMULATE) or user feedback 
through an external interface that the user controls (SENSE-CONTROL). In neural feedback 
BMIs, subjects do not need to be aware of the operation of the interface. The BMI seeks to 
disrupt on-going network excitation or inhibition, e.g. seizure control or optogenetic control 
(Berenyi et al., 2012; Paz et al., 2013; Grosenick et al., 2015), and/or shape neural plasticity, e.g. mood 
regulation (Zhang et al., 2021; Shanechi, 2019). In contrast, user feedback BMIs, e.g. visual and 
motor prostheses, depend on how the user learns to use the interface (Carmena et al., 2003; 
Koralek et al., 2012; Shenoy and Carmena, 2014). Another example of AACL experiment is closed-
loop decoder adaptation (CLDA) used in BMI systems, which can accelerate learning and 
improve performance by iteratively updating a BMI decoder’s parameter (Dangi et al., 2013; Figure 
2F). In these cases, volition, awareness and agency play an important role as the subject 
controls the relevant patterns of neural activity decoded by the BMI. In principle, neural-
feedback and user-feedback-based BMIs can be combined. For example, BMIs based on 
feedback that the user controls could also feature neural feedback protocols designed to recruit 
brain plasticity and enhance learning (Shenoy and Carmena, 2014).  
 
          BMIs offer clinical opportunities as neuroprosthetic devices (Collinger et al., 2013; Ajiboye et 
al., 2017). Additionally, BMIs provide a novel experimental platform for performing adaptive 
perturbations and causal circuit manipulations. One successful AACL application is to employ 
an adaptive closed-loop patterned stimulation strategy (Tafazoli et al., 2020), which learns to use 
multi-site electrical stimulations to control the pattern of a population of neurons. Additionally, 
BMIs can help reveal important circuit mechanisms and are particularly useful when studying 
learned behaviors and sensorimotor control (Jarosiewicz et al., 2008; Koralek et al., 2012; Sadtler et al., 
2014; Golub et al., 2016). By making explicit the system inputs and outputs, BMIs allow us to 
resolve the neural computations that drive learning and test how network structure influences 
learning (Orsborn and Pesaran, 2017). Since BMIs require low-latency feedback, they can also be 
used with causal circuit manipulations to stimulate or inactivate in a state-dependent manner. 
State-dependence allows manipulations to be sensitive to the dynamic properties of brain 
processes (Qiao et al., 2020) and is an essential component of closed-loop feedback control 
algorithms (Shanechi et al., 2016; Srinvivasan et al., 2018; Yang et al., 2021). Therefore, BMIs can enable 
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us to conditionally test specific causal functional roles for neural circuits or their plausible links 
to behaviors. 
 
 
Features and Limitations of AACL Experiments 
 
Discovery does not rely on closed-loop experiments per se; neither do closed-loop experiments 
automatically lead to discovery in neuroscience. However, AACL experiments can provide a 
timely feedback, and update new hypotheses iteratively during the course of discovery process. 
 
         High-dimensional capabilities enabled by modern neurotechnologies present not only 
opportunities in establishing the links between neuronal activity and behavior, but also 
challenges and paradigm shifts in neural data analysis and interpretation. Traditional 
neuroscience paradigms based on spike sorting and tuning curve estimation will inevitably fail 
to capture the complexity and dynamics of naturalistic behaviors because the behaviors occupy 
high-dimensional spaces. AACL experiments offer opportunities to perform ‘active’ 
experimental designs that algorithmically select experimental parameters from a high-
dimensional space of configurations. In traditional ‘passive’ experimental designs, each step of 
the cycle has a predetermined policy. For instance, the Acquire step uses the fixed stimulus 
configurations; whereas in the Analyze step, the stimulation configuration or control strategy is 
fixed. Active experimental designs feature adaptive selection strategies that optimize each step 
in a closed-loop using real-time neurofeedback. For instance, animal training can be optimized 
(Bak et al., 2016), experimental stimulus design can be optimized in a sequential manner (Lewi et 
al., 2009; 2011); and feedback control or neurostimulation can be optimized on the fly (Cunningham 
et al., 2011; Swann et al., 2018). As a result, we can efficiently test hypotheses sequentially, and 
potentially even in parallel.  
 
