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Zhengdong Xiao1, Qiaosheng Zhang6, Amrita Singh6, Jing Wang6,7,8, and Zhe S. Chen1,7,8∗
3

4

1Department of Psychiatry, New York University School of Medicine, New York, United States;5

2Department of Biology, University of California, San Diego, United States; 3Kuang Yaming Hon-6

ors School, Nanjing University, Nanjing, China. 4Department of Biochemistry, New York Univer-7

sity, New York, United States; 5Center for Neural Science, New York University, New York, United8

States; 6Department of Anesthesiology, Pain and Operative Medicine, New York University School9

of Medicine, New York, United States; 7Department of Neuroscience and Physiology, New York Uni-10

versity School of Medicine, New York, United States; 8Neuroscience Institute, New York University11

School of Medicine, New York, United States12

† These authors contributed equally.13

Corresponding email: zhe.chen@nyulangone.org14

Running Head: Predictive coding models for pain perception15

Correspondence: Z. S. Chen, Department of Psychiatry, New York University School16

of Medicine, New York, NY 10016, USA17

E-mail: zhe.chen@nyulangone.org18

Phone: 646-754-476519

ORCID 0000-0002-6483-6056 (Z. S. Chen)20

ORCID 0000-0002-2794-0014 (M. Yao)21

ORCID 0000-0002-8424-8710 (A. Byrne)22

ORCID 0000-0003-0485-3126 (Q. Zhang)23

ORCID 0000-0003-1580-1356 (J. Wang)24



2Abstract25

Pain is a complex, multidimensional experience that involves dynamic interactions be-26

tween sensory-discriminative and affective-emotional processes. Pain experiences have27

a high degree of variability depending on their context and prior anticipation. View-28

ing pain perception as a perceptual inference problem, we propose a predictive coding29

paradigm to characterize evoked and non-evoked pain. We record the local field po-30

tentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingu-31

late cortex (ACC) of freely behaving rats—two regions known to encode the sensory-32

discriminative and affective-emotional aspects of pain, respectively. We further use pre-33

dictive coding to investigate the temporal coordination of oscillatory activity between34

the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to35

describe the macroscopic dynamics of bottom-up and top-down activity. Supported by36

recent experimental data, we also develop a biophysical neural mass model to describe37

the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and38

chronic pain-treated animals. Our proposed predictive coding models not only repli-39

cate important experimental findings, but also provide new prediction about the impact40

of the model parameters on the physiological or behavioral read-out—thereby yielding41

mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and42

chronic pain.43

Keywords: Predictive coding; pain perception; somatosensory cortex; anterior cingulate44

cortex; mean field model; placebo; chronic pain45
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1 INTRODUCTION

Pain is a fundamental experience that is subjective and multidimensional. Pain process-46

ing involves sensory, affective, and cognitive processing across distributed neural circuits47

(Bushnell et al., 1999; Bushnell et al., 2013; Iannetti & Mouraux, 2010; Legrain et al., 2011;48

Vierck et al., 2013). However, a complete understanding of pain perception and corti-49

cal pain processing has remained elusive. Given the same nociceptive stimuli, the con-50

text matters for pain percept. In the literature, human neuroimaging studies have shown51

that among many brain regions, the primary somatosensory cortex (S1) and the ante-52

rior cingulate cortex (ACC) are two important cortical areas involved in high-level pain53

processing. The S1 represents the sensory-discriminative component of pain, whereas54

the ACC represents the affective-motivational component of pain (Johansen et al., 2001;55

Bushnell et al., 2013). In addition, ACC neuronal activities have been shown to correlate56

with noxious stimulus intensities, and chronic pain can alter acute pain intensity repre-57

sentation in the ACC to increase the aversive response to noxious stimuli at anatomically58

unrelated sites (Zhang et al., 2017). In addition to the bottom-up input, top-down atten-59

tion, expectation, or contextual factors can bias cortical pain processing or modulate the60

strength or salience of pain signals (Wiech, 2016). Descending modulation can attenuate61

the incoming nociceptive signal and further skew the subjective pain perception despite the62

high-intensity noxious stimulus input.63

Evoked pain is triggered by noxious sensory stimuli, whereas spontaneous pain (also64

known as non-evoked pain or non-evoked nociception) is not. Spontaneous pain can be65

induced by repeated noxious stimulations in naive animals, or induced by chronic pain66

conditions (Bennett, 2012). Pain perception has been conceptualized as perceptual inference67

(Wiech, 2016; Geuter et al., 2017; Tabor et al., 2017), and predictive coding may provide68

a theoretical model for characterizing such inference (Arnal & Giraud, 2012; Ploner et al.,69

2017). Specifically, pain perception can be studied as an inferential process in which prior70

information is used to generate expectations about future perception and to interpret the71

sensory input.72

Predictive coding paradigms describe the inversion of a generative model of the per-73
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cept and constantly adapt the hypothesis of sensory perception (Huang & Rao, 2011). A74

predictive model characterizes the uncertainty of sensory inputs in time and space (Aitchi-75

son & Lengyel, 2017). Predictive coding relies on correcting errors resulting from com-76

parisons between internal predictions and actual observations. Such paradigms have pro-77

vided important insights into perceptual inference, sensory processing, motor control, multi78

sensory integration and pain (Rao and Ballard, 1999; Shipp et al., 2013; Talsma, 2015;79

Sedley et al., 2016; Morrison et al., 2013; Hoskin et al., 2019). Predictive coding has been80

suggested as a universal computational principle in the neocortex (Bastos et al., 2012;81

Friston & Kiebel, 2009), and this framework may accommodate various data modalities82

and multiple spatiotemporal scales (Friston et al., 2015).83

The experience of pain is often associated with brain rhythms or neuronal oscillations84

at different frequencies (Ploner et al., 2017; Peng et al., 2018). For multisite recordings, it85

is important to investigate the inter-regional local field potential (LFP) oscillatory coordi-86

nation (Eto et al., 2011), as interareal oscillatory synchronization plays an important role87

in top-down neocortical processing (Bressler & Richtler, 2015; Bastos et al., 2020). One88

important theoretical implication of predictive coding is spectral asymmetries between the89

bottom-up and top-down representations (Bastos et al., 2012). The spectral asymmetry90

can be also explained by the functional asymmetry: prediction errors (PEs) express higher91

frequencies than the predictions that accumulate them, whereas the conversion of PEs into92

predictions entails a loss of high frequencies. Since the common characteristic frequencies93

in predictive coding range between the beta and gamma frequency bands, one working94

hypothesis is that the bottom-up PEs are represented at the gamma band and top-down95

prediction predictions are represented at the beta band.96

In a series of rodent pain experiments, we collected various in vivo neurophysiological97

recordings from single or two brain regions in freely behaving rats (Zhang et al., 2017;98

Urien et al., 2018; Dale et al., 2018; Xiao et al., 2019). These data have established the99

foundation for improved understanding of pain perception and provided empirical evidence100

for computational modeling. In this paper, we present a predictive coding framework to101

model the temporal coordination of interareal oscillatory activity between the rat S1 and102

ACC during evoked and non-evoked nociception episodes. Specifically, we develop two dif-103
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ferent computational models to reproduce some previously observed differences between104

gamma and beta responses, before and after pain. The first model bears a form of the state105

space model based upon predictive coding, which can predict experimentally observed LFP106

responses at the gamma and beta bands in the S1 and ACC areas, respectively. The second107

model is derived from the mean field model, which is a biologically plausible neural mass108

model parameterized in terms of connection strengths between distinct neuronal subpopu-109

lations. The neural mass model can predict the S1 and ACC population neuronal activity110

in various pain conditions, for both naive and chronic pain-treated animals.111

Our key hypothesis is that we can reproduce empirical findings by manipulating the112

gain parameter of the predictive coding model. Furthermore, the same phenomena can be113

reproduced by varying the synaptic efficacy in the neural mass model. In other words, we114

hypothesize that synaptic efficacy within the cortical pain network is a sufficient explanation115

for responses induced by pain, and variations in pain conditions correspond to variations in116

the model parameters described in the predictive coding paradigm.117

In the result section, we first summarize important experimental findings that are ex-118

tracted from previous published data (Xiao et al., 2019; Singh et al., 2020), which provide119

the biological support and motivation for our computational modeling work. We then de-120

scribe our phenomenological model and mean-field model and their simulation results for121

both evoked pain and non-evoked nociception. Specifically, we will adapt the mean-field122

model to characterize pain aversive behaviors in chronic pain. We will make data interpre-123

tation and prediction related to the experimental results. To the best of our knowledge,124

this is the first systematic modeling investigation towards understanding pain perception.125

Together, our two computational models provide new insights into the uncertainty of ex-126

pectation, placebo or nocebo effect, and chronic pain.127

2 METHODS

2.1 Experimental Protocol and Recordings128

All experimental studies were performed in accordance with the National Institutes of Health (NIH)129

Guide for the Care and Use of Laboratory Animals to ensure minimal animal use and discomfort,130
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and were approved by the New York University School of Medicine (NYUSOM) Institutional Animal131

Care and Use Committee (IACUC).132

Male adult Sprague-Dale rats (250-300 g, Taconic Farms, Albany, NY) were used in our current133

study and kept at the new Science Building at NYUSOM, with controlled humidity, temperature134

and 12-h (6:30 a.m.-6:30 p.m.) light-dark cycle. Food and water were available ad libitum. Animals135

were given on average 10 days to adjust to the new environment before the initiation of experiments.136

