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Abstract
Domain switching pathways in ferroelectric materials visualized by dynamic piezoresponse force
microscopy (PFM) are explored via variational autoencoder, which simplifies the elements of the
observed domain structure, crucially allowing for rotational invariance, thereby reducing the
variability of local polarization distributions to a small number of latent variables. For small
sampling window sizes the latent space is degenerate, and variability is observed only in the
direction of a single latent variable that can be identified with the presence of domain wall. For
larger window sizes, the latent space is 2D, and the disentangled latent variables can be generally
interpreted as the degree of switching and complexity of domain structure. Applied to multiple
consecutive PFM images acquired while monitoring domain switching, the polarization
switching mechanism can thus be visualized in the latent space, providing insight into domain
evolution mechanisms and their correlation with the microstructure.

Supplementary material for this article is available online

Keywords: scanning probe microscopy, machine learning, neural networks, ferroelectrics, latent
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(Some figures may appear in colour only in the online journal)

Polarization switching and domain dynamics in ferroelectric
materials underpins a broad spectrum of applications, most
prominently including non-volatile ferroelectric memories but
also materials with giant electromechanical responses, actuators,
and many others [1–5]. While capacitive ferroelectric memories
remained a niche application for over two decades [6–8],
advances in oxide growth and integration [9] have recently

enabled sub 1 V switching and integration of ferroelectrics with
magnetic materials, potentially opening the pathway to the low-
voltage multiferroic memories [10]. Similarly, domain wall
dynamics plays a critical role in other forms of ferroelectric
information technology devices, including barrier-based elec-
troresistive systems and domain wall electronics [11–17].

These considerations necessitate a thorough under-
standing of domain wall behavior and switching mechanisms
on the nanometer scale, including the mechanisms of domain
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nucleation, motion, and pinning on the topological and
structural defects. For decades, this information was available
only in special cases via optical microscopy and certain
modalities of electron beam probes [3]. However, the devel-
opment of piezoresponse force microscopy (PFM) in the mid-
90’s [18–25] enabled high-resolution, high veracity studies of
the polarization and polarization dynamics in ferroelectrics,
including imaging, spectroscopy, and dynamics studies on
free surfaces and device structures.

From the variety of the PFM imaging and spectroscopic
modes, the most direct information on domain dynamics is
obtained via dynamic PFM imaging. In this approach, the
biased PFM tip is used to scan material surface inducing
domain switching. Under certain conditions, switching can be
slow compared to the image acquisition time, allowing to
visualize the gradual process of ferroelectric domain nuclea-
tion and growth [26–29] even for a range of film thicknesses
[30]. Similar data can be obtained for the top-electrode
devices [31–34], albeit at typically lower spatial resolution
[35]. Finally, PFM imaging in conductive liquids [36–39] that
allows separating low-frequency conductivity enabling
switching and high-frequency suppression of ionic dynamics
that enables imaging [40, 41] can provide similar information.

However, while the observation of biasinduced polar-
ization switching is by now routine, the analysis of the data
remains a complex issue. Until now, the majority of such
analyses included the determination of the overall wall
velocity and its correlation with local curvature [42–45],
determination of the statistical properties of the moving and
static domain walls, and parameters such as nucleation site
densities [32, 46, 47]. A fundamental bottleneck is the lack of
appropriate mathematical tools and workflows for rapid ana-
lysis of such data, especially as improved imaging speeds and
system stabilities enable increasingly large datasets that
become impractical for all but automated analysis. However,
the use of simple descriptors such as wall position and
velocity limits the scope of possible analyses, whereas more
complex descriptors that can also describe local wall geo-
metry typically lead to highly noisy data sets, limiting the
extraction of governing physical behaviors. More generally,
the wide range of semiquantitative notions phenomen-
ologically developed for describing polarization switching
processes lack well-defined and rigorous local definitions.

