

¹ Predictive coding models for pain perception

² Yuru Song^{1,2,†}, Mingchen Yao^{1,3,†}, Helen Kempereos⁴, Áine Byrne⁵,

³ Zhengdong Xiao¹, Qiaosheng Zhang⁶, Amrita Singh⁶, Jing Wang^{6,7,8}, and Zhe S. Chen^{1,7,8*}

⁴

⁵ ¹*Department of Psychiatry, New York University School of Medicine, New York, United States;*

⁶ ²*Department of Biology, University of California, San Diego, United States;* ³*Kuang Yaming Hon-*

⁷ *ors School, Nanjing University, Nanjing, China.* ⁴*Department of Biochemistry, New York Univer-*

⁸ *sity, New York, United States;* ⁵*Center for Neural Science, New York University, New York, United*

⁹ *States;* ⁶*Department of Anesthesiology, Pain and Operative Medicine, New York University School*

¹⁰ *of Medicine, New York, United States;* ⁷*Department of Neuroscience and Physiology, New York Uni-*

¹¹ *versity School of Medicine, New York, United States;* ⁸*Neuroscience Institute, New York University*

¹² *School of Medicine, New York, United States*

¹³ [†] **These authors contributed equally.**

¹⁴ Corresponding email: zhe.chen@nyulangone.org

¹⁵ **Running Head: Predictive coding models for pain perception**

¹⁶ Correspondence: Z. S. Chen, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA

¹⁷ E-mail: zhe.chen@nyulangone.org

¹⁸ Phone: 646-754-4765

²⁰ ORCID 0000-0002-6483-6056 (Z. S. Chen)

²¹ ORCID 0000-0002-2794-0014 (M. Yao)

²² ORCID 0000-0002-8424-8710 (A. Byrne)

²³ ORCID 0000-0003-0485-3126 (Q. Zhang)

²⁴ ORCID 0000-0003-1580-1356 (J. Wang)

26 Pain is a complex, multidimensional experience that involves dynamic interactions be-
27 tween sensory-discriminative and affective-emotional processes. Pain experiences have
28 a high degree of variability depending on their context and prior anticipation. View-
29 ing pain perception as a perceptual inference problem, we propose a predictive coding
30 paradigm to characterize evoked and non-evoked pain. We record the local field po-
31 tentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingu-
32 late cortex (ACC) of freely behaving rats—two regions known to encode the sensory-
33 discriminative and affective-emotional aspects of pain, respectively. We further use pre-
34 dictive coding to investigate the temporal coordination of oscillatory activity between
35 the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to
36 describe the macroscopic dynamics of bottom-up and top-down activity. Supported by
37 recent experimental data, we also develop a biophysical neural mass model to describe
38 the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and
39 chronic pain-treated animals. Our proposed predictive coding models not only repli-
40 cate important experimental findings, but also provide new prediction about the impact
41 of the model parameters on the physiological or behavioral read-out—thereby yielding
42 mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and
43 chronic pain.

44 **Keywords:** Predictive coding; pain perception; somatosensory cortex; anterior cingulate
45 cortex; mean field model; placebo; chronic pain

1 INTRODUCTION

46 Pain is a fundamental experience that is subjective and multidimensional. Pain process-
47 ing involves sensory, affective, and cognitive processing across distributed neural circuits
48 (Bushnell et al., 1999; Bushnell et al., 2013; Iannetti & Mouraux, 2010; Legrain et al., 2011;
49 Vierck et al., 2013). However, a complete understanding of pain perception and corti-
50 cal pain processing has remained elusive. Given the same nociceptive stimuli, the con-
51 text matters for pain percept. In the literature, human neuroimaging studies have shown
52 that among many brain regions, the primary somatosensory cortex (S1) and the ante-
53 rior cingulate cortex (ACC) are two important cortical areas involved in high-level pain
54 processing. The S1 represents the sensory-discriminative component of pain, whereas
55 the ACC represents the affective-motivational component of pain (Johansen et al., 2001;
56 Bushnell et al., 2013). In addition, ACC neuronal activities have been shown to correlate
57 with noxious stimulus intensities, and chronic pain can alter acute pain intensity repre-
58 sentation in the ACC to increase the aversive response to noxious stimuli at anatomically
59 unrelated sites (Zhang et al., 2017). In addition to the bottom-up input, top-down atten-
60 tion, expectation, or contextual factors can bias cortical pain processing or modulate the
61 strength or salience of pain signals (Wiech, 2016). Descending modulation can attenuate
62 the incoming nociceptive signal and further skew the subjective pain perception despite the
63 high-intensity noxious stimulus input.

64 Evoked pain is triggered by noxious sensory stimuli, whereas spontaneous pain (also
65 known as non-evoked pain or non-evoked nociception) is not. Spontaneous pain can be
66 induced by repeated noxious stimulations in naive animals, or induced by chronic pain
67 conditions (Bennett, 2012). Pain perception has been conceptualized as perceptual inference
68 (Wiech, 2016; Geuter et al., 2017; Tabor et al., 2017), and predictive coding may provide
69 a theoretical model for characterizing such inference (Arnal & Giraud, 2012; Ploner et al.,
70 2017). Specifically, pain perception can be studied as an inferential process in which prior
71 information is used to generate expectations about future perception and to interpret the
72 sensory input.

73 Predictive coding paradigms describe the inversion of a generative model of the per-

74 cept and constantly adapt the hypothesis of sensory perception (Huang & Rao, 2011). A
75 predictive model characterizes the uncertainty of sensory inputs in time and space (Aitchi-
76 son & Lengyel, 2017). Predictive coding relies on correcting errors resulting from com-
77 parisons between internal predictions and actual observations. Such paradigms have pro-
78 vided important insights into perceptual inference, sensory processing, motor control, multi-
79 sensory integration and pain (Rao and Ballard, 1999; Shipp et al., 2013; Talsma, 2015;
80 Sedley et al., 2016; Morrison et al., 2013; Hoskin et al., 2019). Predictive coding has been
81 suggested as a universal computational principle in the neocortex (Bastos et al., 2012;
82 Friston & Kiebel, 2009), and this framework may accommodate various data modalities
83 and multiple spatiotemporal scales (Friston et al., 2015).

84 The experience of pain is often associated with brain rhythms or neuronal oscillations
85 at different frequencies (Ploner et al., 2017; Peng et al., 2018). For multisite recordings, it
86 is important to investigate the inter-regional local field potential (LFP) oscillatory coordi-
87 nation (Eto et al., 2011), as interareal oscillatory synchronization plays an important role
88 in top-down neocortical processing (Bressler & Richter, 2015; Bastos et al., 2020). One
89 important theoretical implication of predictive coding is spectral asymmetries between the
90 bottom-up and top-down representations (Bastos et al., 2012). The spectral asymmetry
91 can be also explained by the functional asymmetry: prediction errors (PEs) express higher
92 frequencies than the predictions that accumulate them, whereas the conversion of PEs into
93 predictions entails a loss of high frequencies. Since the common characteristic frequencies
94 in predictive coding range between the beta and gamma frequency bands, one working
95 hypothesis is that the bottom-up PEs are represented at the gamma band and top-down
96 prediction predictions are represented at the beta band.

97 In a series of rodent pain experiments, we collected various *in vivo* neurophysiological
98 recordings from single or two brain regions in freely behaving rats (Zhang et al., 2017;
99 Urien et al., 2018; Dale et al., 2018; Xiao et al., 2019). These data have established the
100 foundation for improved understanding of pain perception and provided empirical evidence
101 for computational modeling. In this paper, we present a predictive coding framework to
102 model the temporal coordination of interareal oscillatory activity between the rat S1 and
103 ACC during evoked and non-evoked nociception episodes. Specifically, we develop two dif-

104 ferent computational models to reproduce some previously observed differences between
105 gamma and beta responses, before and after pain. The first model bears a form of the state
106 space model based upon predictive coding, which can predict experimentally observed LFP
107 responses at the gamma and beta bands in the S1 and ACC areas, respectively. The second
108 model is derived from the mean field model, which is a biologically plausible neural mass
109 model parameterized in terms of connection strengths between distinct neuronal subpopu-
110 lations. The neural mass model can predict the S1 and ACC population neuronal activity
111 in various pain conditions, for both naive and chronic pain-treated animals.

112 Our key hypothesis is that we can reproduce empirical findings by manipulating the
113 gain parameter of the predictive coding model. Furthermore, the same phenomena can be
114 reproduced by varying the synaptic efficacy in the neural mass model. In other words, we
115 hypothesize that synaptic efficacy within the cortical pain network is a sufficient explanation
116 for responses induced by pain, and variations in pain conditions correspond to variations in
117 the model parameters described in the predictive coding paradigm.

118 In the result section, we first summarize important experimental findings that are ex-
119 tracted from previous published data (Xiao et al., 2019; Singh et al., 2020), which provide
120 the biological support and motivation for our computational modeling work. We then de-
121 scribe our phenomenological model and mean-field model and their simulation results for
122 both evoked pain and non-evoked nociception. Specifically, we will adapt the mean-field
123 model to characterize pain aversive behaviors in chronic pain. We will make data interpre-
124 tation and prediction related to the experimental results. To the best of our knowledge,
125 this is the first systematic modeling investigation towards understanding pain perception.
126 Together, our two computational models provide new insights into the uncertainty of ex-
127 pectation, placebo or nocebo effect, and chronic pain.

2 METHODS

2.1 *Experimental Protocol and Recordings*

128 All experimental studies were performed in accordance with the National Institutes of Health (NIH)
129 *Guide for the Care and Use of Laboratory Animals* to ensure minimal animal use and discomfort,

131 and were approved by the New York University School of Medicine (NYUSOM) Institutional Animal
132 Care and Use Committee (IACUC).

133 Male adult Sprague-Dale rats (250-300 g, Taconic Farms, Albany, NY) were used in our current
134 study and kept at the new Science Building at NYUSOM, with controlled humidity, temperature
135 and 12-h (6:30 a.m.-6:30 p.m.) light-dark cycle. Food and water were available ad libitum. Animals
136 were given on average 10 days to adjust to the new environment before the initiation of experiments.

137 Thermal pain stimuli were used for freely exploring rats in a plastic chamber of size $38 \times 20 \times 25$
138 cm^3 on top of a mesh table. A blue (473 nm diode-pumped solid-state) laser with varying laser
139 intensities was consistently delivered to the rat's right hindpaw. The laser stimulation (with intensity
140 ranging 100-250 mW) was delivered in repeated trials (25-40) during 30-45 min. Two video cameras
141 (120 frame per second) were used to continuously monitor the rat's behavior during the course of
142 experiment. Five naive rats and two chronic pain-treated rats were used in the current study. Details
143 are referred to previous publications ([Zhang et al., 2017](#); [Dale et al., 2018](#)).

144 To produce chronic inflammatory pain, 0.075 ml of *Complete Freund's adjuvant* (CFA) (my-
145 cobacterium tuberculosis, Sigma-Aldrich) was suspended in an oil-saline (1:1) emulsion, and injected
146 subcutaneously into the plantar aspect of the hindpaw opposite to the paw that was stimulated by
147 a laser; namely, only a unilateral inflammation was induced. In CFA rats, laser stimulations were
148 delivered to the opposite paw of the injured foot. The ACC and S1 electrodes were implanted on
149 the contralateral side of the stimulated foot.

150 Repeated noxious laser stimulations to the rat hindpaw could induce spontaneous pain be-
151 haviors. During the inter-trial intervals, we examined the rat's behavior to identify non-evoked
152 nociception episodes (such as twitch, lifting/flicking, paw withdrawal and paw licking) ([Xiao et al.,](#)
153 [2019](#)).

154 We used silicon probes (Buzsaki32, NeuroNexus) with a 3D printed drive to record multi-
155 channel (up to 64 channels) neural activities from the rat ACC and S1 areas simultaneously, on the
156 contralateral side of the paw that received noxious stimulation. For surgery, rats were anesthetized
157 with isoflurane (1.5%-2%). The skull was exposed and a 3 mm-diameter hole was drilled above the
158 target region. The coordinates for the ACC and S1 implants were: ACC: AP 2.7, ML 1.4-2.0, DV
159 2.0, with an angle of 20° toward the middle line; S1: AP -1.5, ML 2.5-3.2, DV 1.5. The drive was
160 secured to the skull screws with dental cement. We used a Plexon (Dallas, TX) data acquisition
161 system to record *in vivo* extracellular neural signals at a sampling rate of 40 kHz. The signals
162 were first band-pass filtered (0.3 Hz-7.5 kHz), and LFPs were obtained upon subsequent band-pass
163 filtering (1-100 Hz).

164 **2.2 Data Analysis**

165 *Time-frequency analyses.* Based on the simultaneously recorded multichannel LFP signals from
 166 the S1 and ACC, we applied the principal component analysis (PCA) and extracted the dominant
 167 principal component (PC) for the S1 and ACC, respectively. We then computed the spectrogram of
 168 the PC for each region. Multitapered spectral analyses for LFP spectrogram were performed using
 169 the Chronux toolbox (chronux.org). Specifically, we chose a half-bandwidth parameter W such that
 170 the windowing functions were maximally concentrated within $[-W, W]$. We chose $W > 1/T$ (where
 171 T denotes the duration) such that the Slepian taper functions were well concentrated in frequency
 172 and had bias reducing characteristics. In terms of Chronux function setup, we used the tapers setup
 173 $[TW, N]$, where TW is the time-bandwidth product, and $N = 2 \times TW - 1$ is the number of tapers.
 174 Since the taper functions are mutually orthogonal, they give independent spectral estimates. In all
 175 time-frequency analyses, we used a moving window length of 500 ms and a step size of 1 ms. We
 176 used $TW = 5$. From the spectrogram, we computed the Z-scored spectrogram, where the baseline
 177 was defined as the 5-s period before the stimulus presentation.

178 *Pain-responsive neurons.* To identify pain-responsive neurons, we used a previously established
 179 criterion (Dale et al., 2018). Specifically, we computed the Z-scored firing rate related to the baseline
 180 (3-5 s before the stimulus onset). A neuron was called a positive pain-responding neuron if the
 181 following two criteria were satisfied: (i) the absolute value of the Z-scored firing rate of least one
 182 time bin (i.e., 50 ms) after stimulation must be greater than 2.5, and (ii) if the first criterion is met,
 183 at least the next two bins (i.e., 100 ms) must be greater than 1.65. These criteria must be fulfilled
 184 within 3 s after the stimulus onset.

185 *Z-scored LFP power analysis.* From the recorded multichannel LFPs of the S1 and ACC, we
 186 computed the Z-scored spectrogram for pain episodes (time 0 represents the laser onset in evoked
 187 pain, and the withdrawal onset in non-evoked nociception). During evoked pain, we usually observed
 188 event-related potentials (ERPs) in both S1 and ACC areas. Our prior report has indicated that the
 189 ERP latency was sooner (\sim 200-300 ms) in the S1 than in the ACC during evoked pain episodes
 190 (Xiao et al., 2019). In contrast, during non-evoked nociception episodes, ERPs occurred in either
 191 the S1, or ACC, or both areas, with a high degree of variability in latency.

192 For non-evoked nociception episodes, we investigated whether the LFP power in the ACC and
 193 S1 at the beta and/or gamma bands change in a temporally coordinated manner. We computed
 194 the 10-s LFP spectrograms centered around the non-evoked nociception behavior onsets (pre-event:
 195 $[-5, 0]$ s, post-event: $[0, 5]$ s). To highlight the event-related synchronization/desynchronization

196 (ERS/ERD) phenomenon, we computed the Z-scored pre-gamma power related to the post-event
 197 period, and computed the Z-scored post-beta power related to the pre-event period.

198 Unless stated otherwise, all statistical tests were nonparametric tests without the normality
 199 assumption.

200 **2.3 A Framework of Predictive Coding for Pain**

201 *Background.* Predictive coding is aimed at minimizing the PE and further using it to update the
 202 prediction. The schematic diagram of predictive coding is shown in Fig. 1. To explain the predictive
 203 coding idea, we first introduce some basic notations. Specifically, let the latent variable z denote
 204 the subjective pain percept, let x denote the stimulus input. We also assume that u and v are two
 205 response variables, which represent the proxy for the observed gamma activity from the S1 and the
 206 beta activity from the ACC, respectively.

207 In brief, predictive coding is used to dynamically update posterior expectations of pain (z)
 208 based upon PE. The underlying PEs and posterior expectations are then used to generate observable
 209 induced neural responses (u and v). To account for axonal conduction delays, we used stochastic
 210 delay differential equations for the predictive coding scheme.

211 *Mathematical equations.* First, we define the PE as the difference between the bottom-up finite-
 212 duration sensory input x and top-down pain-induced expectation z (Fig. 1A):

$$\xi(t) = x(t) - z(t) \quad (1)$$

213 Predictive coding uses the signed PE to update the expectation after a certain time delay. Specif-
 214 ically, we assume that the dynamics of pain percept z follow a stochastic differential equation as
 215 follows

$$\begin{aligned} \tau_z(t) \frac{dz(t)}{dt} &= -z(t) + \Pi_0 \xi(t - \Delta_x) + \epsilon_z \\ &= -z(t) - \Pi_0 z(t - \Delta_x) + \Pi_0 x(t - \Delta_x) + \epsilon_z \end{aligned} \quad (2)$$

$$z(t) = 0 \text{ if } \int_{t'}^t z(\tau) d\tau > Z_{\text{threshold}} \quad (3)$$

$$\tau_z(t) = \frac{a}{1 + b \exp(x(t))} \quad (4)$$

216 where Δ_x denotes a time delay parameter starting from the stimulus onset (Table 1), and ϵ_z denotes
 217 the additive Gaussian noise. *Equation 2* is a linear delay-differential equation that characterizes the
 218 expectation update dynamics based on the PE. In *Eq. 3*, $z(t)$ is reset to 0 after an accumulative

219 preset threshold $Z_{\text{threshold}}$ within a moving window is reached to trigger an escape-type pain behavior
 220 (e.g, paw withdrawal). *Equation 4* imposes an inverse sigmoid-shaped relationship between the input
 221 amplitude $x(t)$ and time constant τ_z . The initial pain percept $z(0)$ is either zero (no-anticipation),
 222 negative value (placebo), or positive value (placebo or pain anticipation).

