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Abstract

Pain is a complex, multidimensional experience that involves dynamic interactions be-
tween sensory-discriminative and affective-emotional processes. Pain experiences have
a high degree of variability depending on their context and prior anticipation. View-
ing pain perception as a perceptual inference problem, we propose a predictive coding
paradigm to characterize evoked and non-evoked pain. We record the local field po-
tentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingu-
late cortex (ACC) of freely behaving rats—two regions known to encode the sensory-
discriminative and affective-emotional aspects of pain, respectively. We further use pre-
dictive coding to investigate the temporal coordination of oscillatory activity between
the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to
describe the macroscopic dynamics of bottom-up and top-down activity. Supported by
recent experimental data, we also develop a biophysical neural mass model to describe
the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and
chronic pain-treated animals. Our proposed predictive coding models not only repli-
cate important experimental findings, but also provide new prediction about the impact
of the model parameters on the physiological or behavioral read-out—thereby yielding
mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and

chronic pain.

Keywords: Predictive coding; pain perception; somatosensory cortex; anterior cingulate

cortex; mean field model; placebo; chronic pain
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1 INTRODUCTION

Pain is a fundamental experience that is subjective and multidimensional. Pain process-
ing involves sensory, affective, and cognitive processing across distributed neural circuits
(Bushnell et al., 1999; Bushnell et al., 2013; Iannetti & Mouraux, 2010; Legrain et al., 2011;
Vierck et al., 2013). However, a complete understanding of pain perception and corti-
cal pain processing has remained elusive. Given the same nociceptive stimuli, the con-
text matters for pain percept. In the literature, human neuroimaging studies have shown
that among many brain regions, the primary somatosensory cortex (S1) and the ante-
rior cingulate cortex (ACC) are two important cortical areas involved in high-level pain
processing. The S1 represents the sensory-discriminative component of pain, whereas
the ACC represents the affective-motivational component of pain (Johansen et al., 2001;
Bushnell et al., 2013). In addition, ACC neuronal activities have been shown to correlate
with noxious stimulus intensities, and chronic pain can alter acute pain intensity repre-
sentation in the ACC to increase the aversive response to noxious stimuli at anatomically
unrelated sites (Zhang et al., 2017). In addition to the bottom-up input, top-down atten-
tion, expectation, or contextual factors can bias cortical pain processing or modulate the
strength or salience of pain signals (Wiech, 2016). Descending modulation can attenuate
the incoming nociceptive signal and further skew the subjective pain perception despite the
high-intensity noxious stimulus input.

Evoked pain is triggered by noxious sensory stimuli, whereas spontaneous pain (also
known as non-evoked pain or non-evoked nociception) is not. Spontaneous pain can be
induced by repeated noxious stimulations in naive animals, or induced by chronic pain
conditions (Bennett, 2012). Pain perception has been conceptualized as perceptual inference
(Wiech, 2016; Geuter et al., 2017; Tabor et al., 2017), and predictive coding may provide
a theoretical model for characterizing such inference (Arnal & Giraud, 2012; Ploner et al.,
2017). Specifically, pain perception can be studied as an inferential process in which prior
information is used to generate expectations about future perception and to interpret the
sensory input.

Predictive coding paradigms describe the inversion of a generative model of the per-
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4
cept and constantly adapt the hypothesis of sensory perception (Huang & Rao, 2011). A

predictive model characterizes the uncertainty of sensory inputs in time and space (Aitchi-
son & Lengyel, 2017). Predictive coding relies on correcting errors resulting from com-
parisons between internal predictions and actual observations. Such paradigms have pro-
vided important insights into perceptual inference, sensory processing, motor control, multi
sensory integration and pain (Rao and Ballard, 1999; Shipp et al., 2013; Talsma, 2015;
Sedley et al., 2016; Morrison et al., 2013; Hoskin et al., 2019). Predictive coding has been
suggested as a universal computational principle in the neocortex (Bastos et al., 2012;
Friston & Kiebel, 2009), and this framework may accommodate various data modalities
and multiple spatiotemporal scales (Friston et al., 2015).

The experience of pain is often associated with brain rhythms or neuronal oscillations
at different frequencies (Ploner et al., 2017; Peng et al., 2018). For multisite recordings, it
is important to investigate the inter-regional local field potential (LFP) oscillatory coordi-
nation (Eto et al., 2011), as interareal oscillatory synchronization plays an important role
in top-down neocortical processing (Bressler & Richtler, 2015; Bastos et al., 2020). One
important theoretical implication of predictive coding is spectral asymmetries between the
bottom-up and top-down representations (Bastos et al., 2012). The spectral asymmetry
can be also explained by the functional asymmetry: prediction errors (PEs) express higher
frequencies than the predictions that accumulate them, whereas the conversion of PEs into
predictions entails a loss of high frequencies. Since the common characteristic frequencies
in predictive coding range between the beta and gamma frequency bands, one working
hypothesis is that the bottom-up PEs are represented at the gamma band and top-down
prediction predictions are represented at the beta band.

In a series of rodent pain experiments, we collected various in vivo neurophysiological
recordings from single or two brain regions in freely behaving rats (Zhang et al., 2017,
Urien et al., 2018; Dale et al., 2018; Xiao et al., 2019). These data have established the
foundation for improved understanding of pain perception and provided empirical evidence
for computational modeling. In this paper, we present a predictive coding framework to
model the temporal coordination of interareal oscillatory activity between the rat S1 and

ACC during evoked and non-evoked nociception episodes. Specifically, we develop two dif-
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5
ferent computational models to reproduce some previously observed differences between

gamma and beta responses, before and after pain. The first model bears a form of the state
space model based upon predictive coding, which can predict experimentally observed LFP
responses at the gamma and beta bands in the S1 and ACC areas, respectively. The second
model is derived from the mean field model, which is a biologically plausible neural mass
model parameterized in terms of connection strengths between distinct neuronal subpopu-
lations. The neural mass model can predict the S1 and ACC population neuronal activity
in various pain conditions, for both naive and chronic pain-treated animals.

Our key hypothesis is that we can reproduce empirical findings by manipulating the
gain parameter of the predictive coding model. Furthermore, the same phenomena can be
reproduced by varying the synaptic efficacy in the neural mass model. In other words, we
hypothesize that synaptic efficacy within the cortical pain network is a sufficient explanation
for responses induced by pain, and variations in pain conditions correspond to variations in
the model parameters described in the predictive coding paradigm.

In the result section, we first summarize important experimental findings that are ex-
tracted from previous published data (Xiao et al., 2019; Singh et al., 2020), which provide
the biological support and motivation for our computational modeling work. We then de-
scribe our phenomenological model and mean-field model and their simulation results for
both evoked pain and non-evoked nociception. Specifically, we will adapt the mean-field
model to characterize pain aversive behaviors in chronic pain. We will make data interpre-
tation and prediction related to the experimental results. To the best of our knowledge,
this is the first systematic modeling investigation towards understanding pain perception.
Together, our two computational models provide new insights into the uncertainty of ex-

pectation, placebo or nocebo effect, and chronic pain.

2 METHODS

2.1  Ezperimental Protocol and Recordings

All experimental studies were performed in accordance with the National Institutes of Health (NIH)

Guide for the Care and Use of Laboratory Animals to ensure minimal animal use and discomfort,
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6
and were approved by the New York University School of Medicine (NYUSOM) Institutional Animal

Care and Use Committee (IACUC).

Male adult Sprague-Dale rats (250-300 g, Taconic Farms, Albany, NY) were used in our current
study and kept at the new Science Building at NYUSOM, with controlled humidity, temperature
and 12-h (6:30 a.m.-6:30 p.m.) light-dark cycle. Food and water were available ad libitum. Animals
were given on average 10 days to adjust to the new environment before the initiation of experiments.

Thermal pain stimuli were used for freely exploring rats in a plastic chamber of size 38 x 20 x 25
cm?® on top of a mesh table. A blue (473 nm diode-pumped solid-state) laser with varying laser
intensities was consistently delivered to the rat’s right hindpaw. The laser stimulation (with intensity
ranging 100-250 mW) was delivered in repeated trials (25-40) during 30-45 min. Two video cameras
(120 frame per second) were used to continuously monitor the rat’s behavior during the course of
experiment. Five naive rats and two chronic pain-treated rats were used in the current study. Details
are referred to previous publications (Zhang et al., 2017; Dale et al., 2018).

To produce chronic inflammatory pain, 0.075 ml of Complete Freund’s adjuvant (CFA) (my-
cobacterium tuberculosis, Sigma-Aldrich) was suspended in an oil-saline (1:1) emulsion, and injected
subcutaneously into the plantar aspect of the hindpaw opposite to the paw that was stimulated by
a laser; namely, only a unilateral inflammation was induced. In CFA rats, laser stimulations were
delivered to the opposite paw of the injured foot. The ACC and S1 electrodes were implanted on
the contralateral side of the stimulated foot.

Repeated noxious laser stimulations to the rat hindpaw could induce spontaneous pain be-
haviors. During the inter-trial intervals, we examined the rat’s behavior to identify non-evoked
nociception episodes (such as twitch, lifting/flicking, paw withdrawal and paw licking) (Xiao et al.,
2019).

We used silicon probes (Buzsaki32, NeuroNexus) with a 3D printed drive to record multi-
channel (up to 64 channels) neural activities from the rat ACC and S1 areas simultaneously, on the
contralateral side of the paw that received noxious stimulation. For surgery, rats were anesthetized
with isoflurane (1.5%-2%). The skull was exposed and a 3 mm-diameter hole was drilled above the
target region. The coordinates for the ACC and S1 implants were: ACC: AP 2.7, ML 1.4-2.0, DV
2.0, with an angle of 20° toward the middle line; S1: AP —1.5, ML 2.5-3.2, DV 1.5. The drive was
secured to the skull screws with dental cement. We used a Plexon (Dallas, TX) data acquisition
system to record in vivo extracellular neural signals at a sampling rate of 40 kHz. The signals
were first band-pass filtered (0.3 Hz-7.5 kHz), and LFPs were obtained upon subsequent band-pass
filtering (1-100 Hz).
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2.2 Data Analysis

Time-frequency analyses. Based on the simultaneously recorded multichannel LFP signals from
the S1 and ACC, we applied the principal component analysis (PCA) and extracted the dominant
principal component (PC) for the S1 and ACC, respectively. We then computed the spectrogram of
the PC for each region. Multitapered spectral analyses for LFP spectrogram were performed using
the Chronux toolbox (chronux.org). Specifically, we chose a half-bandwidth parameter W such that
the windowing functions were maximally concentrated within [—W, W]. We chose W > 1/T (where
T denotes the duration) such that the Slepian taper functions were well concentrated in frequency
and had bias reducing characteristics. In terms of Chronux function setup, we used the tapers setup
[TW, N], where TW is the time-bandwidth product, and N = 2 x TW — 1 is the number of tapers.
Since the taper functions are mutually orthogonal, they give independent spectral estimates. In all
time-frequency analyses, we used a moving window length of 500 ms and a step size of 1 ms. We
used TW = 5. From the spectrogram, we computed the Z-scored spectrogram, where the baseline

was defined as the 5-s period before the stimulus presentation.

Pain-responsive neurons. To identify pain-responsive neurons, we used a previously established
criterion (Dale et al., 2018). Specifically, we computed the Z-scored firing rate related to the baseline
(3-5 s before the stimulus onset). A neuron was called a positive pain-responding neuron if the
following two criteria were satisfied: (i) the absolute value of the Z-scored firing rate of least one
time bin (i.e., 50 ms) after stimulation must be greater than 2.5, and (ii) if the first criterion is met,
at least the next two bins (i.e., 100 ms) must be greater than 1.65. These criteria must be fulfilled

within 3 s after the stimulus onset.

