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In Brief

Advances in neurotechnology for exponential growth of neural data present both opportunities
and challenges in systems neuroscience. Chen and Pesaran argue that active, adaptive
closed-loop experiments offer a solution to improve scalability for knowledge discovery and
overcome the dimensionality bottleneck.

Summary

Emerging technologies to acquire data at increasingly greater scales promise to transform
discovery in systems neuroscience. However, current exponential growth in the scale of data
acquisition is a double-edged sword. Scaling up data acquisition can speed up the cycle of
discovery, but can also misinterpret the results or possibly slow down the cycle due to
challenges presented by the curse of high-dimensional data. Active, adaptive, closed-loop
experimental paradigms employ hardware and algorithms optimized to enable time-critical
computation to provide feedback that interprets the observations and tests hypotheses, to
actively update the stimulus or stimulation parameters. In this perspective, we review important
concepts of active and adaptive experiments, and discuss how selectively constraining the
dimensionality and optimizing strategies at different stages of discovery loop can help mitigate
the curse of high-dimensional data. Active and adaptive closed-loop experimental paradigms
can speed up discovery in spite of an exponentially increasing data scale, offering a roadmap
to timely and iterative hypothesis revision and discovery in an era of exponential growth in
neuroscience.



Introduction

Systems neuroscience faces the daunting challenge of understanding brain networks of
complex and poorly understood topologies. Over the last decade, however, a technological
revolution in neuroscience has enabled tremendous growth in volume and quality of scientific
data. Experimental tools allowing measurements of large-scale in vivo neuronal population
activity at high-resolution using multiple (e.g. electrical, optical, magnetic) modalities and
across multiple brain regions are becoming widespread. Alongside advances in
instrumentation, methods to efficiently preprocess, characterize and fit models to large-scale
neuroscientific data are also being developed (Stevenson and Kording, 2011; Paninski and Cunningham,
2018). How should we use large-scale neurotechnologies to understand brain network
mechanisms? This Perspective reviews the state-of-the-art in neurotechnology through the
lens of the curse of high-dimensional neural data analysis. The curse of high-dimensional data
arises from the consequences of scaling data dimensionality (Vershynin, 2018; Wainwright, 2019)
and leads to exponentially increasing computation time. We propose that a new generalization
of closed-loop experiments, which we term active, adaptive closed-loop (AACL) experiments,
will be important to successfully mitigating the scalability in neuroscience, especially for
discovering brain network mechanisms.

Discovery is a process of obtaining new knowledge based on multiple steps of verification.
In systems neuroscience, knowledge can be expressed in multiple forms, ranging from the
understanding of the animal’s behavior, the effectiveness of experimental stimuli, the regularity
of the neural response, to the causal link between neural codes to behavior. Discovery can
revise the existing theories or hypotheses, or even create a paradigm shift in the research
practice. The standard discovery cycle features data acquisition, analysis and interpretation to
test hypotheses and update concepts, which is fundamental to scientific progress (Conceive-
Acquire-Analyze-Test-Revise; Figure 1A). However, the concept of “loop” is underemphasized
in discovery cycle for two important reasons: first, there is no nested internal loop containing
feedback; second, there is no strict time constraint between steps. Large-scale neuroscience
presents a challenge for the cycle of discovery. Counterintuitively, the growth of neuroscience
data (in dimensionality, volume and size) can slow and even impede the cycle of discovery.
High-dimensionality of data can overwhelm the analysis because of the bandwidth bottleneck
and efforts to address the bottleneck can effectively decrease statistical power. The loss of
statistical power is because unless simplification (such as averaging or subsampling) is
assumed, the statistical estimate of model variables may become increasingly biased, which
may further misinterpret the results. The alternative involves increasing the recording duration
to account for the increased dimensionality (thereby increasing the acquisition time), or
processing all collected data sequentially without time constraints (thereby increasing the
analysis time), either of which can slow down the hypothesis testing or revision and progress
toward the scientific goals. This is particularly disruptive in neuroscience because the nervous
system is dynamic and plastic. We cannot revise and test important classes of hypotheses,
such as specificity and causality, until we verify the steps to complete an iteration. For instance,
if the tested hypothesis is circuit A is responsible for behavior B, even we observe that a
neurostimulation (as perturbation of “A”) disrupts a task (“B”), we still need to verify several
important questions to fully test the hypothesis: first, whether neurons collected from A show
significantly changed patterns that correlate with the behavior; second, what types of neurons



and how many of them contribute to such changes; third, how does the specific stimulation
input (e.g., timing and intensity) causally alter the task behavior. Much like how we cannot step
into the same river twice, by the time the original hypothesis has been tested the context within
which the results were obtained cannot be revisited. This substantially limits, and can
potentially even make impossible, our ability to test alternative hypotheses.

AACL experiments are different from open-loop or passive closed-loop experiments in
that not only strict time constraints are imposed on every step (e.g., acquisition, analysis,
stimulation), but also an optimization procedure is employed in some or even all steps based
on active feedback (Figure 2A). AACL feedback signals can be iteratively used for many
purposes: to optimize experimental stimuli and other experimental parameters (Walker et al..,
2019; Ponce et al., 2019), to select neural channels for recording and/or telemetry (Choi et al., 2020),
to perform decoder adaptation (Dangi et al., 2013), to optimize stimulation parameters (Tafazoli et
al., 2020), and to optimize objective functions and other aspects of control policies (Bolus et al.,
2018). In principle, each step of an AACL experiment may contain nested inner loops. In contrast,
passive closed-loop experiments employ a fixed policy. The experimental stimulus is
predetermined and cannot adapt. The decoder is fixed. Control and stimulation parameters are
predetermined.

In this Perspective, we discuss how jointly scaling up data acquisition and data analysis
in an active and adaptive manner can speed up the cycle and enable AACL experiments. We
first review the scalability in neurotechnology and instrumentation, highlighting how multiple
trends increase the size, volume and dimensionality of experimental observations. We then
point to our main thesis - that scaling is a double-edged sword: it can speed up the cycle of
discovery in systems neuroscience, but involves defining and following a sequence of
predetermined experimental steps. In considering the cycle of discovery, each step in an AACL
experiment has a respective “scaling-speed limit”. The overall rate of discovery is limited by the
slowest factor in each step (Figure 1D), and can be exacerbated by large data volumes and
high dimensionality, which can overwhelm our capacity for analysis and interpretation.
Consequently, the lack of scalability of data analytic tools introduces barriers to scientific
discovery. Finally, we discuss the features and limitations of AACL experiments, and review
strategies to speed up data analysis.