223 Notably, *Equations 1* and *2* are reminiscent of modified Kalman filtering operations, where
 224 the precision parameter Π_0 can be viewed as the Kalman gain in the Kalman filtering formulation
 225 of predictive coding (Fig. 1*B*). The gain Π_0 encodes the confidence placed in PEs (Fig. 2*C*) and
 226 therefore controls the rate of evidence accumulation or effective step size of the update dynamics of
 227 expectation (*Eq. 2*).

228 For the observed neural response variables, in the bottom-up pathway, we assume that dynamics
 229 of response variable u are driven by the absolute PE as follows

$$\tau_u \frac{du(t)}{dt} = -u(t) + \Pi_1 |\xi(t)| + \epsilon_u \quad (5)$$

230 where $\tau_u > 0$ denotes the time constant; ϵ_u denotes the additive Gaussian noise. The gain Π_1 denotes
 231 the precision (inverse of variance) parameter, which weights the *absolute* PE in *Eq. 5*. We refer to the
 232 weighted term $\Pi_1 \times |\xi(t)|$ as the “surprise” signal. To see this link, we can assume that there is an
 233 expectation uncertainty of $z(t)$, or equivalently, the PE. Provided that $x(t)$ is deterministic, then the
 234 variance of PE is computed as $\text{Var}[\xi(t)] = \text{Var}[z(t)] = 1/\Pi_1$. If the uncertainty of the expectation is
 235 large, the step size will be small (or the update will be conservative); if the uncertainty is low, the
 236 update will be more aggressive. In the steady state (i.e., $\frac{du(t)}{dt} = 0$), we have $u(t) = \Pi_1 |\xi(t)|$. Here,
 237 the S1 activity encodes the absolute PE or surprise signal, which has been supported by some prior
 238 experimental findings (Gross et al., 2007; Arnal & Giraud, 2012; Yu et al., 2019).

239 The S1 is known to project directly to the ACC (Sesack et al., 1989; Sesack & Pickel, 1992).
 240 For the S1→ACC pathway, in the simplest form, we assume that the dynamics of response variable
 241 v are driven by the signal consisting of a conduction-delayed $u(t - \Delta_u)$ (where $\Delta_u > 0$) and the pain
 242 expectation, as follows

$$\tau_v \frac{dv(t)}{dt} = -v(t) + \Pi_2 u(t - \Delta_u) + \Pi_3 z(t) + \epsilon_v \quad (6)$$

243 where $\tau_v > 0$ denotes the time constant, and ϵ_v denotes the additive Gaussian noise. Similarly,
 244 $\frac{\Pi_3}{\Pi_2}$ defines the relative gain between the two inputs $z(t)$ and $u(t - \Delta_u)$. The coupling dependency
 245 between u, v and z is shown in Fig. 1*D*.

246 For convenience, we refer to the model described by *Eqs. 1-6* as the *predictive coding model*.

247 The response variables u and v can be interpreted as the Z-scored LFP gamma and beta power,
 248 respectively, which reflect the relative change in the S1 and ACC activity. The choice of conduction
 249 time delay Δ_u reflected the event-related potential (ERP) latency between the S1 and ACC; their
 250 time constants τ_u and τ_v were also chosen accordingly. Based on different assumptions of x and z ,
 251 we ran computer simulations to produce the dynamics of u and v from *Eqs. 1–6*.

252 *Computing time-averaged power.* From the simulated traces of $u(t)$ and $v(t)$, we computed
 253 the averaged power before and after the pain response (e.g., withdrawal). Specifically, let $A_u =$
 254 $\frac{1}{t_r} \int_0^{t_r} u(t)dt$ denote the averaged area from the start of computer simulation to the reset (withdrawal)
 255 time t_r , and let $A_v = \frac{1}{T-t_r} \int_{t_r}^T v(t)dt$ denote the averaged area lasting the same duration it took
 256 to reach the $Z_{\text{threshold}}$ from the reset (withdrawal) time. Therefore, A_u and A_v could be viewed
 257 as the averaged pre- and post-withdrawal Z-scored power, respectively. Notably, in the “net” area
 258 integration, the curve above 0 contributes to a positive area value, and the curve below 0 contributes
 259 to a negative area value.

260 *Fourier analysis and spectral asymmetry.* Taking the Fourier transform of *Eq. 6* and rearranging
 261 the terms, we obtained the mapping of two response variables u and v in the frequency domain:

$$V(\omega) = H_1(\omega)U(\omega) + H_2(\omega)Z(\omega) + H_3(\omega)W_v(\omega) \quad (7)$$

262 where $H_3(\omega)$ (or $H_2(\omega)$) is a transfer function between $V(\omega)$ and $W_v(\omega)$ —spectrum for white noise
 263 (or $Z(\omega)$, unobserved); and $H_1(\omega)$ is a transfer function between $V(\omega)$ and $U(\omega)$:

$$H_1(\omega) = \frac{\Pi_2}{(j\omega\tau_v + 1)e^{j\omega\Delta_u}} \approx \frac{2\Pi_2}{(j\omega\tau_v + 1)[(j\omega\Delta_u + 1)^2 + 1]}$$

264 where $j = \sqrt{-1}$, and the approximation is derived from the 2nd-order Taylor series expansion for a
 265 small value of s ($\Delta_u = 0.1$ s was used in our computer simulations): $e^s \approx 1 + s + \frac{1}{2}s^2 = \frac{1}{2}[(s+1)^2 + 1]$.
 266 The first term of the denominator in $H_1(\omega)$ is a 1st-order low-pass filter, and the second term is a
 267 2nd-order low-pass filter. Together, $H_1(\omega)$ operates as a low-pass filter (Fig. 1E) that attenuates the
 268 high-frequency (e.g., gamma-band) activity $U(\omega)$, resulting in a lower-frequency (e.g., beta-band)
 269 activity $V(\omega)$ in the top-down pathway (Fig. 1F). This spectral asymmetry also explains the reason
 270 why the Z-scored power is shifted from the S1 gamma-band to the ACC beta-band.

271 **2.4 Mean Field Models**

272 To better describe the population neuronal dynamics, we further develop a mechanistic model,
 273 with explicit excitatory and inhibitory neuronal populations and synapses, to the predictive coding
 274 framework described above. To achieve a trade-off between biological complexity and modeling
 275 complexity, we opt for a mean field model (Pinotsis et al., 2014; Wilson & Cowan, 1972).

276 *Background.* The main assumption of mean field models is that tracking the average activity,
 277 such as the mean firing rate and mean synaptic activity, is sufficient when modeling populations of
 278 neurons. Given the extensive number of neurons and synapses in even a small area of cortex, this
 279 is a reasonable assumption. One of the first mean field models of neural activity is attributed to
 280 Wilson and Cowan (Wilson & Cowan, 1972). This two-dimensional model tracks the mean firing
 281 rate of an excitatory population of neurons coupled to an inhibitory population of neurons, and has
 282 been successfully used to describe visual hallucinations (Ermentrout & Cowan, 1979; Bressloff et
 283 al., 2001), binocular rivalry (Wilson et al., 2001), epilepsy (Shusterman & Troy, 2008); Meijer et al.,
 284 2015), resting brain state activity (Deco et al., 2011), traveling cortical waves (Wilson et al., 2001;
 285 Roberts et al., 2019), and cortical resonant frequencies (Lea-Carnall et al., 2016).

We propose a modified Wilson-Cowan model, with the addition of a synaptic variable for each of the neuronal population. For a single brain area, this amounts to four differential equations (Keeley et al., 2019):

$$\tau_{r_E} \frac{dr_E}{dt} = -r_E + f(w_{EE}s_E - w_{IE}s_I + P_E), \quad (8)$$

$$\tau_{r_I} \frac{dr_I}{dt} = -r_I + f(w_{EI}s_E - w_{II}s_I + P_I), \quad (9)$$

$$\tau_{s_E} \frac{ds_E}{dt} = -s_E + \gamma_E r_E (1 - s_E), \quad (10)$$

$$\tau_{s_I} \frac{ds_I}{dt} = -s_I + \gamma_I r_I (1 - s_I), \quad (11)$$

286 where $r_{E/I}$ is the population firing rate of the excitatory/inhibitory population, and $s_{E/I}$ is the
 287 synaptic activation of the corresponding population. Each variable has a corresponding time con-
 288 stant τ . The inter- and intra-populations coupling strengths are set by $\{w_{EE}, w_{IE}, w_{EI}, w_{II}\}$; $P_{E/I}$
 289 represents the external input from elsewhere in the cortex; and $\gamma_{E/I}$ is the ratio between activation
 290 and inactivation times of the synapse. Similar to the standard Wilson-Cowan model, f is a sigmoid
 291 function:

$$f(x) = \frac{1}{1 + e^{-\sigma(x-h)}}, \quad (12)$$

292 where σ is the slope and h is the threshold.

293 In this study, we are interested in the interaction of the S1 and ACC, and consider a model with
 294 two excitatory-inhibitory (E-I) pairs, as described by *Eqs. 8–11* (Fig. 2*A*). Experimental findings
 295 have provided strong evidence that there is a direct S1→ACC projection, which plays an important
 296 role in pain processing (Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011). In contrast,
 297 less is known about the role of the ACC→S1 pathway in cortical pain processing. For the sake
 298 of simplicity, we first neglected the feedback in our initial model; the impact of feedback will be
 299 investigated and discussed later (DISCUSSION).

300 *Biologically-constrained mean field model.* We have recently combined optogenetics and elec-
 301 trophysiology to dissect the ACC circuit in pain processing (Singh et al., 2020). We have found a
 302 direct S1→ACC projection engaged in cortical pain processing. In naive rats, only a small percent-
 303 age of the ACC population was pain responsive (10–15%). Among those pain responsive neurons,
 304 about 20% of the population received a direct input from the S1 (Fig. 3*E*). Among the ACC neurons
 305 that receive input from the S1, 37% of them were pain responsive. However in CFA rats, those two
 306 percentages increased to 32% and 52%, respectively (Fig. 3*F*).

307 Based on these findings, we made two modifications to the computational model. First, the
 308 S1→ACC pathway is modeled with the inclusion of an additional term in *Eq. 8* for the ACC pop-
 309 ulation; namely, we changed the input P_E^{ACC} to $P_E^{\text{ACC}} + s_E^{\text{S1}}(t - \Delta_{\text{S1}})$, where the excitatory input
 310 from the S1 is delayed by a positive Δ_{S1} .

311 Second, we divided the excitatory ACC neuronal population into two subpopulations E_{2-1} and
 312 E_{2-2} (Fig. 2*B*), one of which directly receives S1 input (E_{2-1}), while the other is indirectly driven by
 313 the former one (E_{2-2}). Therefore, we revised the model described by *Eqs. 8–11* with two excitatory-
 314 inhibitory (E-I) groups.

315 We also scaled the inter- and intra-populations coupling strength by the relative population
 316 sizes. For example, if the S1 population is twice as large as the ACC population, then the coupling
 317 strength of S1→S1 and S1→ACC would be twice as large as those of ACC→S1 and ACC→ACC,
 318 respectively. Here we assumed that there are 20% of ACC excitatory neurons that receive S1 inputs;
 319 κ is the S1/ACC neuronal population size ratio; ρ scales the inhibitory/excitatory strength; L is the
 320 scaling of long-range projection between the two regions. We set w_{EE} and w_{EI} as the basic coupling
 321 strength, and set other coupling strength with a proper scaling constant (Fig. 2*B*).

322 Note that the variables that we used previously to describe sensory input and posterior expec-
 323 tations about pain (i.e., x and z) under predictive coding are now used as exogenous inputs to our
 324 neural mass biophysical model. This allows us to handcraft different levels of nociceptive input, and

325 posterior expectations or perceptual representations of the associated pain. Specifically, we assumed
 326 that the external inputs are applied equally to the excitatory and inhibitory populations of the S1
 327 and ACC as follows

$$P_E^{S1}(t) = P_I^{S1}(t) = g^{S1}|x(t) - z(t)|, \quad (13)$$

$$P_E^{ACC}(t) = P_I^{ACC}(t) = g^{ACC}q_i z(t - \Delta_x). \quad (14)$$

328 where $|x(t) - z(t)|$ denotes the absolute PE, g^{S1} and g^{ACC} denote two gain parameters for respective
 329 neuronal population, and Δ_x denotes the time delay from the input x . Let $S1^+$ (or $S1^-$) denote the
 330 ACC population that receives direct S1 input (or not); let q_i with the subscript index $i = S1^+, S1^-, I$
 331 denote the percentages of pain-responsive neurons in subpopulations E_{2-1} , E_{2-2} and I_2 , respectively.
 332 The gain parameters of this biophysical model play the same role as the precisions in the predictive
 333 coding model.

334 *Computing the power using the envelope function.* We computed the upper and lower envelopes
 335 of the oscillatory firing rate trace. We used the average (midline) of the upper and lower envelopes
 336 to calculate the time-averaged synaptic activation variable s (or alternatively, the firing rate variable
 337 r) as a measure of the firing dynamics in our mean field model.

338 To compute the pre-S1 synaptic activation, we integrated the average power of s_E^{S1} from the
 339 baseline (by discarding the initial transient) to the withdrawal onset, and then normalized it by the
 340 duration. To compute the post-ACC synaptic activation, we integrated the average power of s_E^{ACC}
 341 from the withdrawal onset until a fixed window length, and then normalized it by the duration.

342 Software

343 The custom MATLAB code for implementing two described computational models is distributed on-
 344 line (<https://github.com/yuru-eats-celery/pain-coding-model> and <https://github.com/ymch815/predictive-coding-mean-field-model.git>).

3 RESULTS

346 In the following, we first summarize important experimental findings (section 3.1) that were
 347 extracted from previous published data (Xiao et al., 2019; Singh et al., 2020), which pro-
 348 vide the biological support and motivation for our computational modeling work. Next, we

349 describe our phenomenological model and its simulation results for both evoked pain and
350 non-evoked nociception (section 3.2). We will make data interpretation and prediction re-
351 lated to the experimental results. Finally, we present our computer simulation results based
352 on the mean-field model (section 3.3). In addition to replicating qualitatively similar results
353 as in the phenomenological model, we also adapt the mean-field model for chronic pain and
354 make several experimental predictions. To help the reader understand the materials, we
355 provide a high-level description of these results and connection to experimental findings
356 (Table 1). The rationale and goal of the paper is to motivate the modeling questions based
357 on the empirical experimental findings and make proper interpretations based on the results
358 of model prediction.

359 **3.1 S1 and ACC Activity in Naive and Chronic Pain Rats**

360 From the simultaneously recorded S1 and ACC LFP activity, we found that the averaged
361 pre-event Z-scored gamma power in the S1 positively correlated with the averaged post-event
362 Z-scored beta power in the ACC (Fig. 3C, left panel). This suggests that pre S1 gamma-
363 ERS (or ERD) was temporally followed by post ACC beta-ERD (or ERS). Notably, the
364 correlated ERS/ERD patterns became weaker during evoked pain episodes (Fig. 3C, middle
365 panel) and disappeared in negative control (Fig. 3C, right panel). In the chronic pain state
366 of CFA rats, we also found similar observations (Fig. 3D).

367 In our earlier experimental investigation (Singh et al., 2020), we established a direct
368 S1→ACC projection during cortical pain processing. Among pain-responsive ACC neurons,
369 we identified a subpopulation that received the direct S1 input, from both naive and CFA
370 rats (Fig. 3, E and F, respectively). Compared to naive rats, chronic pain increased the
371 percentage of ACC neurons that received the direct S1 input. Together, these findings
372 provide empirical evidence to characterize chronic pain in our predictive coding model.

373 In another experimental investigation (Urien et al., 2018), we trained rats with a con-
374 ditioning paradigm that consists of three experimental phases. During the pre-conditioning
375 phase, we paired a tone (4 kHz, 80 dB, 0.5 s) with a non-noxious thermal stimulus applied
376 to the rat’s hind paw. During the conditioning phase, we paired the same tone with a
377 noxious thermal stimulus to induce pain avoidance. We found that the rat could avoid

378 the noxious stimulus by simply removing its paw after the tone being played, yet before
 379 the noxious stimulus being delivered. We also found that a subset of rat ACC neurons
 380 responded before the delivery of pain stimulation, and these “pain-anticipating” neurons
 381 increased or decreased their firing rates after the tone, and prior to, or in anticipation of,
 382 the noxious stimulus. These pain-anticipating neurons gradually shifted their responses to
 383 pain and started to respond during the anticipatory period. Later in the post-conditioning
 384 phase, these pain-anticipating ACC neurons returned to their baseline behaviors, as the tone
 385 stimulus was no longer paired with a noxious stimulus. These data also provide indirect
 386 evidence of top-down influence on the ACC neuronal coding.

387 **3.2 Computer Simulations for the Predictive Coding Model**

388 The goal of the predictive coding model is to replicate the main findings of the pain experi-
 389 ments at the macroscopic level. From *Eq. 1-4*, we ran numerical simulations to characterize
 390 the relationship of the surrogate of LFP oscillatory activity between the S1 and ACC. In
 391 the following computer simulations, we used the default parameters listed in Table 2. The
 392 additive Gaussian noise components $\{\epsilon_u, \epsilon_v, \epsilon_z\}$ were all assumed to have zero mean and
 393 unit variance. In each condition, we reported the mean statistics based on 30 independent
 394 Monte Carlo simulations, and ran 400 simulations to compute the correlation statistics.

395 To relate our model notations with experimental data, we viewed the variables u and v
 396 as the Z-scored S1 and ACC population neuronal activity (therefore their initial conditions
 397 were set to zeros). We also viewed A_u and A_v as the averaged pre- and post-withdrawal
 398 Z-scored power from the S1 and ACC, respectively; which corresponded to the S1 LFP
 399 pre-gamma Z-scored power and ACC LFP post-beta Z-score power (Fig. 3, C and D).