Z-scored LFP power analysis. From the recorded multichannel LFPs of the S1 and ACC, we
computed the Z-scored spectrogram for pain episodes (time 0 represents the laser onset in evoked
pain, and the withdrawal onset in non-evoked nociception). During evoked pain, we usually observed
event-related potentials (ERPs) in both S1 and ACC areas. Our prior report has indicated that the
ERP latency was sooner (~200-300 ms) in the S1 than in the ACC during evoked pain episodes
(Xiao et al., 2019). In contrast, during non-evoked nociception episodes, ERPs occurred in either
the S1, or ACC, or both areas, with a high degree of variability in latency.

For non-evoked nociception episodes, we investigated whether the LFP power in the ACC and
S1 at the beta and/or gamma bands change in a temporally coordinated manner. We computed
the 10-s LFP spectrograms centered around the non-evoked nociception behavior onsets (pre-event:

[-5,0] s, post-event: [0,5] s). To highlight the event-related synchronization/desynchronization
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8
(ERS/ERD) phenomenon, we computed the Z-scored pre-gamma power related to the post-event

period, and computed the Z-scored post-beta power related to the pre-event period.
Unless stated otherwise, all statistical tests were nonparametric tests without the normality

assumption.

2.3 A Framework of Predictive Coding for Pain

Background. Predictive coding is aimed at minimizing the PE and further using it to update the
prediction. The schematic diagram of predictive coding is shown in Fig. 1. To explain the predictive
coding idea, we first introduce some basic notations. Specifically, let the latent variable z denote
the subjective pain percept, let x denote the stimulus input. We also assume that u and v are two
response variables, which represent the proxy for the observed gamma activity from the S1 and the
beta activity from the ACC, respectively.

In brief, predictive coding is used to dynamically update posterior expectations of pain (z)
based upon PE. The underlying PEs and posterior expectations are then used to generate observable
induced neural responses (u and v). To account for axonal conduction delays, we used stochastic

delay differential equations for the predictive coding scheme.

Mathematical equations. First, we define the PE as the difference between the bottom-up finite-

duration sensory input z and top-down pain-induced expectation z (Fig. 14):

§t) = a(t) —2(t) (1)

Predictive coding uses the signed PE to update the expectation after a certain time delay. Specif-
ically, we assume that the dynamics of pain percept z follow a stochastic differential equation as

follows

RO = a0+ Tt - Ad) e
= —Z(t) —H(]Z(t—Az)+H(]$(t—AI)+EZ (2)
t
z(t) = 0 if 2(7)dT > Zihreshold (8)
t’

.(t) = T4 boxp(a() 4)

where A, denotes a time delay parameter starting from the stimulus onset (Table 1), and e, denotes
the additive Gaussian noise. Fquation 2 is a linear delay-differential equation that characterizes the

expectation update dynamics based on the PE. In Eg. 3, z(t) is reset to 0 after an accumulative
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preset threshold Zip eshold Within a moving window is reached to trigger an escape-type pain behavior
(e.g, paw withdrawal). Equation / imposes an inverse sigmoid-shaped relationship between the input
amplitude x(¢) and time constant 7,. The initial pain percept z(0) is either zero (no-anticipation),
negative value (placebo), or positive value (nocebo or pain anticipation).

Notably, Equations 1 and 2 are reminiscent of modified Kalman filtering operations, where
the precision parameter Iy can be viewed as the Kalman gain in the Kalman filtering formulation
of predictive coding (Fig. 1B). The gain IIj encodes the confidence placed in PEs (Fig. 2C) and
therefore controls the rate of evidence accumulation or effective step size of the update dynamics of
expectation (Eq. 2).

For the observed neural response variables, in the bottom-up pathway, we assume that dynamics
of response variable u are driven by the absolute PE as follows

du(t)

e = —u) + )] + e (5)

where 7, > 0 denotes the time constant; €, denotes the additive Gaussian noise. The gain II; denotes
the precision (inverse of variance) parameter, which weights the absolute PE in Eq. 5. We refer to the
weighted term IT; X |£(t)| as the “surprise” signal. To see this link, we can assume that there is an
expectation uncertainty of z(t), or equivalently, the PE. Provided that x(t) is deterministic, then the
variance of PE is computed as Var[{(¢)] = Var[z(t)] = 1/II;. If the uncertainty of the expectation is

large, the step size will be small (or the update will be conservative); if the uncertainty is low, the

update will be more aggressive. In the steady state (i.e., dz(tt) = 0), we have u(t) = II1|{(t)|. Here,
the S1 activity encodes the absolute PE or surprise signal, which has been supported by some prior
experimental findings (Gross et al., 2007; Arnal & Giraud, 2012; Yu et al., 2019).

The S1 is known to project directly to the ACC (Sesack et al., 1989; Sesack & Pickel, 1992).
For the S1—ACC pathway, in the simplest form, we assume that the dynamics of response variable
v are driven by the signal consisting of a conduction-delayed u(t —A,) (where A, > 0) and the pain
expectation, as follows

do(t)
d¢

= —o(t) + Mou(t — A,) + 2(t) + ¢, (6)

Ty

where 7, > 0 denotes the time constant, and €, denotes the additive Gaussian noise. Similarly,
g—z defines the relative gain between the two inputs z(¢) and u(t — A,). The coupling dependency
between u, v and z is shown in Fig. 1D.

For convenience, we refer to the model described by FEgs. 1-6 as the predictive coding model.
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The response variables v and v can be interpreted as the Z-scored LFP gamma and beta power,
respectively, which reflect the relative change in the S1 and ACC activity. The choice of conduction
time delay A,, reflected the event-related potential (ERP) latency between the S1 and ACC; their
time constants 7, and 7, were also chosen accordingly. Based on different assumptions of x and z,

we ran computer simulations to produce the dynamics of v and v from Egs. 1-6.

Computing time-averaged power. From the simulated traces of u(t) and v(t), we computed
the averaged power before and after the pain response (e.g., withdrawal). Specifically, let A, =
t% fOT u(t)dt denote the averaged area from the start of computer simulation to the reset (withdrawal)
time t,, and let A, = T%tr fgv(t)dt denote the averaged area lasting the same duration it took
to reach the Zipreshola from the reset (withdrawal) time. Therefore, A, and A, could be viewed
as the averaged pre- and post-withdrawal Z-scored power, respectively. Notably, in the “net” area
integration, the curve above 0 contributes to a positive area value, and the curve below 0 contributes

to a negative area value.

Fourier analysis and spectral asymmetry. Taking the Fourier transform of Eq. 6 and rearranging

the terms, we obtained the mapping of two response variables u and v in the frequency domain:
V(w) = Hi(w)U(w) + Hy(w)Z(w) + Hs(w) Wy (w) (7)
where Hs(w) (or Hz(w)) is a transfer function between V(w) and W, (w)—spectrum for white noise

(or Z(w), unobserved); and H;(w) is a transfer function between V(w) and U(w):

Hy(w) = I, ~ 211,
YT Gwry + Dei@de ~ (jwry + D[(jwAy + 1)2 + 1]

where j = +/—1, and the approximation is derived from the 2nd-order Taylor series expansion for a
small value of s (A, = 0.1 s was used in our computer simulations): e® ~ 1+s+1s? = L[(s+1)2+1].
The first term of the denominator in H;(w) is a 1st-order low-pass filter, and the second term is a
2nd-order low-pass filter. Together, Hy(w) operates as a low-pass filter (Fig. 1 E) that attenuates the
high-frequency (e.g., gamma-band) activity U(w), resulting in a lower-frequency (e.g., beta-band)
activity V(w) in the top-down pathway (Fig. 1F). This spectral asymmetry also explains the reason

why the Z-scored power is shifted from the S1 gamma-band to the ACC beta-band.
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2.4 Mean Field Models

To better describe the population neuronal dynamics, we further develop a mechanistic model,
with explicit excitatory and inhibitory neuronal populations and synapses, to the predictive coding
framework described above. To achieve a trade-off between biological complexity and modeling

complexity, we opt for a mean field model (Pinotsis et al., 2014; Wilson & Cowan, 1972).

Background. The main assumption of mean field models is that tracking the average activity,
such as the mean firing rate and mean synaptic activity, is sufficient when modeling populations of
neurons. Given the extensive number of neurons and synapses in even a small area of cortex, this
is a reasonable assumption. One of the first mean field models of neural activity is attributed to
Wilson and Cowan (Wilson & Cowan, 1972). This two-dimensional model tracks the mean firing
rate of an excitatory population of neurons coupled to an inhibitory population of neurons, and has
been successfully used to describe visual hallucinations (Ermentrout & Cowan, 1979; Bressloff et
al., 2001), binocular rivalry (Wilson et al., 2001), epilepsy (Shusterman & Troy, 2008); Meijer et al.,
2015), resting brain state activity (Deco et al., 2011), traveling cortical waves (Wilson et al., 2001;
Roberts et al., 2019), and cortical resonant frequencies (Lea-Carnall et al., 2016).

We propose a modified Wilson-Cowan model, with the addition of a synaptic variable for each of

the neuronal population. For a single brain area, this amounts to four differential equations (Keeley

et al., 2019):

dr

TTETf = —rg + f(wppse —wips; + Pg), (8)
dr

deftl = —r;+ f(wgrse —wrrsr + Pr), 9)
ds

TsEd—f:fsE+'yErE(lfsE), (10)
ds

TslditI:*S[+'}/I7’I(1*SI), (11)

where rp/; is the population firing rate of the excitatory/inhibitory population, and sg,; is the
synaptic activation of the corresponding population. Each variable has a corresponding time con-
stant 7. The inter- and intra-populations coupling strengths are set by {wgg,wrg, wer, wir}; Pg/r
represents the external input from elsewhere in the cortex; and g/, is the ratio between activation
and inactivation times of the synapse. Similar to the standard Wilson-Cowan model, f is a sigmoid

function:
1

1@) =

(12)



292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

12
where o is the slope and h is the threshold.

In this study, we are interested in the interaction of the S1 and ACC, and consider a model with
two excitatory-inhibitory (E-I) pairs, as described by FEgs. 8-11 (Fig. 24). Experimental findings
have provided strong evidence that there is a direct S1—+ACC projection, which plays an important
role in pain processing (Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011). In contrast,
less is known about the role of the ACC—S1 pathway in cortical pain processing. For the sake
of simplicity, we first neglected the feedback in our initial model; the impact of feedback will be

investigated and discussed later (DISCUSSION).

Biologically-constrained mean field model. We have recently combined optogenetics and elec-
trophysiology to dissect the ACC circuit in pain processing (Singh et al., 2020). We have found a
direct S1—ACC projection engaged in cortical pain processing. In naive rats, only a small percent-
age of the ACC population was pain responsive (10-15%). Among those pain responsive neurons,
about 20% of the population received a direct input from the S1 (Fig. 3E). Among the ACC neurons
that receive input from the S1, 37% of them were pain responsive. However in CFA rats, those two
percentages increased to 32% and 52%, respectively (Fig. 3F).

Based on these findings, we made two modifications to the computational model. First, the
S1—ACC pathway is modeled with the inclusion of an additional term in Fq. & for the ACC pop-
ulation; namely, we changed the input P}{;CC to PI/}CC + 3%1 (t — Ag1), where the excitatory input
from the S1 is delayed by a positive Ag;.