         The challenge presented by high-dimensional experimental configurations is particularly 
acute in the case of neurostimulation experiments. Unlike neural recordings which can be 
performed at multiple sites simultaneously, neurostimulation experiments can only performed 
one at a time by choosing “when”, “how”, and “where” to stimulate. The resulting spatiotemporal 
patterns of stimulation occupy a particularly high-dimensional configuration space which cannot 
necessarily be probed simultaneously. In a sense, stimulating all the electrodes at once is not 
analogous to recording from them all at once. As a result, in the general case only a relatively 
small number of stimulation configurations can be tested in a single experimental session. 
Since the nervous system is adaptive and plastic, with constantly changing neural responses, 
we cannot necessarily rely on comparing stimulation responses to different configurations in 
different sessions. Novel AACL experimental designs will be critical for progress toward 
identifying causal roles for neural codes. 
 
          Another important approach features AACL experiments with active designs to guide 
neuronal subsampling and resampling (Figure 2C). A central issue in these experimental 
designs is whether the properties of the repeatedly sampled populations reflect properties of 
the underlying distribution. Closed-loop acquisition is like an active search in the space of 
neural activity to maximize the signal-to-noise ratio. Unlike active sensing in behavior that 
reflects the animal’s behavioral policy, neuronal subsampling is guided by the experimenter’s 
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policy, subject to physical, time and bandwidth constraints. For instance, we can design an 
algorithm that optimizes the joint electrode selections for all recording channels according to 
the experimenter’s policy in order to maximize the isolation quality of detected neurons (Choi et 
al., 2020). Analyzing resampled populations is very effective when performing dimensionality 
reduction. Subsampling m neurons from a population of n neurons can be viewed as a random 
projection from an n-dimensional manifold (Ganguly and Sompolinsky, 2012; Gao and Ganguly, 2015); 
in this sense, resampling can be viewed as multiple random projections of n neurons. The 
Johnson-Lindenstrauss lemma states that random projections preserve the pairwise distances 
of high-dimensional data (Bingham and Mannila, 2001). As a result, properties of the underlying 
distribution that depend on pairwise distances, such as in dimensionality reduction techniques, 
are preserved by resampled populations. Modes estimated from resampled populations may 
share other distributional properties with the underlying population. Notably, neural activity 
often follows a log-dynamic law (Buzsaki and Mizuseki, 2014), and linear combinations of 
subsampled lognormal distributed neural responses can also be approximated by a lognormal 
distribution (Asmussen and Rojas-Nandayapa, 2008).  
 
           Establishing causality is the holy grail for many questions in systems neuroscience. 
When doing so, it is important to distinguish between how correlation and causation arise in 
closed-loop experiments. Correlational dependencies describe associations of measurements 
that experiments do not control, whereas causal dependencies link a dependent variable to an 
experimentally controlled variable (Jazayeri and Fraz, 2017). The key concept in causal inference 
is randomization, such as a random external stimulus or random perturbation (e.g., 
microstimulation or optogenetic stimulation). The relationship between every dependable 
variable and the randomized variable is causal, whereas the relationship between non-
randomized variables and behavior, remains correlational. As the brain activity is high-
dimensional, correlations within massively under-sampled neuronal recordings cannot fully 
reveal circuit mechanisms. Although closed-loop experiments can contain both correlation and 
causation components, they can be distinguished from open-loop perturbation experiments in 
timing and specificity, thereby narrowing the search space of neural code-behavior 
relationship--- i.e., mitigating the dimensionality bottleneck.   
 