400 *Evoked pain.* In the evoked pain condition, we set the initial pain expectation to be zero
 401 (i.e., $z(0) = 0$), and we set $u(0) = 0$ and $v(0) = 0$ for the initial Z-scored activity from
 402 the S1 and ACC. In addition, we assumed the finite-duration constant external input,
 403 and set the pain stimulus $x(t) = 2$ if $t \in [4, 4.5]$ s and $x(t) = 0$ otherwise. The first
 404 4-s period prior to the stimulus was treated as the baseline. Given the initial condition,
 405 we ran numerical simulations using the forward Euler method with time step 1 ms. An

406 illustration of representative traces is shown in Fig. 4A. As seen in the figure, the z -trace
 407 closely followed the x -trace; the u -trace reached an initial peak and gradually decays; and
 408 the v -trace decayed slower than the other traces.

409 Once z -trace was reset upon reaching a threshold, we assumed that moment as the
 410 withdrawal onset. We computed the net area under u -trace between the start of stimulation
 411 to withdrawal (i.e., A_u), as well as the area under v -trace between the withdrawal withdrawal
 412 and the end of stimulation (i.e., A_v) (Fig. 4B).

413 The withdrawal latency following the stimulus onset is a standard measure to quantify
 414 the acute pain behavior (Deuis et al., 2017). In our simulations, we used the duration
 415 between the onset of input $x(t)$ and the time of $z(t)$ reset as the proxy of withdrawal
 416 latency. We found that the latency decreases with increased stimulus intensity or input
 417 amplitude (Fig. 4C), which is consistent with prior experimental observations (Dirig et al.,
 418 1997).

419 *Non-evoked nociception.* In the non-evoked nociception condition, we set $u(0) = 0, v(0) =$
 420 $0, z(0) = 0.3, x(t) = 0$ (i.e., no stimulus), and $Z_{\text{threshold}} = 200$. An illustration of represen-
 421 tative traces is shown in Fig. 4D. In this example, the z -trace decays exponentially until it
 422 reached the reset threshold; the u and v -traces first rose and then decayed exponentially,
 423 and it took a longer time for the v -trace to approach the baseline.

424 To introduce trial variability, we assigned $z(0)$ with random values. By varying the
 425 initial condition $z(0)$, we obtained various mean statistics for A_u and A_v during non-evoked
 426 nociception. A strong positive correlation between A_u and A_v (Fig. 4E) was found. In
 427 contrast, the correlation between A_u and A_v was weaker in the simulated evoked pain
 428 condition (Fig. 4B). These results are consistent with our experimental findings (Fig. 1B).

429 Notably, although these simulations were done in the idealized conditions, and the exact
 430 outcome may vary depending on the exact stimulation parameter setup, our computational
 431 modeling provides a principled way to investigate the impact of parameters on the read-out
 432 phenomenon. We will present such examples below.

433 *Sensitivity analysis of gain parameters and transmission delay.* Thus far, we have kept
 434 all gain (or precision) parameters in unity. Next, we investigated how the change of gain
 435 parameter affects the dynamics. Since $\text{Var}[z(0)] = 1/\Pi_1$, we further assumed that $\Pi_3 = \Pi_1$
 436 in *Eq. 6*. To investigate the impact of gain parameters, we considered two scenarios. In
 437 the first scenario, we set $\Pi_2 = 1$ and systematically varied Π_1 and Π_3 together. In the
 438 second scenario, we set $\Pi_1 = \Pi_3 = 1$ and systematically varied Π_2 . In both scenarios, the
 439 ratio Π_3/Π_2 would deviate from unity. The results from these two scenarios are shown in
 440 *Fig. 5*. The qualitative phenomenon that describes the correlation between A_u and A_v was
 441 relatively robust with a wide range of gain parameters. In the evoked pain condition, the
 442 correlation value remained low. In the non-evoked nociception condition, the correlation
 443 value showed an increasing trend with increasing Π_1 and Π_3 , and showed a decreasing trend
 444 with increasing Π_2 .

445 During task behaviors, the cortico-cortical conduction delay may vary. For cortical
 446 communications over long-range connections or information relay between multiple brain
 447 areas, the transmission delay may be even longer. To examine the impact of cortico-cortical
 448 transmission delay, we further varied Δ_u and investigated the correlation statistic (Supple-
 449 mentary *Fig. 1*). We found that the correlation between A_u and A_v was stable for a wide
 450 range of delay parameters.

451 In summary, these simulation results from the predictive coding model replicate several
 452 key findings from two experimental pain conditions. However, this phenomenological model
 453 is rather abstract, therefore the interpretation of the model parameter or results remains
 454 limited. Next, motivated by the neural mass model in the literature (Friston et al., 2012;
 455 Bastos et al., 2015), we extended the same line of investigations using the mean field model.

456 3.3 Computer Simulations for the Mean Field Model

457 In the following computer simulations, we used the default parameters listed in *Table 3*. We
 458 used the forward Euler method to numerically simulate the population dynamics for a total
 459 5.5 seconds (time step 0.1 ms). The pulse input x had a 200-ms duration. A 2-s simulation
 460 interval was treated as the baseline period. The initial values of all $r_{E/I}$ and $s_{E/I}$ were
 461 set to zero. We computed the midline envelopes of the synaptic activation variable s and

462 firing rate variable r of excitatory populations from the S1 and ACC. Since the synaptic
 463 activation variable s was highly correlated with the firing rate variable r (Supplementary
 464 Fig. 2), we have used s to represent the firing dynamics of the S1 and ACC populations.
 465 Notably, the mean field model employs different time constants and delay parameters, as it
 466 captures a different spatiotemporal scale from the previous phenomenological model.

467 To simulate the withdrawal behavior, the reset time of latent variable z was determined
 468 when the integration of z within a 300-ms moving window reached a predetermined thresh-
 469 old. When z was reset to 0, x was also simultaneously set to 0, indicating that the animal
 470 has escaped from the noxious stimulus. We ran numerical simulations of the mean field
 471 model for three pain perception conditions. With different values of x and z , we simulated
 472 the $r_{E/I}$ and $s_{E/I}$ dynamics of neuronal subpopulations.

473 *Evoked pain and non-evoked nociception.* In the evoked pain condition, we set $a = 2000$
 474 (Eq. 4), $Z_{\text{threshold}} = 200$, and $z(0) = 0$. The dynamics of the populations are shown in
 475 Fig. 6A. In our simulation, all populations have an oscillatory activity with stable frequency,
 476 where the S1 population oscillates in the gamma-band frequency and the ACC population
 477 in the beta-band frequency. These oscillatory activities were the emergent property of the
 478 local E/I networks as there was no externally imposed stimulus input fed to the network.
 479 For each population, we took the upper and lower envelope of oscillation and computed their
 480 averaged power as a representation of the mean synaptic activation. As seen in Fig. 6B,
 481 S1 firing increased quickly after the stimulus onset, as a result of large PE; the activities of
 482 two ACC subpopulations increased afterwards, as the latent variable z gradually increased.
 483 Right after withdrawal, S1 population firing decreased immediately, while ACC population
 484 firing decayed slower. Throughout the trial, the ACC subpopulation that received S1 inputs
 485 had a greater firing intensity than the ACC subpopulation that did not.

486 We computed time-averaged pre-S1 synaptic activation and post-ACC synaptic activa-
 487 tion (METHODS). By varying the stimulus amplitude, we ran 100 Monte Carlo simulations
 488 and found that the result was consistent with the previous predictive coding model, showing
 489 a relatively weak correlation (Fig. 6C).

490 In the non-evoked nociception condition, we set $Z_{\text{threshold}} = 240$ and kept the remaining

491 parameters unchanged. As shown in Supplementary Fig. 3, the firing rates of both S1 and
 492 ACC populations increased with a similar pace when the initial top-down expectation $z(0)$
 493 was set to a positive value. We computed the pre-S1 and post-ACC activity by varying
 494 $z(0)$, and found a strong positive correlation between them (Fig. 6D), which was again
 495 consistent with both experimental findings and the result of previous predictive coding
 496 model (Fig. 4E).

497 *Prediction 1: Placebo condition.* Pain perception changes with different contexts. An
 498 identical noxious stimulus may cause distinct pain percepts or behaviors depending on the
 499 top-down influence. Placebo effects can create real or illusory pain analgesia, which can be
 500 pharmacological, psychological, or physical (Wagner & Atlas, 2015). To our best knowl-
 501 edge, there is yet no electrophysiological data available related to the placebo (or nocebo)
 502 experiment. Therefore, predictive coding models may be useful to make experimental pre-
 503 dictions.

504 To simulate the placebo effect, we set a negative $z(0)$ to represent a biased subjective
 505 pain perception. We also set $a = 2000$ and $Z_{\text{threshold}} = 200$. The pulse input has a 200-ms
 506 duration. As presented in Supplementary Fig. 4, the existence of a negative z produced a
 507 large PE, driving the S1 population to increase the firing rate, while suppressing the firing
 508 of ACC population. After the onset of stimulus, the S1 firing rate increased quickly, while
 509 the ACC firing rate increase was slower. By varying $z(0)$, we found a positive correlation
 510 between the pre-S1 and post-ACC power (Supplementary Fig. 5).

511 Within the predictive coding framework, placebo-induced treatment expectations can
 512 be conceptualized as feedback-mediated predictions, which modulate pain by changing the
 513 balance of feedback and feedforward processes at different levels of a neural processing
 514 hierarchy (Buchel et al., 2014).

515 *Chronic pain.* To simulate the chronic pain state, we considered three experimental phe-
 516 nomena observed in chronic pain: (i) the increasing percentage of ACC neurons that receive
 517 the S1 input, (ii) the increasing percentage of pain-responsive neurons in each ACC subpop-
 518 ulation, and (iii) the activation of the S1→ACC pathway (Singh et al., 2020). We focused

519 on the targeted ACC neuron population. Specifically, we increased the percentage of ACC
520 neurons that receive direct S1 input from 20% to 30%, increased the scaling parameter q_{S1+}
521 from 35% to 60%, q_{S1-} from 14% to 20%, and q_I from 10% to 25%, and increased L from
522 0.1 to 0.2. Other model parameters were kept unchanged (see Fig. 7A).

523 In the evoked pain condition, we first computed the traces of synaptic variable s in
524 single-trial simulations. As expected, with a relatively low stimulus ($x = 4.0$), the ACC
525 population had a significantly higher firing intensity in the chronic pain condition than
526 in the naive case (Fig. 7B). When the stimulus was sufficiently high ($x = 5.0$), the ACC
527 population had a similar firing intensity in both chronic and naive situations (Fig. 7C).

528 Next, by varying the stimulus amplitude from 1.9 to 6.0, we ran 100 trials and com-
529 puted the averaged synaptic variable s of the ACC population from the stimulus onset
530 to withdrawal, which reflects the overall firing intensity of ACC neurons in response to
531 the stimulus. As shown in Fig. 7D, the difference in firing intensity between naive and
532 chronic pain conditions increased with increasing stimulus amplitude in the presence of
533 low-intensity stimulus; whereas this difference diminished with increasing stimulus ampli-
534 tude in the presence of high-intensity stimulus. With chronic pain, the ACC firing intensity
535 increased disproportionately depending on the stimulus intensity, which is consistent with
536 our previous experimental findings (Zhang et al., 2017). In addition, we have computed
537 the maximum synaptic activation as well as the latency to the maximum (Supplementary
538 Fig. 6).

539 We then considered the activities of ACC subpopulations E_{2-1} and E_{2-2} separately. As
540 shown in Fig. 7E, with a low-intensity stimulus, the response of the ACC subpopulation
541 with the S1 input was similar to the response of total population, showing a significant
542 increase in the firing rate from naive to chronic pain. However, the ACC subpopulation
543 without receiving the S1 input did not change their firing rate significantly (Fig. 7F). This
544 suggested that the disproportional increase in ACC firing intensity from naive to chronic
545 pain was contributed mainly by neurons that received the S1 input. With a high-intensity
546 stimulus, the difference in the firing rate between naive and chronic pain conditions was small
547 for the ACC subpopulation with the S1 input, but the difference was still not significant
548 for the ACC subpopulation without the S1 input (Fig. 7G).

549 Experimentally, the ACC baseline firing rate was higher in chronic pain than the naive
 550 condition (Singh et al., 2020). Our model prediction also supported this result (Fig. 7*H*),
 551 where the time-average of ACC baseline activity was computed over the period [0.5, 1.5] s.

552 In the absence of stimulus, we found that chronic pain induced more sustainable high
 553 firing intensity in the ACC. We computed the fraction of time when s was greater than a
 554 certain threshold within the period T_s (from z onset to withdrawal), and found a sigmoid-
 555 like shape with increasing $z(0)$ (Fig. 8*C*). From naive to chronic pain, the sigmoid curve
 556 shifted toward the left, which indicated that the fraction of time saturated at a lower z level
 557 in the chronic pain condition. As shown in Fig. 8*A*, when z was low, chronic pain induced a
 558 higher and sustainable firing response compared with the naive condition. In contrast, when
 559 z was high, both curves were saturated so that the time above threshold was nearly the
 560 same in both conditions (Fig. 8*B*). This implies that if spontaneous pain (i.e., non-evoked
 561 nociception) was primarily induced by a top-down input, then the nociceptive response of
 562 ACC neurons would be more sustainable in the chronic pain condition than in the naive
 563 condition.

564 In the placebo and nocebo conditions, we predicted a monotonically increasing trend
 565 in ACC firing with respect to increasing z in both naive and chronic pain states (Fig. 8*D*),
 566 where negative $z(0)$ corresponded to the placebo effect and positive $z(0)$ to the nocebo effect.
 567 This is consistent with the definitions of placebo effect as reduced nociceptive responses and
 568 the nocebo effect as increased responses. In our simulations, we also found that the curve
 569 shifted upward from the naive to chronic pain condition, indicating that the placebo effect
 570 was weaker (i.e., feeling less relieved) and the nocebo effect was stronger (i.e., feeling more
 571 painful) in chronic pain. The mean firing curve of each subpopulation with regard to
 572 $z(0)$ (Fig. 8*E*) suggested that the ACC subpopulation receiving the S1 input contributed
 573 predominantly to this shift.

574 *Precise noxious stimulus prediction decreases the S1 response.* Next, we made predictions
 575 of the S1 response within the predictive coding framework. Specifically, we fixed the stimulus
 576 input x and investigate how the S1 firing intensity would change with respect to different
 577 $z(0)$. As shown in Fig. 9*A*, the pre-stimulus S1 firing intensity increased monotonically

578 with $z(0)$ However, the post-stimulus S1 firing intensity was determined by the absolute
 579 PE, or $|x - z(0)|$. As shown in Fig. 9B, the curve of post-stimulus S1 firing intensity had a
 580 V-shape with respect to $z(0)$, and the minimum of V-shape curve shifted rightward when
 581 we increased the stimulus amplitude x .

582 We further examined the effect of prediction on the S1 firing intensity. We set a positive
 583 $z(0)$ and assumed that z remained constant before the stimulus onset, which represented a
 584 prediction of the stimulus x . We tested two scenarios: one with zero PE (i.e., $z(0) = x$),
 585 the other with a PE of x (i.e., $z(0) = 0$). We measured the firing intensity of pre- and
 586 post-stimulus S1 excitatory population, respectively. As illustrated in Fig. 9C, when PE
 587 was x , the pre-stimulus S1 firing was significantly lower than the post-stimulus S1 firing;
 588 however, the trend was reversed when there was a precise prediction (i.e. PE=0).

589 It is noteworthy that our model prediction is in line with several experimental findings
 590 in the literature. First, human S1 gamma oscillations can predict subjective pain intensity
 591 (but not objective stimulus intensity) (Gross et al., 2007; Zhang et al., 2012). Second, the
 592 precise prediction of pain stimulus intensity decreases the S1 gamma-band activity (Arnal
 593 & Giraud, 2012). Third, the prediction level is positively correlated with the “rating” of
 594 pain stimulus (Peng et al., 2015).

595 *Pain anticipation shifts the onset of the ACC response.* Pain anticipation shifts the onset
 596 of the ACC response. Furthermore, we made predictions of the ACC response in the
 597 presence of pain anticipation within the predictive coding framework. Based on our prior
 598 experimental findings (Urien et al., 2018), we conducted a computer simulation of tone-
 599 conditioning pain anticipation (or prediction) experiment. Specifically, the latency of peak
 600 firing rate (Fig. 10A) of ACC neuronal populations changed significantly in the presence
 601 of anticipation or prediction. In the absence of prediction, we observed a positive peak
 602 latency, which implies that it took time for the ACC firing rate to accumulate upon the
 603 nociceptive stimulus. However, when we set the latent variable z to a value that is equal
 604 to the stimulus amplitude, the peak ACC firing rate appeared earlier or before the arrival
 605 of the actual stimulus—thereby leading to a negative peak latency. This is consistent with
 606 what we observed in the rat experiments. Furthermore, we tested the mean and peak firing

607 activity during the 50-ms tone period right after we set z to the stimulus amplitude (Fig. 10*B*
 608 and Fig. 10*C*). In the case of pain anticipation, both the mean and peak firing rates during
 609 the tone-conditioning period increased significantly compared to those in the absence of
 610 anticipation. This result indicated that the existence of anticipation was correlated with
 611 the activation of ACC neurons during the tone period. Therefore, our computer simulations
 612 can replicate the experimental findings of ACC neurons.

613 *Prediction 2: Influence of ACC→S1 feedback.* Thus far, we have only assumed the direct
 614 S1→ACC projection in the circuit model based on the available experimental literature
 615 (Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011; Singh et al., 2020). We further
 616 asked whether the presence of ACC→S1 feedback changes the model prediction. To explore
 617 that answer, we tried incorporating the ACC→S1 feedback into the mean field model, and
 618 found qualitatively similar observations in the average S1 synaptic activation variable as
 619 the default setup without feedback (Supplementary Fig. 7). This result suggest that if there
 620 is an indirect pathway that the ACC activity affect the S1 response, the simulation results
 621 of our biophysical model remain approximately valid.

4 DISCUSSION

622 In this work, we have used computational (predictive coding) models and neural mass (bio-
 623 physical) models to reproduce the same empirical findings (i.e., dissociations in terms of
 624 gamma and beta-band neural responses). We accomplished this by choosing model parame-
 625 ters that reproduced the basic findings in terms of pre-and post-pain induced LFP responses
 626 observed empirically in rodent experiments. By incorporating biophysical constraints, the
 627 neural mass model could well explain the findings in chronic pain.