Second, we divided the excitatory ACC neuronal population into two subpopulations F5; and
Es5 (Fig. 2B), one of which directly receives S1 input (Eo.1), while the other is indirectly driven by
the former one (E9.5). Therefore, we revised the model described by Egs. 8~11 with two excitatory-
inhibitory (E-I) groups.

We also scaled the inter- and intra-populations coupling strength by the relative population
sizes. For example, if the S1 population is twice as large as the ACC population, then the coupling
strength of S1—S1 and S1—-ACC would be twice as large as those of ACC—S1 and ACC—ACC,
respectively. Here we assumed that there are 20% of ACC excitatory neurons that receive S1 inputs;
k is the S1/ACC neuronal population size ratio; p scales the inhibitory/excitatory strength; L is the
scaling of long-range projection between the two regions. We set wgr and wg; as the basic coupling
strength, and set other coupling strength with a proper scaling constant (Fig. 2B).

Note that the variables that we used previously to describe sensory input and posterior expec-
tations about pain (i.e.,  and z) under predictive coding are now used as exogenous inputs to our

neural mass biophysical model. This allows us to handcraft different levels of nociceptive input, and
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posterior expectations or perceptual representations of the associated pain. Specifically, we assumed
that the external inputs are applied equally to the excitatory and inhibitory populations of the S1
and ACC as follows

PR =F'(t) = ¢°'fa(t) —2(1)], (13)

PReC@t) = PPOC%t) = g2t — A,). (14)

where |z(t) — z(t)| denotes the absolute PE, g5! and ¢g*“C denote two gain parameters for respective
neuronal population, and A, denotes the time delay from the input x. Let S17 (or S17) denote the
ACC population that receives direct S1 input (or not); let ¢; with the subscript index s = S17, 817, T
denote the percentages of pain-responsive neurons in subpopulations Es.1, Fo.o and Iy, respectively.
The gain parameters of this biophysical model play the same role as the precisions in the predictive

coding model.

Computing the power using the envelope function. We computed the upper and lower envelopes
of the oscillatory firing rate trace. We used the average (midline) of the upper and lower envelopes
to calculate the time-averaged synaptic activation variable s (or alternatively, the firing rate variable
r) as a measure of the firing dynamics in our mean field model.

To compute the pre-S1 synaptic activation, we integrated the average power of sSE1 from the
baseline (by discarding the initial transient) to the withdrawal onset, and then normalized it by the
duration. To compute the post-ACC synaptic activation, we integrated the average power of S%CC

from the withdrawal onset until a fixed window length, and then normalized it by the duration.

Software

The custom MATLAB code for implementing two described computational models is distributed on-

line (https://github.com/yuru-eats-celery/pain-coding-model and https://github.com/ymch815/predictive-

coding-mean-field-model.git).

3 RESULTS

In the following, we first summarize important experimental findings (section 3.1) that were
extracted from previous published data (Xiao et al., 2019; Singh et al., 2020), which pro-

vide the biological support and motivation for our computational modeling work. Next, we



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

14
describe our phenomenological model and its simulation results for both evoked pain and

non-evoked nociception (section 3.2). We will make data interpretation and prediction re-
lated to the experimental results. Finally, we present our computer simulation results based
on the mean-field model (section 3.3). In addition to replicating qualitatively similar results
as in the phenomenological model, we also adapt the mean-field model for chronic pain and
make several experimental predictions. To help the reader understand the materials, we
provide a high-level description of these results and connection to experimental findings
(Table 1). The rationale and goal of the paper is to motivate the modeling questions based
on the empirical experimental findings and make proper interpretations based on the results

of model prediction.

3.1 SI and ACC Activity in Naive and Chronic Pain Rats

From the simultaneously recorded S1 and ACC LFP activity, we found that the averaged
pre-event Z-scored gamma power in the S1 positively correlated with the averaged post-event
Z-scored beta power in the ACC (Fig. 3C, left panel). This suggests that pre S1 gamma-
ERS (or ERD) was temporally followed by post ACC beta-ERD (or ERS). Notably, the
correlated ERS/ERD patterns became weaker during evoked pain episodes (Fig. 3 C, middle
panel) and disappeared in negative control (Fig. 3 C, right panel). In the chronic pain state
of CFA rats, we also found similar observations (Fig. 3D).

In our earlier experimental investigation (Singh et al., 2020), we established a direct
S1—ACC projection during cortical pain processing. Among pain-responsive ACC neurons,
we identified a subpopulation that received the direct S1 input, from both naive and CFA
rats (Fig. 3, F and F, respectively). Compared to naive rats, chronic pain increased the
percentage of ACC neurons that received the direct S1 input. Together, these findings
provide empirical evidence to characterize chronic pain in our predictive coding model.

In another experimental investigation (Urien et al., 2018), we trained rats with a con-
ditioning paradigm that consists of three experimental phases. During the pre-conditioning
phase, we paired a tone (4 kHz, 80 dB, 0.5 s) with a non-noxious thermal stimulus applied
to the rat’s hind paw. During the conditioning phase, we paired the same tone with a

noxious thermal stimulus to induce pain avoidance. We found that the rat could avoid
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the noxious stimulus by simply removing its paw after the tone being played, yet before

the noxious stimulus being delivered. We also found that a subset of rat ACC neurons
responded before the delivery of pain stimulation, and these “pain-anticipating” neurons
increased or decreased their firing rates after the tone, and prior to, or in anticipation of,
the noxious stimulus. These pain-anticipating neurons gradually shifted their responses to
pain and started to respond during the anticipatory period. Later in the post-conditioning
phase, these pain-anticipating ACC neurons returned to their baseline behaviors, as the tone
stimulus was no longer paired with a noxious stimulus. These data also provide indirect

evidence of top-down influence on the ACC neuronal coding.

3.2 Computer Simulations for the Predictive Coding Model

The goal of the predictive coding model is to replicate the main findings of the pain experi-
ments at the macroscopic level. From FEq. I-/, we ran numerical simulations to characterize
the relationship of the surrogate of LFP oscillatory activity between the S1 and ACC. In
the following computer simulations, we used the default parameters listed in Table 2. The
additive Gaussian noise components {e,, €,, €.} were all assumed to have zero mean and
unit variance. In each condition, we reported the mean statistics based on 30 independent
Monte Carlo simulations, and ran 400 simulations to compute the correlation statistics.
To relate our model notations with experimental data, we viewed the variables v and v
as the Z-scored S1 and ACC population neuronal activity (therefore their initial conditions
were set to zeros). We also viewed A, and A, as the averaged pre- and post-withdrawal
Z-scored power from the S1 and ACC, respectively; which corresponded to the S1 LFP

pre-gamma Z-scored power and ACC LFP post-beta Z-score power (Fig. 3, C'and D).

Evoked pain. In the evoked pain condition, we set the initial pain expectation to be zero
(i.e., 2(0) = 0), and we set u(0) = 0 and v(0) = 0 for the initial Z-scored activity from
the S1 and ACC. In addition, we assumed the finite-duration constant external input,
and set the pain stimulus z(¢) = 2 if t € [4,4.5] s and z(t) = 0 otherwise. The first
4-s period prior to the stimulus was treated as the baseline. Given the initial condition,

we ran numerical simulations using the forward Euler method with time step 1 ms. An
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illustration of representative traces is shown in Fig. 4A. As seen in the figure, the z-trace

closely followed the z-trace; the u-trace reached an initial peak and gradually decays; and
the v-trace decayed slower than the other traces.

Once z-trace was reset upon reaching a threshold, we assumed that moment as the
withdrawal onset. We computed the net area under u-trace between the start of stimulation
to withdrawal (i.e., A, ), as well as the area under v-trace between the withdrawal withdrawal
and the end of stimulation (i.e., 4,) (Fig. 4B).

The withdrawal latency following the stimulus onset is a standard measure to quantify
the acute pain behavior (Deuis et al., 2017). In our simulations, we used the duration
between the onset of input x(¢) and the time of z(t) reset as the proxy of withdrawal
latency. We found that the latency decreases with increased stimulus intensity or input
amplitude (Fig. 4C), which is consistent with prior experimental observations (Dirig et al.,

1997).

Non-evoked nociception. In the non-evoked nociception condition, we set u(0) = 0,v(0) =
0,2(0) = 0.3, z(t) = 0 (i.e., no stimulus), and Zipreshola = 200. An illustration of represen-
tative traces is shown in Fig. 4D. In this example, the z-trace decays exponentially until it
reached the reset threshold; the u and v-traces first rose and then decayed exponentially,
and it took a longer time for the v-trace to approach the baseline.

To introduce trial variability, we assigned z(0) with random values. By varying the
initial condition z(0), we obtained various mean statistics for A, and A, during non-evoked
nociception. A strong positive correlation between A, and A, (Fig. 4F) was found. In
contrast, the correlation between A, and A, was weaker in the simulated evoked pain
condition (Fig. 4B). These results are consistent with our experimental findings (Fig. 1B).

Notably, although these simulations were done in the idealized conditions, and the exact
outcome may vary depending on the exact stimulation parameter setup, our computational
modeling provides a principled way to investigate the impact of parameters on the read-out

phenomenon. We will present such examples below.
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Sensitivity analysis of gain parameters and transmission delay. Thus far, we have kept

all gain (or precision) parameters in unity. Next, we investigated how the change of gain
parameter affects the dynamics. Since Var[z(0)] = 1/II;, we further assumed that II3 = II;
in Eq. 6. To investigate the impact of gain parameters, we considered two scenarios. In
the first scenario, we set IIs = 1 and systematically varied II; and II3 together. In the
second scenario, we set II; = II3 = 1 and systematically varied IIs. In both scenarios, the
ratio II3/IIy would deviate from unity. The results from these two scenarios are shown in
Fig. 5. The qualitative phenomenon that describes the correlation between A, and A, was
relatively robust with a wide range of gain parameters. In the evoked pain condition, the
correlation value remained low. In the non-evoked nociception condition, the correlation
value showed an increasing trend with increasing II; and II3, and showed a decreasing trend
with increasing Il,.

During task behaviors, the cortico-cortical conduction delay may vary. For cortical
communications over long-range connections or information relay between multiple brain
areas, the transmission delay may be even longer. To examine the impact of cortico-cortical
transmission delay, we further varied A, and investigated the correlation statistic (Supple-
mentary Fig. 1). We found that the correlation between A, and A, was stable for a wide
range of delay parameters.

In summary, these simulation results from the predictive coding model replicate several
key findings from two experimental pain conditions. However, this phenomenological model
is rather abstract, therefore the interpretation of the model parameter or results remains
limited. Next, motivated by the neural mass model in the literature (Friston et al., 2012;

Bastos et al., 2015), we extended the same line of investigations using the mean field model.

3.3  Computer Simulations for the Mean Field Model

In the following computer simulations, we used the default parameters listed in Table 3. We
used the forward Euler method to numerically simulate the population dynamics for a total
5.5 seconds (time step 0.1 ms). The pulse input = had a 200-ms duration. A 2-s simulation
interval was treated as the baseline period. The initial values of all rg,; and sg,; were

set to zero. We computed the midline envelopes of the synaptic activation variable s and
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firing rate variable r of excitatory populations from the S1 and ACC. Since the synaptic

activation variable s was highly correlated with the firing rate variable r (Supplementary
Fig. 2), we have used s to represent the firing dynamics of the S1 and ACC populations.
Notably, the mean field model employs different time constants and delay parameters, as it
captures a different spatiotemporal scale from the previous phenomenological model.