           It is also important to point out the limitations of closed-loop perturbation-based 
approaches for the causal dissection of circuit and behavior. First, the brain is complex, and 
many brain areas can engage in even a simple task or spontaneous behavior (Stringer et al., 
2019b). Therefore, even large-scale neural recordings can only provide a small window of the 
brain activity, and our target system is partially observable. The presence of latent variables 
can bring an additional degree of complexity to precisely controlling variables of interest (either 
neural activity or behavior); induced unexpected network-level side effects complicate data 
interpretation. Second, the brain is nonlinear and plastic. Consequently a control strategy that 
works in a certain condition may not necessarily generalize well in other tasks or behavioral 
states. Third, behavior can also be complex (although the dimensionality of behavior is much 
smaller than the neural dimensionality), and each axis of behavioral space may be jointly or 
independently controlled by neural correlates. Fourth, electrical or optical stimulation may 
create undesirable lasting side effects (e.g., heat, toxicity, cell death, change in excitation-
inhibition balance) that bring additional uncertainties to the specific brain functions under study. 
Finally, even the most sophisticated neural stimulation technologies available today suffer the 
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limitation that they artificially activate or suppress neural activity. Such manipulations are 
artificial in that they highjack the system and drive the neuronal network into “unnatural” 
regimes. Many BMI technologies based on non-specific and unnatural perturbations may face 
challenges in how to interpret the results, as traditional non-adaptive neurostimulations may 
cause varying degrees of side effects on behavior, or even generate “false discoveries”. To 
mitigate such concerns, recent work performing causal network analyses emphasizes the use 
of minimal perturbations and delivers single stimulation pulses (Qiao et al, 2020). Related work 
on multiregional network system identification shows that pairs of sites that share correlated 
neural activity patterns also tend to share stimulation responses (Yang et al, 2021), indicating that 
causal manipulations and recordings can be mutually informative and constrain network 
inferences. While acknowledging that fundamental constraints limit testing causality 
dependencies between brain and behavior, trial-and-error active manipulations remain the 
most important source of evidence that a brain area supports one aspect of behavior. The 
development of next-generation active and adaptive BMIs that deliver “naturalistic” patterned 
neurostimulations and incorporate appropriate control experiments would help alleviate the 
illusion of false discovery. A type of new closed-loop feedback for neurostimulation, for instance, 
can be the output of neuronal firing patterns or the local network connectivity (Vlachos et al., 2016; 
Choi et al., 2016; Bolus et al., 2018; Tafazoli et al., 2020).  
  
 
Speeding Up Neural Data Analysis   
 
Another important issue of scalability in knowledge discovery involves speed. Even if the 
dimensionality of data remains constant, the increasing amount of data may still create an 
analysis bottleneck for knowledge discovery. In data analysis and interpretation, we aim to 
avoid an exponential complexity or computation latency with respect to the number of neurons, 
seeking a linear or sub-linear order of complexity. In developing efficient analytic tools, 
computation speed and scalability are key considerations.  
 
         First, closed-loop BMIs impose low-latency constraints in all experimental steps. 
Computational overhead jointly depends on data size, CPU architecture, memory, and 
bandwidth. Overall, computation latency is composed of two parts: Total cost = fixed cost + 
scaling cost, where the first term is independent of the scale of data, and the second term 
increases with the scale of data. Therefore, scaling up data acquisition can impose a great 
challenge in computation speed due to limited resources in memory, bandwidth and computing 
power. To accommodate scalable ultrafast neural data analysis, modern computing resources 
and dedicated hardware can help meet these resource requirements. According to a current 
estimate of the doom of Moore’s law, the computing power of single CPU will similarly reach 
the physical limit around 2022. In contrast, high-performance computing devices based on 
graphic processing unit (GPU) and field programmable gate arrays (FPGA) have become 
widely adopted for data analyses (Hu et al., 2018; Giovannucci e al., 2018).  
 
      In the Acquire step, open-source low-latency hardware (e.g., Open Ephys 2.0) has 
managed to minimize high-speed sampling delay with microsecond latency. Automated and 
scalable hardware-empowered spike sorting can accommodate real-time processing for large-
scale data acquisition (Pachitariu et al., 2016; Chung et al., 2017; Jun et al., 2017; Yger et al., 2018). In the 
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Analyze step, computational tasks can be operated in real time for ultrafast decoding, detection 
and control. Using the rodent hippocampus as an example, hippocampal replays during sharp-
wave ripples are known to contribute to memory consolidation, planning and future decision 
making (Buzsaki, 2015). Closed-loop perturbation experiments that aim to investigate the 
contribution of these replay events may narrow the search space of relationship between neural 
code and behavior, or eliminate alternative competing hypotheses (Girardeau et al., 2009; 
Fernandez-Ruiz et al., 2019). Therefore, it is important to develop scalable methods that enable 
real-time decoding and assessment of these hippocampal replay contents to match the 
complexity of neural data, in the form of large-scale unsorted ensemble spikes (Ciliberti et al., 
2018; Hu et al., 2018; Figure 2D,E) or high-density field potential recordings (Cao et al. 2020; Frey et 
al., 2019), or large-scale calcium imaging (Tu et al., 2020). Take the primate motor cortex as 
another example, closed-loop BMIs have provided mechanistic insight into learning, plasticity 
and functional reorganization (Jarosiewicz et al., 2008; Sadtler et al., 2014; Shenoy and Carmena, 2014). 
The development of scalable methods for decoding arm or hand movement or assessing neural 
population dynamics can greatly advance research in motor control (Trautmann et al., 2019; Sussillo et 
al., 2016). The key component of BMIs is feedback, in the form of neurostimulation (Berenyi et al., 
2012; Paz et al., 2013; Grosenick et al., 2015; Zhang et al., 2021), user-defined feedback control (Figure 
2G; Carmena et al., 2003; Dangi et al., 2013; Shanechi et al., 2016), or the prediction error of neural 
responses (Figure 2H; Tafazoli et al., 2020), which can be further used to perturb the circuit or 
causally change the behavior. Finally, the time window of closed-loop feedback is critical as it 
allows interaction with neurons and circuits differently. Sub-millisecond feedback stimulation 
may prevent recurrent inhibition, but the same setup with an order of second delay may affect 
the system in a completely different manner. These uncertainties of mechanistic inquiry grow 
in time especially when the casual chain between the cause (stimulation) and effect is long. 
Therefore, timing imposes a strict low-latency constraint on closed-loop BMIs (Muller et al., 2012; 
Kane et al., 2020).  
 