Here, we introduce an approach for the analysis of
dynamic PFM data based on a variational autoencoder with
rotational invariance. This method allows for self-supervised
creation of optimal parsimonious (latent) descriptors for the
dynamic domain walls, importantly encompassing the pre-
sence of multiple rotational variants forming in real materials
due to pinning at topological and structural defects, and also
robust towards the drift, distortions, and noise. We demon-
strate that this approach can establish the basic structural
features of the evolving domain structure and use it to
describe polarization switching pathways in ferroelectric
materials. In addition, we discuss a connection of the inferred
latent variables to physical mechanisms.

As a model system, we explore polarization switching in an
epitaxial lead zirconate titanate (PZT) thin film comprising 90-

degree domains [48]. The 150 nm PZT layer is grown by pulsed
laser deposition on a SrTiO3 (001) substrate (CrysTec GmbH,
Germany), with a heteroepitaxial intermediate conducting oxide
electrode. The deposition is conducted in 100 mTorr oxygen
partial pressure at 650 °C, after which the samples are cooled at
1 °C min−1 to room temperature in a 760 Torr oxygen partial
pressure environment [49]. Using the PFM measurements, we
explored the domain dynamic as a function of time for constant
tip bias, roughly equivalent to the constant electric field. Con-
secutive PFM images are acquired on the as-received surface
during ferroelectric switching from the (001) to the (00-1) states
(blue to yellow, respectively, in figure 1). This is achieved by
continuously applying a DC bias to the conducting probe, which
remains in constant contact while raster scanning the ferro-
electric thin film. The (applied) local electric field is just suffi-
cient to surpass the ferroelectric coercive field but is effectively
only applied for short durations at any given location according
to the scanning parameters. Therefore, domain nucleation and
growth can be simultaneously excited and directly observed as
described in [29, 50]. This sample is especially effective for
investigating the efficacy of the variational autoencoder
approach because switching proceeds primarily via domain
growth upon positive tip biasing and nucleation upon negative
biasing [28]. This disparity is attributable to composition and
strain gradients through the film thickness, and correspondingly
polarity-dependent defect energies and distributions. Specifi-
cally, the energy landscape is relatively uniform when biasing in
the positive direction, whereas there are numerous local minima
and hence nucleation sites during negative poling.

The evolution of the domain structure for both scenarios is
shown in figure 1. In the top row, domain nucleation occurs at a
small number of sites near the bottom of the imaged region, with
the domain wall propagating through the field of view during
repeated poling and scanning. Note the strong interactions
between the 180 domain wall and preexisting in-plane a-
domains, which exhibit a pitch on the order of 100 nm with 90
rotations. This gives rise to characteristic domain-front
morphologies controlled by a series of local pinning and
unpinning events. The nucleation scenario (bottom row), on the
other hand, displays dramatically different behavior. Nucleation
occurs at multiple sites throughout the film, possibly again with
growth mitigated by the pre-existing, cross-hatched, in-plane
domain walls, and also new nucleation events continuing to
occur as the poling progresses.

This rich spectrum of domain shapes and behaviors
observed in figure 1 brings forth the question of the natural
descriptive language for such evolving features. While the
domain wall positions could in principle be detected via edge
filters, converting such PFM images into effective wall
coordinates and thus reducing the data storage and compu-
tational requirements, this approach will not capture the full
range of observed phenomena and wall morphologies. Fur-
thermore, while the data in figure 1 is conveniently already
spatially aligned due to initially high speed and stable ima-
ging conditions that minimize lateral drift, PFM and other
large microscopy datasets more typically exhibit frame to
frame drifts or distortions that are often nonlinear. Here, we
confirm the applicability of rotationally invariant variational
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autoencoders (VAE) for the computationally efficient and
unsupervised analysis of such data.

The general idea of the autoencoder (AE) neural net-
works is the compression of such datasets to a small number
of latent variables through a set of convolutional and/or fully-
connected layers, and subsequent reconstruction of the initial
image or spectra from this latent representation [51]. The AE
training aims to minimize reconstruction loss by optimizing
weights of the compression (encoder) and decompression
(decoder) parts of the network. In this process, the AE finds
the optimal parsimonious representation of the original data
set. This approach is somewhat similar to classical dimen-
sionality reduction techniques such as principal component
analysis (PCA), except that AE can have nonlinear layers and
hence give rise to more compact latent representations. VAE
[52] share the general encoder-decoder approach of AEs, but
utilize a completely different information flow. Here, the
decoder and encoder neural networks are used to parametrize
the deep latent-variable generative model and the corresp-
onding inference model, respectively. During the training, the
encoder outputs parameters of a probabilistic distribution,
which is usually chosen to be a diagonal Gaussian. The
decoder generates a latent vector by sampling from the
encoded distributions (one for each latent dimension) and
tries to reconstruct the original object (image or spectra). This
VAE setup enforces a continuous, smooth latent space
representation allowing the observation of smooth transitions
between distinct states. The VAEs can be interpreted as the
combination of the AE and Bayesian network concepts.