628 4.1 Neural Pathways for Pain Perception

629 Limited by rodent neurophysiological recordings, we have only focused our attention on
 630 the S1 and ACC circuits in the context of predictive coding. In reality, however, many
 631 other cortical or subcortical circuits are also engaged in pain processing. In the ascend-

632 ing (“bottom-up”) pathway, the nociception originates in the peripheral system, and then
633 passes the signals to the dorsal horn of the spinal cord, then further to the thalamus, and the
634 cortex. The descending (“top-down”) system, involving the midbrain, RVM (rostral ven-
635 tromedial medulla), PAG (periaqueductal gray) and other areas, can exert both inhibitory
636 and modulatory influence. There may be multiple routes of descending control. It may
637 originate in the cortex, including the ACC, and project to the PAG. The PAG in turn sends
638 projections to RVM and then to the spinal cord (Buchel et al., 2014).

639 The S1 receives the bottom-up sensory input, involving the regulation of cortical ex-
640 citability. However, the prestimulus S1 gamma oscillations can predict subjective pain
641 intensity (Gross et al., 2007), whereas the precise prediction of pain stimulus intensity
642 decreases the gamma-band activity (Arnal & Giraud, 2012). Together, these results also
643 suggest that the S1 activity can represent the relative mismatch of expectations and sensory
644 evidence (Bauer et al., 2014).

645 Several lines of experimental evidence have pointed to a direct S1→ACC projection in
646 cortical pain processing (Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011). We
647 have recently used experimental techniques to establish a direct S1→ACC projection in
648 rats during the course of cortical pain processing. Activation of S1 axon terminals in the
649 ACC can recruit new ACC neurons to respond to noxious stimuli, as well as increase the
650 spiking rates of individual pain-responsive neurons; in the chronic pain state, the S1→ACC
651 connectivity is enhanced, as manifested by a higher percentage of ACC neurons that respond
652 to S1 inputs (Singh et al., 2020). To date, however, it remains unknown whether there is an
653 indirect ACC→S1 pathway through the cortico-cortical feedback loop that modulate pain
654 processing. More experimental investigations are still required in the future.

655 The ACC is a major target of midbrain dopamine neurons, which encode reward-related
656 information (such as the reward prediction error). The ACC is reciprocally connected with
657 the amygdala and the orbitofrontal cortex (OFC), which has a projection to the nucleus
658 accumbens (NAc). Importantly, the ACC is also reciprocally connected with the prefrontal
659 cortex (PFC), a region implicated in executive control, working memory, and rule learning.
660 Therefore, the ACC may serve as a gateway for incorporating reward-related information
661 into sensorimotor mappings subserved by the PFC (Hayden & Platt, 2009). Moreover, the

662 PFC has been confirmed to play a modulatory role of gain control in pain processing (Dale
663 et al., 2018). Activation of the PFC provides effective relief to sensory and affective pain
664 symptoms via descending projections in rodents (Lee et al., 2015; Martinez et al., 2017;
665 Zhang et al., 2015; Hardy, 1985). Nevertheless, a complete circuit dissection of cortical pain
666 processing between sensory cortices, ACC, OFC, and PFC has not been established.

667 **4.2 Experimental Evidence for Predictive Coding in Pain Perception**

668 In the presence of uncertainties, the brain uses a prediction strategy to guide decision
669 making or perceptual inference (Tabor et al., 2017). Within the predictive coding theory,
670 oscillatory beta-band activity has been linked to top-down prediction signals and gamma-
671 band activity to bottom-up PEs (Pelt et al., 2016). Specifically, in a human MEG study,
672 Granger-causal connectivity in the beta-band was found to be strongest for backward top-
673 down connections, whereas the gamma-band was found to be strongest for feed-forward
674 bottom-up connections (Pelt et al., 2016). In our recent Granger causality analysis of rodent
675 S1-ACC LFP data (Guo et al., 2020), we have observed a S1→ACC Granger-causality
676 peak at a higher frequency (~75 Hz), and an ACC→S1 Granger-causality peak at a lower
677 frequency (~55 Hz), supporting this predictive coding theory. This causality analysis result
678 may also be ascribed to the spectral asymmetry in predictive coding (Bastos et al., 2015).

679 Predictive coding may provide the key to understanding important phenomena in pain
680 perception (Wiech, 2016; Ploner et al., 2017; Morrison et al., 2013). Unlike evoked pain,
681 spontaneous pain or non-evoked nociception is detached from an overt stimulus and may
682 be driven by internal processing inside the pain matrix. An important finding from our
683 previous experimental data (Xiao et al., 2019) is the fact that the pre-S1 gamma-ERD/ERS
684 correlates with the post-ACC beta-ERS/ERD during non-evoked nociception, whereas the
685 correlation becomes weaker or diminishes in evoked pain or baseline (Fig. 1C,D). This
686 phenomenon holds in both naive and chronic pain-treated rats, suggesting an information
687 flow between the bottom-up (gamma) and top-down (beta) loops. Therefore, the brain
688 may use differential neuronal responses to represent bottom-up and top-down modulations
689 of pain, and to provide complementary information about pain perception (Tiemann et al.
690 2015).

691 The temporal coordination of beta-ERS/ERD and gamma-ERD/ERS between the ACC
692 and S1 during pain perception corroborates with some previous gamma-ERS and alpha or
693 beta-ERD reports on human EEG findings (Gross et al., 2007; Hu et al., 2013; Schultz et
694 al., 2015). The pain-induced alpha or beta-ERS/ERD is highly dependent on the cortical
695 region, which may be related to sensory gating and functional inhibition, or influenced by
696 top-down attention modulation (Peng et al., 2015). In addition, it has been reported that
697 pre-stimulus human EEG oscillations at the alpha (at bilateral central regions) and gamma
698 (at parietal regions) bands negatively modulated the perception of subsequent nociceptive
699 stimuli (Tu et al., 2016).

700 **4.3 Chronic Pain**

701 In the chronic pain state, sensory hypersensitivity and aversion are commonly observed.
702 Chronic pain can also alter acute pain intensity representations of noxious stimuli in the
703 ACC to induce generalized enhancement of aversion (Zhang et al., 2017). While cortical
704 pain responses differ between naive and chronic pain animals, the exact mechanisms of
705 transitioning from acute to chronic pain is still incompletely understood. Our computa-
706 tional model can provide valuable predictions to confirm the experimental findings. Our
707 recent experimental data have shown an increased number of ACC neurons that receive S1
708 nociceptive inputs, and these neurons that receive S1 inputs also have elevated firing rates
709 (Singh et al., 2020).

710 In chronic pain experiments, CFA mice with inflammatory pain show elevated resting
711 gamma and alpha activity and increased gamma power in response to sub-threshold stimuli,
712 in association with nociceptive hypersensitivity. Inducing gamma oscillations via optoge-
713 netic activation of parvalbumin-expressing inhibitory interneurons in the S1 enhances noci-
714 ceptive sensitivity and induces aversive avoidance behavior (Tan et al., 2019). In addition,
715 the magnitude of placebo analgesia effect appears to be stronger in chronic pain patients
716 experiencing hyperalgesic states (Vase et al., 2014). Our computer simulation results have
717 indirectly supported these findings (Fig. 8 and Fig. 9, respectively).

718 **4.4 Limitations**

719 Our have computational models have succeeded in modeling several key experimental data
 720 findings (Table 1), including the LFP spectral asymmetry in the S1 and ACC, animal
 721 behaviors in evoked pain and pain anticipation, coordinated S1-ACC activity during chronic
 722 pain, the S1 activity during stimulus prediction, the ACC activity during pain anticipation.

723 However, there are also several conceptual limitations in our computational models.
 724 First, we did not explicitly model the cortical layer-specific role in the S1 and ACC. It is
 725 well known that different cortical layers receive distinct sources of feedforward or feedback
 726 input and may carry different computational roles in predictive coding. Specifically, L4 neu-
 727 rons may receive inputs from the thalamic projection; L2/3 pyramidal neurons are critical
 728 for receiving prediction signals from high-level cortical areas, and interlaminar connections
 729 may support the temporal integration of feedforward inputs and feedback signals to pre-
 730 dict future perception (Constantinople & Bruno, 2013; Bastos et al., 2020). Recent fMRI
 731 experiments also suggest the predictive coding in the human S1 in a layer-specific manner
 732 (Yu et al., 2019). Second, our biophysical models were established based on oversimpli-
 733 fied assumptions and have ignored many details in the canonical microcircuit, such as the
 734 cell type specificity, thalamic feedback, and neuromodulatory input. The dynamic causal
 735 model (DCM) can potentially capture more functional and anatomical properties of the
 736 microcircuits for predictive coding (Bastos et al., 2015). However, detailed causal modeling
 737 of cortical connectivity is highly challenging (involving many parameters), which is diffi-
 738 cult to fit based on rodent LFP recordings alone. Finally, thus far we have only developed
 739 mathematical equations to characterize the neural response variables $u(t)$ and $v(t)$; in other
 740 words, our models are purely phenomenological and descriptive. A computational strategy
 741 would be developing practical algorithms to predict the latent $z(t)$ based on the observed
 742 responses $\{u(t), v(t)\}$; this will be the subject of our future research. Overall, a computa-
 743 tional model is only as good as its assumptions. Although our model predictions depend
 744 on the model oversimplification and parameters, the predictive coding modeling framework
 745 is sufficiently flexible and powerful to generate rich neuronal population dynamics.

746 In summary, motivated by empirical experimental findings in rodents, we have devel-

747 oped a predictive coding framework and computational models to characterize the neuronal
748 population activity of the rat S1 and ACC in pain conditions. To our knowledge, our
749 work represents the first effort along this direction. Our first model is phenomenological
750 and characterizes the macroscopic neural activity, whereas the biophysically-constrained
751 mean field model characterizes the mesoscopic neuronal population activity. Importantly,
752 our mean field model imposes biological constrains onto the E/I populations. Our com-
753 putational models have not only presented a good prediction of the rodent data, but also
754 made experimental predictions on the placebo/nocebo effects; the next step is to further
755 validate the predictive coding models in human pain experiments. This effort would re-
756 quire the use of source localization techniques to reconstruct the S1 and ACC activity
757 based on high-density EEG or MEG recordings (Pelt et al., 2016; Hauck et al., 2015;
758 Zhang et al., 2016). In addition, our computational model may provide valuable predictions
759 for other experimental conditions, such as investigation of cortical pain processing during
760 pain perception in the presence of anesthetic or analgesic drugs (Zhou et al., 2018). Fi-
761 nally, the biophysical model can be extended as a dynamic causal model of complex cross
762 spectral responses (Friston et al., 2012). The parameters of such a forward or generative
763 model of observed data may be optimized using variational techniques. This will enable us
764 to quantify both the gain or weight parameters of our model, as well as the uncertainty of
765 these estimates. We will then be able to test hypotheses about the effects under different
766 pain conditions.

ACKNOWLEDGMENTS

767 This work was partially supported by the National Science Foundation (NSF)-CBET grant
 768 1835000 (ZSC, JW), National Institutes of Health (NIH) R01-NS100065 (ZSC, JW), R01-
 769 MH118928 (ZSC), and a fellowship of the NIH Training Program in Computational Neuro-
 770 science (HK) supported by NIH T90/R90 DA043219 and DA043849. Preliminary version of
 771 this work was presented in Proceedings of IEEE EMBC'19, Berlin, July 23-28, 2019 ([Song](#)
 772 [et al., 2019](#)).

DISCLOSURE

773 No conflict of interest, financial or otherwise, are declared by the authors.

CODE AVAILABILITY

774 The custom MATLAB code for implementing two described computational models is dis-
 775 tributed online (<https://github.com/yuru-eats-celery/pain-coding-model> and
 776 <https://github.com/ymch815/predictive-coding-mean-field-model.git>).

AUTHOR CONTRIBUTIONS

777 Conceived and designed the experiments: ZSC, JW. Supervised the project: ZSC. Per-
 778 formed the experiments and collected the data: QZ, ZX, AS. Analyzed the data: YS, MY,
 779 HK, ZX. Contributed the software: YS, MY, AB. Wrote the paper: ZSC.

REFERENCES

780 Aitchison L, Lengyel M. (2017). With or without you: predictive coding and Bayesian inference
 781 in the brain. *Curr. Opin. Neurobiol.* 46: 219–227.

782 Arnal LH, Giraud AL. (2012). Cortical oscillations and sensory predictions. *Trends Cogn. Sci.* 16:
 783 390–398.

784 Baliki MN, Apkarian AV. (2015). Nociception, pain, negative moods, and behavior selection. *Neu-*
 785 *ron* 87: 474-491.

786 Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. (2012). Canonical micro-
787 circuits for predictive coding. *Neuron* 76: 695–711.

788 Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ. (2015). A DCM study of spectral
789 asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the
790 monkey. *Neuroimage* 108: 460–475.

791 Bastos AM, Lundqvist M, Waite A, Kopell N, Miller EK. (2020). Layer and rhythm specificity for
792 predictive routing. *biorxiv.org*, <https://doi.org/10.1101/2020.01.27.921783>.

793 Bauer M, Stenner MP, Friston KJ, Dolan RJ. (2014). Attentional modulation of alpha/beta and
794 gamma oscillations reflect functionally distinct processes. *J. Neurosci* 34: 16117–16125.

795 Bennett GJ. (2012). What is spontaneous pain and who has it? *J. Pain* 13:921–929.

796 Bressler SL, Richter CG. (2015). Interareal oscillatory synchronization in top-down neocortical
797 processing. *Curr. Opin. Neurobiol.* 31: 62–66.

798 Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. (2001). Geometric visual hal-
799 lucinations, Euclidean symmetry and the functional architecture of striate cortex. *Philosophical
800 Transactions of the Royal Society of London. Series B, Biological Sciences* 356: 299–330.

801 Buchel C, Geuter S, Sprenger C, Eippert F. (2014). Placebo analgesia: a predictive coding per-
802 spective. *Neuron* 81: 1223–1239.

803 Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. (1999). Pain perception: is
804 there a role for primary somatosensory cortex? *Proc. Natl. Acad. Sci. USA* 96: 7705–7709.

805 Bushnell MC, Ceko M, Low LA. (2013). Cognitive and emotional control of pain and its disruption
806 in chronic pain. *Nat. Rev. Neurosci.* 14: 502–511.

807 Constantinople CM, Bruno RM. (2013). Deep cortical layers are activated directly by thalamus.
808 *Science* 340: 1591–1594.

809 Dale J, Zhou H, Zhang Q, Martinez E, Hu S, Liu K, Urien L, Chen Z, Wang J. (2018). Scaling up
810 cortical control inhibits pain. *Cell Rep.* 23: 1301–1313.

811 Deco G, Jirsa VK, McIntosh AR. (2011). Emerging concepts for the dynamical organization of
812 resting-state activity in the brain. *Nat. Rev. Neurosci.* 12: 43–56.

813 Deuis JR, Dvorakova LS, Vetter I. (2017). Methods used to evaluate pain behaviors in rodents.
814 *Front. Molecular Neurosci.* 10, 284.

815 Dirig DM, Salami A, Rathbun ML, Ozaki GT, Yash TL. (1997). Characterization of variables
816 defining hindpaw withdrawal latency evoked by radiant thermal stimuli. *J. Neurosci. Methods* 76:
817 183–191.

818 Ermentrout GB, Cowan JD. (1979). A mathematical theory of visual hallucination patterns. *Biol.*
819 *Cyber.* 34: 137–150.

820 Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, Nabekura J. (2011). Inter-
821 regional contribution of enhanced activity of the primary somatosensory cortex to the anterior
822 cingulate cortex accelerates chronic pain behavior. *J. Neurosci.* 31: 7631–7636.

823 Friston KJ, Bastos A, Litvak V, Stephan EK, Fries P, Moran RJ. (2012). DCM for complex-valued
824 data: cross-spectra, coherence and phase-delays. *Neuroimage* 59: 439–455.

825 Friston KJ, Kiebel S. (2009). Predictive coding under the free-energy principle. *Philosophical*
826 *Transactions of the Royal Society B: Biological Sciences* 364: 1211–1221.

827 Friston KJ, Bastos AM, Pinotsis D, Litvak V. (2015). LFP and oscillations—what do they tell us?
828 *Curr. Opin. Neurobiol.* 31: 1–6.

829 Geuter S, Boll S, Eippert F, Buchel C. (2017). Functional dissociation of stimulus intensity coding
830 and predictive coding of pain in the insula. *eLife* 6: e24770.

831 Guo X, Zhang Q, Singh A, Wang J, Chen Z. (2020). Granger causality analysis of rat cortical
832 functional connectivity in pain. *J. Neural Eng.* 17: 016050.

833 Gross J, Schnizler A, Timmermann L, Ploner M. (2007). Gamma oscillations in human primary
834 somatosensory cortex reflect pain perception. *PLoS Biol.* 5: e133.

835 Hardy SG. (1985). Analgesia elicited by prefrontal stimulation. *Brain Res.* 339: 281–284.

836 Hauck M, Domnick C, Lorenz J, Gerloff C, Engel AK. (2015). Top-down and bottom-up modulation
837 of pain-induced oscillations. *Front. Hum. Neurosci.* 9: 375.

838 Hayden BY, Platt ML. (2009). Cingulate cortex. In *Encyclopedia of Neuroscience* Elsevier.

839 Hoskin R, Berzuini C, Acosta-Kane D, El-Dereddy W, Guo H, Talmi D. (2019). Sensitivity to pain
840 expectations: A Bayesian model of individual differences. *Cognition* 182: 127–139.

841 Hu L, Peng W, Valntini E, Zhang Z, Hu Y. (2013). Functional features of nociceptive-induced
842 suppression of alpha band electroencephalographic oscillations. *J. Pain* 14: 89–99.

843 Huang Y, Rao RPN. (2011). Predictive coding. *Wiley Interdiscip. Rev. Cogn. Sci.* 2: 580–593.

844 Iannetti GD, Mouraux A. (2010). From the neuromatrix to the pain matrix (and back). *Exp. Brain*
845 *Res.* 205: 1–12.