Size, Depth, and Multi-site in Neurophysiological and Imaging Recordings

Neurotechnologies employ a range of physical modalities spanning sound, light, electricity,
magnetism as well as multimodal mechanisms such as optoacoustics/photoacoustics and
magnetoacoustics (Marblestone et al., 2013; Gottschalk et al., 2019). Modern neural interfaces that
can record and/or stimulate the nervous system are dramatically expanding the number of
neural signal channels that can be monitored and manipulated. When the word “scale” is used,
we refer to the dimensionality/size/volume of neural signals, which should not be confused with
the spatial or temporal granularity at which data are acquired.

Accessing brain tissue at single cell resolution has traditionally involved implanting
electrodes directly into the brain. Multielectrode array recording devices remain the gold-
standard approach to recording in vivo electrophysiological cellular activity (Hong and Lieber,



2019). Growth in the number of simultaneously-recordable signal channels has been driven by
electrode fabrication, packaging, materials, and implementation. Neuron density, brain area
size and tissue displacement due to wiring and other physical device properties impose
fundamental limits on the number of recordable neurons. New neural recording technologies
that exploit nanoscale features and integrated electronics are significantly increasing the
number of single cells that can be recorded concurrently in single or multi-sites of the brain.
Two fundamental factors are paving the way towards large-scale neurophysiology. One factor
is to increase the number of electrode/channels through advanced packaging and new
materials (Sholvin et al., 2016). To date, hundreds to thousands of electrodes have been implanted
to record neural activity in vivo ( Berenyi et al., 2014; Shobe et al., 2015; Jun et al., 2017;
Chung et al., 2019; Steinmetz et al., 2018; Chiang et al.,, 2020). The other factor develops 3D electrode array
technologies, by combining laminar and movable penetrating electrodes and 2D electrode
arrays, to record depth- and layer-specific areas in brain circuits (Hoogerwerf and Wise, 1994; Rios
et al., 2016).

While electrophysiology traditionally has been used to collect neural activity of local brain
area with high temporal resolution, various optical imaging techniques make possible whole
brain recordings, focusing on the network and circuit levels (Yan and Yuste, 2017). Multiphoton
imaging also enables cellular-resolution chronic recordings of large-scale neuronal ensembles
in vivo across days and weeks (Jercog et al., 2016; Kim et al., 2016; Huang et al. 2018; Pachitariu et al.,
2017; Weisenburger and Vaziri, 2018). Recently, modern technologies have also rapidly improved the
spatiotemporal resolution and sampling speed of optical imaging and microscopy (Rumyantsev
et al., 2020; Wu et al., 2020). Ultimately, physical constraints will impose a limit on the effectiveness
of optical imaging, as any imaging techniques encounter the tradeoff between the imaging
speed, field-of-view and depth.

For all neural interfaces that rely on electrophysiology or optical imaging, technological
factors constrain the number of signal channels that can be recorded or controlled
simultaneously (Marblestone et al., 2013; Kleinfeld et al., 2019). These constraints involve, for
example, power and thermal dissipation for implanted wireless arrays (Zhou et al., 2019),
sampling frequency or optical paths for microscopes ( Sofroniew et al.,
2016; Stirman et al., 2016; Lecoq et al., 2019) and wiring constraints for electrode arrays (Marblestone et
al., 2013; Hong and Lieber, 2019; Raducanu et al., 2017). Constraints on simultaneous access lead to
a selection problem involving how to use the available signal channels to optimally monitor and
manipulate the neural population of interest (Saxena and Cunningham, 2019; Moreaux et al., 2020). If
there were no constraints, one could simply measure from all signal channels and there would
be no selection problem. If there were too many constraints, there would be very few
simultaneously accessible signal channels obviating the problem of selection. For most modern
neurotechnologies, however, the space of possible selections is combinatorial. For example,
Neuropixel electrode arrays contain 960 electrodes (Steinmetz et al., 2018); however, only 384
recording channels can be acquired simultaneously. Subject to other constraints, there are
2.5™9 different possible selections for this array (Choi et al., 2020). Similarly, the two-photon
random access mesoscope (2p-RAM) has a 5-mm field of view cellular-resolution microscope
that makes available up to a million neurons in the transgenic mouse expressing GCaMP in
neurons (Sofroniew et al., 2016). However, adaptive optics strategies are necessary to flexibly and
rapidly deliver light and make available neurons for simultaneous investigation. For instance, a
system using custom optics and independently repositionable temporally multiplexed imaging



beams offers an expanded field-of-view (>9.5 mm?), with multi-site imaging of tens of
thousands of neurons across multiple mouse cortical areas (Stirman et al., 2016). In each of the
above-mentioned cases, modern instrumentation leads to a combinatorial explosion of possible
selections.

Chronic Experiments, Task Complexity, Naturalistic Behavior

Increasingly, modern neurotechnologies are being deployed chronically in implanted systems
(Schwartz et al., 2014; Tybrandt et al., 2018; Chiang et al., 2020). The main concerns of chronic
electrophysiological recordings are the unit yield, longevity, stability and quality of neural
signals (Juavinett et al., 2019; Luo et al., 2020). In all recording devices, the interfaces between the
nervous system and a synthetic sensor involve innovations in advanced materials (Chen et al.,
2018). Advanced microelectrode technologies have been invented for recording interfaces to
improve biocompatibility and stability (Fattachi et al., 2014), which enable us to repeatedly sample
the activity of the same population of neurons. In addition, wireless recording devices have
become increasingly available for chronic data acquisition.

The challenge of neuroscience data analysis is further magnified by the complexity of
behavior. New technologies allow complex, naturalistic and unconstrained behaviors to be
measured with increasing detail at the individual and group levels (Tseng et al., 2018). Some
behaviors, such as navigation, can involve multiple animals in social interactions (Danjo et al.
2018) or in three-dimensional spaces (Omer et al., 2018). Skeletal movements involve joint
rotations with as many as 27 different joint angles for the primate arm and hand. Other task
behaviors, such as motor learning, can last hours, days and even weeks (Sandler, 2008). As the
temporal duration increases, the task complexity also scales up.

Naturalistic behavior introduces additional issues. To be considered naturalistic, a
behavior should not depend on training to follow experimenter-defined instructions. In the
absence of instructions, however, preferred behaviors will be acquired and behavioral
stereotypy can emerge; namely, subjects can choose to repeatedly make the same, potentially
optimal, action sequences, such as “look-then-reach” when picking up a cup. To more
completely study the underlying neural mechanisms, investigations of naturalistic behaviors
may need to adaptively deliver instructions in an AACL experiment. In active sampling
behaviors (such as sniffing or shifting gaze), subjects actively use attention and active sensing
strategies to sample relevant cues for information seeking or decision making. While animals
can learn a sampling policy through attentional learning and reward maximization, it poses a
challenge for experimenters to study the neural correlates underlying such behaviors.