The application of these machine learning techniques to
the data in figure 1 will include the creation of a stack of sub-
images of a predetermined size, similar to the operation of the
convolutional neural networks or sliding window transform
texture analysis [53–55]. In this process, the movie stack

( )PR x y t, , of size N × N × M is converted into the stack of
sub-images ( )pr x y,i of size n × n, and index arrays ti and
( )x y, .i i0 0 In this manner, for each sub-image, the original
location ( )x y,0 0 in the image frame at time t is preserved. The
choice of sub-images represents a complicated problem that
affects subsequent analysis workflow. For example, analysis
of domain wall phenomena can be performed by selecting
sub-images centered at the domain walls. However, this
approach will necessitate ad-hoc mapping of the domain walls
centers, which necessitates human-designed criteria for filter-
based or network-based labeling. Secondly, even when cen-
tered at the domain wall, it can have arbitrary orientation
within the sub-image. It is trivial to show that in this case
application of techniques such as AEs, VAEs, along with
simpler techniques such as PCA [56–59] or Gaussian mixture
models [60], will all be limited by the presence of a large
number of rotational variants. Effectively, for high-quality
data and large sub-image sets, the number of variants will be
limited by the number of distinguishable (within accessible
sampling) rotations of domain walls within the set of sub-
images. The conventional assumption of continuous transla-
tional symmetry (to cope with sub-images that are not
necessarily centered at the domain wall) further exacerbates
the problem.

To tackle this problem and analyze the general imaging
data, here we utilize the rotationally invariant extension of
VAE (rVAE) [61]. The rVAE represents a special class of
VAEs where three of the latent variables are rotation and
(optionally) x- and y-offsets, complemented by classical latent
variables associated with image content. Thus, rVAE adds
rotational and (in this case) offset invariance to the analysis
workflow. In other words, it is expected to recognize the
images even if they are shifted and rotated with respect to
each other. In this case, the sub-images are used to train the

Figure 1. The evolution of domain structure in the PZT films during the dynamic PFM experiments. The top row displays frames (a) 0, (b)
20, (c) 30 and (d) 40 during positive switching clearly dominated by domain wall motion; the bottom row presents frames (e) 0 (f) 5 (g) 10
and (h) 20 during negative biasing where domain polarization proceeds principally by nucleation. All images are normalized to (0, 1) range of
pixel intensities. The scan sizes are 1.5 μm throughout. The fast and slow scan directions are left-to-right and up-to-bottom, respectively.
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rVAE, which compresses the n×n image down to 3 + m
variables, including angle, x offset, y offset, and m nonlinear
latent variables corresponding to image content. In the fol-
lowing we are going to refer to the image content latent
variables simply as a first latent variable, second latent vari-
able, etc. Each sub-image is parametrized by these variables,
and they can be plotted as a function of position ( )x y, ,0 0
visualizing local system behavior. Similarly, changes of latent
variables with time provide information into evolutionary
pathways of the system. The number of latent variables can be
varied depending on the complexity of the problem, i.e. dis-
tinguishable features in the data set. Here, the sub-image size
can be used to capture domain wall structure at a different
level of complexity. In general, we note that a good indicator
for the choice of a number of latent variables is the collapse of
the variability in the disentangled lattice-space representation,
as will be illustrated below. Both encoder and decoder parts
of rVAE were represented by the 2-layer fully connected
neural networks, with 512 neurons in each layer activated by
a tanh function. The training was performed using the Adam
optimizer with a learning rate of 1e-4 and mini-batches of size
50. The model(s) training and subsequent analysis were per-
formed using a home-built AtomAI package [62].