846 Johansen JP, Fields HL, Manning BH. (2001). The affective component of pain in rodents: direct
847 evidence for a contribution of the anterior cingulate cortex. *Proc. Natl. Acad. Sci. USA* 98: 8077–
848 8082.

849 Keeley S, Byrne A, Fenton A, Rinzel J. (2019). Firing rate models for gamma oscillations. *J.*
850 *Neurophysiol.* 121: 2181–2190.

851 Lea-Carnall CA, Montemurro MA, Trujillo-Barreto NJ, Parkes LM, El-Deredy W. (2016). Cortical
852 resonance frequencies emerge from network size and connectivity. *PLoS Comp. Biol.* 12: 1–19.

853 Lee M, Manders TR, Eberle SE, Su C, D'amour J, Yang R, Lin HY, Deisseroth K, Froemke
854 RC, Wang J. (2015). Activation of corticostriatal circuitry relieves chronic neuropathic pain. *J.*
855 *Neurosci.* 35: 5247–5259.

856 Legrain V, Iannetti GD, Plaghki L, Mouraux A. (2011). The pain matrix reloaded: a salience
857 detection system for the body. *Progress in Neurobiology* 93: 111–124.

858 Martinez E, Lin HH, Zhou H, Dale J, Liu K, Wang J. (2017). Corticostriatal regulation of acute
859 pain. *Front. Cell. Neurosci.* 11:146.

860 May ES, NIckel MM, Dinh ST, Tiemann L, Heitmann H, Voth I, Tolle TR, Gross J, Ploner M.
861 (2019). Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients.
862 *Human Brain Mapp.* 40:293–305.

863 Meijer HGE, Eissa TL, Kiewiet B, Neuman JF, Schevon CA, Emerson RG, Goodman RR, McK-
864 hann GM, Marcuccilli CJ, Tryba AK, Cowan JD, van Gils SA, van Drongelen W. (2015). Modeling
865 focal epileptic activity in the Wilson-Cowan model with depolarization block. *J. Math. Neurosci.*
866 5: 7.

867 Morrison I, Perini I, Dunham J. (2013). Facets and mechanisms of adaptive pain behavior: pre-
868 dictive regulation and action. *Front. Hum. Neurosci.* 7: 755.

869 van Pelt S, Heil L, Kwisthout J, Ondobaka S, van Rooij I, Bekkering H. (2016). Beta and gamma-
870 band activity reflect predictive coding in the processing of causal events. *Soc. Cog. Affect Neurosci.*
871 11: 973–980.

872 Peng W, Babiloni C, Mao Y, Hu Y. (2015). Subjective pain perception mediated by alpha rhythms.
873 *Biol. Psychol.* 109: 141–150.

874 Peng W, Xia X, Yi M, Huang G, Zhang Z, Iannetti G, Hu L. (2018). Brain oscillations reflecting
875 pain-related behavior in freely moving rats. *PAIN* 159: 106–118.

876 Pinotsis D, Robinson P, Graben PB, Friston K. (2014). Neural masses and fields: modeling the
877 dynamics of brain activity. *Front. Comput. Neurosci.* 8: 149.

878 Ploner M, Sorg C, Gross J. (2017). Brain rhythms of pain. *Trends Cog. Sci.* 21: 100–110.

879 Ploner M, May ES. (2018). Electroencephalography and magnetoencephalography in pain
880 research—current state and future perspectives. *PAIN* 159: 206–211.

881 Rao RP, Ballard DH. (1999). Predictive coding in the visual cortex: a functional interpretation of
882 some extra-classical receptive-field effects. *Nat. Neurosci.* 2: 79–87.

883 Roberts JA, Gollo LL, Abeyseuriya RG, Roberts G, Mitchell PB, Woolrich MW, Breakspear M.
884 (2019). Metastable brain waves. *Nat. Commun.* 10: 1–17.

885 Sesack SR, Deutch AY, Roth RH, Bunney BS. (1989). Topographical organization of the efferent
886 projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with
887 Phaseolus vulgaris leucoagglutinin. *J Comp. Neurol.* 290: 213–242.

888 Sesack SR, Pickel VM. (1992). Prefrontal cortical efferents in the rat synapse on unlabeled neuronal
889 targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the
890 ventral tegmental area. *J Comp. Neurol.* 320: 145–160.

891 Schultz E, May ES, Tiemann L, Nickel MM, Witkovsky V, Schmidt P, Gross J, Ploner M. (2015).
892 Prefrontal gamma oscillations encode tonic pain in humans. *Cereb. Cortex* 25: 4407–4414.

893 Sedley W, Gander PE, Kumar S, Kovach CK, Oya H, Kawasaki H, Howard MA, Griffiths TD.
894 (2016). Neural signatures of perceptual inference. *eLife* 5: e11476.

895 Shipp S, Adams RA, Friston KJ. (2013). Reflections on agranular architecture: predictive coding
896 in the motor cortex. *Trends Neurosci.* 36: 706–716.

897 Shusterman V, Troy WC. (2018). From baseline to epileptiform activity: a path to synchronized
898 rhythmicity in large-scale neural networks. *Phys. Rev. E* 77:061911.

899 Singh A, Patel D, Hu L, Li A, Zhang Q, Guo X, Robinson E, Martinez E, Doan L, Rudy B, Chen Z,
900 Wang J. (2020). Mapping cortical integration of sensory and affective pain pathways. *Curr. Biol.*,
901 30: 1703–1715.

902 Song Y, Kemprecos H, Wang J, Chen Z. (2019). A predictive coding model for evoked and spon-
903 taneous pain. *Proc. IEEE EMBC*. DOI: 10.1109/EMBC.2019.8857298.

904 Stern J, Jeanmonod D, Sarnthein J. (2006). Persistent EEG over activation in the cortical pain
905 matrix of neurogenic pain patients. *Neuroimage* 31: 721–731.

906 Tabor A, Thacker MA, Moseley GL, Kording KP. (2017). Pain: A statistical account. *PLoS
907 Comput. Biol.* 13: 1–13.

908 Taesler P, Rose M. (2016). Prestimulus theta oscillations and connectivity modulate pain percep-
909 tion. *J. Neurosci.* 36: 5026–5033.

910 Talsma D. (2015). Predictive coding and multisensory integration: an attentional account of the
911 multisensory mind. *Front. Integrative Neurosci.* 9: 19.

912 Tan LL, Oswald MJ, Heinl C, et al. (2019). Gamma oscillations in somatosensory cortex recruit
913 prefrontal and descending serotonergic pathways in aversion and nociception. *Nat Commun.* 10:
914 983.

915 Tiemann L, May ES, Postorino M, Schulz E, Nickel MM, Bingel U, Ploner M. (2015). Differential
916 neurophysiological correlates of bottom-up and top-down modulations of pain. *PAIN* 156: 289–296.

917 Tu Y, Zhang Z, Tan A, Peng W, Hung YS, Moayedi M, Iannetti GD, Hu L. (2016). Alpha and
918 gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive
919 stimuli. *Hum. Brain Mapp.* 37: 501–514.

920 Uhelski ML, Davis MA, Fuchs PN. (2012). Pain affect in the absence of pain sensation: evidence
921 of asomaesthesia after somatosensory cortex lesions in the rat. *PAIN* 153: 885–892.

922 Urien L, Xiao Z, Bauer EP, Chen Z, Wang J. (2018). Rate and temporal coding mechanisms in the
923 anterior cingulate cortex for pain anticipation. *Sci. Rep.* 8: 8298.

924 Vase L, Petersen GL, Lund K. (2014). Placebo effects in idiopathic and neuropathic pain conditions.
925 In Benedetti F, Enck P, Frisaldi E, Schedlowski M (eds). *Placebo* (pp. 121–136). Springer.

926 Vierck CJ, Whitsel BL, Favorov OV, Brown AW, Tommerdahl M. (2013). Role of primary so-
927 matosensory cortex in the coding of pain. *PAIN* 154: 334–344.

928 Vijayakumar V, Case M, Shirinpour S, He B. (2017). Quantifying and characterizing tonic thermal
929 pain across subjects from EEG data using random forest models. *IEEE Trans. Biomed. Eng.* 64:
930 2988–2966.

931 Wagner TD, Atlas LY. (2015). The neuroscience of placebo effects: connecting context, learning
932 and healthy. *Nat. Rev. Neurosci.* 16: 403–418.

933 Wang J, Cao B, Yu TR, Jelfs B, Yan J, Chan RH, Li Y. (2015). Theta-frequency phase-locking of
934 single anterior cingulate cortex neurons and synchronization with the medial thalamus are modu-
935 lated by visceral noxious stimulation in rats. *Neuroscience* 298: 200–210.

936 Wiech K. (2016). Deconstructing the sensation of pain: the influence of cognitive processes on
937 pain perception. *Science* 354:584–587.

938 Wilson HR, Cowan JD. (1972). Excitatory and inhibitory interactions in localized populations of
939 model neurons. *Biophysics Journal* 12: 1–24.

940 Wilson HR, Blake R, Lee SH. (2001). Dynamics of traveling waves in visual perception. *Nature*
941 412: 907–910.

942 Xiao Z, Martinez E, Kulkarni P, Zhang Q, Rosenberg D, Hou Q, Zhou H, Wang J, Chen Z. (2019).
943 Cortical pain processing in the rat anterior cingulate cortex and primary somatosensory cortex.
944 *Front. Cellular Neurosci.* 13: 165.

945 Yu Y, Huber L, Yang J, et al. (2019). Layer-specific activation of sensory input and predictive
946 feedback in the human primary somatosensory cortex. *Sci. Adv.* 5:eaav9053.

947 Zhang CH, Sohrabpour A, Lu Y, He B. (2016). Spectral and spatial changes of brain rhythmic
948 activity in response to the sustained thermal pain stimulation. *Hum. Brain Mapp.* 37: 2976–2991.

949 Zhang Q, Mander TR, Tong APS, Yang R, Garg A, Martinez E, Zhou H, Dale J, Goyal A, Urien
950 L, Yang G, Chen Z, Wang J. (2017). Chronic pain induces generalized enhancement of aversion.
951 *eLife* 6: e25302.

952 Zhang Q, Xiao Z, Huang C, Hu S, Kulkarni P, Martinez E, Tong APS, Garg A, Zhou H, Chen Z,
953 Wang J. (2018). Local field potential decoding of the onset and intensity of acute thermal pain in
954 rats. *Sci. Rep.* 8: 8299.

955 Zhang Z, Gadotti VM, Chen L, Souza IA, Stemkowski PL, Zamponi GW. (2015). Role of prelimbic
956 GABAergic circuits in sensory and emotional aspects of neuropathic pain. *Cell Rep.* 12: 752–759.

957 Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD. (2012). Gamma-band oscillations in the
958 primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. *J.*
959 *Neurosci.* 32: 7429–7438.

960 Zhou H, Zhang Q, Martinez E, Hu S, Liu K, Dale J, Huang D, Yang G, Chen Z, Wang J. (2018).
961 Ketamine reduces hyperactivity of the anterior cingulate cortex to provide enduring relief of chronic
962 pain. *Nat. Commun.* 9: 3751.

Table 1: Summary of key results of two computational models and the associated experimental support.

Condition	Computer modeling results		Experimental support
	phenomenological model	mean field model	
model description	Eqs. 1-6, Fig. 1D, Table 2	Eqs. 8-14, Fig. 2B, Table 3	n/a
evoked pain	Figs. 4A-C, Fig. 5A	Fig. 6A-C	Fig. 3C,D, rat ACC and S1 LFP data reported in (Xiao et al., 2019)
non-evoked pain	Figs. 4D,E, Fig. 5B	Fig. 6D	Fig. 3B,C,D, rat ACC and S1 LFP data reported in (Xiao et al., 2019)
chronic pain	n/a	Fig. 7B,C,H, Fig. 7A,D-H, Fig. 8A-C	pain aversion in rat ACC neurons (Zhang et al., 2017) Fig. 3E,F, rat S1→ACC projection (Singh et al., 2020)
placebo & placebo	n/a	Fig. 8D,E	none found
stimulus prediction	n/a	Fig. 9A-C	human S1 activity (Gross et al., 2007; Zhang et al., 2012)
pain anticipation	n/a	Fig. 10A Fig. 10B,C	rat's behavior (Urien et al., 2018) rat ACC activity (Urien et al., 2018)

Table 2: *Summary of default parameters used in the predictive coding model*

Parameter	Value
dt	1 ms
Time constant τ_u	300 ms
Time constant τ_v	100 ms
Time delay Δ_u	100 ms
Time delay Δ_x	300 ms
Gain parameter Π_0	1
Gain parameter Π_1	1
Gain parameter Π_2	1
Gain parameter Π_3	1
Threshold $Z_{\text{threshold}}$	200
a in Eq. 4	5000
b in Eq. 4	1

Table 3: *Summary of standard mean field model parameters*

Parameter	Value
Firing rate of E/I population $r_{E/I}$	
Synaptic activation of E/I population $s_{E/I}$	
Time step in Euler's method	0.1 ms
Percentage of ACC population receiving a direct S1 input	20%
Excitatory synaptic weights $\{w_{EE}, w_{EI}\}$	22
Inhibitory synaptic weights $\{w_{II}, w_{IE}\}$	$w_{II} = \rho w_{EE}$ $w_{IE} = \rho w_{EI}$
Scaling parameter ρ for inhibitory/excitatory strength	-1.5
Scaling parameter L for long-range projection	0.1
S1/ACC population size ratio κ	2
Gain parameter g^{S1}	2
Gain parameter g^{ACC}	3
Scaling parameter for % of pain-responsive neurons q_{S1}^+, q_{S1}^-, q_I	35%, 14%, 10%
Slope of sigmoid function $\sigma_E = \sigma_I$	S1: 0.5; ACC: 0.7
Center of sigmoid function $h_E = h_I$	S1: 4; ACC: 3
Synaptic activation time constant for excitatory population $\tau_{s,E}$	3 ms
Synaptic activation time constant for inhibitory population $\tau_{s,I}$	10 ms
S1 firing time constant for excitatory population $\tau_{r,E}$	1 ms
S1 firing time constant for inhibitory population $\tau_{r,I}$	3 ms
ACC firing time constant for excitatory population $\tau_{r,E}$	3 ms
ACC firing time constant for inhibitory population $\tau_{r,I}$	18 ms
Ratio between activation and inactivation times of the synapse $\gamma_{E/I}$	4
Time delay in S1→ACC projection: Δ_{S1}	20 ms
Time delay: Δ_x	75 ms

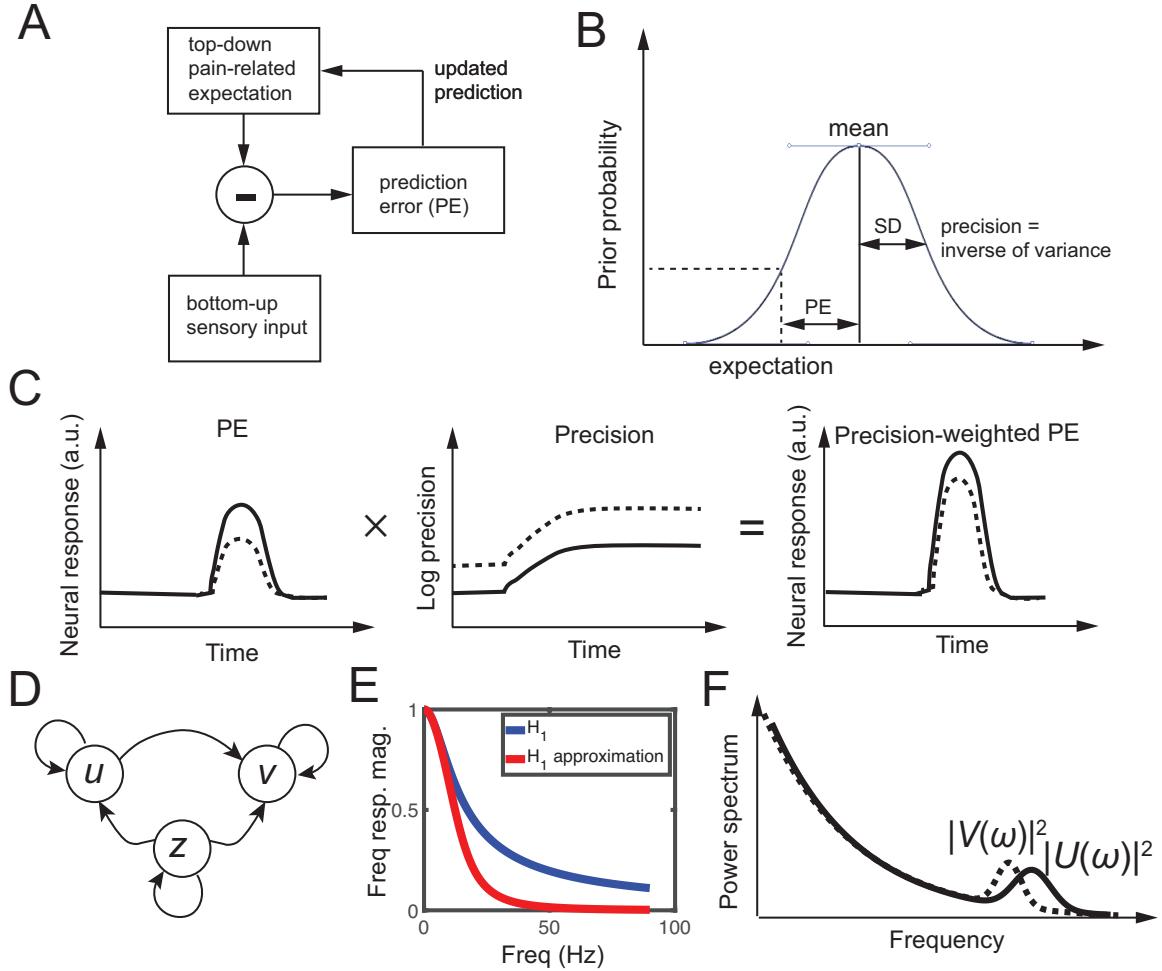


Fig. 1: Predictive coding. (A) Schematic diagram of predictive coding for pain perception. (B) Graphical illustration of prediction error (PE), prior expectation, and prediction in perceptual inference. Due to the uncertainty of the top-down expectation, PE is assumed to be Gaussian distributed. Mean and standard deviation (SD) characterize the uncertainty of a Gaussian random variable. (C) Schematic illustration of neural response (a.u.) representing a gain-weighted PE that changes in time, where the gain is the precision statistic. (D) Graphical model showing statistical dependencies between the observed variables $\{u, v\}$ and the latent variable $\{z\}$ in the predictive coding model. Here, z denotes the pain expectation, and u and v denote the observed neural responses at two brain areas. (E) The magnitude of frequency response $H_1(\omega)$ and its approximation, which can be viewed as a low-pass filter. (F) Schematic illustration of power spectra $|U(\omega)|^2$ (solid line) and $|V(\omega)|^2$ (dashed line), where $U(\omega)$ and $V(\omega)$ are the Fourier transforms of $u(t)$ and $v(t)$ in the predictive coding model, respectively.