         Second, scalable data-intensive computation demands fast and efficient computing 
strategies. Even though real-time operation may not be always required, off-line processing of 
high-throughput high-dimensional neural data can still be prohibitive, this may include neural-
behavior mapping (Vogelstein et al., 2014), large-scale model fitting, data visualization and 
computer simulations. For instance, structural data are fundamentally high-dimensional, 
including 2-D images, 3-D volumes, and 4-D and 5-D hypervolumes for multispectral data. 
Large-scale neural circuit mapping may require both structural and functional data (Shi et al., 
2015). High-performance computing is required to analyze high-resolution high-throughput 
neuroanatomy and neuroimaging data. Behavioral data can be also high dimensional, 
especially when they are captured via high-fidelity video recordings. Data-intensive, automated 
image segmentation and 3-D morphological reconstruction have been empowered by powerful 
deep learning methods for behavioral video or imaging analyses (Mathis et al., 2018; Pereira et al., 
2019; Zhou et al. 2018; Arac et al., 2019). Another source of high-dimensionality arises from 
multimodal measurements, such as concurrent EEG/MEG source localization (Antelis and 
Minguez, 2013). Furthermore, large-scale biologically-inspired neuronal network modeling and 
computer simulations may leverage high-performance GPU or FPGA computing (Hoang et al., 
2013; Sripad et al., 2018). Finally, distributed data analytics platform and computing infrastructure 
can help achieve fast and scalable data analysis of massive size (Freeman et al., 2014; Freeman 
2015). 
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         Third, artificial intelligence (AI) and machine learning can help accelerate the pace of 
neuroscience discoveries (Marblestone et al., 2016; Richards et al., 2019; Cichy and Kaiser, 2019) and 
scale up innovation (Kittur et al., 2019). On the one hand, AI and deep learning can help or 
automate complex and large-scale neural data analyses to uncover the patterns in brain activity. 
For instance, in neural encoding, deep learning can help link complex patterns of neural activity 
and/or cortical anatomy to complex behavior (Minderer et al. 2019; Pandarinath et al., 2018), as well 
as control neuronal spiking or internal brain states (Bashivan et al., 2019). On the other hand, 
neuroscience can drive AI forward for knowledge discovery; neuroscience-inspired AI has 
achieved a professional human-level intelligence for playing chess and computer games (Silver 
et al., 2016; Hassabis et al. 2017). The AlphaGo, motivated from deep reinforcement learning, 
discovered a remarkable level of Go knowledge through a self-taught training process. 
Therefore, brain-inspired deep learning architectures can not only provide a new computational 
framework for brain information processing (Kriegeskorte, 2015; Banino et al., 2018), but also 
generate new insight in systems neuroscience and provide rapid theoretical and experimental 
progress (Richard et al., 2019).   
 