To illustrate the rVAE analysis of the dynamic PFM data,
figure 2 shows the distribution of the rotational angle and the
distribution of points in the latent space of the system for a
small window size (n=16). In this case, the angle distribution
has multimodal distribution, corresponding to the preferential
orientation of the domain walls along the crystallographic
directions. The offset distribution expressed in pixel fractions,
figure 2(c), is very narrow along the x and y real-space axes.

The calculated latent space distribution, figure 2(e), is very
narrow in one direction (latent 2, ordinate axis in the plot) and
extended in the other (latent 1, abscissa). This behavior sug-
gests that the latent space is essentially 1D in this case, such
that the system can be efficiently described by just a single
latent variable. In comparison, for a 4× larger window size, the
angle distribution becomes centered, figure 2(b), and the real-
space offset (d) and latent variable distributions (f) are 1–2
orders of magnitude broader. This indicates that latent space is
now 2D and encapsulates additional information about the wall
geometry. The color scale of the points (blue to yellow) is
chosen based on the frame number and will be discussed below
when analyzing the switching kinetics.

The natural question is the meaning of the latent variables,
i.e. relationship between the coordinates in the latent space and
the elements of the domain structure. This relationship is
established by the decoder part of the rVAE, in which the set of
latent variables is decoded into the sub-images. For the 2D
latent spaces, the decoding process can conveniently be
represented as shown in figure 3. Here, an equally spaced grid
of points in the 2D latent space is created and decoded into
images, reflecting the variability of materials behavior in the
latent space. Grids of these images are plotted in (a)–(c) for
increasing window sizes. Note the relationship between the
types of representations in figures 2(e) and 3(a). Figure 2
illustrates the distribution of points corresponding to the
experimentally observed data in the latent space, while figure 3
illustrates how the sub-images from the range of points in the
latent space would appear.

For small window sizes, the reconstructed sub-images tend
to comprise simple geometric shapes, effectively delineating

Figure 2. (a), (b) Latent angle distributions integrated over the full data set, (c), (d) offset distributions, and (e), (f) latent variable distributions
for (a), (c), (e) n=16 and (b), (d), (f) n=64 (n is window size for generating sub-images). The color of the point in (c)–(f) encodes the
frame number, and hence color evolution across the latent space reflects the pathway of the process.
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the domain wall. Note that the orientation of the wall is the
same across the latent variable space, since it is already cap-
tured by the angle latent variable. In this manner, the rVAE
was able to capture the characteristic feature of the system and
disentangle it into rotation angle and latent descriptors. The
variation across the second latent variable (horizontal axis)
shows a gradual change of the contrast, indicative of the pre-
sence of the continuous variation of the signal in the system
containing both 180° and a-c domain walls. Finally, the image
variation in the second lateral direction is extremely small,
suggesting that the system can effectively be described by a
single latent variable. The dispersion of latent variables as a
dependence of window size is shown in figures 3(d)–(g). The
dispersion of latent variables increases for larger window sizes,
suggesting that the latent variables are more informative. This
is because the behavior of domain walls, which is complex
during switching, is included for larger window sizes. Note that
the dispersion of the second latent variable is nearly constant
and very small (<0.1) when the window size is smaller than

40; in these cases, the system can be predominantly described
by only one latent variable.

The latent representation for large window size is shown
in figure 3(c). Here, the latent space is no longer degenerate,
and variability in the reconstructed domain geometry is
observed in both dimensions, along with the non-negligible
variations in the dispersion for both latent variables. The
extremely important aspect of this representation stems from
the fact that the VAE in general tends to disentangle the
characteristic behaviors in the data set. This is the reason they
are used extensively in computer vision, image reconstruc-
tion, etc. As applied to the image data here, the rVAE clearly
disentangles the switching behavior (bottom to top) and
domain wall complexity (left to right in figure 3(c)). In this
case, this complexity can be roughly associated with domain
wall curvature, but more rigorously represents some complex
function of wall geometry characteristics for this particular
system.