Subsampling and Resampling of Neural Space

As the number of simultaneously recorded neurons from electrophysiology or calcium imaging
becomes very large (e.g., 10,000-1,000,000), redundancy will arise. Given a specific recorded
brain target, identification of a high- or low-dimensional neural code will vary according to the
question of interest. For instance, the visual cortex may have a high-dimensional
representation for visual signals, yet a low-dimensional representation for other nonvisual



behavioral variables ( ). Random sampling is a widely used statistical
strategy for estimating the properties of a large network or system. Supported by the law of
large numbers and distribution invariance, subsampling assumes exchangeability and
ergodicity of a stochastic dynamical system. In data acquisition, large-scale sampling of neural
signals enables us to examine the resampling axis in order to assess neural dimensionality and
coding sufficiency. For instance, a theoretical question regarding the neural code is “what is
the dimensionality of odor space?” (Meister, 2015), or “what is the intrinsic multi-neuronal
dimensionality or the complexity of dynamics that relates to the task behavior?” (Gao and Ganguli,
2015; Gao et al,, 2017). Unlike traditional data-replacement resampling techniques, sequential
neural resampling opens the door to measuring neuronal populations in an integrated manner
to generate datasets that are sufficient to rigorously test hypotheses about brain functions.
Additionally, researchers may test if subsampling of neuronal populations can preserve the
invariant structure of network structure or neural dynamics (Chen et al. 2014; Williamson et al., 2016;
Gao et al. 2017; Liu et al., 2019).

Curse of High-Dimensional Data Analysis

The combination of task complexity, multimodality, and large-scale chronic experimental
paradigms can quickly generate high-dimensional, structured neural and behavioral data
whose analysis and interpretation can outpace computational capabilities. A statistical curse of
dimensionality (CoD) arises to impede the discovery cycle within the Analyze step.

The common theme of CoD problems is that when the dimensionality increases, the
volume of the space increases so rapidly that the available data become very sparse. For
instance, to study d-dimensional behavioral variables, we design N experimental trials and
record m neurons. If we increase d and m separately or jointly while keeping N unchanged, the
insufficient sample size will make it difficult to relate a neural space R™ to a behavioral space
R, In this case, in order to establish statistical significance, the number of samples (trial-by-
duration) needed to support the result often grows exponentially with the dimensionalities d
and m.

High-dimensional neural data imposes a CoD across many statistical analyses. First,
neural data analysis depends on second and higher-order computations critical to
understanding networks, such as functional connectivity. However, the number of trials and
duration of trials needed for a reliable statistical estimate does not scale with data
dimensionality. Statistical estimation of the covariance matrix in a principal component analysis
(PCA) can suffer strong bias and/or high variance when the sample size is insufficient given
the data dimensionality ( )- Second, statistical estimation, either by model-free or model-
based approach, can be ill-posed when analyzing high-dimensional data. While model-free
approximations can have a small number of parameters, they may lack neuroscientific validity.
In contrast, model-based approaches can involve many parameters, but pose challenges for
model fitting when the data are high-dimensional. Therefore, incorporation of hypothesis-driven
theories, priors, and constraints into the model may help solve ill-posed estimation problems.
Dimensionality reduction techniques are important tools to tackle large-scale neural recordings



on a single-trial basis (BOX 2; Cunningham and Yu, 2014). Third, the complexity and long timescales
of task behaviors will introduce plasticity or non-stationarity in neural recordings, posing
additional estimation challenges.

Scaling data acquisition and analysis should accelerate the rate of discovery (Figure 1E).
However, the curse of high-dimensional data exponentially increases the time necessary to
obtain each discovery. As a result, the discovery rate may saturate as data acquisition and
analysis increase in scale. The challenge is to maintain an increasing rate of discovery while
increasing the scale of data acquisition and analysis. As we discuss below, AACL experiments
may offer a solution.

AACL Experimental Paradigms

Closed-loop experiments represent a paradigm shift from open-loop experiments. In closed-
loop experiments, neural signals are processed to algorithmically generate feedback signals

that are delivered to the subject according to a policy (Zrenner et al., 2016; Yang and Shanechi, 2016;
Ciliberti et al., 2018; Srinivasan et al., 2018; Kane et al. 2020; Bolus et al., 2018; Walker et al., 2019; Ponce et al.,

2019; Tafazoli et al., 2020; see also reviews in Potter et al., 2014; El Hady, 2016). Traditionally, feedback
in a closed-loop experiment can take a variety of forms. If the purpose of a brain-machine
interface (BMI) is to control an external actuator, the feedback can be the delivery of stimulation
to the nervous system; if the goal of BMI is to control sensory feedback, the feedback can be
the timing of sensorimotor information. However, in all closed-loop BMIs, data acquisition is
subject to a signal bandwidth constraint, and analysis and feedback are subject to a time
constraint. The timescale of feedback is often on the order of milliseconds or seconds that map
from circuit functions to behavior. Here we argue that passive closed-loop experiments are still
insufficient and inefficient. Specifically, we introduce AACL experiments which generalize
concepts familiar to traditional closed-loop experimental designs and include active feedback
that is based on multiple stages of knowledge discovery. The terms “active” and “adaptive” are
subtly different yet often exchangeable in the literature. By “active”, the experimenter can
manipulate the instrumentation or experimental stimuli according to a predefined or optimized
policy. Unlike passive feedback that arises automatically regardless of the user’s intention,
active feedback emphasizes the effort of seeking valuable information from the feedback signal,
and then iteratively optimizes the discovery process at various stages (e.g., sampling,
resampling analysis, stimulation). By “adaptive”, the experimenter can modify the decoder or
stimulation parameters over time based on feedback or error-correction learning.

AACL experiments enable the testing of hypotheses that cannot be tested by non-AACL
experiments in two distinct ways. Some hypotheses can, in principle, be tested using both
AACL and non-AACL experiments but non-AACL experiments are sufficiently inefficient that,
in practice, the hypothesis cannot be tested due to lack of time. For example, hypotheses that
depend on neurostimulation efficacy which requires estimating a map of responses to
stimulation at different stimulation sites. Other examples of new knowledge acquired in practice
by AACL experiments include neuron-stimulus sensitivity, maximal electrode channel unit
yields, and system controllability. Other hypotheses cannot be tested by non-AACL
experiments even in principle and require the use of AACL experiments. For example,
hypotheses that depend on learning especially when learning occurs rapidly and when learning



is irreversible. When both AACL and non-AACL experiments can be performed in principle,
then the nature of knowledge gained is similar except that AACL experiments obtain knowledge
at a faster rate due to their improved efficiency. In cases where AACL experiments cannot be
performed by non-AACL experiments, the nature of knowledge gained is distinct.