Thermal pain stimuli were used for freely exploring rats in a plastic chamber of size 38×20×25137

cm3 on top of a mesh table. A blue (473 nm diode-pumped solid-state) laser with varying laser138

intensities was consistently delivered to the rat’s right hindpaw. The laser stimulation (with intensity139

ranging 100-250 mW) was delivered in repeated trials (25-40) during 30-45 min. Two video cameras140

(120 frame per second) were used to continuously monitor the rat’s behavior during the course of141

experiment. Five naive rats and two chronic pain-treated rats were used in the current study. Details142

are referred to previous publications (Zhang et al., 2017; Dale et al., 2018).143

To produce chronic inflammatory pain, 0.075 ml of Complete Freund’s adjuvant (CFA) (my-144

cobacterium tuberculosis, Sigma-Aldrich) was suspended in an oil-saline (1:1) emulsion, and injected145

subcutaneously into the plantar aspect of the hindpaw opposite to the paw that was stimulated by146

a laser; namely, only a unilateral inflammation was induced. In CFA rats, laser stimulations were147

delivered to the opposite paw of the injured foot. The ACC and S1 electrodes were implanted on148

the contralateral side of the stimulated foot.149

Repeated noxious laser stimulations to the rat hindpaw could induce spontaneous pain be-150

haviors. During the inter-trial intervals, we examined the rat’s behavior to identify non-evoked151

nociception episodes (such as twitch, lifting/flicking, paw withdrawal and paw licking) (Xiao et al.,152

2019).153

We used silicon probes (Buzsaki32, NeuroNexus) with a 3D printed drive to record multi-154

channel (up to 64 channels) neural activities from the rat ACC and S1 areas simultaneously, on the155

contralateral side of the paw that received noxious stimulation. For surgery, rats were anesthetized156

with isoflurane (1.5%-2%). The skull was exposed and a 3 mm-diameter hole was drilled above the157

target region. The coordinates for the ACC and S1 implants were: ACC: AP 2.7, ML 1.4-2.0, DV158

2.0, with an angle of 20◦ toward the middle line; S1: AP −1.5, ML 2.5-3.2, DV 1.5. The drive was159

secured to the skull screws with dental cement. We used a Plexon (Dallas, TX) data acquisition160

system to record in vivo extracellular neural signals at a sampling rate of 40 kHz. The signals161

were first band-pass filtered (0.3 Hz-7.5 kHz), and LFPs were obtained upon subsequent band-pass162

filtering (1-100 Hz).163
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2.2 Data Analysis164

Time-frequency analyses. Based on the simultaneously recorded multichannel LFP signals from165

the S1 and ACC, we applied the principal component analysis (PCA) and extracted the dominant166

principal component (PC) for the S1 and ACC, respectively. We then computed the spectrogram of167

the PC for each region. Multitapered spectral analyses for LFP spectrogram were performed using168

the Chronux toolbox (chronux.org). Specifically, we chose a half-bandwidth parameter W such that169

the windowing functions were maximally concentrated within [−W,W ]. We chose W > 1/T (where170

T denotes the duration) such that the Slepian taper functions were well concentrated in frequency171

and had bias reducing characteristics. In terms of Chronux function setup, we used the tapers setup172

[TW,N ], where TW is the time-bandwidth product, and N = 2× TW − 1 is the number of tapers.173

Since the taper functions are mutually orthogonal, they give independent spectral estimates. In all174

time-frequency analyses, we used a moving window length of 500 ms and a step size of 1 ms. We175

used TW = 5. From the spectrogram, we computed the Z-scored spectrogram, where the baseline176

was defined as the 5-s period before the stimulus presentation.177

Pain-responsive neurons. To identify pain-responsive neurons, we used a previously established178

criterion (Dale et al., 2018). Specifically, we computed the Z-scored firing rate related to the baseline179

(3-5 s before the stimulus onset). A neuron was called a positive pain-responding neuron if the180

following two criteria were satisfied: (i) the absolute value of the Z-scored firing rate of least one181

time bin (i.e., 50 ms) after stimulation must be greater than 2.5, and (ii) if the first criterion is met,182

at least the next two bins (i.e., 100 ms) must be greater than 1.65. These criteria must be fulfilled183

within 3 s after the stimulus onset.184

Z-scored LFP power analysis. From the recorded multichannel LFPs of the S1 and ACC, we185

computed the Z-scored spectrogram for pain episodes (time 0 represents the laser onset in evoked186

pain, and the withdrawal onset in non-evoked nociception). During evoked pain, we usually observed187

event-related potentials (ERPs) in both S1 and ACC areas. Our prior report has indicated that the188

ERP latency was sooner (∼200-300 ms) in the S1 than in the ACC during evoked pain episodes189

(Xiao et al., 2019). In contrast, during non-evoked nociception episodes, ERPs occurred in either190

the S1, or ACC, or both areas, with a high degree of variability in latency.191

For non-evoked nociception episodes, we investigated whether the LFP power in the ACC and192

S1 at the beta and/or gamma bands change in a temporally coordinated manner. We computed193

the 10-s LFP spectrograms centered around the non-evoked nociception behavior onsets (pre-event:194

[−5, 0] s, post-event: [0,5] s). To highlight the event-related synchronization/desynchronization195
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(ERS/ERD) phenomenon, we computed the Z-scored pre-gamma power related to the post-event196

period, and computed the Z-scored post-beta power related to the pre-event period.197

Unless stated otherwise, all statistical tests were nonparametric tests without the normality198

assumption.199

2.3 A Framework of Predictive Coding for Pain200

Background. Predictive coding is aimed at minimizing the PE and further using it to update the201

prediction. The schematic diagram of predictive coding is shown in Fig. 1. To explain the predictive202

coding idea, we first introduce some basic notations. Specifically, let the latent variable z denote203

the subjective pain percept, let x denote the stimulus input. We also assume that u and v are two204

response variables, which represent the proxy for the observed gamma activity from the S1 and the205

beta activity from the ACC, respectively.206

In brief, predictive coding is used to dynamically update posterior expectations of pain (z)207

based upon PE. The underlying PEs and posterior expectations are then used to generate observable208

induced neural responses (u and v). To account for axonal conduction delays, we used stochastic209

delay differential equations for the predictive coding scheme.210

Mathematical equations. First, we define the PE as the difference between the bottom-up finite-211

duration sensory input x and top-down pain-induced expectation z (Fig. 1A):212

ξ(t) = x(t)− z(t) (1 )

Predictive coding uses the signed PE to update the expectation after a certain time delay. Specif-213

ically, we assume that the dynamics of pain percept z follow a stochastic differential equation as214

follows215

τz(t)
dz(t)

dt
= −z(t) + Π0ξ(t−∆x) + εz

= −z(t)−Π0z(t−∆x) + Π0x(t−∆x) + εz (2 )

z(t) = 0 if

∫ t

t′
z(τ)dτ > Zthreshold (3 )

τz(t) =
a

1 + b exp(x(t))
(4 )

where ∆x denotes a time delay parameter starting from the stimulus onset (Table 1), and εz denotes216

the additive Gaussian noise. Equation 2 is a linear delay-differential equation that characterizes the217

expectation update dynamics based on the PE. In Eq. 3, z(t) is reset to 0 after an accumulative218
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preset threshold Zthreshold within a moving window is reached to trigger an escape-type pain behavior219

(e.g, paw withdrawal). Equation 4 imposes an inverse sigmoid-shaped relationship between the input220

amplitude x(t) and time constant τz. The initial pain percept z(0) is either zero (no-anticipation),221

negative value (placebo), or positive value (nocebo or pain anticipation).222

Notably, Equations 1 and 2 are reminiscent of modified Kalman filtering operations, where223

the precision parameter Π0 can be viewed as the Kalman gain in the Kalman filtering formulation224

of predictive coding (Fig. 1B). The gain Π0 encodes the confidence placed in PEs (Fig. 2C) and225

therefore controls the rate of evidence accumulation or effective step size of the update dynamics of226

expectation (Eq. 2).227

For the observed neural response variables, in the bottom-up pathway, we assume that dynamics228

of response variable u are driven by the absolute PE as follows229

τu
du(t)

dt
= −u(t) + Π1|ξ(t)|+ εu (5 )

where τu > 0 denotes the time constant; εu denotes the additive Gaussian noise. The gain Π1 denotes230

the precision (inverse of variance) parameter, which weights the absolute PE in Eq. 5. We refer to the231

weighted term Π1 × |ξ(t)| as the “surprise” signal. To see this link, we can assume that there is an232

expectation uncertainty of z(t), or equivalently, the PE. Provided that x(t) is deterministic, then the233

variance of PE is computed as Var[ξ(t)] = Var[z(t)] = 1/Π1. If the uncertainty of the expectation is234

large, the step size will be small (or the update will be conservative); if the uncertainty is low, the235

update will be more aggressive. In the steady state (i.e., du(t)
dt = 0), we have u(t) = Π1|ξ(t)|. Here,236

the S1 activity encodes the absolute PE or surprise signal, which has been supported by some prior237

experimental findings (Gross et al., 2007; Arnal & Giraud, 2012; Yu et al., 2019).238

The S1 is known to project directly to the ACC (Sesack et al., 1989; Sesack & Pickel, 1992).239

For the S1→ACC pathway, in the simplest form, we assume that the dynamics of response variable240

v are driven by the signal consisting of a conduction-delayed u(t−∆u) (where ∆u > 0) and the pain241

expectation, as follows242

τv
dv(t)

dt
= −v(t) + Π2u(t−∆u) + Π3z(t) + εv (6 )

where τv > 0 denotes the time constant, and εv denotes the additive Gaussian noise. Similarly,243