To simulate the withdrawal behavior, the reset time of latent variable z was determined
when the integration of z within a 300-ms moving window reached a predetermined thresh-
old. When z was reset to 0, x was also simultaneously set to 0, indicating that the animal
has escaped from the noxious stimulus. We ran numerical simulations of the mean field
model for three pain perception conditions. With different values of z and z, we simulated

the rg/r and sp/r dynamics of neuronal subpopulations.

Evoked pain and non-evoked nociception. In the evoked pain condition, we set a = 2000
(Eq. 4), Zihreshold = 200, and z(0) = 0. The dynamics of the populations are shown in
Fig. 6 A. In our simulation, all populations have an oscillatory activity with stable frequency,
where the S1 population oscillates in the gamma-band frequency and the ACC population
in the beta-band frequency. These oscillatory activities were the emergent property of the
local E/I networks as there was no externally imposed stimulus input fed to the network.
For each population, we took the upper and lower envelope of oscillation and computed their
averaged power as a representation of the mean synaptic activation. As seen in Fig. 6B,
S1 firing increased quickly after the stimulus onset, as a result of large PE; the activities of
two ACC subpopulations increased afterwards, as the latent variable z gradually increased.
Right after withdrawal, S1 population firing decreased immediately, while ACC population
firing decayed slower. Throughout the trial, the ACC subpopulation that received S1 inputs
had a greater firing intensity than the ACC subpopulation that did not.

We computed time-averaged pre-S1 synaptic activation and post-ACC synaptic activa-
tion (METHODS). By varying the stimulus amplitude, we ran 100 Monte Carlo simulations
and found that the result was consistent with the previous predictive coding model, showing
a relatively weak correlation (Fig. 6C).

In the non-evoked nociception condition, we set Zipreshold = 240 and kept the remaining
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parameters unchanged. As shown in Supplementary Fig. 3, the firing rates of both S1 and

ACC populations increased with a similar pace when the initial top-down expectation z(0)
was set to a positive value. We computed the pre-S1 and post-ACC activity by varying
2(0), and found a strong positive correlation between them (Fig. 6D), which was again
consistent with both experimental findings and the result of previous predictive coding

model (Fig. 4F).

Prediction 1: Placebo condition. Pain perception changes with different contexts. An
identical noxious stimulus may cause distinct pain percepts or behaviors depending on the
top-down influence. Placebo effects can create real or illusory pain analgesia, which can be
pharmacological, psychological, or physical (Wagner & Atlas, 2015). To our best knowl-
edge, there is yet no electrophysiological data available related to the placebo (or nocebo)
experiment. Therefore, predictive coding models may be useful to make experimental pre-
dictions.

To simulate the placebo effect, we set a negative z(0) to represent a biased subjective
pain perception. We also set a = 2000 and Zipreshold = 200. The pulse input has a 200-ms
duration. As presented in Supplementary Fig. 4, the existence of a negative z produced a
large PE, driving the S1 population to increase the firing rate, while suppressing the firing
of ACC population. After the onset of stimulus, the S1 firing rate increased quickly, while
the ACC firing rate increase was slower. By varying z(0), we found a positive correlation
between the pre-S1 and post-ACC power (Supplementary Fig. 5).

Within the predictive coding framework, placebo-induced treatment expectations can
be conceptualized as feedback-mediated predictions, which modulate pain by changing the
balance of feedback and feedforward processes at different levels of a neural processing

hierarchy (Buchel et al., 2014).

Chronic pain. To simulate the chronic pain state, we considered three experimental phe-
nomena observed in chronic pain: (i) the increasing percentage of ACC neurons that receive
the S1 input, (ii) the increasing percentage of pain-responsive neurons in each ACC subpop-

ulation, and (iii) the activation of the S1—+ACC pathway (Singh et al., 2020). We focused
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on the targeted ACC neuron population. Specifically, we increased the percentage of ACC

neurons that receive direct S1 input from 20% to 30%, increased the scaling parameter qg;+
from 35% to 60%, qg;- from 14% to 20%, and ¢; from 10% to 25%, and increased L from
0.1 to 0.2. Other model parameters were kept unchanged (see Fig. 7A).

In the evoked pain condition, we first computed the traces of synaptic variable s in
single-trial simulations. As expected, with a relatively low stimulus (z = 4.0), the ACC
population had a significantly higher firing intensity in the chronic pain condition than
in the naive case (Fig. 7B). When the stimulus was sufficiently high (z = 5.0), the ACC
population had a similar firing intensity in both chronic and naive situations (Fig. 7C).

Next, by varying the stimulus amplitude from 1.9 to 6.0, we ran 100 trials and com-
puted the averaged synaptic variable s of the ACC population from the stimulus onset
to withdrawal, which reflects the overall firing intensity of ACC neurons in response to
the stimulus. As shown in Fig. 7D, the difference in firing intensity between naive and
chronic pain conditions increased with increasing stimulus amplitude in the presence of
low-intensity stimulus; whereas this difference diminished with increasing stimulus ampli-
tude in the presence of high-intensity stimulus. With chronic pain, the ACC firing intensity
increased disproportionally depending on the stimulus intensity, which is consistent with
our previous experimental findings (Zhang et al., 2017). In addition, we have computed
the maximum synaptic activation as well as the latency to the maximum (Supplementary
Fig. 6).

We then considered the activities of ACC subpopulations Fo1 and Fs 5 separately. As
shown in Fig. 7F, with a low-intensity stimulus, the response of the ACC subpopulation
with the S1 input was similar to the response of total population, showing a significant
increase in the firing rate from naive to chronic pain. However, the ACC subpopulation
without receiving the S1 input did not change their firing rate significantly (Fig. 7F). This
suggested that the disproportional increase in ACC firing intensity from naive to chronic
pain was contributed mainly by neurons that received the S1 input. With a high-intensity
stimulus, the difference in the firing rate between naive and chronic pain conditions was small
for the ACC subpopulation with the S1 input, but the difference was still not significant

for the ACC subpopulation without the S1 input (Fig. 7G).
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Experimentally, the ACC baseline firing rate was higher in chronic pain than the naive

condition (Singh et al., 2020). Our model prediction also supported this result (Fig. 7H),
where the time-average of ACC baseline activity was computed over the period [0.5,1.5] s.

In the absence of stimulus, we found that chronic pain induced more sustainable high
firing intensity in the ACC. We computed the fraction of time when s was greater than a
certain threshold within the period Ts (from z onset to withdrawal), and found a sigmoid-
like shape with increasing z(0) (Fig. 8C). From naive to chronic pain, the sigmoid curve
shifted toward the left, which indicated that the fraction of time saturated at a lower z level
in the chronic pain condition. As shown in Fig. 84, when z was low, chronic pain induced a
higher and sustainable firing response compared with the naive condition. In contrast, when
z was high, both curves were saturated so that the time above threshold was nearly the
same in both conditions (Fig. 8 B). This implies that if spontaneous pain (i.e., non-evoked
nociception) was primarily induced by a top-down input, then the nociceptive response of
ACC neurons would be more sustainable in the chronic pain condition than in the naive
condition.

In the placebo and nocebo conditions, we predicted a monotonically increasing trend
in ACC firing with respect to increasing z in both naive and chronic pain states (Fig. 8D),
where negative z(0) corresponded to the placebo effect and positive z(0) to the nocebo effect.
This is consistent with the definitions of placebo effect as reduced nociceptive responses and
the nocebo effect as increased responses. In our simulations, we also found that the curve
shifted upward from the naive to chronic pain condition, indicating that the placebo effect
was weaker (i.e., feeling less relieved) and the nocebo effect was stronger (i.e., feeling more
painful) in chronic pain. The mean firing curve of each subpopulation with regard to
2(0) (Fig. 8E) suggested that the ACC subpopulation receiving the S1 input contributed

predominantly to this shift.

Precise noxious stimulus prediction decreases the S1 response. Next, we made predictions
of the S1 response within the predictive coding framework. Specifically, we fixed the stimulus
input = and investigate how the S1 firing intensity would change with respect to different

2(0). As shown in Fig. 9A, the pre-stimulus S1 firing intensity increased monotonically
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with z(0) However, the post-stimulus S1 firing intensity was determined by the absolute

PE, or |z — z(0)|. As shown in Fig. 9B, the curve of post-stimulus S1 firing intensity had a
V-shape with respect to z(0), and the minimum of V-shape curve shifted rightward when
we increased the stimulus amplitude x.

We further examined the effect of prediction on the S1 firing intensity. We set a positive
z(0) and assumed that z remained constant before the stimulus onset, which represented a
prediction of the stimulus x. We tested two scenarios: one with zero PE (i.e., z2(0) = x),
the other with a PE of = (i.e., 2(0) = 0). We measured the firing intensity of pre- and
post-stimulus S1 excitatory population, respectively. As illustrated in Fig. 9C, when PE
was x, the pre-stimulus S1 firing was significantly lower than the post-stimulus S1 firing;
however, the trend was reversed when there was a precise prediction (i.e. PE=0).

It is noteworthy that our model prediction is in line with several experimental findings
in the literature. First, human S1 gamma oscillations can predict subjective pain intensity
(but not objective stimulus intensity) (Gross et al., 2007; Zhang et al., 2012). Second, the
precise prediction of pain stimulus intensity decreases the S1 gamma-band activity (Arnal
& Giraud, 2012). Third, the prediction level is positively correlated with the “rating” of

pain stimulus (Peng et al., 2015).

Pain anticipation shifts the onset of the ACC response. Pain anticipation shifts the onset
of the ACC response. Furthermore, we made predictions of the ACC response in the
presence of pain anticipation within the predictive coding framework. Based on our prior
experimental findings (Urien et al., 2018), we conducted a computer simulation of tone-
conditioning pain anticipation (or prediction) experiment. Specifically, the latency of peak
firing rate (Fig. 104) of ACC neuronal populations changed significantly in the presence
of anticipation or prediction. In the absence of prediction, we observed a positive peak
latency, which implies that it took time for the ACC firing rate to accumulate upon the
nociceptive stimulus. However, when we set the latent variable z to a value that is equal
to the stimulus amplitude, the peak ACC firing rate appeared earlier or before the arrival
of the actual stimulus—thereby leading to a negative peak latency. This is consistent with

what we observed in the rat experiments. Furthermore, we tested the mean and peak firing
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activity during the 50-ms tone period right after we set z to the stimulus amplitude (Fig. 10B

and Fig. 10C). In the case of pain anticipation, both the mean and peak firing rates during
the tone-conditioning period increased significantly compared to those in the absence of
anticipation. This result indicated that the existence of anticipation was correlated with
the activation of ACC neurons during the tone period. Therefore, our computer simulations

can replicate the experimental findings of ACC neurons.

Prediction 2: Influence of ACC—S1 feedback. Thus far, we have only assumed the direct
S1—ACC projection in the circuit model based on the available experimental literature
(Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011; Singh et al., 2020). We further
asked whether the presence of ACC—S1 feedback changes the model prediction. To explore
that answer, we tried incorporating the ACC—S1 feedback into the mean field model, and
found qualitatively similar observations in the average S1 synaptic activation variable as
the default setup without feedback (Supplementary Fig. 7). This result suggest that if there
is an indirect pathway that the ACC activity affect the S1 response, the simulation results

of our biophysical model remain approximately valid.

4 DISCUSSION

In this work, we have used computational (predictive coding) models and neural mass (bio-
physical) models to reproduce the same empirical findings (i.e., dissociations in terms of
gamma and beta-band neural responses). We accomplished this by choosing model parame-
ters that reproduced the basic findings in terms of pre-and post-pain induced LFP responses
observed empirically in rodent experiments. By incorporating biophysical constraints, the

neural mass model could well explain the findings in chronic pain.