To use neurostimulation again as the example, traditional closed-loop stimulation is
designed in an on/off stimulation fashion triggered by predetermined stimulation parameters.
In contrast, AACL experiments can actively seek the feedback from neuronal firing and adjust
the stimulation parameters or control policy to optimize the “natural” cost function (Choi et al.,
2016; Bolus et al., 2018; Tafazoli et al., 2020). The cost function is defined by the difference between
the observed neural responses and predicted neural responses, where the predictor can be,
for example, a simple linear-nonlinear Poisson (LNP) model, or an artificial neural network.

We propose that AACL experiments offer a natural solution to the scaling bottleneck and
improve the scalability. In contrast to the standard “Conceive-Acquire-Analyze-Test-Revise”
paradigm that does not impose strict time constraints on each step, AACL experiments collect
and analyze neural data in a sequential manner with time constraints, and test adaptive
hypotheses with timely neurofeedback that accounts for neural plasticity during the course of
learning and adaptation (Figure 2A). The active and adaptive strategies can be implemented,
independently or jointly, throughout the acquisition, analysis, and feedback steps. The form of
feedback may be diverse, in terms of stimulus optimization, experimental design, decoder
adaptation, neurostimulation, and other user-defined feedback control. The discovered
knowledge accumulates with completion of each step. The discovery cycle continues until the
experimental subject reaches the predefined experimental goal algorithmically according to the
policy. Notably, certain stages of the AACL experiments accommodate many other names
proposed in the literature as special cases, such as active experimental design, active stimulus
selection, closed-loop feedback control, and closed-loop decoder adaptation. AACL
experiments therefore generalize the concept of closed-loop experiments across time-scales
for closing the loop and iterating the discovery cycle, as quickly as a fraction of a second, to
chronic experimental preparations, as long as months and years.

The concept of adaptive experiments is not new in neuroscience. For instance, design
of adaptive experiments is a long-established standard for psychometric testing, such as the
use of QUEST procedure (Watson and Pelli, 1983). At slower feedback time-scales, iterative
closed-loop paradigms are already well-established in various domains within systems
neuroscience. Neuronal stimulus selectivity in the ventral visual pathway exists in a high-
dimensional space of sensory stimuli. To assess ventral stream selectivity, Qian-Quiroga and
colleagues systematically searched for responses of single neurons to stimuli (Qian-Quiroga et al.,
2005). The limited time available for experiments required closing the loop in two-stages of
correlational studies. First, responses in a screening session were analyzed, and then used to
select target stimuli for the testing session. While each stage was an open-loop experiment,
closing the feedback loop across stages tamed the explosion of potential experiments and
made possible a more focused investigation. Dramatic increases in the number of neural signal
channels that can be monitored and manipulated means neuroscience investigations
increasingly lie within a high-dimensional space of experimental designs. These capabilities
are opening the door to new applications of closed-loop experimental paradigms to map



networks as part of large-scale investigations of multiregional communication (BOX 3). To
follow the similar philosophy but with improved efficiency, an analogue of AACL experiment is
to identify sensory stimuli that optimize visual neuronal responses at a fast, sub-second
timescale. Specifically, Walker and colleagues developed “inception loops”, a closed-loop
paradigm combining in vivo recording from thousands of neurons with in silico nonlinear
response modeling (Walker et al., 2019). The closed-loop model-based response prediction
enabled them to generate synthetic yet optimal stimuli (Figure 2B). Therefore, designing
adaptive closed-loop image synthesis systems to explore the single or population neuronal
response properties represents a new paradigm in visual neuroscience (Ponce et al., 2019;
Bashivan et al., 2019).

Closed-loop BMIs can not only learn optimizing sensory stimuli, but also learn active
sensing strategies (Richardson et al., 2019). Specifically, experimental manipulation of task-
relevant sensory feedback, provided by intracortical microstimulation (ICMS) that encoded
egocentric bearing to the hidden goal direction, can reveal distinct motor strategy adaptation
to match novel sensor properties for goal-directed behavior. Additionally, BMIs seek to deliver
either neural feedback by stimulating neural activity (SENSE-STIMULATE) or user feedback
through an external interface that the user controls (SENSE-CONTROL). In neural feedback
BMIls, subjects do not need to be aware of the operation of the interface. The BMI seeks to
disrupt on-going network excitation or inhibition, e.g. seizure control or optogenetic control
(Berenyi et al., 2012; Paz et al., 2013; Grosenick et al., 2015), and/or shape neural plasticity, e.g. mood
regulation (Zhang et al., 2021; Shanechi, 2019). In contrast, user feedback BMIs, e.g. visual and
motor prostheses, depend on how the user learns to use the interface (Carmena et al., 2003;
Koralek et al., 2012; Shenoy and Carmena, 2014). Another example of AACL experiment is closed-
loop decoder adaptation (CLDA) used in BMI systems, which can accelerate learning and
improve performance by iteratively updating a BMI decoder’s parameter (Dangi et al., 2013; Figure
2F). In these cases, volition, awareness and agency play an important role as the subject
controls the relevant patterns of neural activity decoded by the BMI. In principle, neural-
feedback and user-feedback-based BMIs can be combined. For example, BMIs based on
feedback that the user controls could also feature neural feedback protocols designed to recruit
brain plasticity and enhance learning (Shenoy and Carmena, 2014).

BMIs offer clinical opportunities as neuroprosthetic devices (Collinger et al., 2013; Ajiboye et
al., 2017). Additionally, BMIs provide a novel experimental platform for performing adaptive
perturbations and causal circuit manipulations. One successful AACL application is to employ
an adaptive closed-loop patterned stimulation strategy (Tafazoli et al., 2020), which learns to use
multi-site electrical stimulations to control the pattern of a population of neurons. Additionally,
BMIs can help reveal important circuit mechanisms and are particularly useful when studying
learned behaviors and sensorimotor control (Jarosiewicz et al., 2008; Koralek et al., 2012; Sadltler et al.,
2014; Golub et al., 2016). By making explicit the system inputs and outputs, BMIs allow us to
resolve the neural computations that drive learning and test how network structure influences
learning (Orsborn and Pesaran, 2017). Since BMIs require low-latency feedback, they can also be
used with causal circuit manipulations to stimulate or inactivate in a state-dependent manner.
State-dependence allows manipulations to be sensitive to the dynamic properties of brain
processes (Qiao et al., 2020) and is an essential component of closed-loop feedback control
algorithms (Shanechi et al., 2016; Srinvivasan et al., 2018; Yang et al., 2021). Therefore, BMIs can enable



us to conditionally test specific causal functional roles for neural circuits or their plausible links
to behaviors.