Π3

Π2
defines the relative gain between the two inputs z(t) and u(t −∆u). The coupling dependency244

between u, v and z is shown in Fig. 1D.245

For convenience, we refer to the model described by Eqs. 1-6 as the predictive coding model.246
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The response variables u and v can be interpreted as the Z-scored LFP gamma and beta power,247

respectively, which reflect the relative change in the S1 and ACC activity. The choice of conduction248

time delay ∆u reflected the event-related potential (ERP) latency between the S1 and ACC; their249

time constants τu and τv were also chosen accordingly. Based on different assumptions of x and z,250

we ran computer simulations to produce the dynamics of u and v from Eqs. 1–6.251

Computing time-averaged power. From the simulated traces of u(t) and v(t), we computed252

the averaged power before and after the pain response (e.g., withdrawal). Specifically, let Au =253

1
tr

∫ tr
0
u(t)dt denote the averaged area from the start of computer simulation to the reset (withdrawal)254

time tr, and let Av = 1
T−tr

∫ T
tr
v(t)dt denote the averaged area lasting the same duration it took255

to reach the Zthreshold from the reset (withdrawal) time. Therefore, Au and Av could be viewed256

as the averaged pre- and post-withdrawal Z-scored power, respectively. Notably, in the “net” area257

integration, the curve above 0 contributes to a positive area value, and the curve below 0 contributes258

to a negative area value.259

Fourier analysis and spectral asymmetry. Taking the Fourier transform of Eq. 6 and rearranging260

the terms, we obtained the mapping of two response variables u and v in the frequency domain:261

V (ω) = H1(ω)U(ω) +H2(ω)Z(ω) +H3(ω)Wv(ω) (7 )

where H3(ω) (or H2(ω)) is a transfer function between V (ω) and Wv(ω)—spectrum for white noise262

(or Z(ω), unobserved); and H1(ω) is a transfer function between V (ω) and U(ω):263

H1(ω) =
Π2

(jωτv + 1)ejω∆u
≈ 2Π2

(jωτv + 1)[(jω∆u + 1)2 + 1]

where j =
√
−1, and the approximation is derived from the 2nd-order Taylor series expansion for a264

small value of s (∆u = 0.1 s was used in our computer simulations): es ≈ 1+s+ 1
2s

2 = 1
2 [(s+1)2 +1].265

The first term of the denominator in H1(ω) is a 1st-order low-pass filter, and the second term is a266

2nd-order low-pass filter. Together, H1(ω) operates as a low-pass filter (Fig. 1E) that attenuates the267

high-frequency (e.g., gamma-band) activity U(ω), resulting in a lower-frequency (e.g., beta-band)268

activity V (ω) in the top-down pathway (Fig. 1F). This spectral asymmetry also explains the reason269

why the Z-scored power is shifted from the S1 gamma-band to the ACC beta-band.270
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2.4 Mean Field Models271

To better describe the population neuronal dynamics, we further develop a mechanistic model,272

with explicit excitatory and inhibitory neuronal populations and synapses, to the predictive coding273

framework described above. To achieve a trade-off between biological complexity and modeling274

complexity, we opt for a mean field model (Pinotsis et al., 2014; Wilson & Cowan, 1972).275

Background. The main assumption of mean field models is that tracking the average activity,276

such as the mean firing rate and mean synaptic activity, is sufficient when modeling populations of277

neurons. Given the extensive number of neurons and synapses in even a small area of cortex, this278

is a reasonable assumption. One of the first mean field models of neural activity is attributed to279

Wilson and Cowan (Wilson & Cowan, 1972). This two-dimensional model tracks the mean firing280

rate of an excitatory population of neurons coupled to an inhibitory population of neurons, and has281

been successfully used to describe visual hallucinations (Ermentrout & Cowan, 1979; Bressloff et282

al., 2001), binocular rivalry (Wilson et al., 2001), epilepsy (Shusterman & Troy, 2008); Meijer et al.,283

2015), resting brain state activity (Deco et al., 2011), traveling cortical waves (Wilson et al., 2001;284

Roberts et al., 2019), and cortical resonant frequencies (Lea-Carnall et al., 2016).285

We propose a modified Wilson-Cowan model, with the addition of a synaptic variable for each of

the neuronal population. For a single brain area, this amounts to four differential equations (Keeley

et al., 2019):

τrE
drE
dt

= −rE + f(wEEsE − wIEsI + PE), (8 )

τrI
drI
dt

= −rI + f(wEIsE − wIIsI + PI), (9 )

τsE
dsE
dt

= −sE + γErE(1− sE), (10 )

τsI
dsI
dt

= −sI + γIrI(1− sI), (11 )

where rE/I is the population firing rate of the excitatory/inhibitory population, and sE/I is the286

synaptic activation of the corresponding population. Each variable has a corresponding time con-287

stant τ . The inter- and intra-populations coupling strengths are set by {wEE , wIE , wEI , wII}; PE/I288

represents the external input from elsewhere in the cortex; and γE/I is the ratio between activation289

and inactivation times of the synapse. Similar to the standard Wilson-Cowan model, f is a sigmoid290

function:291

f(x) =
1

1 + e−σ(x−h)
, (12 )
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where σ is the slope and h is the threshold.292

In this study, we are interested in the interaction of the S1 and ACC, and consider a model with293

two excitatory-inhibitory (E-I) pairs, as described by Eqs. 8–11 (Fig. 2A). Experimental findings294

have provided strong evidence that there is a direct S1→ACC projection, which plays an important295

role in pain processing (Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011). In contrast,296

less is known about the role of the ACC→S1 pathway in cortical pain processing. For the sake297

of simplicity, we first neglected the feedback in our initial model; the impact of feedback will be298

investigated and discussed later (DISCUSSION).299

Biologically-constrained mean field model. We have recently combined optogenetics and elec-300

trophysiology to dissect the ACC circuit in pain processing (Singh et al., 2020). We have found a301

direct S1→ACC projection engaged in cortical pain processing. In naive rats, only a small percent-302

age of the ACC population was pain responsive (10-15%). Among those pain responsive neurons,303

about 20% of the population received a direct input from the S1 (Fig. 3E). Among the ACC neurons304

that receive input from the S1, 37% of them were pain responsive. However in CFA rats, those two305

percentages increased to 32% and 52%, respectively (Fig. 3F).306

Based on these findings, we made two modifications to the computational model. First, the307

S1→ACC pathway is modeled with the inclusion of an additional term in Eq. 8 for the ACC pop-308

ulation; namely, we changed the input PACC
E to PACC

E + sS1
E (t − ∆S1), where the excitatory input309

from the S1 is delayed by a positive ∆S1.310

Second, we divided the excitatory ACC neuronal population into two subpopulations E2-1 and311

E2-2 (Fig. 2B), one of which directly receives S1 input (E2-1), while the other is indirectly driven by312

the former one (E2-2). Therefore, we revised the model described by Eqs. 8–11 with two excitatory-313

inhibitory (E-I) groups.314

We also scaled the inter- and intra-populations coupling strength by the relative population315

sizes. For example, if the S1 population is twice as large as the ACC population, then the coupling316

strength of S1→S1 and S1→ACC would be twice as large as those of ACC→S1 and ACC→ACC,317

respectively. Here we assumed that there are 20% of ACC excitatory neurons that receive S1 inputs;318

κ is the S1/ACC neuronal population size ratio; ρ scales the inhibitory/excitatory strength; L is the319

scaling of long-range projection between the two regions. We set wEE and wEI as the basic coupling320

strength, and set other coupling strength with a proper scaling constant (Fig. 2B).321

Note that the variables that we used previously to describe sensory input and posterior expec-322

tations about pain (i.e., x and z) under predictive coding are now used as exogenous inputs to our323

neural mass biophysical model. This allows us to handcraft different levels of nociceptive input, and324
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posterior expectations or perceptual representations of the associated pain. Specifically, we assumed325

that the external inputs are applied equally to the excitatory and inhibitory populations of the S1326

and ACC as follows327

P S1
E (t) = P S1

I (t) = gS1|x(t)− z(t)|, (13 )

PACC
E (t) = PACC

I (t) = gACCqiz(t−∆x). (14 )

where |x(t)−z(t)| denotes the absolute PE, gS1 and gACC denote two gain parameters for respective328

neuronal population, and ∆x denotes the time delay from the input x. Let S1+ (or S1−) denote the329

ACC population that receives direct S1 input (or not); let qi with the subscript index i = S1+, S1−, I330

denote the percentages of pain-responsive neurons in subpopulations E2-1, E2-2 and I2, respectively.331

The gain parameters of this biophysical model play the same role as the precisions in the predictive332

coding model.333

Computing the power using the envelope function. We computed the upper and lower envelopes334

of the oscillatory firing rate trace. We used the average (midline) of the upper and lower envelopes335

to calculate the time-averaged synaptic activation variable s (or alternatively, the firing rate variable336

r) as a measure of the firing dynamics in our mean field model.337

To compute the pre-S1 synaptic activation, we integrated the average power of sS1
E from the338

baseline (by discarding the initial transient) to the withdrawal onset, and then normalized it by the339

duration. To compute the post-ACC synaptic activation, we integrated the average power of sACC
E340

from the withdrawal onset until a fixed window length, and then normalized it by the duration.341