For further insight into this behavior, we establish the
relationship between the latent space variables and physics-

Figure 3. (a)–(c) Latent space representations and (d)–(g) dispersions of x-offset (d), y-offset (e), Latent 1 (f), and Latent 2 (g) as a function of
window size ranging from 8 to 128. The dispersion is described by variance. Note that dispersions of latent variables increase with increases
in window size.
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based descriptors. For all window sizes, the natural descriptor
is the degree of switching (Ds), which can be determined as

=
-
+

D
A A

A A
,s

s us

s us

where As is the area of the switched region and Aus is the area
of the unswitched region. The switched area and unswitched
areas are classified by the median value of latent space, the
area (e.g. yellow) with values larger than the median is
defined as switched area and the complementary area (e.g.
black) is defined as unswitched area. Figures 4(a)–(c) show
the degree of switching corresponding to latent space with
different window sizes. For smaller windows, such as 16 in
figure 4(a), the degree of switching only depends on the first
latent variation (horizontally), indicating the system can be
described by a single latent variable. When window size
equals to 32 (figure 4(b)), the switch degree also slightly
changes along the vertical direction (see the middle column in
figure 4(b)), suggesting that the second latent variable also
reflects the degree of switching. With window size increased
to 64 (figure 4(c)), changes in the switching degree along the
vertical direction become much clearer, indicating that both
the first and second latent variables are now related to the
degree of switching.

Another physical descriptor is domain wall curvature,
which is reflected in the latent space variables for larger
window sizes. Here, to determine the domain wall curvature,
we first identified the locations of domain walls using the
Canny edge filter [63]. Shown in figures 4(d)–(f) are the
detected domain walls, which correspond to the latent space
manifolds in the insets of figures 4(a)–(c). Then, the average
and the maximum values of the domain wall curvature are
calculated for each latent space. Note that there are no
detectable domain walls for the fully switched and unswit-
ched parts of the latent space. For the small window size of
16, domain walls only show up in the middle column with an
almost identical shape (figure 4(d)). For the window size of
32, a relatively small change from the bend-up to bend-down
shape in the domain walls curvature is observed in the vertical
direction (figure 4(e)). This suggests that the second latent
variable now also contains information about the domain wall
shape. Finally, when the window size increases to 64, there
are clear changes in the domain wall curvature in both hor-
izontal and vertical directions (figure 4(f)), indicating that
both latent variables now describe the domain wall curvature.
Overall, a more complex curvature is seen for larger window
sizes, indicating that the latent variables inferred by rVAE
models trained on larger window sizes are more informative
for interpreting the domain walls. The effect of window size
on the association between the wall curvature and the rVAE’s
latent variables becomes even clearer when using a much
larger grid, as illustrated in figures 4(g)–(h) for the average
wall curvature on an 80 × 80 grid.

The rVAE analysis can further be extended to encode the
original PFM images as shown in figure 5. Here, figure 5(a)
shows one original PFM image from the overall switching
dataset with a positive tip bias as in figures 1(a)–(d). This
features a 180° domain wall front propagating from bottom to

top, with the more subtle a-c domain wall pattern also present.
The calculated angle map, figure 5(b), can be readily inter-
preted as an angle towards the nearest domain wall for every
point in (a). Note the characteristic cross-hatch pattern
emerging due to the a-c wall system. The offset maps shown
in figures 5(c), (d) show relatively weak contrast. This con-
trast originates due to the fact that the rVAE can ‘lock’ on the
wall segment only if the wall is sufficiently close to the center
of each window considered. If the wall is far from the sub-
image center, the latent variable will correspond to the region
in the latent space that does not contain a domain wall (e.g.
top or bottom in figure 3(a)), and the offset variable approa-
ches zero. Finally, the latent variable maps are shown in
figures 5(e), (f). Here, the first (non-degenerate) latent vari-
able shows a clear contrast at the domain wall, which is now
easily identifiable. At the same time, the second (degenerate)
latent variable shows only weak variation across the image
but a predominantly high contrast at domain walls, implying
that the second latent variable corresponds to the behavior of
domain wall. As a comparison, we also performed PCA
analysis on this PFM dataset. Shown in figure S1 (available
online at stacks.iop.org/NANO/33/055707/mmedia) are
PCA analyses performed on both the full PFM image stack
and the PFM image patches.. We note that, unlike rVAE, the
PCA (and other standard dimensionality reduction methods)
does not allow for rotational invariance leading to unphysical
results. Note that this reconstruction of the image is accom-
plished in a fully unsupervised manner, an extremely
important consideration in the analysis of large volumes of
experimental data and for enabling automated experimenta-
tion with PFM and other microscopy methods.