 
Concluding Thoughts: Scaling to the Human Brain 
 
Currently, our understanding of brain mechanisms in animal models and in the human brain 
are separated by a divide. This is partly due to the additional ethical, safety and efficacy, and 
financial constraints that govern the development of neurotechnologies for use in humans. 
Nevertheless, progress in neurotechnology is increasingly making possible studies of the 
human brain. The vast scale and complexity of the human brain inevitably means that 
understanding how to jointly scale data acquisition and data analysis will play an essential role 
in progress. To date, high-density biocompatible and stretchable electrode grids can record 
spikes and LFPs at the surface of human brain (Khodaholdy et al., 2015; Tybrandt et al., 2018). Scaling 
up data acquisition via high-density interfaces may further improve the spatiotemporal 
resolution of human brain mechanisms (Robinson et al., 2017; Matsuhita et al., 2018; Escabi et al., 2014; 
Even-Chen et al., 2020; Sohrabour et al., 2020). Concurrent multimodal and multisite recordings, 
neuroimaging and neurostimulation will also drive progress (Chang, 2015; Krook-Magnuson et al., 
2015; Swann et al., 2018). Basic brain mechanisms will play a role in our understanding of the 
diseased brain. In translational or therapeutic applications, closed-loop human BMI systems 
have been widely adopted for restoring or enhancing sensory, motor or cognitive brain 
functions, as well as delivering anesthesia drug (Shanechi, 2019; Moses et al., 2019; Gilja et al., 2015; 
Liberman et al., 2013; Yang and Shanechi, 2016). As a result, AACL experimental or adaptive BMI 
paradigms may have significant impacts on human brain science. The development of stable, 
secure, real-time brain-cloud interfaces similar to current mobile voice and image-based 
interfaces will be critical to updating model-based inferences based on new observations 
(Martins et al., 2019). 
 
In summary, knowledge discovery in systems neuroscience is being transformed by advances 
in neurotechnology. Fundamentally, the scale of data acquisition and speed of data analysis 
jointly determine the rate of hypothesis testing or revision, and ultimately the rate of discovery. 
The peril arises from how scaling up data acquisition can slow down data analysis. AACL 
experiments offer a solution to improve scalability for knowledge discovery. Achieving this 
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vision requires the coordination of scalable computation, active and adaptive experimental 
designs in real-time systems and interfaces. Ultimately, the successful scaling of knowledge 
discovery is essential to understand the complex brain mechanisms supporting cognition and 
behavior in health and disease. 
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 BOX 1. Correlation Matrix Estimation (303 words) 
 
The correlation matrix is a central statistical measure central to principal component analysis (PCA). As the 
dimensionality of observed variables, n, increases, the number of estimated parameters scales quadratically in n. 
A curse of dimensionality (CoD) arises when the sample size N is small in relation to the dimensionality, n; and   
the correlation structure of neuronal populations cannot be reliably estimated because of insufficient number of 
experimental trials or duration in neuroscience experiments. 
         A simple model-free solution to the CoD imposes local proximity structure onto the correlations; namely, 
only neurons recorded from nearby electrodes are connected. Consequently, the number of parameters scales 
linearly with n. However, the spatial proximity assumption may not hold in practice. For instance, two hippocampal 
place cells recorded from distant electrodes may share overlapping place fields and hence correlated activity.  
         A model-based approach to the correlation matrix estimation is via partial correlation. Partial correlation is 
equivalent to conditional correlation when the random variables are multivariate normal distributed. If the 
observations are discrete (e.g. multinomial), the equivalence also holds when the conditional expectation of the 
random variables is linear (Baba et al., 2004). By using partial correlation, one can solve n linear regression 
problems, each of which involving n-1 regressors and 1 predictor. Since the n regression problems can be solved 
independently, the computation can be scaled up using parallel computing. Therefore, by mitigating the CoD, 
partial correlation estimates may be not only more reliable, but also computationally efficient.  

An alternative approach involves random projection or subsampling, in which one selects m variables (m 
≪n), and repeats the linear regression procedure with different subsets. Statistically, random projection-based 
correlation estimates assume sufficient sparsity in order to stably embed the subsets into a low-dimensional 
subspace. Therefore, the correlation estimates are robust with respect to varying number of neurons due to 
recording instability.  
        
 
 
BOX 2.  Dimensionality Reduction (315 words) 
 
       In systems neuroscience, dimensionality reduction methods are important to answering the neural 
dimensionality question: i.e., how many neurons are required to resolve the dynamics underlying a behavioral 
task? The answer may depend on the coding specificity of the stimulus or behavioral variables (Stringer et al, 
2019a, 2019b). Knowing the answer can improve our understanding of the scaling property of neuronal population 
in both encoding and decoding (Williamson et al., 2016).  
      The choice of neural decoding methods also leads to dimensionality concerns. Linear decoding methods (such 
as factor analysis and Kalman filter) are commonly used because of their simplicity. In contrast, despite potentially 
better performance, many nonlinear decoding methods are less commonly used. One important reason is that 
nonlinear methods suffer a curse of dimensionality. For instance, nonlinear function estimation scales polynomially 
or even exponentially in terms of dimensionality. Moreover, fitting nonlinear functions requires parameter search 
in the presence of local minima which also scales with n. As a result, nonlinear methods often lack scalability. 