Software342

The custom MATLAB code for implementing two described computational models is distributed on-343

line (https://github.com/yuru-eats-celery/pain-coding-model and https://github.com/ymch815/predictive-344

coding-mean-field-model.git).345

3 RESULTS

In the following, we first summarize important experimental findings (section 3.1) that were346

extracted from previous published data (Xiao et al., 2019; Singh et al., 2020), which pro-347

vide the biological support and motivation for our computational modeling work. Next, we348
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describe our phenomenological model and its simulation results for both evoked pain and349

non-evoked nociception (section 3.2). We will make data interpretation and prediction re-350

lated to the experimental results. Finally, we present our computer simulation results based351

on the mean-field model (section 3.3). In addition to replicating qualitatively similar results352

as in the phenomenological model, we also adapt the mean-field model for chronic pain and353

make several experimental predictions. To help the reader understand the materials, we354

provide a high-level description of these results and connection to experimental findings355

(Table 1). The rationale and goal of the paper is to motivate the modeling questions based356

on the empirical experimental findings and make proper interpretations based on the results357

of model prediction.358

3.1 S1 and ACC Activity in Naive and Chronic Pain Rats359

From the simultaneously recorded S1 and ACC LFP activity, we found that the averaged360

pre-event Z-scored gamma power in the S1 positively correlated with the averaged post-event361

Z-scored beta power in the ACC (Fig. 3C, left panel). This suggests that pre S1 gamma-362

ERS (or ERD) was temporally followed by post ACC beta-ERD (or ERS). Notably, the363

correlated ERS/ERD patterns became weaker during evoked pain episodes (Fig. 3C, middle364

panel) and disappeared in negative control (Fig. 3C, right panel). In the chronic pain state365

of CFA rats, we also found similar observations (Fig. 3D).366

In our earlier experimental investigation (Singh et al., 2020), we established a direct367

S1→ACC projection during cortical pain processing. Among pain-responsive ACC neurons,368

we identified a subpopulation that received the direct S1 input, from both naive and CFA369

rats (Fig. 3, E and F, respectively). Compared to naive rats, chronic pain increased the370

percentage of ACC neurons that received the direct S1 input. Together, these findings371

provide empirical evidence to characterize chronic pain in our predictive coding model.372

In another experimental investigation (Urien et al., 2018), we trained rats with a con-373

ditioning paradigm that consists of three experimental phases. During the pre-conditioning374

phase, we paired a tone (4 kHz, 80 dB, 0.5 s) with a non-noxious thermal stimulus applied375

to the rat’s hind paw. During the conditioning phase, we paired the same tone with a376

noxious thermal stimulus to induce pain avoidance. We found that the rat could avoid377
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the noxious stimulus by simply removing its paw after the tone being played, yet before378

the noxious stimulus being delivered. We also found that a subset of rat ACC neurons379

responded before the delivery of pain stimulation, and these “pain-anticipating” neurons380

increased or decreased their firing rates after the tone, and prior to, or in anticipation of,381

the noxious stimulus. These pain-anticipating neurons gradually shifted their responses to382

pain and started to respond during the anticipatory period. Later in the post-conditioning383

phase, these pain-anticipating ACC neurons returned to their baseline behaviors, as the tone384

stimulus was no longer paired with a noxious stimulus. These data also provide indirect385

evidence of top-down influence on the ACC neuronal coding.386

3.2 Computer Simulations for the Predictive Coding Model387

The goal of the predictive coding model is to replicate the main findings of the pain experi-388

ments at the macroscopic level. From Eq. 1-4, we ran numerical simulations to characterize389

the relationship of the surrogate of LFP oscillatory activity between the S1 and ACC. In390

the following computer simulations, we used the default parameters listed in Table 2. The391

additive Gaussian noise components {εu, εv, εz} were all assumed to have zero mean and392

unit variance. In each condition, we reported the mean statistics based on 30 independent393

Monte Carlo simulations, and ran 400 simulations to compute the correlation statistics.394

To relate our model notations with experimental data, we viewed the variables u and v395

as the Z-scored S1 and ACC population neuronal activity (therefore their initial conditions396

were set to zeros). We also viewed Au and Av as the averaged pre- and post-withdrawal397

Z-scored power from the S1 and ACC, respectively; which corresponded to the S1 LFP398

pre-gamma Z-scored power and ACC LFP post-beta Z-score power (Fig. 3, C and D).399

Evoked pain. In the evoked pain condition, we set the initial pain expectation to be zero400

(i.e., z(0) = 0), and we set u(0) = 0 and v(0) = 0 for the initial Z-scored activity from401

the S1 and ACC. In addition, we assumed the finite-duration constant external input,402

and set the pain stimulus x(t) = 2 if t ∈ [4, 4.5] s and x(t) = 0 otherwise. The first403

4-s period prior to the stimulus was treated as the baseline. Given the initial condition,404

we ran numerical simulations using the forward Euler method with time step 1 ms. An405



16

illustration of representative traces is shown in Fig. 4A. As seen in the figure, the z-trace406

closely followed the x-trace; the u-trace reached an initial peak and gradually decays; and407

the v-trace decayed slower than the other traces.408

Once z-trace was reset upon reaching a threshold, we assumed that moment as the409

withdrawal onset. We computed the net area under u-trace between the start of stimulation410

to withdrawal (i.e., Au), as well as the area under v-trace between the withdrawal withdrawal411

and the end of stimulation (i.e., Av) (Fig. 4B).412

The withdrawal latency following the stimulus onset is a standard measure to quantify413

the acute pain behavior (Deuis et al., 2017). In our simulations, we used the duration414

between the onset of input x(t) and the time of z(t) reset as the proxy of withdrawal415

latency. We found that the latency decreases with increased stimulus intensity or input416

amplitude (Fig. 4C), which is consistent with prior experimental observations (Dirig et al.,417

1997).418

Non-evoked nociception. In the non-evoked nociception condition, we set u(0) = 0, v(0) =419

0, z(0) = 0.3, x(t) = 0 (i.e., no stimulus), and Zthreshold = 200. An illustration of represen-420

tative traces is shown in Fig. 4D. In this example, the z-trace decays exponentially until it421

reached the reset threshold; the u and v-traces first rose and then decayed exponentially,422

and it took a longer time for the v-trace to approach the baseline.423

To introduce trial variability, we assigned z(0) with random values. By varying the424

initial condition z(0), we obtained various mean statistics for Au and Av during non-evoked425

nociception. A strong positive correlation between Au and Av (Fig. 4E) was found. In426

contrast, the correlation between Au and Av was weaker in the simulated evoked pain427

condition (Fig. 4B). These results are consistent with our experimental findings (Fig. 1B).428

Notably, although these simulations were done in the idealized conditions, and the exact429

outcome may vary depending on the exact stimulation parameter setup, our computational430

modeling provides a principled way to investigate the impact of parameters on the read-out431

phenomenon. We will present such examples below.432
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Sensitivity analysis of gain parameters and transmission delay. Thus far, we have kept433

all gain (or precision) parameters in unity. Next, we investigated how the change of gain434

parameter affects the dynamics. Since Var[z(0)] = 1/Π1, we further assumed that Π3 = Π1435

in Eq. 6. To investigate the impact of gain parameters, we considered two scenarios. In436

the first scenario, we set Π2 = 1 and systematically varied Π1 and Π3 together. In the437

second scenario, we set Π1 = Π3 = 1 and systematically varied Π2. In both scenarios, the438

ratio Π3/Π2 would deviate from unity. The results from these two scenarios are shown in439

Fig. 5. The qualitative phenomenon that describes the correlation between Au and Av was440

relatively robust with a wide range of gain parameters. In the evoked pain condition, the441

correlation value remained low. In the non-evoked nociception condition, the correlation442

value showed an increasing trend with increasing Π1 and Π3, and showed a decreasing trend443

with increasing Π2.444

During task behaviors, the cortico-cortical conduction delay may vary. For cortical445

communications over long-range connections or information relay between multiple brain446

areas, the transmission delay may be even longer. To examine the impact of cortico-cortical447

transmission delay, we further varied ∆u and investigated the correlation statistic (Supple-448

mentary Fig. 1). We found that the correlation between Au and Av was stable for a wide449

range of delay parameters.450

In summary, these simulation results from the predictive coding model replicate several451

key findings from two experimental pain conditions. However, this phenomenological model452

is rather abstract, therefore the interpretation of the model parameter or results remains453

limited. Next, motivated by the neural mass model in the literature (Friston et al., 2012;454

Bastos et al., 2015), we extended the same line of investigations using the mean field model.455

3.3 Computer Simulations for the Mean Field Model456

In the following computer simulations, we used the default parameters listed in Table 3. We457

used the forward Euler method to numerically simulate the population dynamics for a total458

5.5 seconds (time step 0.1 ms). The pulse input x had a 200-ms duration. A 2-s simulation459

interval was treated as the baseline period. The initial values of all rE/I and sE/I were460

set to zero. We computed the midline envelopes of the synaptic activation variable s and461
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firing rate variable r of excitatory populations from the S1 and ACC. Since the synaptic462

activation variable s was highly correlated with the firing rate variable r (Supplementary463

Fig. 2), we have used s to represent the firing dynamics of the S1 and ACC populations.464

Notably, the mean field model employs different time constants and delay parameters, as it465

captures a different spatiotemporal scale from the previous phenomenological model.466

To simulate the withdrawal behavior, the reset time of latent variable z was determined467

when the integration of z within a 300-ms moving window reached a predetermined thresh-468

old. When z was reset to 0, x was also simultaneously set to 0, indicating that the animal469

has escaped from the noxious stimulus. We ran numerical simulations of the mean field470

model for three pain perception conditions. With different values of x and z, we simulated471

the rE/I and sE/I dynamics of neuronal subpopulations.472

Evoked pain and non-evoked nociception. In the evoked pain condition, we set a = 2000473