Features and Limitations of AACL Experiments

Discovery does not rely on closed-loop experiments per se; neither do closed-loop experiments
automatically lead to discovery in neuroscience. However, AACL experiments can provide a
timely feedback, and update new hypotheses iteratively during the course of discovery process.

High-dimensional capabilities enabled by modern neurotechnologies present not only
opportunities in establishing the links between neuronal activity and behavior, but also
challenges and paradigm shifts in neural data analysis and interpretation. Traditional
neuroscience paradigms based on spike sorting and tuning curve estimation will inevitably fail
to capture the complexity and dynamics of naturalistic behaviors because the behaviors occupy
high-dimensional spaces. AACL experiments offer opportunities to perform ‘active’
experimental designs that algorithmically select experimental parameters from a high-
dimensional space of configurations. In traditional ‘passive’ experimental designs, each step of
the cycle has a predetermined policy. For instance, the Acquire step uses the fixed stimulus
configurations; whereas in the Analyze step, the stimulation configuration or control strategy is
fixed. Active experimental designs feature adaptive selection strategies that optimize each step
in a closed-loop using real-time neurofeedback. For instance, animal training can be optimized
(Bak et al., 2016), experimental stimulus design can be optimized in a sequential manner (Lewi et
al., 2009; 2011); and feedback control or neurostimulation can be optimized on the fly (Cunningham
et al., 2011; Swann et al., 2018). As a result, we can efficiently test hypotheses sequentially, and
potentially even in parallel.

The challenge presented by high-dimensional experimental configurations is particularly
acute in the case of neurostimulation experiments. Unlike neural recordings which can be
performed at multiple sites simultaneously, neurostimulation experiments can only performed
one at a time by choosing “when”, “how”, and “where” to stimulate. The resulting spatiotemporal
patterns of stimulation occupy a particularly high-dimensional configuration space which cannot
necessarily be probed simultaneously. In a sense, stimulating all the electrodes at once is not
analogous to recording from them all at once. As a result, in the general case only a relatively
small number of stimulation configurations can be tested in a single experimental session.
Since the nervous system is adaptive and plastic, with constantly changing neural responses,
we cannot necessarily rely on comparing stimulation responses to different configurations in
different sessions. Novel AACL experimental designs will be critical for progress toward
identifying causal roles for neural codes.

Another important approach features AACL experiments with active designs to guide
neuronal subsampling and resampling ( ). A central issue in these experimental
designs is whether the properties of the repeatedly sampled populations reflect properties of
the underlying distribution. Closed-loop acquisition is like an active search in the space of
neural activity to maximize the signal-to-noise ratio. Unlike active sensing in behavior that
reflects the animal’s behavioral policy, neuronal subsampling is guided by the experimenter’s
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policy, subject to physical, time and bandwidth constraints. For instance, we can design an
algorithm that optimizes the joint electrode selections for all recording channels according to
the experimenter’s policy in order to maximize the isolation quality of detected neurons (Choi et
al., 2020). Analyzing resampled populations is very effective when performing dimensionality
reduction. Subsampling m neurons from a population of n neurons can be viewed as a random
projection from an n-dimensional manifold (Ganguly and Sompolinsky, 2012; Gao and Ganguly, 2015);
in this sense, resampling can be viewed as multiple random projections of n neurons. The
Johnson-Lindenstrauss lemma states that random projections preserve the pairwise distances
of high-dimensional data (Bingham and Mannila, 2001). As a result, properties of the underlying
distribution that depend on pairwise distances, such as in dimensionality reduction techniques,
are preserved by resampled populations. Modes estimated from resampled populations may
share other distributional properties with the underlying population. Notably, neural activity
often follows a log-dynamic law (Buzsaki and Mizuseki, 2014), and linear combinations of
subsampled lognormal distributed neural responses can also be approximated by a lognormal
distribution (Asmussen and Rojas-Nandayapa, 2008).

Establishing causality is the holy grail for many questions in systems neuroscience.
When doing so, it is important to distinguish between how correlation and causation arise in
closed-loop experiments. Correlational dependencies describe associations of measurements
that experiments do not control, whereas causal dependencies link a dependent variable to an
experimentally controlled variable (Jazayeri and Fraz, 2017). The key concept in causal inference
is randomization, such as a random external stimulus or random perturbation (e.g.,
microstimulation or optogenetic stimulation). The relationship between every dependable
variable and the randomized variable is causal, whereas the relationship between non-
randomized variables and behavior, remains correlational. As the brain activity is high-
dimensional, correlations within massively under-sampled neuronal recordings cannot fully
reveal circuit mechanisms. Although closed-loop experiments can contain both correlation and
causation components, they can be distinguished from open-loop perturbation experiments in
timing and specificity, thereby narrowing the search space of neural code-behavior
relationship--- i.e., mitigating the dimensionality bottleneck.

It is also important to point out the limitations of closed-loop perturbation-based
approaches for the causal dissection of circuit and behavior. First, the brain is complex, and
many brain areas can engage in even a simple task or spontaneous behavior (Stringer et al.,
2019b). Therefore, even large-scale neural recordings can only provide a small window of the
brain activity, and our target system is partially observable. The presence of latent variables
can bring an additional degree of complexity to precisely controlling variables of interest (either
neural activity or behavior); induced unexpected network-level side effects complicate data
interpretation. Second, the brain is nonlinear and plastic. Consequently a control strategy that
works in a certain condition may not necessarily generalize well in other tasks or behavioral
states. Third, behavior can also be complex (although the dimensionality of behavior is much
smaller than the neural dimensionality), and each axis of behavioral space may be jointly or
independently controlled by neural correlates. Fourth, electrical or optical stimulation may
create undesirable lasting side effects (e.g., heat, toxicity, cell death, change in excitation-
inhibition balance) that bring additional uncertainties to the specific brain functions under study.
Finally, even the most sophisticated neural stimulation technologies available today suffer the
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limitation that they artificially activate or suppress neural activity. Such manipulations are
artificial in that they highjack the system and drive the neuronal network into “unnatural”
regimes. Many BMI technologies based on non-specific and unnatural perturbations may face
challenges in how to interpret the results, as traditional non-adaptive neurostimulations may
cause varying degrees of side effects on behavior, or even generate “false discoveries”. To
mitigate such concerns, recent work performing causal network analyses emphasizes the use
of minimal perturbations and delivers single stimulation pulses (Qiao et al, 2020). Related work
on multiregional network system identification shows that pairs of sites that share correlated
neural activity patterns also tend to share stimulation responses (Yang et al, 2021), indicating that
causal manipulations and recordings can be mutually informative and constrain network
inferences. While acknowledging that fundamental constraints limit testing causality
dependencies between brain and behavior, trial-and-error active manipulations remain the
most important source of evidence that a brain area supports one aspect of behavior. The
development of next-generation active and adaptive BMIs that deliver “naturalistic” patterned
neurostimulations and incorporate appropriate control experiments would help alleviate the
illusion of false discovery. A type of new closed-loop feedback for neurostimulation, for instance,
can be the output of neuronal firing patterns or the local network connectivity (Viachos et al., 2016;
Choi et al., 2016; Bolus et al., 2018; Tafazoli et al., 2020).