Dimensionality reduction methods can help alleviate the computational curse (Cunningham and Yu, 2014). 
This has motivated the development of a variety of advanced nonlinear dimensionality reduction methods to 
examine neuronal population activities (Yu et al., 2009; Gao et al, 2016; Wu et al., 2017). However, nonlinear 
dimensionality reduction approaches are computationally expensive and depend on strong assumptions, such as 
the ability to conceptualize experimental measurement as a random projection of neural activity.  
            Adaptive subsampling provides a complementary approach to measurement by random projection and 
can address the CoD present for dimensionality reduction, which is critical in the context of AACL experiments. 
Since neurons exhibit log-normal firing rate distributions, applying dimensionality reduction methods to large 
numbers of neurons may not sufficiently capture the long-tail behavior. As a result, neuronal representations may 
be incompletely characterized. By allowing for better sampling in the tails, adaptive subsampling of neurons can 
provide a more complete picture.  
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BOX 3. Mapping Networks in Neuroscience (308 words) 
 
Brain function and dysfunction are increasingly understood as being due to the expression of multiple overlapping 
network mechanisms. Network mechanisms of multiregional communication are most often inferred from the 
structure of correlations in neural activity. The availability of recordings from many signal channels has fueled 
progress. However, functionally connectivity analyses have been typically applied to signals that measure neuronal 
function indirectly and do not necessarily scale due to fundamental limits on signal resolution – such as blood 
oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) and widefield calcium imaging 
signals. Inferring network mechanisms from high-dimensional neuronal recordings is hampered by the CoD. 
Moreover, using correlations to interpret activity patterns as being due to interactions is subject to significant 
confounds. Correlations are sensitive to the confounding influence of common inputs from other brain regions, 
yielding network edges even when the receiver does not receive any input from the sender. 
      Recent work maps large-scale brain networks and studies the mechanisms of multiregional communication 
by recording neural responses while delivering low-amplitude stimulation pulses in a causal network analysis 
(Qian et al, 2020). Taking a causal sampling approach offers important advantages. Causal responses cannot be 
due to common input. Delivering isolated low-amplitude microstimulation pulses also offers the opportunity to 
more directly probe network excitability while avoiding the confounding effects and network responses. Inferences 
from large-amplitude stimulation pulses or pulse trains may recruit network responses that do not reflect direct 
functional interactions between the stimulation and recording sites (Lozano et al., 2019).  Large amplitude pulses 
and pulse trains can effectively change the interaction instead of measuring the interaction. 
      Because mapping networks using a causal network analysis allows a selective targeting of neurons and neural 
circuits for investigation based on their role in the network, we may be able to mitigate the curse of dimensionality 
associated with scaling up data acquisition and analysis without constraints. 
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Figure 1. Scaling in Neural Data Acquisition    
 
(A) Cycle of knowledge discovery (Conceive-Acquire-Analyze-Test-Revise). The Acquire step consists of 
recording large-scale neuronal activity during behavior. The Analyze step consists of data analysis and 
interpretation. The Test and Revise step involves testing the hypothesis and revising it as necessary to close the 
cycle.  
 
(B) Near or faster than exponential growth in the number of recorded neurons based on in vitro or in vivo 
electrophysiology (up-to-year update from http://stevenson.lab.uconn.edu/scaling/ ). Recent neurotechnology 
development for simultaneous neuronal recordings suggested that a further jump from the exponential growth.  
 
(C) Trade-off between sampling frequency and the number of recorded neurons based on microscopy imaging 
(From Lecoq et al., 2019, Society for Neuroscience). Based on the new Light Beads Microscopy (LBM) technique, 
~1,000,000 neurons were recorded within ~5.4 × 6 × 0.5 mm3 volumes at ~2 Hz (Demas et al., 2021). 