(Eq. 4), Zthreshold = 200, and z(0) = 0. The dynamics of the populations are shown in474

Fig. 6A. In our simulation, all populations have an oscillatory activity with stable frequency,475

where the S1 population oscillates in the gamma-band frequency and the ACC population476

in the beta-band frequency. These oscillatory activities were the emergent property of the477

local E/I networks as there was no externally imposed stimulus input fed to the network.478

For each population, we took the upper and lower envelope of oscillation and computed their479

averaged power as a representation of the mean synaptic activation. As seen in Fig. 6B,480

S1 firing increased quickly after the stimulus onset, as a result of large PE; the activities of481

two ACC subpopulations increased afterwards, as the latent variable z gradually increased.482

Right after withdrawal, S1 population firing decreased immediately, while ACC population483

firing decayed slower. Throughout the trial, the ACC subpopulation that received S1 inputs484

had a greater firing intensity than the ACC subpopulation that did not.485

We computed time-averaged pre-S1 synaptic activation and post-ACC synaptic activa-486

tion (METHODS). By varying the stimulus amplitude, we ran 100 Monte Carlo simulations487

and found that the result was consistent with the previous predictive coding model, showing488

a relatively weak correlation (Fig. 6C).489

In the non-evoked nociception condition, we set Zthreshold = 240 and kept the remaining490
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parameters unchanged. As shown in Supplementary Fig. 3, the firing rates of both S1 and491

ACC populations increased with a similar pace when the initial top-down expectation z(0)492

was set to a positive value. We computed the pre-S1 and post-ACC activity by varying493

z(0), and found a strong positive correlation between them (Fig. 6D), which was again494

consistent with both experimental findings and the result of previous predictive coding495

model (Fig. 4E).496

Prediction 1: Placebo condition. Pain perception changes with different contexts. An497

identical noxious stimulus may cause distinct pain percepts or behaviors depending on the498

top-down influence. Placebo effects can create real or illusory pain analgesia, which can be499

pharmacological, psychological, or physical (Wagner & Atlas, 2015). To our best knowl-500

edge, there is yet no electrophysiological data available related to the placebo (or nocebo)501

experiment. Therefore, predictive coding models may be useful to make experimental pre-502

dictions.503

To simulate the placebo effect, we set a negative z(0) to represent a biased subjective504

pain perception. We also set a = 2000 and Zthreshold = 200. The pulse input has a 200-ms505

duration. As presented in Supplementary Fig. 4, the existence of a negative z produced a506

large PE, driving the S1 population to increase the firing rate, while suppressing the firing507

of ACC population. After the onset of stimulus, the S1 firing rate increased quickly, while508

the ACC firing rate increase was slower. By varying z(0), we found a positive correlation509

between the pre-S1 and post-ACC power (Supplementary Fig. 5).510

Within the predictive coding framework, placebo-induced treatment expectations can511

be conceptualized as feedback-mediated predictions, which modulate pain by changing the512

balance of feedback and feedforward processes at different levels of a neural processing513

hierarchy (Buchel et al., 2014).514

Chronic pain. To simulate the chronic pain state, we considered three experimental phe-515

nomena observed in chronic pain: (i) the increasing percentage of ACC neurons that receive516

the S1 input, (ii) the increasing percentage of pain-responsive neurons in each ACC subpop-517

ulation, and (iii) the activation of the S1→ACC pathway (Singh et al., 2020). We focused518
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on the targeted ACC neuron population. Specifically, we increased the percentage of ACC519

neurons that receive direct S1 input from 20% to 30%, increased the scaling parameter qS1+520

from 35% to 60%, qS1− from 14% to 20%, and qI from 10% to 25%, and increased L from521

0.1 to 0.2. Other model parameters were kept unchanged (see Fig. 7A).522

In the evoked pain condition, we first computed the traces of synaptic variable s in523

single-trial simulations. As expected, with a relatively low stimulus (x = 4.0), the ACC524

population had a significantly higher firing intensity in the chronic pain condition than525

in the naive case (Fig. 7B). When the stimulus was sufficiently high (x = 5.0), the ACC526

population had a similar firing intensity in both chronic and naive situations (Fig. 7C).527

Next, by varying the stimulus amplitude from 1.9 to 6.0, we ran 100 trials and com-528

puted the averaged synaptic variable s of the ACC population from the stimulus onset529

to withdrawal, which reflects the overall firing intensity of ACC neurons in response to530

the stimulus. As shown in Fig. 7D, the difference in firing intensity between naive and531

chronic pain conditions increased with increasing stimulus amplitude in the presence of532

low-intensity stimulus; whereas this difference diminished with increasing stimulus ampli-533

tude in the presence of high-intensity stimulus. With chronic pain, the ACC firing intensity534

increased disproportionally depending on the stimulus intensity, which is consistent with535

our previous experimental findings (Zhang et al., 2017). In addition, we have computed536

the maximum synaptic activation as well as the latency to the maximum (Supplementary537

Fig. 6).538

We then considered the activities of ACC subpopulations E2-1 and E2-2 separately. As539

shown in Fig. 7E, with a low-intensity stimulus, the response of the ACC subpopulation540

with the S1 input was similar to the response of total population, showing a significant541

increase in the firing rate from naive to chronic pain. However, the ACC subpopulation542

without receiving the S1 input did not change their firing rate significantly (Fig. 7F). This543

suggested that the disproportional increase in ACC firing intensity from naive to chronic544

pain was contributed mainly by neurons that received the S1 input. With a high-intensity545

stimulus, the difference in the firing rate between naive and chronic pain conditions was small546

for the ACC subpopulation with the S1 input, but the difference was still not significant547

for the ACC subpopulation without the S1 input (Fig. 7G).548
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Experimentally, the ACC baseline firing rate was higher in chronic pain than the naive549

condition (Singh et al., 2020). Our model prediction also supported this result (Fig. 7H),550

where the time-average of ACC baseline activity was computed over the period [0.5, 1.5] s.551

In the absence of stimulus, we found that chronic pain induced more sustainable high552

firing intensity in the ACC. We computed the fraction of time when s was greater than a553

certain threshold within the period Ts (from z onset to withdrawal), and found a sigmoid-554

like shape with increasing z(0) (Fig. 8C). From naive to chronic pain, the sigmoid curve555

shifted toward the left, which indicated that the fraction of time saturated at a lower z level556

in the chronic pain condition. As shown in Fig. 8A, when z was low, chronic pain induced a557

higher and sustainable firing response compared with the naive condition. In contrast, when558

z was high, both curves were saturated so that the time above threshold was nearly the559

same in both conditions (Fig. 8B). This implies that if spontaneous pain (i.e., non-evoked560

nociception) was primarily induced by a top-down input, then the nociceptive response of561

ACC neurons would be more sustainable in the chronic pain condition than in the naive562

condition.563

In the placebo and nocebo conditions, we predicted a monotonically increasing trend564

in ACC firing with respect to increasing z in both naive and chronic pain states (Fig. 8D),565

where negative z(0) corresponded to the placebo effect and positive z(0) to the nocebo effect.566

This is consistent with the definitions of placebo effect as reduced nociceptive responses and567

the nocebo effect as increased responses. In our simulations, we also found that the curve568

shifted upward from the naive to chronic pain condition, indicating that the placebo effect569

was weaker (i.e., feeling less relieved) and the nocebo effect was stronger (i.e., feeling more570

painful) in chronic pain. The mean firing curve of each subpopulation with regard to571

z(0) (Fig. 8E) suggested that the ACC subpopulation receiving the S1 input contributed572

predominantly to this shift.573

Precise noxious stimulus prediction decreases the S1 response. Next, we made predictions574

of the S1 response within the predictive coding framework. Specifically, we fixed the stimulus575

input x and investigate how the S1 firing intensity would change with respect to different576

z(0). As shown in Fig. 9A, the pre-stimulus S1 firing intensity increased monotonically577
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with z(0) However, the post-stimulus S1 firing intensity was determined by the absolute578

PE, or |x− z(0)|. As shown in Fig. 9B, the curve of post-stimulus S1 firing intensity had a579

V-shape with respect to z(0), and the minimum of V-shape curve shifted rightward when580

we increased the stimulus amplitude x.581

We further examined the effect of prediction on the S1 firing intensity. We set a positive582

z(0) and assumed that z remained constant before the stimulus onset, which represented a583

prediction of the stimulus x. We tested two scenarios: one with zero PE (i.e., z(0) = x),584

the other with a PE of x (i.e., z(0) = 0). We measured the firing intensity of pre- and585

post-stimulus S1 excitatory population, respectively. As illustrated in Fig. 9C, when PE586

was x, the pre-stimulus S1 firing was significantly lower than the post-stimulus S1 firing;587

however, the trend was reversed when there was a precise prediction (i.e. PE=0).588

It is noteworthy that our model prediction is in line with several experimental findings589

in the literature. First, human S1 gamma oscillations can predict subjective pain intensity590

(but not objective stimulus intensity) (Gross et al., 2007; Zhang et al., 2012). Second, the591

precise prediction of pain stimulus intensity decreases the S1 gamma-band activity (Arnal592