4.1  Neural Pathways for Pain Perception

Limited by rodent neurophysiological recordings, we have only focused our attention on
the S1 and ACC circuits in the context of predictive coding. In reality, however, many

other cortical or subcortical circuits are also engaged in pain processing. In the ascend-
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ing (“bottom-up”) pathway, the nociception originates in the peripheral system, and then

passes the signals to the dorsal horn of the spinal cord, then further to the thalamus, and the
cortex. The descending (“top-down”) system, involving the midbrain, RVM (rostral ven-
tromedial medulla), PAG (periaqueductal gray) and other areas, can exert both inhibitory
and modulatory influence. There may be multiple routes of descending control. It may
originate in the cortex, including the ACC, and project to the PAG. The PAG in turn sends
projections to RVM and then to the spinal cord (Buchel et al., 2014).

The S1 receives the bottom-up sensory input, involving the regulation of cortical ex-
citability. However, the prestimulus S1 gamma oscillations can predict subjective pain
intensity (Gross et al., 2007), whereas the precise prediction of pain stimulus intensity
decreases the gamma-band activity (Arnal & Giraud, 2012). Together, these results also
suggest that the S1 activity can represent the relative mismatch of expectations and sensory
evidence (Bauer et al., 2014).

Several lines of experimental evidence have pointed to a direct S1—ACC projection in
cortical pain processing (Sesack et al., 1989; Sesack & Pickel, 1992; Eto et al., 2011). We
have recently used experimental techniques to establish a direct S1—-ACC projection in
rats during the course of cortical pain processing. Activation of S1 axon terminals in the
ACC can recruit new ACC neurons to respond to noxious stimuli, as well as increase the
spiking rates of individual pain-responsive neurons; in the chronic pain state, the S1—-ACC
connectivity is enhanced, as manifested by a higher percentage of ACC neurons that respond
to S1 inputs (Singh et al., 2020). To date, however, it remains unknown whether there is an
indirect ACC—S1 pathway through the cortico-cortical feedback loop that modulate pain
processing. More experimental investigations are still required in the future.

The ACC is a major target of midbrain dopamine neurons, which encode reward-related
information (such as the reward prediction error). The ACC is reciprocally connected with
the amygdala and the orbitofrontal cortex (OFC), which has a projection to the nucleus
accumbens (NAc). Importantly, the ACC is also reciprocally connected with the prefrontal
cortex (PFC), a region implicated in executive control, working memory, and rule learning.
Therefore, the ACC may serve as a gateway for incorporating reward-related information

into sensorimotor mappings subserved by the PFC (Hayden & Platt, 2009). Moreover, the
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PFC has been confirmed to play a modulatory role of gain control in pain processing (Dale

et al., 2018). Activation of the PFC provides effective relief to sensory and affective pain
symptoms via descending projections in rodents (Lee et al., 2015; Martinez et al., 2017;
Zhang et al, 2015; Hardy, 1985). Nevertheless, a complete circuit dissection of cortical pain

processing between sensory cortices, ACC, OFC, and PFC has not been established.

4.2  FExperimental Fvidence for Predictive Coding in Pain Perception

In the presence of uncertainties, the brain uses a prediction strategy to guide decision
making or perceptual inference (Tabor et al., 2017). Within the predictive coding theory,
oscillatory beta-band activity has been linked to top-down prediction signals and gamma-
band activity to bottom-up PEs (Pelt et al., 2016). Specifically, in a human MEG study,
Granger-causal connectivity in the beta-band was found to be strongest for backward top-
down connections, whereas the gamma-band was found to be strongest for feed-forward
bottom-up connections (Pelt et al., 2016). In our recent Granger causality analysis of rodent
S1-ACC LFP data (Guo et al., 2020), we have observed a S1—-ACC Granger-causality
peak at a higher frequency (~75 Hz), and an ACC—S1 Granger-causality peak at a lower
frequency (~55 Hz), supporting this predictive coding theory. This causality analysis result
may also be ascribed to the spectral asymmetry in predictive coding (Bastos et al., 2015).

Predictive coding may provide the key to understanding important phenomena in pain
perception (Wiech, 2016; Ploner et al., 2017; Morrison et al., 2013). Unlike evoked pain,
spontaneous pain or non-evoked nociception is detached from an overt stimulus and may
be driven by internal processing inside the pain matrix. An important finding from our
previous experimental data (Xiao et al., 2019) is the fact that the pre-S1 gamma-ERD/ERS
correlates with the post-ACC beta-ERS/ERD during non-evoked nociception, whereas the
correlation becomes weaker or diminishes in evoked pain or baseline (Fig. 1C,D). This
phenomenon holds in both naive and chronic pain-treated rats, suggesting an information
flow between the bottom-up (gamma) and top-down (beta) loops. Therefore, the brain
may use differential neuronal responses to represent bottom-up and top-down modulations
of pain, and to provide complementary information about pain perception (Tiemann et al.

2015).
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The temporal coordination of beta-ERS/ERD and gamma-ERD/ERS between the ACC

and S1 during pain perception corroborates with some previous gamma-ERS and alpha or
beta-ERD reports on human EEG findings (Gross et al., 2007; Hu et al., 2013; Schultz et
al., 2015). The pain-induced alpha or beta-ERS/ERD is highly dependent on the cortical
region, which may be related to sensory gating and functional inhibition, or influenced by
top-down attention modulation (Peng et al., 2015). In addition, it has been reported that
pre-stimulus human EEG oscillations at the alpha (at bilateral central regions) and gamma
(at parietal regions) bands negatively modulated the perception of subsequent nociceptive

stimuli (Tu et al., 2016).

4.3 Chronic Pain

In the chronic pain state, sensory hypersensitivity and aversion are commonly observed.
Chronic pain can also alter acute pain intensity representations of noxious stimuli in the
ACC to induce generalized enhancement of aversion (Zhang et al., 2017). While cortical
pain responses differ between naive and chronic pain animals, the exact mechanisms of
transitioning from acute to chronic pain is still incompletely understood. Our computa-
tional model can provide valuable predictions to confirm the experimental findings. Our
recent experimental data have shown an increased number of ACC neurons that receive S1
nociceptive inputs, and these neurons that receive S1 inputs also have elevated firing rates
(Singh et al., 2020).

In chronic pain experiments, CFA mice with inflammatory pain show elevated resting
gamma and alpha activity and increased gamma power in response to sub-threshold stimuli,
in association with nociceptive hypersensitivity. Inducing gamma oscillations via optoge-
netic activation of parvalbumin-expressing inhibitory interneurons in the S1 enhances noci-
ceptive sensitivity and induces aversive avoidance behavior (Tan et al., 2019). In addition,
the magnitude of placebo analgesia effect appears to be stronger in chronic pain patients
experiencing hyperalgesic states (Vase et al., 2014). Our computer simulation results have

indirectly supported these findings (Fig. 8 and Fig. 9, respectively).
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4.4  Limitations
Our have computational models have succeeded in modeling several key experimental data
findings (Table 1), including the LFP spectral asymmetry in the S1 and ACC, animal
behaviors in evoked pain and pain anticipation, coordinated S1-ACC activity during chronic
pain, the S1 activity during stimulus prediction, the ACC activity during pain anticipation.
However, there are also several conceptual limitations in our computational models.
First, we did not explicitly model the cortical layer-specific role in the S1 and ACC. It is
well known that different cortical layers receive distinct sources of feedforward or feedback
input and may carry different computational roles in predictive coding. Specifically, 1.4 neu-
rons may receive inputs from the thalamic projection; L2/3 pyramidal neurons are critical
for receiving prediction signals from high-level cortical areas, and interlaminar connections
may support the temporal integration of feedforward inputs and feedback signals to pre-
dict future perception (Constantinople & Bruno, 2013; Bastos et al., 2020). Recent fMRI
experiments also suggest the predictive coding in the human S1 in a layer-specific manner
(Yu et al., 2019). Second, our biophysical models were established based on oversimpli-
fied assumptions and have ignored many details in the canonical microcircuit, such as the
cell type specificity, thalamic feedback, and neuromodulatory input. The dynamic causal
model (DCM) can potentially capture more functional and anatomical properties of the
microcircuits for predictive coding (Bastos et al., 2015). However, detailed causal modeling
of cortical connectivity is highly challenging (involving many parameters), which is diffi-
cult to fit based on rodent LFP recordings alone. Finally, thus far we have only developed
mathematical equations to characterize the neural response variables u(t) and v(¢); in other
words, our models are purely phenomenological and descriptive. A computational strategy
would be developing practical algorithms to predict the latent z(¢) based on the observed
responses {u(t),v(t)}; this will be the subject of our future research. Overall, a computa-
tional model is only as good as its assumptions. Although our model predictions depend
on the model oversimplification and parameters, the predictive coding modeling framework

is sufficiently flexible and powerful to generate rich neuronal population dynamics.

In summary, motivated by empirical experimental findings in rodents, we have devel-
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oped a predictive coding framework and computational models to characterize the neuronal

population activity of the rat S1 and ACC in pain conditions. To our knowledge, our
work represents the first effort along this direction. Our first model is phenomenological
and characterizes the macroscopic neural activity, whereas the biophysically-constrained
mean field model characterizes the mesoscopic neuronal population activity. Importantly,
our mean field model imposes biological constrains onto the E/I populations. Our com-
putational models have not only presented a good prediction of the rodent data, but also
made experimental predictions on the placebo/nocebo effects; the next step is to further
validate the predictive coding models in human pain experiments. This effort would re-
quire the use of source localization techniques to reconstruct the S1 and ACC activity
based on high-density EEG or MEG recordings (Pelt et al., 2016; Hauck et al., 2015;
Zhang et al., 2016). In addition, our computational model may provide valuable predictions
for other experimental conditions, such as investigation of cortical pain processing during
pain perception in the presence of anesthetic or analgesic drugs (Zhou et al., 2018). Fi-
nally, the biophysical model can be extended as a dynamic causal model of complex cross
spectral responses (Friston et al., 2012). The parameters of such a forward or generative
model of observed data may be optimized using variational techniques. This will enable us
to quantify both the gain or weight parameters of our model, as well as the uncertainty of
these estimates. We will then be able to test hypotheses about the effects under different

pain conditions.



767

768

769

770

771

772

773

774

775

776

T

778

779

780

781

782

783

784

785

29
ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation (NSF)-CBET grant
1835000 (ZSC, JW), National Institutes of Health (NIH) R01-NS100065 (ZSC, JW), RO1-
MH118928 (ZSC), and a fellowship of the NIH Training Program in Computational Neuro-
science (HK) supported by NIH T90/R90 DA043219 and DA043849. Preliminary version of
this work was presented in Proceedings of IEEE EMBC’19, Berlin, July 23-28, 2019 (Song
et al., 2019).

DISCLOSURE

No conflict of interest, financial or otherwise, are declared by the authors.

CODE AVAILABILITY

The custom MATLAB code for implementing two described computational models is dis-
tributed online (https://github.com/yuru-eats-celery/pain-coding-model and

https://github.com/ymch815 /predictive-coding-mean-field-model.git).

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: ZSC, JW. Supervised the project: ZSC. Per-
formed the experiments and collected the data: QZ, ZX, AS. Analyzed the data: YS, MY,
HK, ZX. Contributed the software: YS, MY, AB. Wrote the paper: ZSC.

REFERENCES

Aitchison L, Lengyel M. (2017). With or without you: predictive coding and Bayesian inference
in the brain. Curr. Opin. Neurobiol. 46: 219-227.

Arnal LH, Giraud AL. (2012). Cortical oscillations and sensory predictions. Trends Cogn. Sci. 16:
390-398.