D

A

E

Scale of data and analysis

Di
sc
ov
er
y 
ra
te

with curse

wi
th
ou
t c
ur
se

curse + closed-loop

Acquire
data

Analyze
data

Test
hypothesis

Conceive 
or Revise 
hypothesis

B C

1000000

LBM

# Imaged neurons

Sa
m
pli
ng
 fr
eq
 (H
z)

Publication year

# 
Si
m
u.
 re
co
rd
ed
 n
eu
ro
ns

Sp
ee
d

Scale

Analysis

Acquisition



 19 

 
(D) Schematic of “scale-speed limit” for data acquisition and analysis steps. For a fixed scale, the pace of discovery 
is determined by slowest scale-speed factor.  
 
(E) Discovery rate (DR) scaling with data acquisition and analysis: DR = %&'()*	,-	./01,2)*/)0

3/')	4)*	./01,2)*5
. The number of 

discoveries scales proportionally to the scale of data acquisition. The time per discovery scales inversely 
proportionally to the rate at which data can be analyzed. Scaling the rate of data analysis with the rate of data 
acquisition, should lead to an accelerating DR (blue curve). However, the CoD effectively slows down discovery 
rate and DR scaling requires a correction: This correction to the DR can dominate. If the CoD correction scales 
faster than the rate of data analysis, the otherwise-accelerating DR flattens (red curve). Closed-loop experimental 
designs can mitigate the CoD and restore an accelerating DR (green shaded area).  
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Figure 2. Active Adaptive Closed-Loop (AACL) Experimental Paradigms Provide Solutions to the Curse-
of-Dimensionality Problems 
 
(A) Schematic of AACL experimental paradigm. The active feedback iteratively updates or optimizes the sampling, 
resampling or stimulation parameters at each stage of the loop (marked by three dashed arrows). The feedback 
may have different timescales and forms: experimental design (Lewi et al., 2009; Lewi et al., 2011), adaptive 
stimulus optimization (Walker et al., 2019; Ponce et al., 2019), neurally-defined stimulation (Berenyi et al., 2012; 
Paz et al., 2013; Grosenick et al., 2015; Zhang et al., 2021), closed-loop decoder adaptation (Dangi et al., 2013), 
user defined control or prosthetics (Carmena et al., 2003; Shanechi et al., 2016), or adaptive closed-loop 
neurostimulation (Tafazoli et al., 2020). 
 
(B) Schematic of adaptive stimulus optimization based on BMI with neural decoder adaptation. In the closed-lopp, 
an end-to-end trained neural network model predicted thousands of neuronal responses to arbitrary new natural 
input and synthesized optimal stimuli: most exciting inputs (MEIs) (Adapted with permission from Walker et al., 
2019, Springer Nature).  
 
(C) Illustration of subsampling/resampling in the closed-loop Acquire step (Choi et al., 2020). Recording channels 
can be selected from signal channels by optimizing the subset of signal channels selected to maximize the number 
of recorded neurons given the available neurons known when all signal channels are recorded. Optimization 
involves adaptively sampling the signal channels selected to maximize the yield of recorded neurons. 
 
(D) A snapshot of the closed-loop Analyze step for large-scale rat hippocampal recordings. A GPU-powered 
population-decoding system was developed for ultrafast reconstruction of spatial positions from rodent’s unsorted 
spatiotemporal spiking patterns, with real-time speed to decode rat’s run position (latency < 250 ms) or memory 
replays (latency <20 ms). Furthermore, the approach enabled assessment of the statistical significance of online-
decoded replay (Adapted with permission from Hu et al., 2018, Elsevier).  
 
(E) Illustration of the scaling between the Acquire and Analyze steps to accommodate real-time operation 
(~fraction of millisecond per spike). The GPU decoding strategy can scale up to thousands of channels (Adapted 
with permission from Hu et al., 2018, Elsevier).  
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(F) Schematic of a BMI with neural decoder adaptation (Dangi et al., 2013). The adaptation design elements 
include the adaptation, timescale, selective parameter adaptation, smooth decoder updates, and intuitive decoder 
adaptation parameters.  
 
(G) Schematic of a BMI with neural feedback (Adapted with permission from Yang et al., 2021, Springer Nature).  
Model-based closed-loop controllers can be designed and consist of a Kalman state estimator and a feedback 
controller. Brain network activity can be used as feedback and the model-based closed-loop controller identified 
the stimulation parameters to drive the internal brain state to a particular target. 
 
(H) Schematic of adaptive closed-loop stimulation (Tafazoli et al., 2020). The system learns to use multi-site 
spatially patterned electrical stimulation to control the pattern of activity of a population of neurons.  
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