Speeding Up Neural Data Analysis

Another important issue of scalability in knowledge discovery involves speed. Even if the
dimensionality of data remains constant, the increasing amount of data may still create an
analysis bottleneck for knowledge discovery. In data analysis and interpretation, we aim to
avoid an exponential complexity or computation latency with respect to the number of neurons,
seeking a linear or sub-linear order of complexity. In developing efficient analytic tools,
computation speed and scalability are key considerations.

First, closed-loop BMIs impose low-latency constraints in all experimental steps.
Computational overhead jointly depends on data size, CPU architecture, memory, and
bandwidth. Overall, computation latency is composed of two parts: Total cost = fixed cost +
scaling cost, where the first term is independent of the scale of data, and the second term
increases with the scale of data. Therefore, scaling up data acquisition can impose a great
challenge in computation speed due to limited resources in memory, bandwidth and computing
power. To accommodate scalable ultrafast neural data analysis, modern computing resources
and dedicated hardware can help meet these resource requirements. According to a current
estimate of the doom of Moore’s law, the computing power of single CPU will similarly reach
the physical limit around 2022. In contrast, high-performance computing devices based on
graphic processing unit (GPU) and field programmable gate arrays (FPGA) have become
widely adopted for data analyses (Hu et al., 2018; Giovannucci e al., 2018).

In the Acquire step, open-source low-latency hardware (e.g., Open Ephys 2.0) has
managed to minimize high-speed sampling delay with microsecond latency. Automated and
scalable hardware-empowered spike sorting can accommodate real-time processing for large-
scale data acquisition (Pachitariu et al., 2016; Chung et al., 2017; Jun et al., 2017; Yger et al., 2018). In the
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Analyze step, computational tasks can be operated in real time for ultrafast decoding, detection
and control. Using the rodent hippocampus as an example, hippocampal replays during sharp-
wave ripples are known to contribute to memory consolidation, planning and future decision
making (Buzsaki, 2015). Closed-loop perturbation experiments that aim to investigate the
contribution of these replay events may narrow the search space of relationship between neural
code and behavior, or eliminate alternative competing hypotheses (Girardeau et al., 2009;
Fernandez-Ruiz et al., 2019). Therefore, it is important to develop scalable methods that enable
real-time decoding and assessment of these hippocampal replay contents to match the
complexity of neural data, in the form of large-scale unsorted ensemble spikes (Ciliberti et al.,
2018; Hu et al., 2018; ) or high-density field potential recordings (Cao et al. 2020; Frey et
al., 2019), or large-scale calcium imaging (Tu et al., 2020). Take the primate motor cortex as
another example, closed-loop BMIs have provided mechanistic insight into learning, plasticity
and functional reorganization (Jarosiewicz et al., 2008; Sadtler et al., 2014; Shenoy and Carmena, 2014).
The development of scalable methods for decoding arm or hand movement or assessing neural
population dynamics can greatly advance research in motor control (Trautmann et al., 2019; Sussillo et
al., 2016). The key component of BMIs is feedback, in the form of neurostimulation (Berenyi et al.,
2012; Paz et al., 2013; Grosenick et al., 2015; Zhang et al., 2021), user-defined feedback control (

Carmena et al., 2003; Dangi et al., 2013; Shanechi et al., 2016), or the prediction error of neural
responses ( ), which can be further used to perturb the circuit or
causally change the behavior. Finally, the time window of closed-loop feedback is critical as it
allows interaction with neurons and circuits differently. Sub-millisecond feedback stimulation
may prevent recurrent inhibition, but the same setup with an order of second delay may affect
the system in a completely different manner. These uncertainties of mechanistic inquiry grow
in time especially when the casual chain between the cause (stimulation) and effect is long.
Therefore, timing imposes a strict low-latency constraint on closed-loop BMIs (Muller et al., 2012;
Kane et al., 2020).

Second, scalable data-intensive computation demands fast and efficient computing
strategies. Even though real-time operation may not be always required, off-line processing of
high-throughput high-dimensional neural data can still be prohibitive, this may include neural-
behavior mapping (Vogelstein et al., 2014), large-scale model fitting, data visualization and
computer simulations. For instance, structural data are fundamentally high-dimensional,
including 2-D images, 3-D volumes, and 4-D and 5-D hypervolumes for multispectral data.
Large-scale neural circuit mapping may require both structural and functional data (Shi et al.,
2015). High-performance computing is required to analyze high-resolution high-throughput
neuroanatomy and neuroimaging data. Behavioral data can be also high dimensional,
especially when they are captured via high-fidelity video recordings. Data-intensive, automated
image segmentation and 3-D morphological reconstruction have been empowered by powerful
deep learning methods for behavioral video or imaging analyses (Mathis et al., 2018; Pereira et al.,
2019; Zhou et al. 2018; Arac et al., 2019). Another source of high-dimensionality arises from
multimodal measurements, such as concurrent EEG/MEG source localization (Antelis and
Minguez, 2013). Furthermore, large-scale biologically-inspired neuronal network modeling and
computer simulations may leverage high-performance GPU or FPGA computing (Hoang et al.,
2013; Sripad et al., 2018). Finally, distributed data analytics platform and computing infrastructure
can help achieve fast and scalable data analysis of massive size (Freeman et al., 2014; Freeman
2015).
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Third, artificial intelligence (Al) and machine learning can help accelerate the pace of
neuroscience discoveries (Marblestone et al., 2016; Richards et al., 2019; Cichy and Kaiser, 2019) and
scale up innovation (Kittur et al., 2019). On the one hand, Al and deep learning can help or
automate complex and large-scale neural data analyses to uncover the patterns in brain activity.
Forinstance, in neural encoding, deep learning can help link complex patterns of neural activity
and/or cortical anatomy to complex behavior (Minderer et al. 2019; Pandarinath et al., 2018), as well
as control neuronal spiking or internal brain states ( )- On the other hand,
neuroscience can drive Al forward for knowledge discovery; neuroscience-inspired Al has
achieved a professional human-level intelligence for playing chess and computer games (Silver
et al., 2016; Hassabis et al. 2017). The AlphaGo, motivated from deep reinforcement learning,
discovered a remarkable level of Go knowledge through a self-taught training process.
Therefore, brain-inspired deep learning architectures can not only provide a new computational
framework for brain information processing (Kriegeskorte, 2015; Banino et al., 2018), but also
generate new insight in systems neuroscience and provide rapid theoretical and experimental
progress (Richard et al., 2019).