Baliki MN, Apkarian AV. (2015). Nociception, pain, negative moods, and behavior selection. Neu-
ron 87: 474-491.



786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

30
Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. (2012). Canonical micro-

circuits for predictive coding. Neuron 76: 695-711.

Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ. (2015). A DCM study of spectral
asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the

monkey. Neuroimage 108: 460-475.

Bastos AM, Lundqvist M, Waite A, Kopell N, Miller EK. (2020). Layer and rhythm specificity for
predictive routing. biorxiv.org, https://doi.org/10.1101/2020.01.27.921783.

Bauer M, Stenner MP, Friston KJ, Dolan RJ. (2014). Attentional modulation of alpha/beta and

gamma oscillations reflect functionally distinct processes. J. Neurosci 34: 16117-16125.
Bennett GJ. (2012). What is spontaneous pain and who has it? J. Pain 13:921-929.

Bressler SL, Richter CG. (2015). Interareal oscillatory synchronization in top-down neocortical

processing. Curr. Opin. Neurobiol. 31: 62-66.

Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. (2001). Geometric visual hal-
lucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical

Transactions of the Royal Society of London. Series B, Biological Sciences 356: 299-330.

Buchel C, Geuter S, Sprenger C, Eippert F. (2014). Placebo analgesia: a predictive coding per-
spective. Neuron 81: 1223-1239.

Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. (1999). Pain perception: is
there a role for primary somatosensory cortex? Proc. Natl. Acad. Sci. USA 96: 7705-7709.

Bushnell MC, Ceko M, Low LA. (2013). Cognitive and emotional control of pain and its disruption
in chronic pain. Nat. Rev. Neurosci. 14: 502-511.

Constantinople CM, Bruno RM. (2013). Deep cortical layers are activated directly by thalamus.
Science 340: 1591-1594.

Dale J, Zhou H, Zhang Q, Martinez E, Hu S, Liu K, Urien L, Chen Z, Wang J. (2018). Scaling up
cortical control inhibits pain. Cell Rep. 23: 1301-1313.

Deco G, Jirsa VK, McIntosh AR. (2011). Emerging concepts for the dynamical organization of

resting-state activity in the brain. Nat. Rev. Neurosci. 12: 43-56.

Deuis JR, Dvorakova LS, Vetter I. (2017). Methods used to evaluate pain behaviors in rodents.

Front. Molecular Neurosci. 10, 284.



815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

31
Dirig DM, Salami A, Rathbun ML, Ozaki GT, Yash TL. (1997). Characterization of variables

defining hindpaw withdrawal latency evoked by radiant thermal stimuli. J. Neurosci. Methods 76:
183-191.

Ermentrout GB, Cowan JD. (1979). A mathematical theory of visual hallucination patterns. Biol.
Cyber. 34: 137-150.

Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, Nabekura J. (2011). Inter-
regional contribution of enhanced activity of the primary somatosensory cortex to the anterior

cingulate cortex accelerates chronic pain behavior. J. Neurosci. 31: 7631-7636.

Friston KJ, Bastos A, Litvak V, Stephan EK, Fries P, Moran RJ. (2012). DCM for complex-valued

data: cross-spectra, coherence and phase-delays. Neuroimage 59: 439-455.

Friston KJ, Kiebel S. (2009). Predictive coding under the free-energy principle. Philosophical
Transactions of the Royal Society B: Biological Sciences 364: 1211-1221.

Friston KJ, Bastos AM, Pinotsis D, Litvak V. (2015). LFP and oscillations—what do they tell us?
Curr. Opin. Neurobiol. 31: 1-6.

Geuter S, Boll S, Eippert F, Buchel C. (2017). Functional dissociation of stimulus intensity coding

and predictive coding of pain in the insula. eLife 6: €24770.

Guo X, Zhang Q, Singh A, Wang J, Chen Z. (2020). Granger causality analysis of rat cortical

functional connectivity in pain. J. Neural Eng. 17: 016050.

Gross J, Schnizler A, Timmermann L, Ploner M. (2007). Gamma oscillations in human primary

somatosensory cortex reflect pain perception. PLoS Biol. 5: el133.
Hardy SG. (1985). Analgesia elicited by prefrontal stimulation. Brain Res. 339: 281-284.

Hauck M, Domnick C, Lorenz J, Gerloff C, Engel AK. (2015). Top-down and bottom-up modulation

of pain-induced oscillations. Front. Hum. Neurosci. 9: 375.
Hayden BY, Platt ML. (2009). Cingulate cortex. In Encyclopedia of Neuroscience Elsevier.

Hoskin R, Berzuini C, Acosta-Kane D, El-Deredy W, Guo H, Talmi D. (2019). Sensitivity to pain

expectations: A Bayesian model of individual differences. Cognition 182: 127-139.

Hu L, Peng W, Valntini E, Zhang Z, Hu Y. (2013). Functional features of nociceptive-induced

suppression of alpha band electroencephalographic oscillations. J. Pain 14: 89-99.

Huang Y, Rao RPN. (2011). Predictive coding. Wiley Interdiscip. Rev. Cogn. Sci. 2: 580-593.



844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

32
Tannetti GD, Mouraux A. (2010). From the neuromatrix to the pain matrix (and back). Exp. Brain

Res. 205: 1-12.

Johansen JP, Fields HL, Manning BH. (2001). The affective component of pain in rodents: direct
evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 98: 8077—
8082.

Keeley S, Byrne A, Fenton A, Rinzel J. (2019). Firing rate models for gamma oscillations. J.
Neurophysiol. 121: 2181-2190.

Lea-Carnall CA, Montemurro MA, Trujillo-Barreto NJ, Parkes LM, El-Deredy W. (2016). Cortical

resonance frequencies emerge from network size and connectivity. PLoS Comp. Biol. 12: 1-19.

Lee M, Manders TR, Eberle SE, Su C, D’amour J, Yang R, Lin HY, Deisseroth K, Froemke
RC, Wang J. (2015). Activation of corticostriatal circuitry relieves chronic neuropathic pain. J.

Neurosci. 35: 5247-5259.

Legrain V, Tannetti GD, Plaghki L, Mouraux A. (2011). The pain matrix reloaded: a salience

detection system for the body. Progress in Neurobiology 93: 111-124.

Martinez E, Lin HH, Zhou H, Dale J, Liu K, Wang J. (2017). Corticostriatal regulation of acute
pain. Front. Cell. Neurosci. 11:146.

May ES, Nlckel MM, Dinh ST, Tiemann L, Heitmann H, Voth I, Tolle TR, Gross J, Ploner M.
(2019). Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients.

Human Brain Mapp. 40:293-305.

Meijer HGE, Eissa TL, Kiewiet B, Neuman JF, Schevon CA, Emerson RG, Goodman RR, McK-
hann GM, Marcuccilli CJ, Tryba AK, Cowan JD, van Gils SA, van Drongelen W. (2015). Modeling
focal epileptic activity in the Wilson-Cowan model with depolarization block. J. Math. Neurosci.

5: 7.

Morrison I, Perini I, Dunham J. (2013). Facets and mechanisms of adaptive pain behavior: pre-

dictive regulation and action. Front. Hum. Neurosci. 7: 755.

van Pelt S, Heil L, Kwisthout J, Ondobaka S, van Rooij I, Bekkering H. (2016). Beta and gamma-
band activity reflect predictive coding in the processing of causal events. Soc. Cog. Affect Neurosci.

11: 973-980.

Peng W, Babiloni C, Mao Y, Hu Y. (2015). Subjective pain perception mediated by alpha rhythms.
Biol. Psychol. 109: 141-150.



874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

33
Peng W, Xia X, Yi M, Huang G, Zhang Z, Tannetti G, Hu L. (2018). Brain oscillations reflecting

pain-related behavior in freely moving rats. PAIN 159: 106-118.

Pinotsis D, Robinson P, Graben PB, Friston K. (2014). Neural masses and fields: modeling the

dynamics of brain activity. Front. Comput. Neurosci. 8: 149.
Ploner M, Sorg C, Gross J. (2017). Brian rhythms of pain. Trends Cog. Sci. 21: 100-110.

Ploner M, May ES. (2018). Electroencephalography and magnetoencephalography in pain

research—current state and future perspectives. PAIN 159: 206-211.

Rao RP, Ballard DH. (1999). Predictive coding in the visual cortex: a functional interpretation of

some extra-classical receptive-field effects. Nat. Neurosci. 2: 79-87.

Roberts JA, Gollo LL, Abeysuriya RG, Roberts G, Mitchell PB, Woolrich MW, Breakspear M.
(2019). Metastable brain waves. Nat. Commun. 10: 1-17.

Sesack SR, Deutch AY, Roth RH, Bunney BS. (1989). Topographical organization of the efferent
projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with

Phaseolus vulgaris leucoagglutinin. J Comp. Neurol. 290: 213-242.

Sesack SR, Pickel VM. (1992). Prefrontal cortical efferents in the rat synapse on unlabeled neuronal
targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the

ventral tegmental area. J Comp. Neurol. 320: 145-160.

Schultz E, May ES, Tiemann L, Nickel MM, Witkovsky V, Schmidt P, Gross J, Ploner M. (2015).

Prefrontal gamma oscillations encode tonic pain in humans. Cereb. Corter 25: 4407-4414.

Sedley W, Gander PE, Kumar S, Kovach CK, Oya H, Kawasaki H, Howard MA, Griffiths TD.

(2016). Neural signatures of perceptual inference. eLife 5: e11476.

Shipp S, Adams RA, Friston KJ. (2013). Reflections on agranular architecture: predictive coding

in the motor cortex. Trends Neurosci. 36: 706-716.

Shusterman V, Troy WC. (2018). From baseline to epileptiform activity: a path to synchronized

rhythmicity in large-scale neural networks. Phys. Rev. E 77:061911.

Singh A, Patel D, Hu L, Li A, Zhang Q, Guo X, Robinson E, Martinez E, Doan L, Rudy B, Chen Z,
Wang J. (2020). Mapping cortical integration of sensory and affective pain pathways. Curr. Biol.,
30: 1703-1715.

Song Y, Kemprecos H, Wang J, Chen Z. (2019). A predictive coding model for evoked and spon-
taneous pain. Proc. IEEE EMBC. DOI: 10.1109/EMBC.2019.8857298.



904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

34

Stern J, Jeanmonod D, Sarnthein J. (2006). Persistent EEG over activation in the cortical pain

matrix of neurogenic pain patients. Neuroimage 31: 721-731.

Tabor A, Thacker MA, Moseley GL, Kording KP. (2017). Pain: A statistical account. PLoS
Comput. Biol. 13: 1-13.

Taesler P, Rose M. (2016). Prestimulus theta oscillations and connectivity modulate pain percep-

tion. J. Neurosci. 36: 5026-5033.

Talsma D. (2015). Predictive coding and multisensory integration: an attentional account of the

multisensory mind. Front. Integrative Neurosci. 9: 19.

Tan LL, Oswald MJ, Heinl C, et al. (2019). Gamma oscillations in somatosensory cortex recruit
prefrontal and descending serotonergic pathways in aversion and nociception. Nat Commun. 10:

983.

Tiemann L, May ES, Postorino M, Schulz E, Nickel MM, Bingel U, Ploner M. (2015). Differential

neurophysiological correlates of bottom-up and top-down modulations of pain. PAIN 156: 289-296.

Tu Y, Zhang Z, Tan A, Peng W, Hung YS, Moayedi M, Tannetti GD, Hu L. (2016). Alpha and
gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive

stimuli. Hum. Brain Mapp. 37: 501-514.