Finally, this approach allows exploring the ferroelectric
switching pathways via analysis of the latent space variables.
Figure 6 presents the evolution of the domain structure in the
latent space for the domain wall motion scenario (top row in
figure 1). Figure 6(a) shows the behavior for the small win-
dow size, n=16 (incorporating an area of almost 100×100
nm), in which case rVAE acts as the edge filter. To interpret
the data in terms of the characteristic domain configurations
in real space, the dashed lines represent the domain geome-
tries. The transition from the unswitched (dark, on the right)
domains towards the fully switched state (bright, on the left)
is clearly seen, and though consistent the magnitude is nota-
bly weak along the second latent variable axis (the ordinate).
This corresponds to the degeneracy of latent space in this
direction. In other words, at this length scale, the domain wall
is essentially 1D. Despite this, the trajectory indicates a clear
zig-zag shape that can be interpreted as a systematic change in
wall morphology during switching.

In comparison, the analysis for the n=64 window is
shown in figure 6(b). In this case, the domain structure
changes considerably both along the first and second latent
direction. Here, the first latent variable best describes
switching from the down to up states, whereas the second
latent variable is now a descriptor for the domain wall shape
and can be associated with wall curvatures in figure 3(f). For
intermediate switching steps, a broad spectrum of wall geo-
metries is identifiable. Analyzing histograms of the evolution
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of latent variables during domain switching provides more
physical insights into the switching dynamics. Figures 6(c),
(d) show the evolution of latent variables for window sizes of
16 and 64, respectively. The first latent variable exhibits a
clear transition state during the domain switching, as marked
in figures 6(c), (d). This transition state is clearer for the larger
window size of 64 (figure 6(d)). Meanwhile, such a transition
state cannot be directly observed from experimental data, as
illustrated in figure 6(e). This suggests that rVAE-based
analyses can potentially offer a new understanding of physical
mechanisms. In addition, the second latent variable shows
multiple abrupt changes at the beginning of the switching
process suggesting a domain wall is unstable when initially
formed (undergoing changes under the application of electric
field). At the same time, the second latent variable is

relatively stable at the end of the switching process, indicating
a stabilization of the domain wall. This behavior confirms that
domain wall dynamics are critical to domain switching in
ferroelectric materials, that is, at the beginning of switching, it
potentially plays a role in facilitating domain switching and
then stabilizes when the switching process approaches
completion.

Figure 7 similarly analyzes the evolution of the domain
structure during polarization, but for the scenario dominated
by domain nucleation instead of growth (figures 1(e)–(f)).
This analysis is performed for several window sizes, explor-
ing progressively more complex details of domain wall
structure. For small windows, n=8 and 16 (corresponding to
∼50 and 100 nm respectively), the latent space is degenerate,
i.e. strong variability is observed only in one direction (latent

Figure 4. The relationship between latent space variables and physics-based descriptors. (a)–(c) Degree of switching corresponding to latent
spaces of rVAE models trained on different window sizes; insets show the corresponding latent space manifolds. (d)–(f) Domain wall
curvature corresponding to the latent manifolds in the insets of (a)–(c), the average curvature and the maximum curvature for the grid
columns with detected domain walls. (g)–(i) Average domain wall curvature corresponding to 80 × 80 latent space grid.

7

Nanotechnology 33 (2022) 055707 S V Kalinin et al



1, the abscissa) just as occurred with the results in figure 5(a).
For these conditions, rVAE is again effectively an adaptable
edge filter, as seen in figures 6(a), (c). The evolution in the
latent space correspondingly represent the simple change of
areal fraction from one domain orientation to another.