Concluding Thoughts: Scaling to the Human Brain

Currently, our understanding of brain mechanisms in animal models and in the human brain
are separated by a divide. This is partly due to the additional ethical, safety and efficacy, and
financial constraints that govern the development of neurotechnologies for use in humans.
Nevertheless, progress in neurotechnology is increasingly making possible studies of the
human brain. The vast scale and complexity of the human brain inevitably means that
understanding how to jointly scale data acquisition and data analysis will play an essential role
in progress. To date, high-density biocompatible and stretchable electrode grids can record
spikes and LFPs at the surface of human brain (Khodaholdy et al., 2015; Tybrandt et al., 2018). Scaling
up data acquisition via high-density interfaces may further improve the spatiotemporal
resolution of human brain mechanisms (Robinson et al., 2017; Matsuhita et al., 2018; Escabi et al., 2014;
Even-Chen et al., 2020; Sohrabour et al., 2020). Concurrent multimodal and multisite recordings,
neuroimaging and neurostimulation will also drive progress (Chang, 2015; Krook-Magnuson et al.,
2015; Swann et al., 2018). Basic brain mechanisms will play a role in our understanding of the
diseased brain. In translational or therapeutic applications, closed-loop human BMI systems
have been widely adopted for restoring or enhancing sensory, motor or cognitive brain
functions, as well as delivering anesthesia drug (Shanechi, 2019; Moses et al., 2019; Gilja et al., 2015;
Liberman et al., 2013; Yang and Shanechi, 2016). As a result, AACL experimental or adaptive BMI
paradigms may have significant impacts on human brain science. The development of stable,
secure, real-time brain-cloud interfaces similar to current mobile voice and image-based
interfaces will be critical to updating model-based inferences based on new observations
(Martins et al., 2019).

In summary, knowledge discovery in systems neuroscience is being transformed by advances
in neurotechnology. Fundamentally, the scale of data acquisition and speed of data analysis
jointly determine the rate of hypothesis testing or revision, and ultimately the rate of discovery.
The peril arises from how scaling up data acquisition can slow down data analysis. AACL
experiments offer a solution to improve scalability for knowledge discovery. Achieving this
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vision requires the coordination of scalable computation, active and adaptive experimental
designs in real-time systems and interfaces. Ultimately, the successful scaling of knowledge

discovery is essential to understand the complex brain mechanisms supporting cognition and
behavior in health and disease.
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BOX 1. Correlation Matrix Estimation (303 words)

The correlation matrix is a central statistical measure central to principal component analysis (PCA). As the
dimensionality of observed variables, n, increases, the number of estimated parameters scales quadratically in n.
A curse of dimensionality (CoD) arises when the sample size N is small in relation to the dimensionality, n; and
the correlation structure of neuronal populations cannot be reliably estimated because of insufficient number of
experimental trials or duration in neuroscience experiments.

A simple model-free solution to the CoD imposes local proximity structure onto the correlations; namely,
only neurons recorded from nearby electrodes are connected. Consequently, the number of parameters scales
linearly with n. However, the spatial proximity assumption may not hold in practice. For instance, two hippocampal
place cells recorded from distant electrodes may share overlapping place fields and hence correlated activity.

A model-based approach to the correlation matrix estimation is via partial correlation. Partial correlation is
equivalent to conditional correlation when the random variables are multivariate normal distributed. If the
observations are discrete (e.g. multinomial), the equivalence also holds when the conditional expectation of the
random variables is linear (Baba et al., 2004). By using partial correlation, one can solve n linear regression
problems, each of which involving n-1 regressors and 1 predictor. Since the n regression problems can be solved
independently, the computation can be scaled up using parallel computing. Therefore, by mitigating the CoD,
partial correlation estimates may be not only more reliable, but also computationally efficient.

An alternative approach involves random projection or subsampling, in which one selects m variables (m
«n), and repeats the linear regression procedure with different subsets. Statistically, random projection-based
correlation estimates assume sufficient sparsity in order to stably embed the subsets into a low-dimensional
subspace. Therefore, the correlation estimates are robust with respect to varying number of neurons due to
recording instability.

BOX 2. Dimensionality Reduction (315 words)

In systems neuroscience, dimensionality reduction methods are important to answering the neural
dimensionality question: i.e., how many neurons are required to resolve the dynamics underlying a behavioral
task? The answer may depend on the coding specificity of the stimulus or behavioral variables (Stringer et al,
2019a, 2019b). Knowing the answer can improve our understanding of the scaling property of neuronal population
in both encoding and decoding (Williamson et al., 2016).

The choice of neural decoding methods also leads to dimensionality concerns. Linear decoding methods (such
as factor analysis and Kalman filter) are commonly used because of their simplicity. In contrast, despite potentially
better performance, many nonlinear decoding methods are less commonly used. One important reason is that
nonlinear methods suffer a curse of dimensionality. For instance, nonlinear function estimation scales polynomially
or even exponentially in terms of dimensionality. Moreover, fitting nonlinear functions requires parameter search
in the presence of local minima which also scales with n. As a result, nonlinear methods often lack scalability.

Dimensionality reduction methods can help alleviate the computational curse (Cunningham and Yu, 2014).
This has motivated the development of a variety of advanced nonlinear dimensionality reduction methods to
examine neuronal population activities (Yu et al., 2009; Gao et al, 2016; Wu et al., 2017). However, nonlinear
dimensionality reduction approaches are computationally expensive and depend on strong assumptions, such as
the ability to conceptualize experimental measurement as a random projection of neural activity.