Uhelski ML, Davis MA, Fuchs PN. (2012). Pain affect in the absence of pain sensation: evidence

of asomaesthesia after somatosensory cortex lesions in the rat. PAIN 153: 885—892.

Urien L, Xiao Z, Bauer EP, Chen Z, Wang J. (2018). Rate and temporal coding mechanisms in the

anterior cingulate cortex for pain anticipation. Sci. Rep. 8: 8298.

Vase L, Petersen GL, Lund K. (2014). Placebo effects in idiopathic and neuropathic pain conditions.
In Benedetti F, Enck P, Frisaldi E, Schedlowski M (eds). Placebo (pp. 121-136). Springer.

Vierck CJ, Whitsel BL, Favorov OV, Brown AW, Tommerdahl M. (2013). Role of primary so-

matosensory cortex in the coding of pain. PAIN 154: 334-344.

Vijayakumar V, Case M, Shirinpour S, He B. (2017). Quantifying and characterizing tonic thermal
pain across subjects from EEG data using random forest models. IEEE Trans. Biomed. Eng. 64:

2988-2966.

Wagner TD, Atlas LY. (2015). The neuroscience of placebo effects: connecting context, learning

and healthy. Nat. Rev. Neurosci. 16: 403-418.



933

934

935

936

937

938

939

940

941

942

943

044

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

35
Wang J, Cao B, Yu TR, Jelfs B, Yan J, Chan RH, Li Y. (2015). Theta-frequency phase-locking of

single anterior cingulate cortex neurons and synchronization with the medial thalamus are modu-

lated by visceral noxious stimulation in rats. Neuroscience 298: 200-210.

Wiech K. (2016). Deconstructing the sensation of pain: the influence of cognitive processes on

pain perception. Science 354:584-587.

Wilson HR, Cowan JD. (1972). Excitatory and inhibitory interactions in localized populations of

model neurons. Biophysics Journal 12: 1-24.

Wilson HR, Blake R, Lee SH. (2001). Dynamics of traveling waves in visual perception. Nature
412: 907-910.

Xiao Z, Martinez E, Kulkarni P, Zhang Q, Rosenberg D, Hou Q, Zhou H, Wang J, Chen Z. (2019).
Cortical pain processing in the rat anterior cingulate cortex and primary somatosensory cortex.

Front. Cellular Neurosci. 13: 165.

Yu Y, Huber L, Yang J, et al. (2019). Layer-specific activation of sensory input and predictive

feedback in the human primary somatosensory cortex. Sci. Adv. 5:eaav9053.

Zhang CH, Sohrabpour A, Lu Y, He B. (2016). Spectral and spatial changes of brain rhythmic

activity in response to the sustained thermal pain stimulation. Hum. Brain Mapp. 37: 2976-2991.

Zhang Q, Mander TR, Tong APS, Yang R, Garg A, Martinez E, Zhou H, Dale J, Goyal A, Urien
L, Yang G, Chen Z, Wang J. (2017). Chronic pain induces generalized enhancement of aversion.

eLife 6: €25302.

Zhang Q, Xiao Z, Huang C, Hu S, Kulkarni P, Martinez E, Tong APS, Garg A, Zhou H, Chen Z,
Wang J. (2018). Local field potential decoding of the onset and intensity of acute thermal pain in
rats. Sci. Rep. 8: 8299.

Zhang Z, Gadotti VM, Chen L, Souza IA, Stemkowski PL, Zamponi GW. (2015). Role of prelimbic

GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep. 12: 752-759.

Zhang ZG, Hu L, Hung YS, Mouraux A, Tannetti GD. (2012). Gamma-band oscillations in the
primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. J.

Neurosci. 32: 7429-7438.

Zhou H, Zhang Q, Martinez E, Hu S, Liu K, Dale J, Huang D, Yang G, Chen Z, Wang J. (2018).
Ketamine reduces hyperactivity of the anterior cingulate cortex to provide enduring relief of chronic

pain. Nat. Commun. 9: 3751.



36

Table 1: Summary of key results of two computational models and the associated experi-
mental support.

Computer modeling results

Condition phenomenological model mean field model Experimental support
model description | Egs. 1-6, Fig. 1D, Table 2 | Eqs. 8-14, Fig. 2B, Table 3 n/a
evoked pain Figs. 4A-C, Fig. 5A Fig. 6A-C Fig. 3C,D, rat ACC and S1 LFP data reported in (Xiao et al., 2019)
non-evoked pain Figs. 4D.E, Fig. 5B Fig. 6D Fig. 3B,C,D, rat ACC and S1 LFP data reported in (Xiao et al., 2019)
chronic pain n/a Fig. 7B,C.H, pain aversion in rat ACC neurons (Zhang et al., 2017)
Fig. 7TA,D-H, Fig. 8A-C Fig. 3E,F, rat SI—+ACC projection (Singh et al., 2020)
placebo & nocebo n/a Fig. 8D,E none found
stimulus prediction n/a Fig. 9A-C human S1 activity (Gross et al., 2007; Zhang et al., 2012)
pain anticipation n/a Fig. 10A rat’s behavior (Urien et al., 2018)
Fig. 10B,C rat ACC activity (Urien et al., 2018)

Table 2: Summary of default parameters used in the predictive coding model

Parameter Value
dt 1 ms
Time constant 7, 300 ms
Time constant 7, 100 ms
Time delay A, 100 ms
Time delay A, 300 ms
Gain parameter Il 1
Gain parameter I1; 1
Gain parameter Iy 1
Gain parameter I3 1
Threshold Zipreshold 200
ain Eq. 4 5000
bin Eq. 4 1
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Table 3: Summary of standard mean field model parameters

Parameter Value
Firing rate of E/I population rg/;

Synaptic activation of E/I population sg,;

Time step in Euler’s method 0.1 ms
Percentage of ACC population receiving a direct S1 input 20%
Excitatory synaptic weights {wgg, wgr} 22

Inhibitory synaptic weights {w;, wrg}

Scaling parameter p for inhibitory/excitatory strength
Scaling parameter L for long-range projection
S1/ACC population size ratio x

Gain parameter ¢5!
Gain parameter gA°
Scaling parameter for % of pain-responsive neurons qgl, dg1> 41
Slope of sigmoid function op = oy

Center of sigmoid function hg = hy

Synaptic activation time constant for excitatory population 75 g
Synaptic activation time constant for inhibitory population 7 r

S1 firing time constant for excitatory population 7, g

S1 firing time constant for inhibitory population 7,

ACC firing time constant for excitatory population 7, g

ACC firing time constant for inhibitory population 7,

Ratio between activation and inactivation times of the synapse vg /s
Time delay in SI—+ACC projection: Ag;

Time delay: A,

C

Wi = PWEE
WIE = PWET
—-1.5
0.1
2
2
3
35%, 14%, 10%
S1: 0.5; ACC: 0.7
S1: 4; ACC: 3
3 ms
10 ms
1 ms
3 ms
3 ms
18 ms
4
20 ms
75 ms
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Fig. 1: Predictive coding. (A) Schematic diagram of predictive coding for pain perception.
(B) Graphical illustration of prediction error (PE), prior expectation, and prediction in per-
ceptual inference. Due to the uncertainty of the top-down expectation, PE is assumed to be
Gaussian distributed. Mean and standard deviation (SD) characterize the uncertainty of a
Gaussian random variable. (C) Schematic illustration of neural response (a.u.) represent-
ing a gain-weighted PE that changes in time, where the gain is the precision statistic. (D)
Graphical model showing statistical dependencies between the observed variables {u, v} and
the latent variable {z} in the predictive coding model. Here, z denotes the pain expectation,
and v and v denote the observed neural responses at two brain areas. (E) The magnitude of
frequency response Hj(w) and its approximation, which can be viewed as a low-pass filter.
(F) Schematic illustration of power spectra |U(w)|? (solid line) and |V (w)|? (dashed line),
where U(w) and V(w) are the Fourier transforms of u(t) and v(¢) in the predictive coding
model, respectively.
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Fig. 2: A schematic of mean field model for the S1 and ACC circuits. (A) In a reduced
model, each brain area is described by an excitatory (E) and an inhibitory (I) population
of neurons, with inter- and intra-population coupling. The S1—+ACC coupling is assumed
to be excitatory and unidirectional. (B) A detailed mean-field model that account for
biological constraints and details. The pain-responsive ACC neuronal population, Fs_1, is
assumed to receive a direct excitatory input from the S1 population Fy. wgg represents the
basic coupling strength between the same type of neuronal populations (E-E or I-I), wgy
represents the basic coupling strength between different types of neuronal populations (E-I
or I-E). p is a negative number that scales the strength of inhibitory input from I-neurons.
L < 1 is a positive number that scales the effect of long-range S1—-ACC projection. &
represents the size ratio of S1 population to ACC population.
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Fig. 3: Results excerpted from our previous experimental findings. (A4) Schematic diagram
of noxious stimulation and electrophysiological recording in naive and CFA rats. (B) Z-
scored spectrograms in the ACC and S1 during a representative non-evoked nociception
episode. White traces show the principal component of multichannel LEPs. Time 0 marks
the onset of non-evoked nociception event. The post-event power was Z-scored with respect
to [—5,0] s, whereas the pre-event power was Z-scored with respect to [0,5] s. The S1-
ERD during the pre-event period and the ACC-ERS during the post-event period were
highlighted by dashed and solid ellipses, respectively. (C) Time-averaged Z-scored pre-
gamma S1 activity vs. post-beta ACC activity (n = 252 non-evoked nociception events,
n = 233 evoked pain events; n = 149 negative controls), for naive rats. In each panel,
R-square (i.e., the square of Pearson’s correlation) and p values are reported. (D) Same
as panel C, except for CFA rats (n = 127 non-evoked nociception events, n = 71 evoked
pain events; n = 49 negative controls). (E) Pie chart of pain-responsive ACC neurons that
receive a direct S1 input for naive rats. (F) Same as panel E, except for CFA rats.
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Fig. 4: Simulation results from the predictive coding model. (A4) Simulated 10-s temporal
traces of {x,z,u,v} in evoked pain. Y-axis is in arbitrary unit (a.u.). Stimulus onset
separates the pre-event from post-event periods. Here, we used u(0) = v(0) = z(0) = 0.
The right panel shows the zoom-in window of 4000-6000 ms. (B) The correlation of A, (area
under u-curve) and A, (area under v-curve) was small during evoked pain. Each point was
derived from a simulation with a different input amplitude (correlation: 0.097, p = 0.06,
n = 400). The A, and A, represent the proxy of average induced responses in the gamma
and beta bands. Each point was derived from a simulation with a different z(0). (C) Reset
(withdrawal) latency decreases with increasing input amplitude. Error bar represents the
standard error of mean (SEM) (n = 50). (D) Simulated temporal traces of {z,z,u,v} in
non-evoked nociception. Y-axis is in a.u. Here, we used u(0) = v(0) = 0,2(0) = 0.3.The
right panel shows the zoom-in window of 0-2000 ms. (E) A, (during the pre-event period)
was positively correlated with A, (during the post-event period). Each point was derived
from a simulation with a different 2(0) (correlation: 0.947, p < 10719 n = 400).
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Fig. 5: Sensitivity analysis of correlation between A, and A, with respect to the gain
parameters {II;,IIs, I3} in the predictive coding model. (A) Evoked pain (B) non-evoked
nociception. All error bars denote SEM (n = 10) and each correlation was computed from
25 trials with random initial conditions.
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Fig. 6: Simulation results from the mean field model. (A) Simulated stimulus input
and latent z trajectories. (B) Mean-field activity (synaptic activation s) for three different
excitatory neuronal populations (E1, Fs 1, F29) in one evoke pain simulation. Dashed lines
show the upper and lower bounds of the envelop around the oscillatory activity. Solid line
shows the midline between the upper and lower bounds. For comparison, the last panel
replots the three midlines in the first three panels. Time 2400 ms marks the onset time for
post-ACC synaptic activation integration. (C,D) Scatter plots of average pre-S1 synaptic
activation s versus average post-ACC synaptic activation s derived from the mean field
model simulations (n = 100) in evoked pain and non-evoked nociception. The Pearson’s
correlation coefficients in two panels were 0.15 (p = 0.137) and 0.40 (p = 4.5 x 107°),
respectively. Color bar represents the different initial condition for x(0) (panel C) or z(0)
(panel D).
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Fig. 7: Mean field model simulation results of evoked pain under the chronic pain condition.
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Fig 7. Mean field model simulation results of evoked pain for the chronic pain condition.