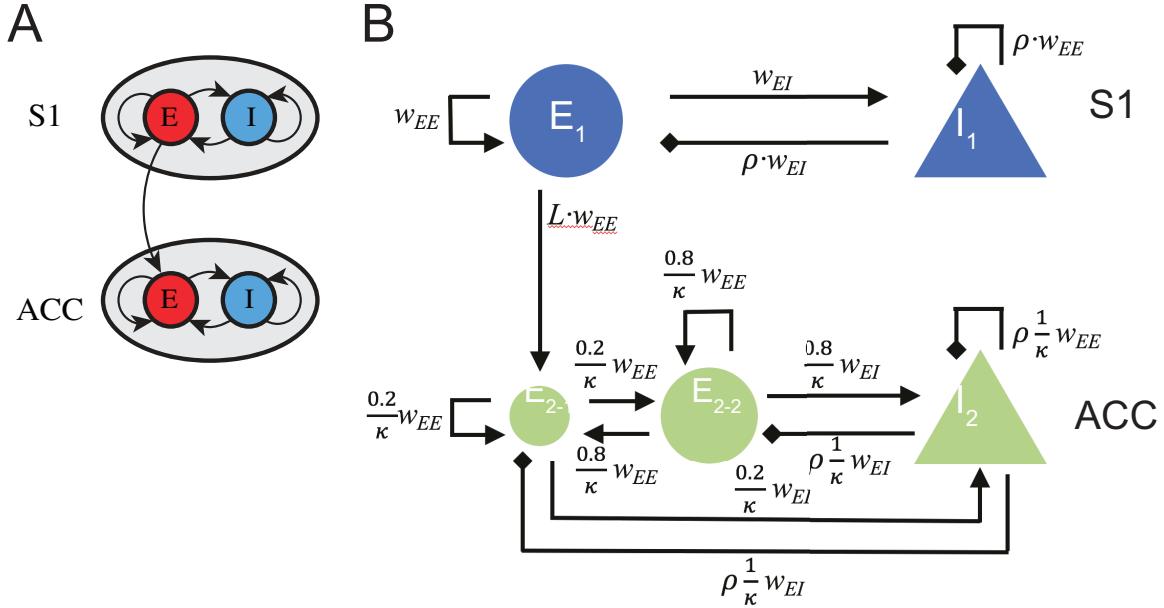


Fig. 2: A schematic of mean field model for the S1 and ACC circuits. (A) In a reduced model, each brain area is described by an excitatory (E) and an inhibitory (I) population of neurons, with inter- and intra-population coupling. The S1→ACC coupling is assumed to be excitatory and unidirectional. (B) A detailed mean-field model that account for biological constraints and details. The pain-responsive ACC neuronal population, E_{2-1} , is assumed to receive a direct excitatory input from the S1 population E_1 . w_{EE} represents the basic coupling strength between the same type of neuronal populations (E-E or I-I), w_{EI} represents the basic coupling strength between different types of neuronal populations (E-I or I-E). ρ is a negative number that scales the strength of inhibitory input from I-neurons. $L < 1$ is a positive number that scales the effect of long-range S1→ACC projection. κ represents the size ratio of S1 population to ACC population.

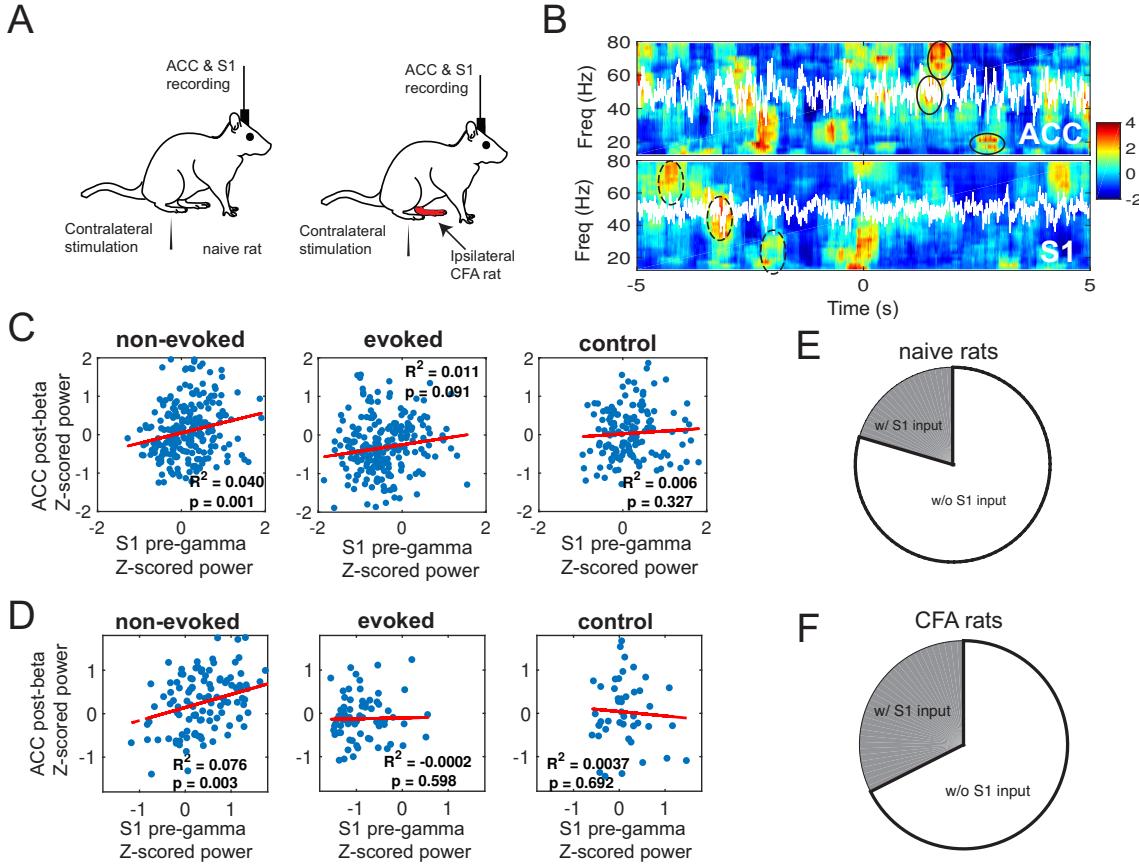


Fig. 3: Results excerpted from our previous experimental findings. (A) Schematic diagram of noxious stimulation and electrophysiological recording in naive and CFA rats. (B) Z-scored spectrograms in the ACC and S1 during a representative non-evoked nociception episode. White traces show the principal component of multichannel LFPs. Time 0 marks the onset of non-evoked nociception event. The post-event power was Z-scored with respect to $[-5, 0]$ s, whereas the pre-event power was Z-scored with respect to $[0, 5]$ s. The S1-ERD during the pre-event period and the ACC-ERS during the post-event period were highlighted by dashed and solid ellipses, respectively. (C) Time-averaged Z-scored pre-gamma S1 activity vs. post-beta ACC activity ($n = 252$ non-evoked nociception events, $n = 233$ evoked pain events; $n = 149$ negative controls), for naive rats. In each panel, R-square (i.e., the square of Pearson's correlation) and p values are reported. (D) Same as panel C, except for CFA rats ($n = 127$ non-evoked nociception events, $n = 71$ evoked pain events; $n = 49$ negative controls). (E) Pie chart of pain-responsive ACC neurons that receive a direct S1 input for naive rats. (F) Same as panel E, except for CFA rats.

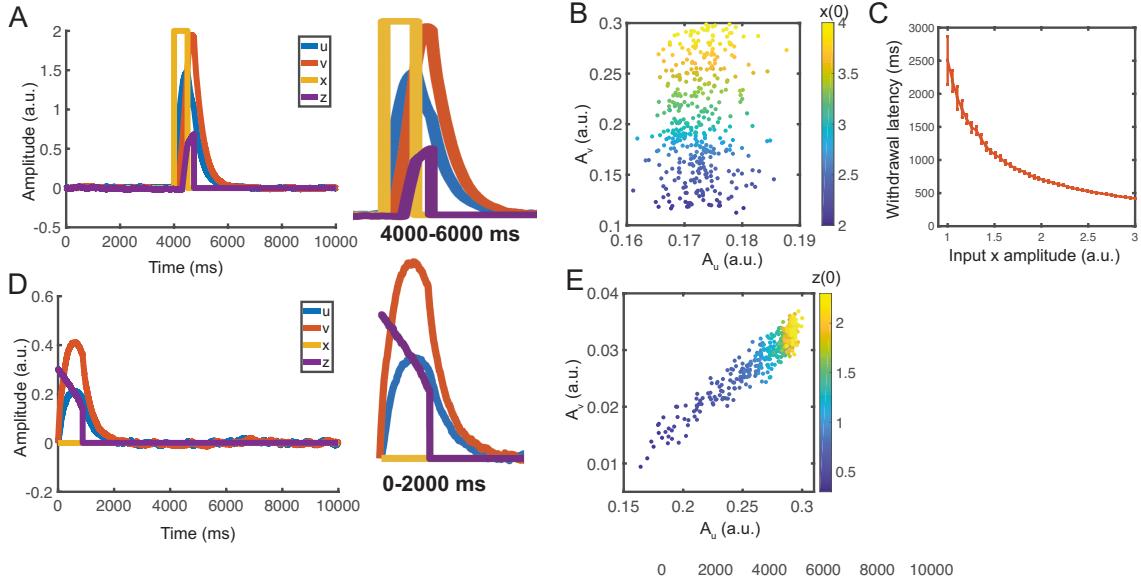


Fig. 4: Simulation results from the predictive coding model. (A) Simulated 10-s temporal traces of $\{x, z, u, v\}$ in evoked pain. Y-axis is in arbitrary unit (a.u.). Stimulus onset separates the pre-event from post-event periods. Here, we used $u(0) = v(0) = z(0) = 0$. The right panel shows the zoom-in window of 4000-6000 ms. (B) The correlation of A_u (area under u -curve) and A_v (area under v -curve) was small during evoked pain. Each point was derived from a simulation with a different input amplitude (correlation: 0.097, $p = 0.06$, $n = 400$). The A_u and A_v represent the proxy of average induced responses in the gamma and beta bands. Each point was derived from a simulation with a different $z(0)$. (C) Reset (withdrawal) latency decreases with increasing input amplitude. Error bar represents the standard error of mean (SEM) ($n = 50$). (D) Simulated temporal traces of $\{x, z, u, v\}$ in non-evoked nociception. Y-axis is in a.u. Here, we used $u(0) = v(0) = 0, z(0) = 0.3$. The right panel shows the zoom-in window of 0-2000 ms. (E) A_u (during the pre-event period) was positively correlated with A_v (during the post-event period). Each point was derived from a simulation with a different $z(0)$ (correlation: 0.947, $p < 10^{-10}$, $n = 400$).

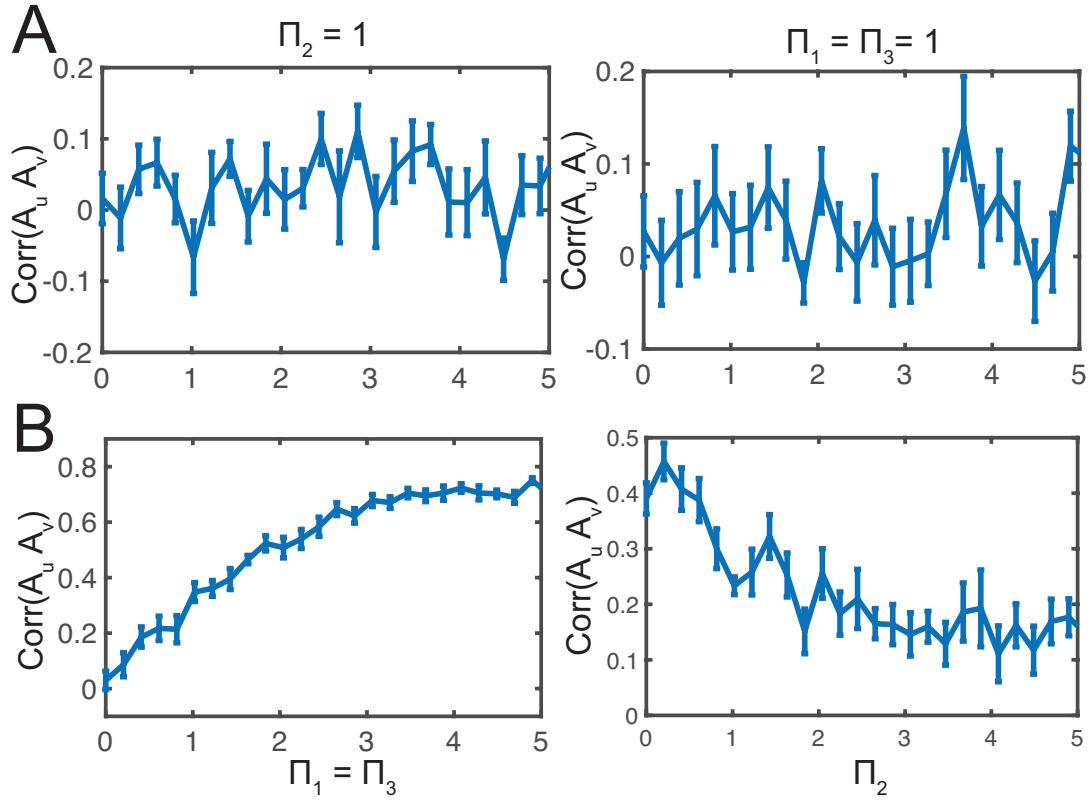


Fig. 5: Sensitivity analysis of correlation between A_u and A_v with respect to the gain parameters $\{\Pi_1, \Pi_2, \Pi_3\}$ in the predictive coding model. (A) Evoked pain (B) non-evoked nociception. All error bars denote SEM ($n = 10$) and each correlation was computed from 25 trials with random initial conditions.

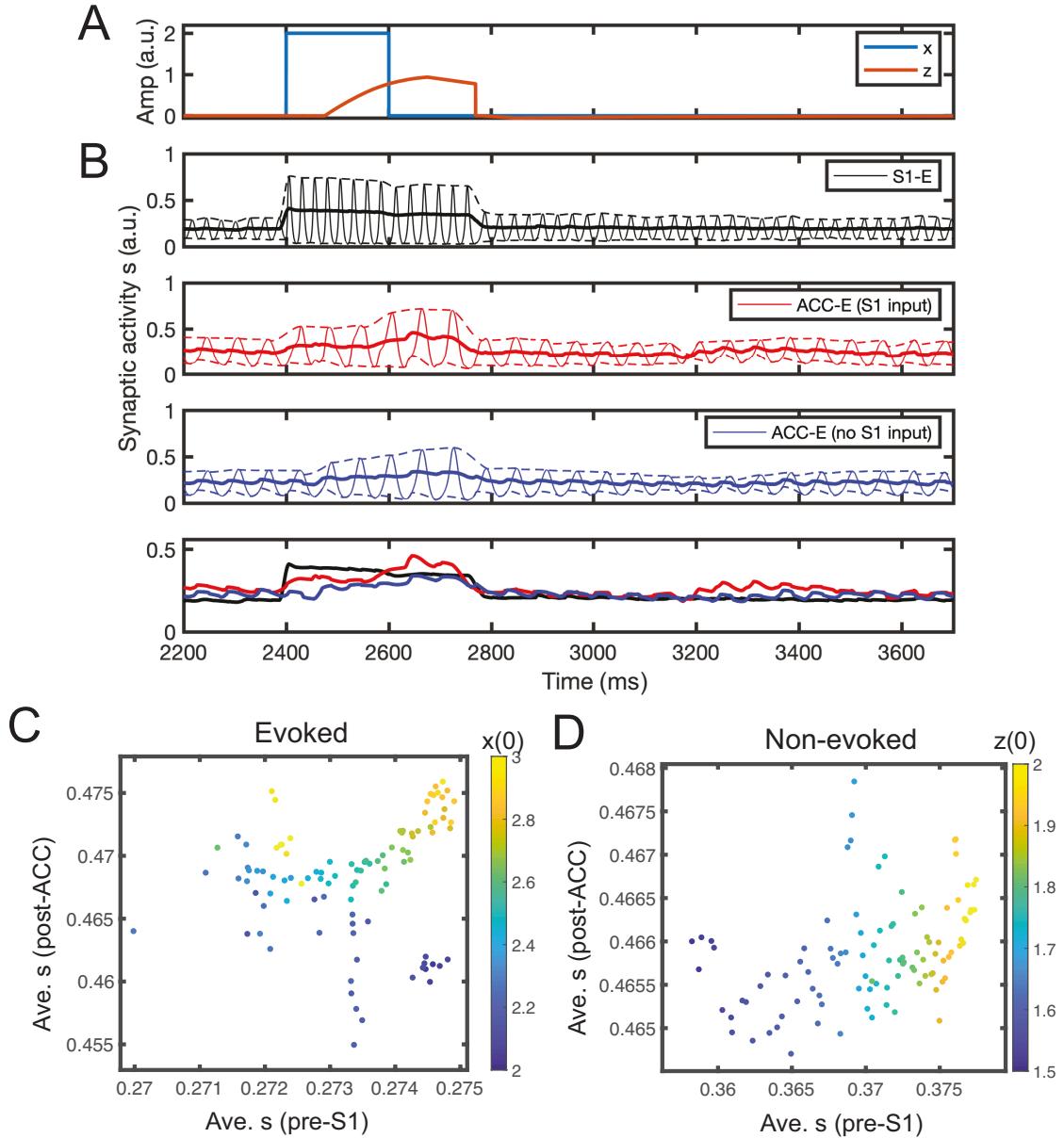


Fig. 6: Simulation results from the mean field model. (A) Simulated stimulus input x and latent z trajectories. (B) Mean-field activity (synaptic activation s) for three different excitatory neuronal populations (E_1, E_{2-1}, E_{2-2}) in one evoke pain simulation. Dashed lines show the upper and lower bounds of the envelop around the oscillatory activity. Solid line shows the midline between the upper and lower bounds. For comparison, the last panel replots the three midlines in the first three panels. Time 2400 ms marks the onset time for post-ACC synaptic activation integration. (C,D) Scatter plots of average pre-S1 synaptic activation s versus average post-ACC synaptic activation s derived from the mean field model simulations ($n = 100$) in evoked pain and non-evoked nociception. The Pearson's correlation coefficients in two panels were 0.15 ($p = 0.137$) and 0.40 ($p = 4.5 \times 10^{-5}$), respectively. Color bar represents the different initial condition for $x(0)$ (panel C) or $z(0)$ (panel D).