Adaptive subsampling provides a complementary approach to measurement by random projection and
can address the CoD present for dimensionality reduction, which is critical in the context of AACL experiments.
Since neurons exhibit log-normal firing rate distributions, applying dimensionality reduction methods to large
numbers of neurons may not sufficiently capture the long-tail behavior. As a result, neuronal representations may
be incompletely characterized. By allowing for better sampling in the tails, adaptive subsampling of neurons can
provide a more complete picture.
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BOX 3. Mapping Networks in Neuroscience (308 words)

Brain function and dysfunction are increasingly understood as being due to the expression of multiple overlapping
network mechanisms. Network mechanisms of multiregional communication are most often inferred from the
structure of correlations in neural activity. The availability of recordings from many signal channels has fueled
progress. However, functionally connectivity analyses have been typically applied to signals that measure neuronal
function indirectly and do not necessarily scale due to fundamental limits on signal resolution — such as blood
oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) and widefield calcium imaging
signals. Inferring network mechanisms from high-dimensional neuronal recordings is hampered by the CoD.
Moreover, using correlations to interpret activity patterns as being due to interactions is subject to significant
confounds. Correlations are sensitive to the confounding influence of common inputs from other brain regions,
yielding network edges even when the receiver does not receive any input from the sender.

Recent work maps large-scale brain networks and studies the mechanisms of multiregional communication
by recording neural responses while delivering low-amplitude stimulation pulses in a causal network analysis
(Qian et al, 2020). Taking a causal sampling approach offers important advantages. Causal responses cannot be
due to common input. Delivering isolated low-amplitude microstimulation pulses also offers the opportunity to
more directly probe network excitability while avoiding the confounding effects and network responses. Inferences
from large-amplitude stimulation pulses or pulse trains may recruit network responses that do not reflect direct
functional interactions between the stimulation and recording sites (Lozano et al., 2019). Large amplitude pulses
and pulse trains can effectively change the interaction instead of measuring the interaction.

Because mapping networks using a causal network analysis allows a selective targeting of neurons and neural
circuits for investigation based on their role in the network, we may be able to mitigate the curse of dimensionality
associated with scaling up data acquisition and analysis without constraints.
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Figure 1. Scaling in Neural Data Acquisition

(A) Cycle of knowledge discovery (Conceive-Acquire-Analyze-Test-Revise). The Acquire step consists of
recording large-scale neuronal activity during behavior. The Analyze step consists of data analysis and
interpretation. The Test and Revise step involves testing the hypothesis and revising it as necessary to close the
cycle.

(B) Near or faster than exponential growth in the number of recorded neurons based on in vitro or in vivo
electrophysiology (up-to-year update from http://stevenson.lab.uconn.edu/scaling/ ). Recent neurotechnology
development for simultaneous neuronal recordings suggested that a further jump from the exponential growth.

(C) Trade-off between sampling frequency and the number of recorded neurons based on microscopy imaging
(From Lecoq et al., 2019, Society for Neuroscience). Based on the new Light Beads Microscopy (LBM) technique,
~1,000,000 neurons were recorded within ~5.4 x 6 x 0.5 mm?3 volumes at ~2 Hz (Demas et al., 2021).
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(D) Schematic of “scale-speed limit” for data acquisition and analysis steps. For a fixed scale, the pace of discovery
is determined by slowest scale-speed factor.

number of discoveries

. The number of

(E) Discovery rate (DR) scaling with data acquisition and analysis: DR = time por discovery

discoveries scales proportionally to the scale of data acquisition. The time per discovery scales inversely
proportionally to the rate at which data can be analyzed. Scaling the rate of data analysis with the rate of data
acquisition, should lead to an accelerating DR (blue curve). However, the CoD effectively slows down discovery
rate and DR scaling requires a correction: This correction to the DR can dominate. If the CoD correction scales
faster than the rate of data analysis, the otherwise-accelerating DR flattens (red curve). Closed-loop experimental
designs can mitigate the CoD and restore an accelerating DR (green shaded area).
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Figure 2. Active Adaptive Closed-Loop (AACL) Experimental Paradigms Provide Solutions to the Curse-
of-Dimensionality Problems

(A) Schematic of AACL experimental paradigm. The active feedback iteratively updates or optimizes the sampling,
resampling or stimulation parameters at each stage of the loop (marked by three dashed arrows). The feedback
may have different timescales and forms: experimental design (Lewi et al., 2009; Lewi et al., 2011), adaptive
stimulus optimization (Walker et al., 2019; Ponce et al., 2019), neurally-defined stimulation (Berenyi et al., 2012;
Paz et al., 2013; Grosenick et al., 2015; Zhang et al., 2021), closed-loop decoder adaptation (Dangi et al., 2013),
user defined control or prosthetics (Carmena et al., 2003; Shanechi et al., 2016), or adaptive closed-loop
neurostimulation (Tafazoli et al., 2020).

(B) Schematic of adaptive stimulus optimization based on BMI with neural decoder adaptation. In the closed-lopp,
an end-to-end trained neural network model predicted thousands of neuronal responses to arbitrary new natural
input and synthesized optimal stimuli: most exciting inputs (MEls) (Adapted with permission from Walker et al.,
2019, Springer Nature).

(C) lllustration of subsampling/resampling in the closed-loop Acquire step (Choi et al., 2020). Recording channels
can be selected from signal channels by optimizing the subset of signal channels selected to maximize the number
of recorded neurons given the available neurons known when all signal channels are recorded. Optimization
involves adaptively sampling the signal channels selected to maximize the yield of recorded neurons.

(D) A snapshot of the closed-loop Analyze step for large-scale rat hippocampal recordings. A GPU-powered
population-decoding system was developed for ultrafast reconstruction of spatial positions from rodent’s unsorted
spatiotemporal spiking patterns, with real-time speed to decode rat’s run position (latency < 250 ms) or memory
replays (latency <20 ms). Furthermore, the approach enabled assessment of the statistical significance of online-
decoded replay (Adapted with permission from Hu et al., 2018, Elsevier).

(E) lllustration of the scaling between the Acquire and Analyze steps to accommodate real-time operation

(~fraction of millisecond per spike). The GPU decoding strategy can scale up to thousands of channels (Adapted
with permission from Hu et al., 2018, Elsevier).
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(F) Schematic of a BMI with neural decoder adaptation (Dangi et al., 2013). The adaptation design elements
include the adaptation, timescale, selective parameter adaptation, smooth decoder updates, and intuitive decoder
adaptation parameters.

(G) Schematic of a BMI with neural feedback (Adapted with permission from Yang et al., 2021, Springer Nature).
Model-based closed-loop controllers can be designed and consist of a Kalman state estimator and a feedback
controller. Brain network activity can be used as feedback and the model-based closed-loop controller identified
the stimulation parameters to drive the internal brain state to a particular target.

(H) Schematic of adaptive closed-loop stimulation (Tafazoli et al., 2020). The system learns to use multi-site
spatially patterned electrical stimulation to control the pattern of activity of a population of neurons.
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