& Giraud, 2012). Third, the prediction level is positively correlated with the “rating” of593

pain stimulus (Peng et al., 2015).594

Pain anticipation shifts the onset of the ACC response. Pain anticipation shifts the onset595

of the ACC response. Furthermore, we made predictions of the ACC response in the596

presence of pain anticipation within the predictive coding framework. Based on our prior597

experimental findings (Urien et al., 2018), we conducted a computer simulation of tone-598

conditioning pain anticipation (or prediction) experiment. Specifically, the latency of peak599

firing rate (Fig. 10A) of ACC neuronal populations changed significantly in the presence600

of anticipation or prediction. In the absence of prediction, we observed a positive peak601

latency, which implies that it took time for the ACC firing rate to accumulate upon the602

nociceptive stimulus. However, when we set the latent variable z to a value that is equal603

to the stimulus amplitude, the peak ACC firing rate appeared earlier or before the arrival604

of the actual stimulus—thereby leading to a negative peak latency. This is consistent with605

what we observed in the rat experiments. Furthermore, we tested the mean and peak firing606
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activity during the 50-ms tone period right after we set z to the stimulus amplitude (Fig. 10B607

and Fig. 10C). In the case of pain anticipation, both the mean and peak firing rates during608

the tone-conditioning period increased significantly compared to those in the absence of609

anticipation. This result indicated that the existence of anticipation was correlated with610

the activation of ACC neurons during the tone period. Therefore, our computer simulations611

can replicate the experimental findings of ACC neurons.612

Prediction 2: Influence of ACC→S1 feedback. Thus far, we have only assumed the direct613

S1→ACC projection in the circuit model based on the available experimental literature614

(Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011; Singh et al., 2020). We further615

asked whether the presence of ACC→S1 feedback changes the model prediction. To explore616

that answer, we tried incorporating the ACC→S1 feedback into the mean field model, and617

found qualitatively similar observations in the average S1 synaptic activation variable as618

the default setup without feedback (Supplementary Fig. 7). This result suggest that if there619

is an indirect pathway that the ACC activity affect the S1 response, the simulation results620

of our biophysical model remain approximately valid.621

4 DISCUSSION

In this work, we have used computational (predictive coding) models and neural mass (bio-622

physical) models to reproduce the same empirical findings (i.e., dissociations in terms of623

gamma and beta-band neural responses). We accomplished this by choosing model parame-624

ters that reproduced the basic findings in terms of pre-and post-pain induced LFP responses625

observed empirically in rodent experiments. By incorporating biophysical constraints, the626

neural mass model could well explain the findings in chronic pain.627

4.1 Neural Pathways for Pain Perception628

Limited by rodent neurophysiological recordings, we have only focused our attention on629

the S1 and ACC circuits in the context of predictive coding. In reality, however, many630

other cortical or subcortical circuits are also engaged in pain processing. In the ascend-631
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ing (“bottom-up”) pathway, the nociception originates in the peripheral system, and then632

passes the signals to the dorsal horn of the spinal cord, then further to the thalamus, and the633

cortex. The descending (“top-down”) system, involving the midbrain, RVM (rostral ven-634

tromedial medulla), PAG (periaqueductal gray) and other areas, can exert both inhibitory635

and modulatory influence. There may be multiple routes of descending control. It may636

originate in the cortex, including the ACC, and project to the PAG. The PAG in turn sends637

projections to RVM and then to the spinal cord (Buchel et al., 2014).638

The S1 receives the bottom-up sensory input, involving the regulation of cortical ex-639

citability. However, the prestimulus S1 gamma oscillations can predict subjective pain640

intensity (Gross et al., 2007), whereas the precise prediction of pain stimulus intensity641

decreases the gamma-band activity (Arnal & Giraud, 2012). Together, these results also642

suggest that the S1 activity can represent the relative mismatch of expectations and sensory643

evidence (Bauer et al., 2014).644

Several lines of experimental evidence have pointed to a direct S1→ACC projection in645

cortical pain processing (Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011). We646

have recently used experimental techniques to establish a direct S1→ACC projection in647

rats during the course of cortical pain processing. Activation of S1 axon terminals in the648

ACC can recruit new ACC neurons to respond to noxious stimuli, as well as increase the649

spiking rates of individual pain-responsive neurons; in the chronic pain state, the S1→ACC650

connectivity is enhanced, as manifested by a higher percentage of ACC neurons that respond651

to S1 inputs (Singh et al., 2020). To date, however, it remains unknown whether there is an652

indirect ACC→S1 pathway through the cortico-cortical feedback loop that modulate pain653

processing. More experimental investigations are still required in the future.654

The ACC is a major target of midbrain dopamine neurons, which encode reward-related655

information (such as the reward prediction error). The ACC is reciprocally connected with656

the amygdala and the orbitofrontal cortex (OFC), which has a projection to the nucleus657

accumbens (NAc). Importantly, the ACC is also reciprocally connected with the prefrontal658

cortex (PFC), a region implicated in executive control, working memory, and rule learning.659

Therefore, the ACC may serve as a gateway for incorporating reward-related information660

into sensorimotor mappings subserved by the PFC (Hayden & Platt, 2009). Moreover, the661
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PFC has been confirmed to play a modulatory role of gain control in pain processing (Dale662

et al., 2018). Activation of the PFC provides effective relief to sensory and affective pain663

symptoms via descending projections in rodents (Lee et al., 2015; Martinez et al., 2017;664

Zhang et al, 2015; Hardy, 1985). Nevertheless, a complete circuit dissection of cortical pain665

processing between sensory cortices, ACC, OFC, and PFC has not been established.666

4.2 Experimental Evidence for Predictive Coding in Pain Perception667

In the presence of uncertainties, the brain uses a prediction strategy to guide decision668

making or perceptual inference (Tabor et al., 2017). Within the predictive coding theory,669

oscillatory beta-band activity has been linked to top-down prediction signals and gamma-670

band activity to bottom-up PEs (Pelt et al., 2016). Specifically, in a human MEG study,671

Granger-causal connectivity in the beta-band was found to be strongest for backward top-672

down connections, whereas the gamma-band was found to be strongest for feed-forward673

bottom-up connections (Pelt et al., 2016). In our recent Granger causality analysis of rodent674

S1-ACC LFP data (Guo et al., 2020), we have observed a S1→ACC Granger-causality675

peak at a higher frequency (∼75 Hz), and an ACC→S1 Granger-causality peak at a lower676

frequency (∼55 Hz), supporting this predictive coding theory. This causality analysis result677

may also be ascribed to the spectral asymmetry in predictive coding (Bastos et al., 2015).678

Predictive coding may provide the key to understanding important phenomena in pain679

perception (Wiech, 2016; Ploner et al., 2017; Morrison et al., 2013). Unlike evoked pain,680

spontaneous pain or non-evoked nociception is detached from an overt stimulus and may681

be driven by internal processing inside the pain matrix. An important finding from our682

previous experimental data (Xiao et al., 2019) is the fact that the pre-S1 gamma-ERD/ERS683

correlates with the post-ACC beta-ERS/ERD during non-evoked nociception, whereas the684

correlation becomes weaker or diminishes in evoked pain or baseline (Fig. 1C,D). This685

phenomenon holds in both naive and chronic pain-treated rats, suggesting an information686

flow between the bottom-up (gamma) and top-down (beta) loops. Therefore, the brain687

may use differential neuronal responses to represent bottom-up and top-down modulations688

of pain, and to provide complementary information about pain perception (Tiemann et al.689

2015).690
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The temporal coordination of beta-ERS/ERD and gamma-ERD/ERS between the ACC691

and S1 during pain perception corroborates with some previous gamma-ERS and alpha or692

beta-ERD reports on human EEG findings (Gross et al., 2007; Hu et al., 2013; Schultz et693

al., 2015). The pain-induced alpha or beta-ERS/ERD is highly dependent on the cortical694

region, which may be related to sensory gating and functional inhibition, or influenced by695

top-down attention modulation (Peng et al., 2015). In addition, it has been reported that696

pre-stimulus human EEG oscillations at the alpha (at bilateral central regions) and gamma697

(at parietal regions) bands negatively modulated the perception of subsequent nociceptive698

stimuli (Tu et al., 2016).699

4.3 Chronic Pain700

In the chronic pain state, sensory hypersensitivity and aversion are commonly observed.701

Chronic pain can also alter acute pain intensity representations of noxious stimuli in the702

ACC to induce generalized enhancement of aversion (Zhang et al., 2017). While cortical703

pain responses differ between naive and chronic pain animals, the exact mechanisms of704

transitioning from acute to chronic pain is still incompletely understood. Our computa-705

tional model can provide valuable predictions to confirm the experimental findings. Our706

recent experimental data have shown an increased number of ACC neurons that receive S1707

nociceptive inputs, and these neurons that receive S1 inputs also have elevated firing rates708

(Singh et al., 2020).709

In chronic pain experiments, CFA mice with inflammatory pain show elevated resting710

gamma and alpha activity and increased gamma power in response to sub-threshold stimuli,711

in association with nociceptive hypersensitivity. Inducing gamma oscillations via optoge-712

netic activation of parvalbumin-expressing inhibitory interneurons in the S1 enhances noci-713

ceptive sensitivity and induces aversive avoidance behavior (Tan et al., 2019). In addition,714

the magnitude of placebo analgesia effect appears to be stronger in chronic pain patients715

experiencing hyperalgesic states (Vase et al., 2014). Our computer simulation results have716

indirectly supported these findings (Fig. 8 and Fig. 9, respectively).717
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4.4 Limitations718

Our have computational models have succeeded in modeling several key experimental data719

findings (Table 1), including the LFP spectral asymmetry in the S1 and ACC, animal720

behaviors in evoked pain and pain anticipation, coordinated S1-ACC activity during chronic721

pain, the S1 activity during stimulus prediction, the ACC activity during pain anticipation.722

However, there are also several conceptual limitations in our computational models.723