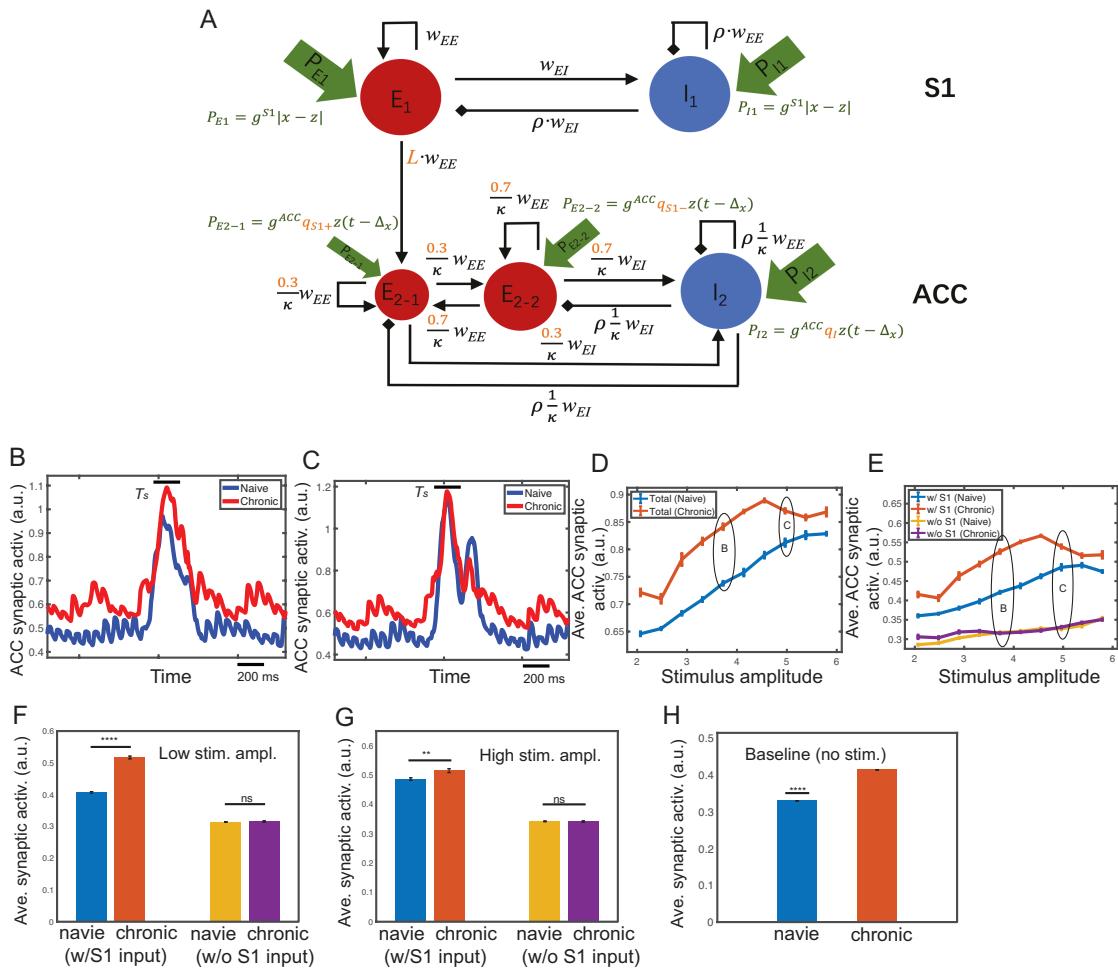


Fig. 7: Mean field model simulation results of evoked pain under the chronic pain condition.

963 Fig 7. Mean field model simulation results of evoked pain for the chronic pain condition.
 964 (A) Modified mean field model (compared to Fig. 3B) for chronic pain. Modified variables
 965 are marked in red. (B) Comparison of the midline envelope of ACC synaptic activation
 966 variable s between naive (blue) and chronic pain (red) condition for the stimulus amplitude
 967 4.0. Bar above the curve marks the duration T_s between the stimulus onset to withdrawal.
 968 (C) Same as panel B, except for the stimulus amplitude 5.0. In all following plots, the noises
 969 are set as $\epsilon_z = 0.1, \epsilon_E = \epsilon_I = 0.005$. (D) Average ACC synaptic activation variable s from
 970 total population during T_s for varying stimulus amplitude under naive (blue) and chronic
 971 pain (red) condition. (E) Similar to panel D, except for two ACC subpopulations E_{2-1} (w/
 972 direct S1 input) and E_{2-2} (w/o S1). Mean and SEM for each group are shown. 100 Monte
 973 Carlo runs were run with random initial input amplitude $x \in [1.9, 6.0]$. (F, G) From panel
 974 E, we replotted the average ACC synaptic activation of E_{2-1} (w/ S1) and E_{2-2} (w/o S1)
 975 during T_s for low and high stimulus amplitude. Error bars were computed from 10 trials
 976 with random initial input amplitude $x \in [3.3, 3.7]$. For the low stimulus amplitude, there
 977 was a significant difference between naive and chronic pain for E_{2-1} ($p < 0.0001$, rank-sum
 978 test); but not significant for E_{2-2} ($p = 0.86$). For the high stimulus amplitude, there was
 979 a less significant difference between naive and chronic pain for E_{2-1} ($p = 0.0028$); however,
 980 the difference of that for E_{2-2} was insignificant ($p = 0.799$). (H) Average ACC synaptic
 981 activation during baseline (no stimulus) was significantly lower ($p < 0.0001$, rank-sum test)
 982 in naive (blue) than in chronic pain (red). Average was computed from the baseline ([0.5,
 983 1.5] s) by discarding the initial transient period.

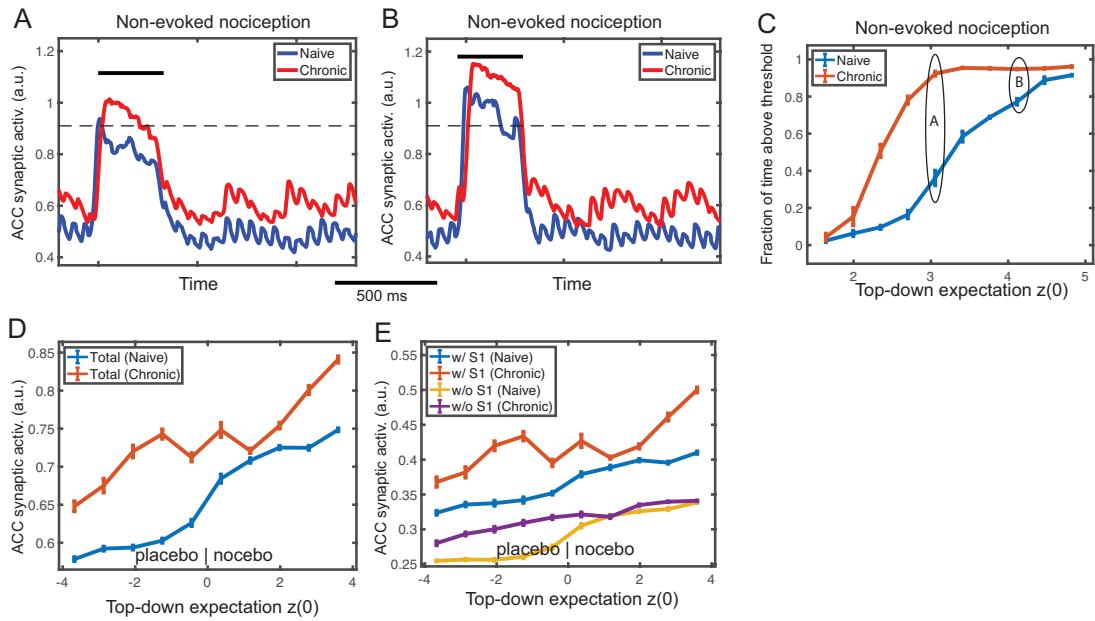


Fig. 8: Mean field model simulation results of non-evoked nociception and placebo/nocebo effects under the chronic pain condition. (A) Simulated midline envelope trace of ACC synaptic activation variable s in non-evoked nociception under naive (blue) and chronic pain (red) conditions, for an initial top-down expectation $z(0) = 3.0$. (B) Similar to panel A, except for $z(0) = 4.5$. At low $z(0)$, the fraction of time above threshold during T_s (between the stimulus onset and withdrawal) was longer in the chronic pain condition; at high $z(0)$, the fraction was similar between the two conditions. (C) Fraction of time during T_s that ACC synaptic activation variable was above the threshold (horizontal dashed line) for various top-down expectation $z(0)$ in naive (blue) and chronic pain (red) conditions. The curve has a sigmoidal shape and shifts leftward from naive to chronic pain condition. 100 Monte Carlo trials were run with random $z(0) \in [1.5, 5.0]$. Mean and SEM for each group are plotted. (D) Comparison of average ACC synaptic activation in placebo/nocebo effects under naive (blue) and chronic pain (red) conditions for various initial top-down expectation $z(0)$, where $z(0) < 0$ and $z(0) > 0$ represent the placebo and nocebo effects, respectively. The synaptic activation s of total ACC population increased monotonically, and shifted upward from the naive to chronic pain condition. (E) Similar to panel D, except for ACC subpopulations E_{2-1} (w/ S1 input) and E_{2-2} (w/o S1 input). The subpopulation E_{2-1} had a similar shape of the total population, while E_{2-2} did not increase much from the naive to chronic pain condition. 100 Monte Carlo trials were run with random $z(0) \in [-4.0, 4.0]$. Mean and SEM are plotted for each group.

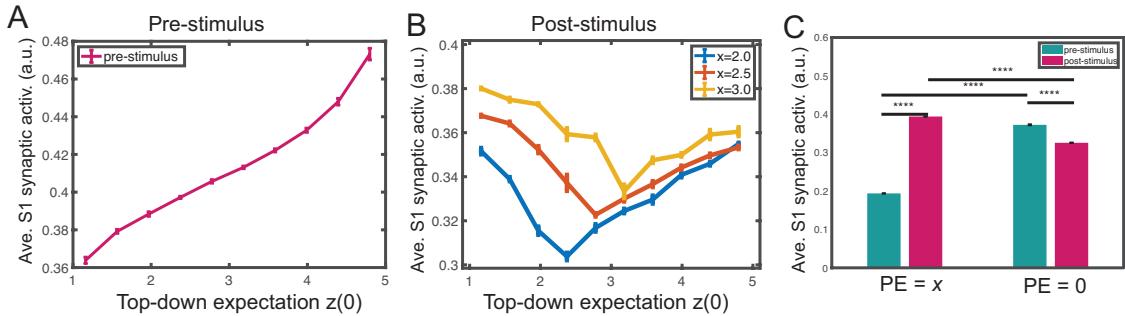


Fig. 9: Mean field model simulation results of the S1 synaptic activation variable with regards to the prediction error (PE) and stimulus prediction. (A) During pre-stimulus baseline, time-averaged S1 synaptic activation variable increased monotonically with $z(0)$. (B) During post-stimulus presentation, the average S1 synaptic activation variable exhibited a V-shaped profile from varying stimulus amplitude ($x = 2.0, 2.5, 3.0$), where the minimum occurs when $x = z(0)$ or $PE = 0$. The minimum shifted rightward with increasing x , indicating that the post-stimulus S1 synaptic activation variable was proportional to $|x - z|$. 100 Monte Carlo trials were run with random $z(0) \in [1.0, 5.0]$. Mean and SEM for each group are plotted. (C) Comparison of average S1 synaptic activation at different time (pre vs. post-stimulus) and PE: $PE = x$ (i.e., $z = 0$) and $PE = 0$ (i.e., $z = x$). Ten Monte Carlo trials were run with random input amplitude $x \in [2.0, 2.4]$. There was a significant difference in the average S1 synaptic activation between the pre vs. post-stimulus period in both cases. All p -values for pair comparisons marked in the graph were less than 0.0001 (rank-sum test). The pre-stimulus firing was computed from the expectation z onset (from time 0 if no expectation) to the stimulus x onset; the post-stimulus firing was computed from the stimulus onset to withdrawal.

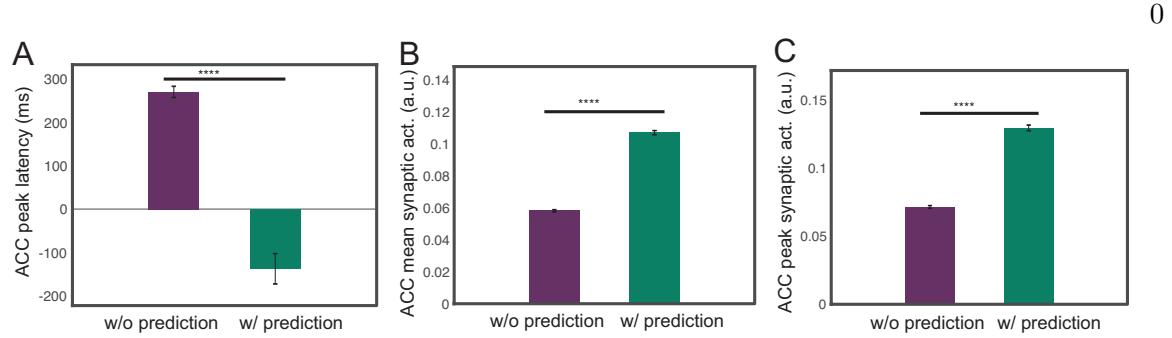


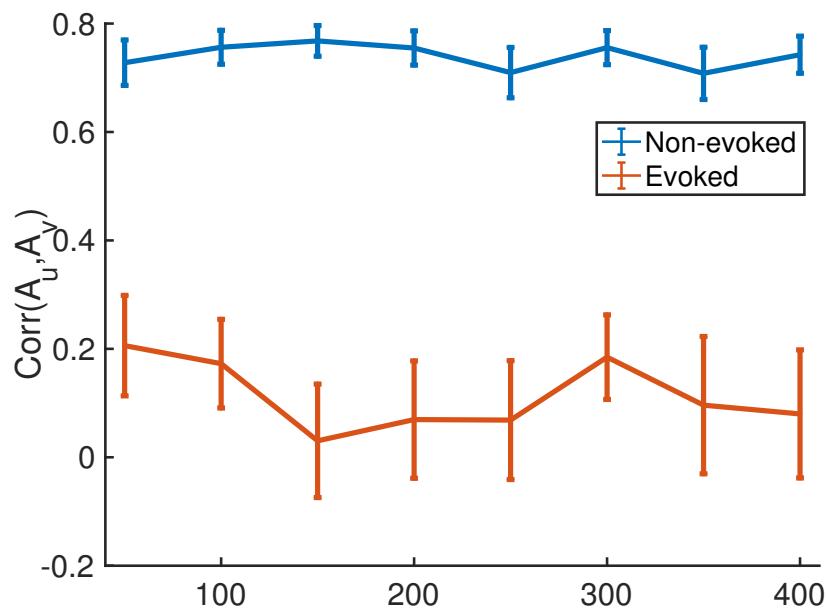
Fig. 10: Mean field model results of the ACC firing activity in a simulated tone-conditioning pain anticipation experiment. Ten Monte Carlo trials were run with random stimulus input amplitude $x \in [2.0, 2.4]$. (A) Comparison of the latency of ACC peak synaptic activation with respect to the onset of the stimulus between without prediction and with prediction conditions. ****: $p < 0.0001$ (rank-sum test). (B) Comparison of the mean of ACC synaptic activation during the 50-ms tone period between without prediction and with prediction conditions. (C) Comparison of the maximum of ACC synaptic activation during 50-ms tone period between no prediction and with prediction conditions.