(A) Modified mean field model (compared to Fig. 3B) for chronic pain. Modified variables
are marked in red. (B) Comparison of the midline envelope of ACC synaptic activation
variable s between naive (blue) and chronic pain (red) condition for the stimulus amplitude
4.0. Bar above the curve marks the duration Ts between the stimulus onset to withdrawal.
(C) Same as panel B, except for the stimulus amplitude 5.0. In all following plots, the noises
are set as €, = 0.1,ep = ¢; = 0.005. (D) Average ACC synaptic activation variable s from
total population during T for varying stimulus amplitude under naive (blue) and chronic
pain (red) condition. (E) Similar to panel D, except for two ACC subpopulations Es1 (w/
direct S1 input) and E2.2 (w/o S1). Mean and SEM for each group are shown. 100 Monte
Carlo runs were run with random initial input amplitude = € [1.9,6.0]. (F,G) From panel
E, we replotted the average ACC synaptic activation of Eo 1 (w/ S1) and Eao (w/o S1)
during Ty for low and high stimulus amplitude. Error bars were computed from 10 trials
with random initial input amplitude x € [3.3,3.7]. For the low stimulus amplitude, there
was a significant difference between naive and chronic pain for Es1 (p < 0.0001, rank-sum
test); but not significant for E9o (p = 0.86). For the high stimulus amplitude, there was
a less significant difference between naive and chronic pain for Es 1 (p = 0.0028); however,
the difference of that for Eoo was insignificant (p = 0.799). (H) Average ACC synaptic
activation during baseline (no stimulus) was significantly lower (p < 0.0001, rank-sum test)
in naive (blue) than in chronic pain (red). Average was computed from the baseline ([0.5,

1.5] s) by discarding the initial transient period.
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Fig. 8: Mean field model simulation results of non-evoked nociception and placebo/nocebo
effects under the chronic pain condition. (A) Simulated midline envelope trace of ACC
synaptic activation variable s in non-evoked nociception under naive (blue) and chronic
pain (red) conditions, for an initial top-down expectation z(0) = 3.0. (B) Similar to panel
A, except for z(0) = 4.5. At low z(0), the fraction of time above threshold during T
(between the stimulus onset and withdrawal) was longer in the chronic pain condition; at
high z(0), the fraction was similar between the two conditions. (C) Fraction of time during
T that ACC synaptic activation variable was above the threshold (horizontal dashed line)
for various top-down expectation z(0) in naive (blue) and chronic pain (red) conditions. The
curve has a sigmoidal shape and shifts leftward from naive to chronic pain condition. 100
Monte Carlo trials were run with random z(0) € [1.5,5.0]. Mean and SEM for each group
are plotted. (D) Comparison of average ACC synaptic activation in placebo/nocebo effects
under naive (blue) and chronic pain (red) conditions for various initial top-down expectation
z(0), where z(0) < 0 and z(0) > 0 represent the placebo and nocebo effects, respectively.
The synaptic activation s of total ACC population increased monotonically, and shifted
upward from the naive to chronic pain condition. (E) Similar to panel D, except for ACC
subpopulations Ey.; (w/ S1 input) and Es2 (w/o S1 input). The subpopulation Es.; had
a similar shape of the total population, while Fs. did not increase much from the naive
to chronic pain condition. 100 Monte Carlo trials were run with random z(0) € [—4.0, 4.0].
Mean and SEM are plotted for each group.
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Fig. 9: Mean field model simulation results of the S1 synaptic activation variable with
regards to the prediction error (PE) and stimulus prediction. (A) During pre-stimulus
baseline, time-averaged S1 synaptic activation variable increased monotonically with z(0).
(B) During post-stimulus presentation, the average S1 synaptic activation variable exhibited
a V-shaped profile from varying stimulus amplitude (z = 2.0,2.5,3.0), where the minimum
occurs when z = 2(0) or PE = 0. The minimum shifted rightward with increasing =z,
indicating that the post-stimulus S1 synaptic activation variable was proportional to |z — z|.
100 Monte Carlo trials were run with random z(0) € [1.0,5.0]. Mean and SEM for each
group are plotted. (C) Comparison of average S1 synaptic activation at different time (pre
vs. post-stimulus) and PE: PE = = (i.e., 2 = 0) and PE = 0 (i.e.,, z = z). Ten Monte
Carlo trials were run with random input amplitude = € [2.0,2.4]. There was a significant
difference in the average S1 synaptic activation between the pre vs. post-stimulus period
in both cases. All p-values for pair comparisons marked in the graph were less than 0.0001
(rank-sum test). The pre-stimulus firing was computed from the expectation z onset (from
time 0 if no expectation) to the stimulus x onset; the post-stimulus firing was computed
from the stimulus onset to withdrawal.



= 300 5 014 =
< 5 0.15

£ 200 ~0.12 —_— L —_—
> 8 5
) T 0.1 ©

o o
O 4 = Q
kS| ® %o,os g o1
E £, 0.06 g
g ° ot 9
o S 004 5 0.05
O -100 [0} 8
< € 002

O (@]

-200 Qo O
— — < I — < 0 I —
w/o prediction  w/ prediction w/o prediction w/ prediction w/o prediction w/ prediction

Fig. 10: Mean field model results of the ACC firing activity in a simulated tone-conditioning
pain anticipation experiment. Ten Monte Carlo trials were run with random stimulus input
amplitude x € [2.0,2.4]. (A) Comparison of the latency of ACC peak synaptic activation
with respect to the onset of the stimulus between without prediction and with prediction
conditions. ****: p < 0.0001 (rank-sum test).(B) Comparison of the mean of ACC synaptic
activation during the 50-ms tone period between without prediction and with prediction
conditions. (C) Comparison of the maximum of ACC synaptic activation during 50-ms tone
period between no prediction and with prediction conditions.
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Supplementary Fig. 1: Sensitivity analysis of correlation between A, and A, with respect
to the delay parameter A, in the predictive coding model. The correlation statistics are
relatively stable across a wide range of A, in evoked pain (red) and non-evoked nociception
(blue). Error bar denotes SEM (n = 10).
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Supplementary Fig. 2: Comparison of firing rate variable r and synaptic activation variable
s in evoked pain based on the mean field model. (A) Representative simulated traces of
firing rate (red) and synaptic activation (blue) of ACC population Fs5_; in one evoked pain
trial. Dashed lines show the upper and lower envelope of the oscillation. (B) Replot the
midline of the envelopes in panel A. (C) Scatter plot of firing rate variable and synaptic
activation variable in panel A. Two variables are highly correlated (Spearman’s correlation
0.969, p < 10719).
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Supplementary Fig. 3: Mean-field activity (synaptic activation s) for three different excita-
tory neuronal populations in one representative non-evoked nociception simulation. Nota-
tions are the same as Fig. 64,B.
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Supplementary Fig. 4: Mean-field activity (synaptic activation s) for three different exci-
tatory neuronal populations in one representative placebo condition simulation. Notations
are the same as Fig. 64, B.



0.474 — - - — 2
° 0% %,°
0.472} R DN | R
—_ o °s,
< 047} .. W °
+5 S
3 ] S
£0.468| = 1
0.
o -4
Z 0.466
45
0.464 |
5

0.38 0.39 0.4 0.41
Ave. s (pre-S1)

Supplementary Fig. 5: Scatter plot of the average pre-S1 synaptic activation s versus the
average post-ACC synaptic activation s derived from the mean field model simulations
(n = 100) in the placebo condition (Pearson’s correlation coefficient: 0.80, p = 7.7 x 10724).
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Supplementary Fig. 6: Latency and maximum peak statistics of synaptic activation in ACC
populations during evoked pain (A-D), non-evoked nociception (E£-H) and placebo/nocebo
(I-L) conditions. (A) Maximum of middle line of ACC synaptic activation variable s from
total population during the duration Ts between the stimulus onset to withdrawal, for
varying stimulus amplitude under naive (blue) and chronic pain (red) conditions. (B)
Similar to panel A, except for two ACC subpopulations. () The latency from the stimulus
onset to the maximum defined in panel A for varying stimulus amplitude under the naive
and chronic pain conditions. (D) Similar to panel C, except for two ACC subpopulations
Es4 (w/ S1 input) and Es9 (w/o Sl input). Mean and SEM for each group are shown.
100 Monte Carlo runs were run with random initial input amplitude = € [1.3,5.0]. (E)
Average of middle line of ACC synaptic activation variable s from the total population
during the duration T} for varying top-down expectation z(0) under naive and chronic pain
conditions. (F) Similar to panel E, except for two ACC subpopulations Fy; and Ea.o.
Mean and SEM for each group are shown. 100 Monte Carlo runs were run with random
initial z(0) € [1.5,4.0]. (G) Maximum of middle line of ACC synaptic activation variable s
from total population during the duration Ts between the stimulus onset to withdrawal, for
varying top-down expectation z(0) under the naive and chronic pain conditions. (H) Similar
to panel G, except for two ACC subpopulations Fo.1 and Fo.9. The curves in panels G and
H have similar shapes as in panels F and F. (I) The latency from the stimulus onset to the
maximum of ACC synaptic activation for varying top-down expectation z(0) under naive
and chronic pain conditions. (J) Similar to panel I, except for two ACC subpopulations Fs_;
and Foo. Mean and SEM for each group are shown. 100 Monte Carlo runs were run with
random initial z(0) € [—4.0,4.0]. (K) Maximum of middle line of ACC synaptic activation
variable s from the total population during the duration Ts between the stimulus onset to
withdrawal, for varying top-down expectation z(0) under naive and chronic pain conditions.
(L) Similar to panel K, except for two ACC subpopulations Fy ; and Fy.o.
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Supplementary Fig. 7: Comparison of average S1 synaptic activation at different periods
(before vs. after onset) and PE values: PE= z (or z = 0) and PE= 0 (or z = z), with
feedback from the ACC to S1. A total of 10 Monte Carlo trials were run with random
stimulus input amplitude = € [1.8,2.2]. Mean and SEM were presented for each group.
There was a significant difference in the average S1 synaptic activation variable between
before and after the stimulus onset in both conditions. All p-values for pairs marked in
the graph are less than 0.0001, expect for the p = 0.0008 between PE= z and PE= 0
after the onset (two pink bars). This indicates that the decrease in S1 firing intensity
after the stimulus onset was slightly less significant with the presence of feedback. The
pre-stimulus firing was averaged from the expectation z onset (from 0 if no expectation)
to the stimulus = onset; the post-stimulus firing was averaged from the stimulus onset to
withdrawal. Compared to Fig. 9C, the gap between before and after the stimulus onset was
smaller here.
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