First, we did not explicitly model the cortical layer-specific role in the S1 and ACC. It is724

well known that different cortical layers receive distinct sources of feedforward or feedback725

input and may carry different computational roles in predictive coding. Specifically, L4 neu-726

rons may receive inputs from the thalamic projection; L2/3 pyramidal neurons are critical727

for receiving prediction signals from high-level cortical areas, and interlaminar connections728

may support the temporal integration of feedforward inputs and feedback signals to pre-729

dict future perception (Constantinople & Bruno, 2013; Bastos et al., 2020). Recent fMRI730

experiments also suggest the predictive coding in the human S1 in a layer-specific manner731

(Yu et al., 2019). Second, our biophysical models were established based on oversimpli-732

fied assumptions and have ignored many details in the canonical microcircuit, such as the733

cell type specificity, thalamic feedback, and neuromodulatory input. The dynamic causal734

model (DCM) can potentially capture more functional and anatomical properties of the735

microcircuits for predictive coding (Bastos et al., 2015). However, detailed causal modeling736

of cortical connectivity is highly challenging (involving many parameters), which is diffi-737

cult to fit based on rodent LFP recordings alone. Finally, thus far we have only developed738

mathematical equations to characterize the neural response variables u(t) and v(t); in other739

words, our models are purely phenomenological and descriptive. A computational strategy740

would be developing practical algorithms to predict the latent z(t) based on the observed741

responses {u(t), v(t)}; this will be the subject of our future research. Overall, a computa-742

tional model is only as good as its assumptions. Although our model predictions depend743

on the model oversimplification and parameters, the predictive coding modeling framework744

is sufficiently flexible and powerful to generate rich neuronal population dynamics.745

In summary, motivated by empirical experimental findings in rodents, we have devel-746
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oped a predictive coding framework and computational models to characterize the neuronal747

population activity of the rat S1 and ACC in pain conditions. To our knowledge, our748

work represents the first effort along this direction. Our first model is phenomenological749

and characterizes the macroscopic neural activity, whereas the biophysically-constrained750

mean field model characterizes the mesoscopic neuronal population activity. Importantly,751

our mean field model imposes biological constrains onto the E/I populations. Our com-752

putational models have not only presented a good prediction of the rodent data, but also753

made experimental predictions on the placebo/nocebo effects; the next step is to further754

validate the predictive coding models in human pain experiments. This effort would re-755

quire the use of source localization techniques to reconstruct the S1 and ACC activity756

based on high-density EEG or MEG recordings (Pelt et al., 2016; Hauck et al., 2015;757

Zhang et al., 2016). In addition, our computational model may provide valuable predictions758

for other experimental conditions, such as investigation of cortical pain processing during759

pain perception in the presence of anesthetic or analgesic drugs (Zhou et al., 2018). Fi-760

nally, the biophysical model can be extended as a dynamic causal model of complex cross761

spectral responses (Friston et al., 2012). The parameters of such a forward or generative762

model of observed data may be optimized using variational techniques. This will enable us763

to quantify both the gain or weight parameters of our model, as well as the uncertainty of764

these estimates. We will then be able to test hypotheses about the effects under different765

pain conditions.766
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Table 1: Summary of key results of two computational models and the associated experi-
mental support.

Condition
Computer modeling results

phenomenological model mean field model Experimental support

model description Eqs. 1-6, Fig. 1D, Table 2 Eqs. 8-14, Fig. 2B, Table 3 n/a

evoked pain Figs. 4A-C, Fig. 5A Fig. 6A-C Fig. 3C,D, rat ACC and S1 LFP data reported in (Xiao et al., 2019)

non-evoked pain Figs. 4D,E, Fig. 5B Fig. 6D Fig. 3B,C,D, rat ACC and S1 LFP data reported in (Xiao et al., 2019)

chronic pain n/a Fig. 7B,C,H, pain aversion in rat ACC neurons (Zhang et al., 2017)
Fig. 7A,D-H, Fig. 8A-C Fig. 3E,F, rat S1→ACC projection (Singh et al., 2020)

placebo & nocebo n/a Fig. 8D,E none found

stimulus prediction n/a Fig. 9A-C human S1 activity (Gross et al., 2007; Zhang et al., 2012)

pain anticipation n/a Fig. 10A rat’s behavior (Urien et al., 2018)
Fig. 10B,C rat ACC activity (Urien et al., 2018)

Table 2: Summary of default parameters used in the predictive coding model

Parameter Value

dt 1 ms
Time constant τu 300 ms
Time constant τv 100 ms
Time delay ∆u 100 ms
Time delay ∆x 300 ms
Gain parameter Π0 1
Gain parameter Π1 1
Gain parameter Π2 1
Gain parameter Π3 1
Threshold Zthreshold 200
a in Eq. 4 5000
b in Eq. 4 1
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Table 3: Summary of standard mean field model parameters

Parameter Value

Firing rate of E/I population rE/I

Synaptic activation of E/I population sE/I

Time step in Euler’s method 0.1 ms
Percentage of ACC population receiving a direct S1 input 20%
Excitatory synaptic weights {wEE , wEI} 22
Inhibitory synaptic weights {wII , wIE} wII = ρwEE

wIE = ρwEI

Scaling parameter ρ for inhibitory/excitatory strength −1.5
Scaling parameter L for long-range projection 0.1
S1/ACC population size ratio κ 2
Gain parameter gS1 2
Gain parameter gACC 3
Scaling parameter for % of pain-responsive neurons q+S1, q

−
S1, qI 35%, 14%, 10%

Slope of sigmoid function σE = σI S1: 0.5; ACC: 0.7
Center of sigmoid function hE = hI S1: 4; ACC: 3
Synaptic activation time constant for excitatory population τs,E 3 ms
Synaptic activation time constant for inhibitory population τs,I 10 ms
S1 firing time constant for excitatory population τr,E 1 ms
S1 firing time constant for inhibitory population τr,I 3 ms
ACC firing time constant for excitatory population τr,E 3 ms
ACC firing time constant for inhibitory population τr,I 18 ms
Ratio between activation and inactivation times of the synapse γE/I 4

Time delay in S1→ACC projection: ∆S1 20 ms
Time delay: ∆x 75 ms
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Fig. 1: Predictive coding. (A) Schematic diagram of predictive coding for pain perception.
(B) Graphical illustration of prediction error (PE), prior expectation, and prediction in per-
ceptual inference. Due to the uncertainty of the top-down expectation, PE is assumed to be
Gaussian distributed. Mean and standard deviation (SD) characterize the uncertainty of a
Gaussian random variable. (C) Schematic illustration of neural response (a.u.) represent-
ing a gain-weighted PE that changes in time, where the gain is the precision statistic. (D)
Graphical model showing statistical dependencies between the observed variables {u, v} and
the latent variable {z} in the predictive coding model. Here, z denotes the pain expectation,
and u and v denote the observed neural responses at two brain areas. (E) The magnitude of
frequency response H1(ω) and its approximation, which can be viewed as a low-pass filter.
(F) Schematic illustration of power spectra |U(ω)|2 (solid line) and |V (ω)|2 (dashed line),
where U(ω) and V (ω) are the Fourier transforms of u(t) and v(t) in the predictive coding
model, respectively.
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Fig. 2: A schematic of mean field model for the S1 and ACC circuits. (A) In a reduced
model, each brain area is described by an excitatory (E) and an inhibitory (I) population
of neurons, with inter- and intra-population coupling. The S1→ACC coupling is assumed
to be excitatory and unidirectional. (B) A detailed mean-field model that account for
biological constraints and details. The pain-responsive ACC neuronal population, E2-1, is
assumed to receive a direct excitatory input from the S1 population E1. wEE represents the
basic coupling strength between the same type of neuronal populations (E-E or I-I), wEI

represents the basic coupling strength between different types of neuronal populations (E-I
or I-E). ρ is a negative number that scales the strength of inhibitory input from I-neurons.
L < 1 is a positive number that scales the effect of long-range S1→ACC projection. κ
represents the size ratio of S1 population to ACC population.
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Fig. 3: Results excerpted from our previous experimental findings. (A) Schematic diagram
of noxious stimulation and electrophysiological recording in naive and CFA rats. (B) Z-
scored spectrograms in the ACC and S1 during a representative non-evoked nociception
episode. White traces show the principal component of multichannel LFPs. Time 0 marks
the onset of non-evoked nociception event. The post-event power was Z-scored with respect
to [−5, 0] s, whereas the pre-event power was Z-scored with respect to [0, 5] s. The S1-
ERD during the pre-event period and the ACC-ERS during the post-event period were
highlighted by dashed and solid ellipses, respectively. (C) Time-averaged Z-scored pre-
gamma S1 activity vs. post-beta ACC activity (n = 252 non-evoked nociception events,
n = 233 evoked pain events; n = 149 negative controls), for naive rats. In each panel,
R-square (i.e., the square of Pearson’s correlation) and p values are reported. (D) Same
as panel C, except for CFA rats (n = 127 non-evoked nociception events, n = 71 evoked
pain events; n = 49 negative controls). (E) Pie chart of pain-responsive ACC neurons that
receive a direct S1 input for naive rats. (F) Same as panel E, except for CFA rats.
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Fig. 4: Simulation results from the predictive coding model. (A) Simulated 10-s temporal
traces of {x, z, u, v} in evoked pain. Y-axis is in arbitrary unit (a.u.). Stimulus onset
separates the pre-event from post-event periods. Here, we used u(0) = v(0) = z(0) = 0.
The right panel shows the zoom-in window of 4000-6000 ms. (B) The correlation of Au (area
under u-curve) and Av (area under v-curve) was small during evoked pain. Each point was
derived from a simulation with a different input amplitude (correlation: 0.097, p = 0.06,
n = 400). The Au and Av represent the proxy of average induced responses in the gamma
and beta bands. Each point was derived from a simulation with a different z(0). (C) Reset
(withdrawal) latency decreases with increasing input amplitude. Error bar represents the
standard error of mean (SEM) (n = 50). (D) Simulated temporal traces of {x, z, u, v} in
non-evoked nociception. Y-axis is in a.u. Here, we used u(0) = v(0) = 0, z(0) = 0.3.The
right panel shows the zoom-in window of 0-2000 ms. (E) Au (during the pre-event period)
was positively correlated with Av (during the post-event period). Each point was derived
from a simulation with a different z(0) (correlation: 0.947, p < 10−10, n = 400).
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model simulations (n = 100) in evoked pain and non-evoked nociception. The Pearson’s
correlation coefficients in two panels were 0.15 (p = 0.137) and 0.40 (p = 4.5 × 10−5),
respectively. Color bar represents the different initial condition for x(0) (panel C) or z(0)
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Fig. 7: Mean field model simulation results of evoked pain under the chronic pain condition.
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Fig 7. Mean field model simulation results of evoked pain for the chronic pain condition.963