984 **Supplementary Materials**

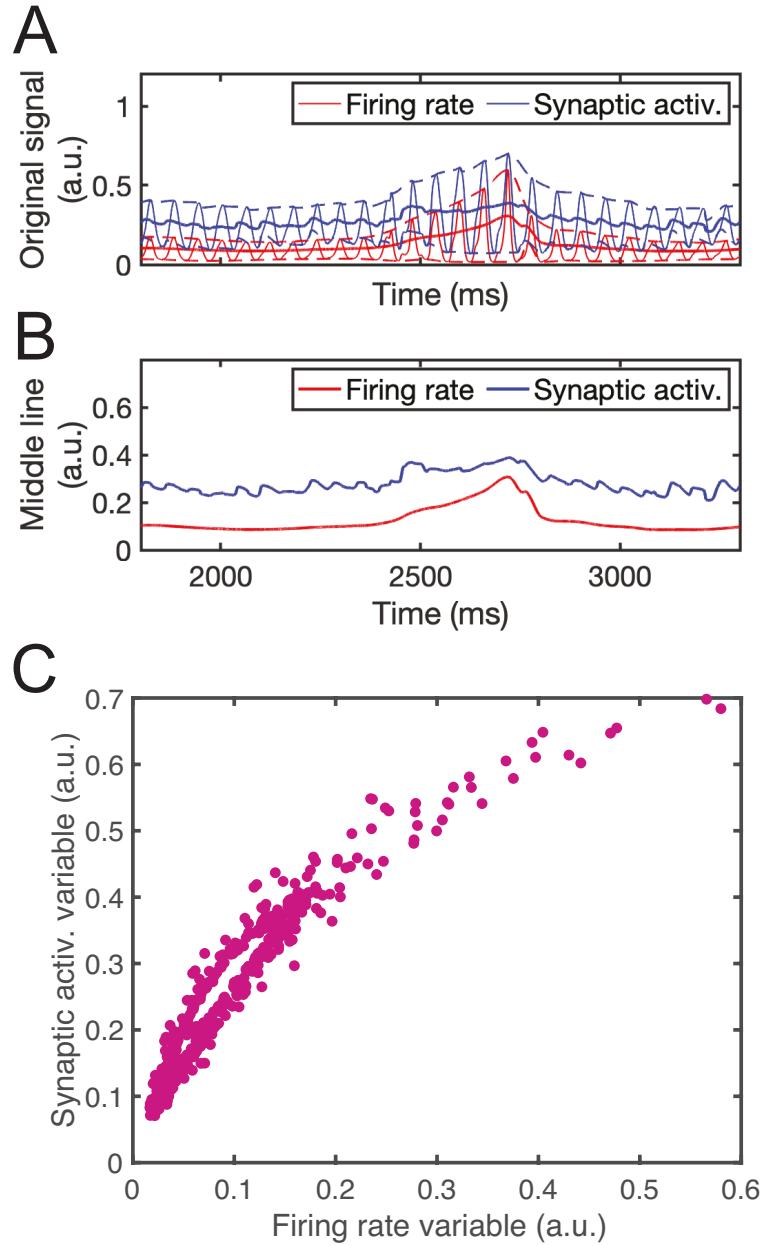
985

986 **Predictive Coding Models for Pain Perception**987 **Yuru Song, Mingchen Yao, Helen Kemprecos, Áine Byrne, Zhengdong Xiao,**
988 **Qiaosheng Zhang, Amrita Singh, Jing Wang, Zhe S. Chen***

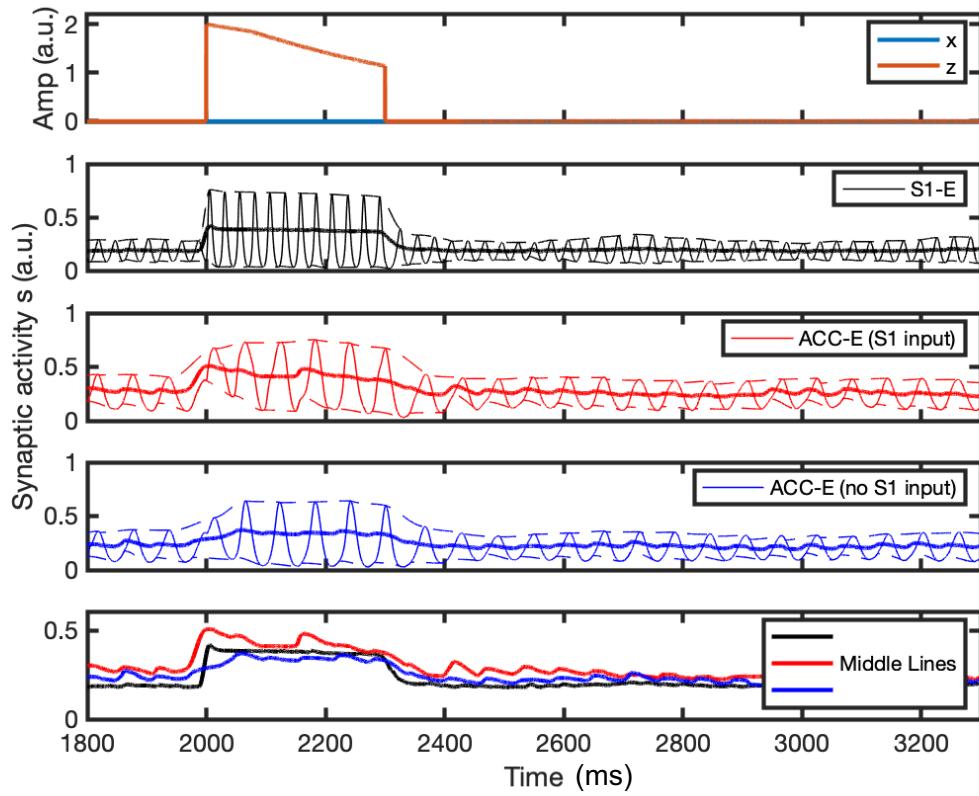
989 * Email: zhe.chen@nyulangone.org



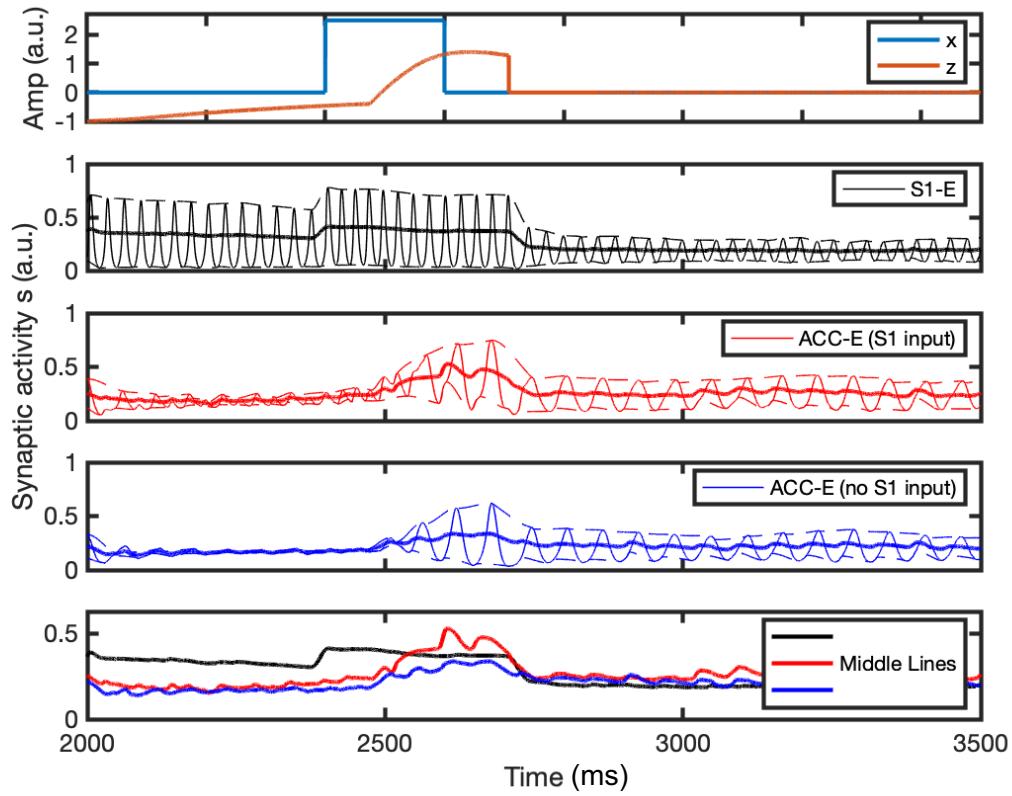
Supplementary Fig. 1: Sensitivity analysis of correlation between A_u and A_v with respect to the delay parameter Δ_u in the predictive coding model. The correlation statistics are relatively stable across a wide range of Δ_u in evoked pain (red) and non-evoked nociception (blue). Error bar denotes SEM ($n = 10$).



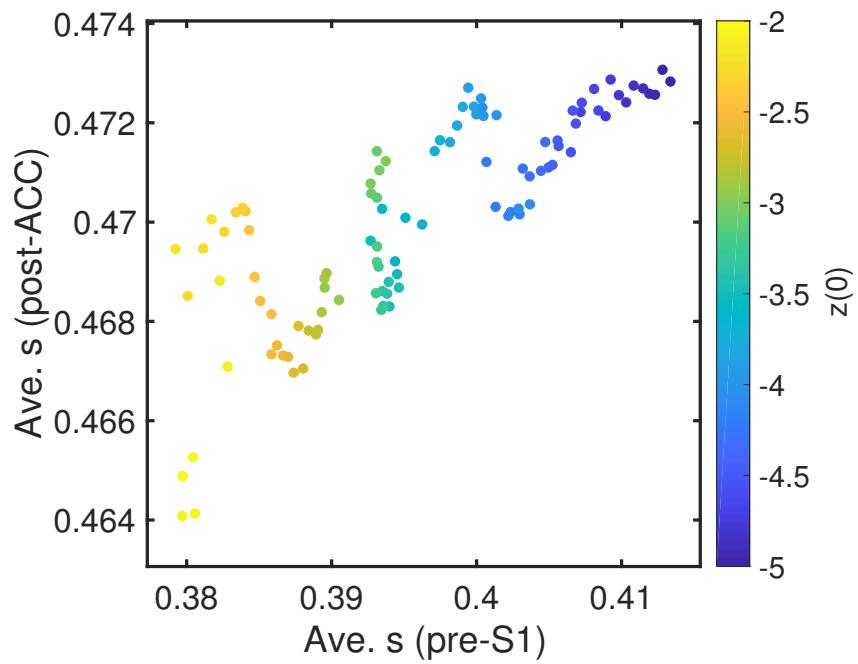
Supplementary Fig. 2: Comparison of firing rate variable r and synaptic activation variable s in evoked pain based on the mean field model. (A) Representative simulated traces of firing rate (red) and synaptic activation (blue) of ACC population E_{2-1} in one evoked pain trial. Dashed lines show the upper and lower envelope of the oscillation. (B) Replot the midline of the envelopes in panel A. (C) Scatter plot of firing rate variable and synaptic activation variable in panel A. Two variables are highly correlated (Spearman's correlation 0.969, $p < 10^{-10}$).



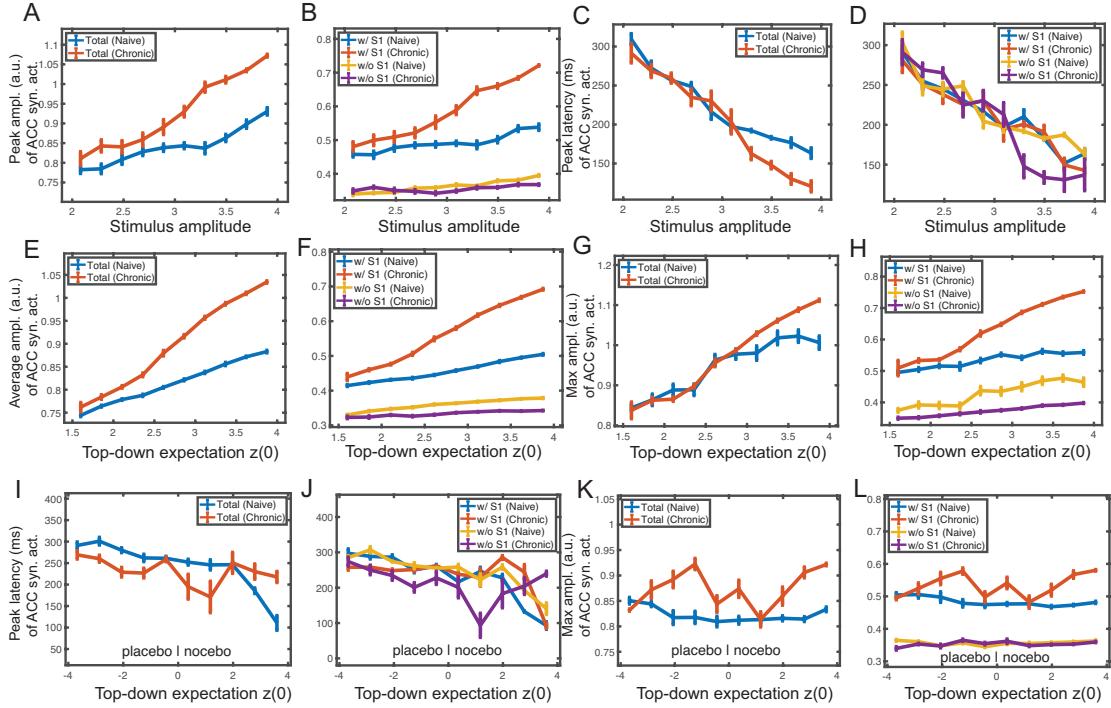
Supplementary Fig. 3: Mean-field activity (synaptic activation s) for three different excitatory neuronal populations in one representative non-evoked nociception simulation. Notations are the same as Fig. 6A,B.



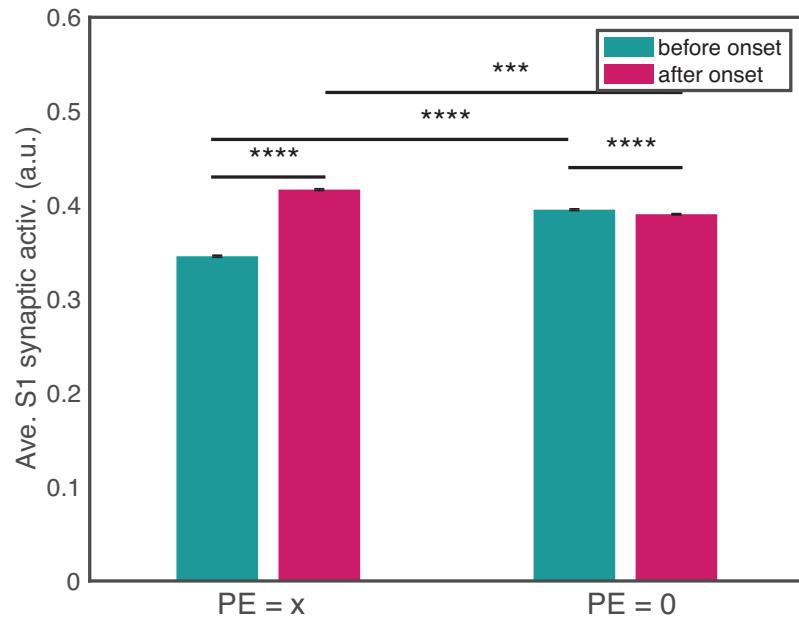
Supplementary Fig. 4: Mean-field activity (synaptic activation s) for three different excitatory neuronal populations in one representative placebo condition simulation. Notations are the same as Fig. 6A,B.



Supplementary Fig. 5: Scatter plot of the average pre-S1 synaptic activation s versus the average post-ACC synaptic activation s derived from the mean field model simulations ($n = 100$) in the placebo condition (Pearson's correlation coefficient: 0.80, $p = 7.7 \times 10^{-24}$).



Supplementary Fig. 6: Latency and maximum peak statistics of synaptic activation in ACC populations during evoked pain (A-D), non-evoked nociception (E-H) and placebo/nocebo (I-L) conditions. (A) Maximum of middle line of ACC synaptic activation variable s from total population during the duration T_s between the stimulus onset to withdrawal, for varying stimulus amplitude under naive (blue) and chronic pain (red) conditions. (B) Similar to panel A, except for two ACC subpopulations. (C) The latency from the stimulus onset to the maximum defined in panel A for varying stimulus amplitude under the naive and chronic pain conditions. (D) Similar to panel C, except for two ACC subpopulations E_{2-1} (w/ S1 input) and E_{2-2} (w/o S1 input). Mean and SEM for each group are shown. 100 Monte Carlo runs were run with random initial input amplitude $x \in [1.3, 5.0]$. (E) Average of middle line of ACC synaptic activation variable s from the total population during the duration T_s for varying top-down expectation $z(0)$ under naive and chronic pain conditions. (F) Similar to panel E, except for two ACC subpopulations E_{2-1} and E_{2-2} . Mean and SEM for each group are shown. 100 Monte Carlo runs were run with random initial $z(0) \in [1.5, 4.0]$. (G) Maximum of middle line of ACC synaptic activation variable s from total population during the duration T_s between the stimulus onset to withdrawal, for varying top-down expectation $z(0)$ under the naive and chronic pain conditions. (H) Similar to panel G, except for two ACC subpopulations E_{2-1} and E_{2-2} . The curves in panels G and H have similar shapes as in panels E and F. (I) The latency from the stimulus onset to the maximum of ACC synaptic activation for varying top-down expectation $z(0)$ under naive and chronic pain conditions. (J) Similar to panel I, except for two ACC subpopulations E_{2-1} and E_{2-2} . Mean and SEM for each group are shown. 100 Monte Carlo runs were run with random initial $z(0) \in [-4.0, 4.0]$. (K) Maximum of middle line of ACC synaptic activation variable s from the total population during the duration T_s between the stimulus onset to withdrawal, for varying top-down expectation $z(0)$ under naive and chronic pain conditions. (L) Similar to panel K, except for two ACC subpopulations E_{2-1} and E_{2-2} .



Supplementary Fig. 7: Comparison of average S1 synaptic activation at different periods (before vs. after onset) and PE values: $PE = x$ (or $z = 0$) and $PE = 0$ (or $z = x$), with feedback from the ACC to S1. A total of 10 Monte Carlo trials were run with random stimulus input amplitude $x \in [1.8, 2.2]$. Mean and SEM were presented for each group. There was a significant difference in the average S1 synaptic activation variable between before and after the stimulus onset in both conditions. All p -values for pairs marked in the graph are less than 0.0001, except for the $p = 0.0008$ between $PE = x$ and $PE = 0$ after the onset (two pink bars). This indicates that the decrease in S1 firing intensity after the stimulus onset was slightly less significant with the presence of feedback. The pre-stimulus firing was averaged from the expectation z onset (from 0 if no expectation) to the stimulus x onset; the post-stimulus firing was averaged from the stimulus onset to withdrawal. Compared to Fig. 9C, the gap between before and after the stimulus onset was smaller here.