For larger window sizes, however, more complex beha-
vior is observed. For n=32 the latent space is no longer
degenerate (figure 7(e)), and the latent variables now disen-
tangle the switching (ordinate) and domain wall complexity
(abscissa). The evolution of the system now can be repre-
sented as a gradual transition from the down polarized state
with low complexity, through an intermediate polarized state
with high complexity, and concluding with the up polarized
state with low complexity again. Finally, for n=64, the
latent space variables now relate to the domain shape, since
the window size becomes comparable to the domain size of
the numerous nucleating domains. The latent space in
figure 7(h) consequently distinguishes the dynamics of the
20–30 individual domains while they switch.

To summarize, here we introduce a machine learning
method for the analysis of the ferroelectric domain switching
mechanisms in PFM based on rotationally-invariant VAE. The
rVAE approach allows a simplification of the elements of the
observed domain structure, encapsulating common spatial off-
sets and rotational invariance while reducing the variability of
local polarization distributions to a small number of latent
variables. For small window sizes, the latent space is degen-
erate, with appreciable variability observed only in the direction
of a single latent variable. In this case, the rVAE effectively

becomes an edge filter allowing for arbitrary rotations, and
analysis of the latent space distributions yields insight into wall
angle distributions. This is important in and of itself since such
angular responses can couple to underlying features or pro-
cesses when studying dynamics—in this case, the domain
microstructure within the thin ferroelectric film. Of course, such
an analysis is feasible with less sophisticated routines, but for
larger window sizes the calculated latent space becomes
demonstrably 2D. The latent variables then disentangle the
degree of switching from the complexity of the domain struc-
ture. The switching pathways of the system can thus be simply
and efficiently visualized in latent space, now providing a
unique insight into domain evolution mechanisms. In particular,
this allows us to discover a transition state during switching
from observing the evolution of latent variables. The rVAE’s
latent variables also provide insights into the domain wall
behavior, such as the wall dynamics and changes in the cur-
vature. In addition, the evolution of latent variables clearly
reveals domain wall dynamics at different switching stages,
connecting the latent space representation with the role of
domain walls in the polarization switching of ferroelectric
materials. In the future, employing rVAE over much larger
areas, or even additional dimensions such as voltage or temp-
erature, can efficiently provide important new insights into
domain switching behavior.

Finally, this approach is generalizable and not limited to
dynamic PFM data of domain walls as considered here merely
as a model system. The rotationally-invariant representation
or rVAE, combined with the well-known tendency of

Figure 5. Latent variable maps for n=16. (a) Original PFM image (similar to figure 1(c)). (b) Angle, (c) x offset, (d) y offset, (e) latent 1 and
(f) latent 2 maps. All images are 1.5 μm.
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Figure 6. Evolution of the domain structure in the latent space during switching. Shown is the evolution of the latent space distributions for
the wall-motion scenario for (a) n=16 and (b) n=64. The domain structures reconstructed from latent space correspond to the dotted lines.
Note the scale for both latent variables in (a) and (b). (c), (d) The evolution of latent variables during the domain switching for window size of
16 (c) and window size 64 (d). (e) The evolution of the experimental data. Note that the first latent variable shows a transition state for both
window sizes (c)–(d), while this transition state cannot be directly observed from experiment data (e).

Figure 7. Evolution of the domain structure in the nucleation-dominated scenario. Shown is the latent space (top row) and evolution (bottom
row) for (a), (b) n=8, (c), (d) n=16, (e), (f) n=32 and (g), (h) n=64. Note that the selection of the latent variables is random (compare
orientations for (a), (c), (e), (g)); however, the complexity and degree of switching are disentangled in all cases.
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classical VAEs to yield disentangled representations and
parsimony of latent space descriptors, make it an ideal tool for
analyzing imaging data in areas such as the dynamic electron,
optical, and x-ray microscopy, biological imaging, etc We
demonstrate that exploration of the latent space dimension-
ality, as a function of window size, will provide particular
insight into the spatial complexity of such systems. Similarly,
VAEs universally allow a broad set of tunability via the
choice of the loss function and potentially the priors in the
latent space, suggesting enormous future potential for
applying our method to physical and biological imaging of
dynamic phenomena.
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