(A) Modified mean field model (compared to Fig. 3B) for chronic pain. Modified variables964

are marked in red. (B) Comparison of the midline envelope of ACC synaptic activation965

variable s between naive (blue) and chronic pain (red) condition for the stimulus amplitude966

4.0. Bar above the curve marks the duration Ts between the stimulus onset to withdrawal.967

(C) Same as panel B, except for the stimulus amplitude 5.0. In all following plots, the noises968

are set as εz = 0.1, εE = εI = 0.005. (D) Average ACC synaptic activation variable s from969

total population during Ts for varying stimulus amplitude under naive (blue) and chronic970

pain (red) condition. (E) Similar to panel D, except for two ACC subpopulations E2-1 (w/971

direct S1 input) and E2-2 (w/o S1). Mean and SEM for each group are shown. 100 Monte972

Carlo runs were run with random initial input amplitude x ∈ [1.9, 6.0]. (F,G) From panel973

E, we replotted the average ACC synaptic activation of E2-1 (w/ S1) and E2-2 (w/o S1)974

during Ts for low and high stimulus amplitude. Error bars were computed from 10 trials975

with random initial input amplitude x ∈ [3.3, 3.7]. For the low stimulus amplitude, there976

was a significant difference between naive and chronic pain for E2-1 (p < 0.0001, rank-sum977

test); but not significant for E2-2 (p = 0.86). For the high stimulus amplitude, there was978

a less significant difference between naive and chronic pain for E2-1 (p = 0.0028); however,979

the difference of that for E2-2 was insignificant (p = 0.799). (H) Average ACC synaptic980

activation during baseline (no stimulus) was significantly lower (p < 0.0001, rank-sum test)981

in naive (blue) than in chronic pain (red). Average was computed from the baseline ([0.5,982

1.5] s) by discarding the initial transient period.983
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Fig. 8: Mean field model simulation results of non-evoked nociception and placebo/nocebo
effects under the chronic pain condition. (A) Simulated midline envelope trace of ACC
synaptic activation variable s in non-evoked nociception under naive (blue) and chronic
pain (red) conditions, for an initial top-down expectation z(0) = 3.0. (B) Similar to panel
A, except for z(0) = 4.5. At low z(0), the fraction of time above threshold during Ts
(between the stimulus onset and withdrawal) was longer in the chronic pain condition; at
high z(0), the fraction was similar between the two conditions. (C) Fraction of time during
Ts that ACC synaptic activation variable was above the threshold (horizontal dashed line)
for various top-down expectation z(0) in naive (blue) and chronic pain (red) conditions. The
curve has a sigmoidal shape and shifts leftward from naive to chronic pain condition. 100
Monte Carlo trials were run with random z(0) ∈ [1.5, 5.0]. Mean and SEM for each group
are plotted. (D) Comparison of average ACC synaptic activation in placebo/nocebo effects
under naive (blue) and chronic pain (red) conditions for various initial top-down expectation
z(0), where z(0) < 0 and z(0) > 0 represent the placebo and nocebo effects, respectively.
The synaptic activation s of total ACC population increased monotonically, and shifted
upward from the naive to chronic pain condition. (E) Similar to panel D, except for ACC
subpopulations E2-1 (w/ S1 input) and E2-2 (w/o S1 input). The subpopulation E2-1 had
a similar shape of the total population, while E2-2 did not increase much from the naive
to chronic pain condition. 100 Monte Carlo trials were run with random z(0) ∈ [−4.0, 4.0].
Mean and SEM are plotted for each group.
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Fig. 9: Mean field model simulation results of the S1 synaptic activation variable with
regards to the prediction error (PE) and stimulus prediction. (A) During pre-stimulus
baseline, time-averaged S1 synaptic activation variable increased monotonically with z(0).
(B) During post-stimulus presentation, the average S1 synaptic activation variable exhibited
a V-shaped profile from varying stimulus amplitude (x = 2.0, 2.5, 3.0), where the minimum
occurs when x = z(0) or PE = 0. The minimum shifted rightward with increasing x,
indicating that the post-stimulus S1 synaptic activation variable was proportional to |x−z|.
100 Monte Carlo trials were run with random z(0) ∈ [1.0, 5.0]. Mean and SEM for each
group are plotted. (C) Comparison of average S1 synaptic activation at different time (pre
vs. post-stimulus) and PE: PE = x (i.e., z = 0) and PE = 0 (i.e., z = x). Ten Monte
Carlo trials were run with random input amplitude x ∈ [2.0, 2.4]. There was a significant
difference in the average S1 synaptic activation between the pre vs. post-stimulus period
in both cases. All p-values for pair comparisons marked in the graph were less than 0.0001
(rank-sum test). The pre-stimulus firing was computed from the expectation z onset (from
time 0 if no expectation) to the stimulus x onset; the post-stimulus firing was computed
from the stimulus onset to withdrawal.
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0.969, p < 10−10).
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Supplementary Fig. 3: Mean-field activity (synaptic activation s) for three different excita-
tory neuronal populations in one representative non-evoked nociception simulation. Nota-
tions are the same as Fig. 6A,B.
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Supplementary Fig. 4: Mean-field activity (synaptic activation s) for three different exci-
tatory neuronal populations in one representative placebo condition simulation. Notations
are the same as Fig. 6A,B.
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Supplementary Fig. 6: Latency and maximum peak statistics of synaptic activation in ACC
populations during evoked pain (A-D), non-evoked nociception (E-H) and placebo/nocebo
(I-L) conditions. (A) Maximum of middle line of ACC synaptic activation variable s from
total population during the duration Ts between the stimulus onset to withdrawal, for
varying stimulus amplitude under naive (blue) and chronic pain (red) conditions. (B)
Similar to panel A, except for two ACC subpopulations. (C) The latency from the stimulus
onset to the maximum defined in panel A for varying stimulus amplitude under the naive
and chronic pain conditions. (D) Similar to panel C, except for two ACC subpopulations
E2-1 (w/ S1 input) and E2-2 (w/o S1 input). Mean and SEM for each group are shown.
100 Monte Carlo runs were run with random initial input amplitude x ∈ [1.3, 5.0]. (E)
Average of middle line of ACC synaptic activation variable s from the total population
during the duration Ts for varying top-down expectation z(0) under naive and chronic pain
conditions. (F) Similar to panel E, except for two ACC subpopulations E2-1 and E2-2.
Mean and SEM for each group are shown. 100 Monte Carlo runs were run with random
initial z(0) ∈ [1.5, 4.0]. (G) Maximum of middle line of ACC synaptic activation variable s
from total population during the duration Ts between the stimulus onset to withdrawal, for
varying top-down expectation z(0) under the naive and chronic pain conditions. (H) Similar
to panel G, except for two ACC subpopulations E2-1 and E2-2. The curves in panels G and
H have similar shapes as in panels E and F. (I) The latency from the stimulus onset to the
maximum of ACC synaptic activation for varying top-down expectation z(0) under naive
and chronic pain conditions. (J) Similar to panel I, except for two ACC subpopulations E2-1

and E2-2. Mean and SEM for each group are shown. 100 Monte Carlo runs were run with
random initial z(0) ∈ [−4.0, 4.0]. (K) Maximum of middle line of ACC synaptic activation
variable s from the total population during the duration Ts between the stimulus onset to
withdrawal, for varying top-down expectation z(0) under naive and chronic pain conditions.
(L) Similar to panel K, except for two ACC subpopulations E2-1 and E2-2.
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Supplementary Fig. 7: Comparison of average S1 synaptic activation at different periods
(before vs. after onset) and PE values: PE= x (or z = 0) and PE= 0 (or z = x), with
feedback from the ACC to S1. A total of 10 Monte Carlo trials were run with random
stimulus input amplitude x ∈ [1.8, 2.2]. Mean and SEM were presented for each group.
There was a significant difference in the average S1 synaptic activation variable between
before and after the stimulus onset in both conditions. All p-values for pairs marked in
the graph are less than 0.0001, expect for the p = 0.0008 between PE= x and PE= 0
after the onset (two pink bars). This indicates that the decrease in S1 firing intensity
after the stimulus onset was slightly less significant with the presence of feedback. The
pre-stimulus firing was averaged from the expectation z onset (from 0 if no expectation)
to the stimulus x onset; the post-stimulus firing was averaged from the stimulus onset to
withdrawal. Compared to Fig. 9C, the gap between before and after the stimulus onset was
smaller here.
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