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Abstract

The endoskeleton of echinoderms (Deuterostomia: Echinodermata) is of mesodermal origin and
consists of cells, organic components, as well as an inorganic mineral matrix. The echinoderm
skeleton forms a complex lattice-system, which represents a model structure for naturally inspired
engineering in terms of construction, mechanical behaviour and functional design. The sea urchin
(Echinodermata: Echinoidea) endoskeleton consists of three main structural components: test,
dental apparatus and accessory appendages. Although, all parts of the echinoid skeleton consist of
the same basic material, their microstructure displays a great potential in meeting several
mechanical needs according to a direct and clear structure—function relationship. This versatility
has allowed the echinoid skeleton to adapt to different activities such as structural support, defence,
feeding, burrowing and cleaning. Although, constrained by energy and resource efficiency, many of
the structures found in the echinoid skeleton are optimized in terms of functional performances.
Therefore, these structures can be used as role models for bio-inspired solutions in various
industrial sectors such as building constructions, robotics, biomedical and material engineering.
The present review provides an overview of previous mechanical and biomimetic research on the
echinoid endoskeleton, describing the current state of knowledge and providing a reference for

future studies.

Introduction

Sea urchins (Echinodermata: Echinoidea) are known
to have been in existence since the Middle Ordovi-
cian, about 460 million years ago [1]. During the
Early Jurassic, they underwent an intensive adaptive
radiation leading to a variety of specialized forms
and lifestyles adapted to different marine habitats
[2—13]. Echinoids are traditionally subdivided into
two groups: regularia and irregularia, mainly iden-
tifiable based on test morphology and lifestyle [14,
15]. Regular echinoids are typically spherical in shape
with the peristome (mouth region) on the central
oral side and the periproct (anal region) aborally
located. The area spanning from the apical system

throughout the peristome is divided in five ambu-
lacral and five interambulacral fields, each one char-
acterized by ten double columns of different skeletal
plates with species-specific fine-relief ornaments [16].
Regular echinoids possess a prominent pentaradial
symmetry superimposed on the ancestral echin-
oderm bilateral symmetry. In contrast, irregular
echinoids are typically aboral-orally flattened and
elongated or heart-shaped. The peristome is orally
located, but not necessarily in the centre of the
oral surface. The periproct migrated from the cen-
tral aboral side towards the oral side assuming vari-
able positions in the test [12, 17]. The ambulacral
fields are often restricted to the aboral side form-
ing the petalodium [18]. Thus, irregular echinoids
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Figure 1. Overview of the echinoid test and appendages. (A) Schematic reconstruction of regular echinoid test showing its overall
external and internal anatomy including the lantern system. (B) Detail of pedicellaria tip illustrating the three valves and muscles.
(C) Detail of the spine-test articulation showing the typical ball-and-socket joint in a vertical section: the spine is articulated to
the plate tubercle through the muscle bundles and ligaments of the ‘catch apparatus’. (D) Detail of a tube foot displaying the main
components of its microanatomy: basal ampulla, stem and apical adhesive disc including tiny skeletal ossicles.
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typically possess a strong bilateral symmetry superim-
posed on the radial symmetry acquired [4-8, 19-25].
The evolutionary success of echinoids is undoubtedly
due to the strategic employment of their endoskele-
ton, macroscopically consisting of three main func-
tional components: test, dental apparatus (Aristotle’s
lantern) and accessory appendages (such as spines
and pedicellariae) [26, 27] (figure 1).

In the course of evolution, the echinoid skele-
tal parts transformed in morphology and physiol-
ogy adapting to novel functions [28]. For example, in
some species the main function of the spines shifted
from protection to burrowing [29-33]. Also, pedi-
cellariae, the small pincer-like appendages, developed
different forms, including venomous types [34]. In
addition, the morphology of the dental apparatus dif-
fered due to feeding strategies, such as scraping and
crushing, or it has been entirely eliminated [35-38].
Complementarily, the modifications during evolu-
tion have specialized and adapted these skeletal parts
to efficiently absolve specific mechanical roles. In par-
ticular, spines and test protect the animal by with-
standing biotic (e.g. predatory attacks) and abiotic
(e.g. strong wave motion or substrate impact dur-
ing burrowing or locomotion) mechanical stresses
[39-46]; pedicellariae, provide further defence and
are used for cleaning the echinoid’s epidermis [34,
47]. Aristotle’s lantern plays a direct role in multiple
activities such as gripping, scraping, digging, and even
locomotion [48]. In particular, the lantern, which
consists of an integrated system of 40 skeletal ele-
ments, joined and moved by specific muscles and lig-
aments, represents one of the most complex and opti-
mized biomechanical models in the animal kingdom
[49-53].

Due to its unique features, it does not sur-
prize that the constructional design of the echinoid
skeleton has attracted the interest of both biolo-
gists and engineers. Accordingly, mechanical engi-
neering and material science principles, methods and

tools have been applied in exploring the mechani-
cal performances of sea urchins as an integrated sys-
tem or single component [23, 45, 46, 54—63]. This
biomechanical approach provided important biolog-
ical insights on form-function skeletal features, taxa
comparisons, ecological and evolutionary trends and
adaptive meanings, as well as, new functional prin-
ciples used to design innovative bioinspired techni-
cal solutions [27, 46, 54, 64—68]. Echinoid skeletal
components are structurally and functionally orga-
nized regarding, among others, lightness, stability,
strength, flexibility and stress resistance. Presently,
due to the availability of novel analytical methods, the
underlying principles can be better understood and
transferred into building constructions and indus-
trial products; a process known as ‘biomimetics’ and
‘bionics’ [69]. Otto Herbert Schmitt an engineer and
physicist coined the term biomimetics in 1957 and
its approach was regulated and certified in 2015 by
the International Organization for Standardization
(ISO 18458) [70]; whereas, the term bionics, a com-
bination of the words ‘biology’ and ‘technics’, was
coined by the US Air Force Major ] E Steele in 1960
[71-75]. Often used as an equivalent, both terms
identify a design process inspired by nature that gen-
erated innovative technological solutions. Over the
past decade, other terms have occurred in conjunc-
tion with this process, such as biomimicry, biomime-
sis, bio-inspiration, nature-based solutions, biologically
inspired designs and numerous others; although often
used as synonyms, each one differs in objectives, prin-
ciples and approaches [69, 74-76].

The present review provides an overview of recent
knowledge on echinoid skeletal structures. Its inten-
tion is to identify the main morphological features
and mechanical aspects, in order to provide a refer-
ence for future research on biomimetic applications.
Accordingly, the following issues will be discussed
in detail: (1) current knowledge of biomineralization
and material properties of the echinoid endoskele-
ton; (2) skeletal microstructure (stereom); (3) the
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three main skeletal components: i.e. test, Aristotle’s
lantern and accessory appendages; (4) biomimetic
process and echinoid-inspired applications in build-
ing constructions, robotics, biomedical and material
engineering.

1. Biomineralization

The biomineralization process in echinoid skeletons
has been extensively investigated throughout different
developmental stages from larvae to adults [77-85].
Detailed mineralogical analyses revealed that its min-
eral matrix consists of calcite, containing up to 15%
magnesium [86, 87]. Hence, the echinoid skeleton is
generally considered a high-magnesium calcitic struc-
ture, although its magnesium content can vary sig-
nificantly according to species and specific skeletal
parts, as well as, environmental factors such as tem-
perature or pH [88-92]. These variations determine
different mechanical properties of the skeletal parts
[88, 93]. The calcite in echinoid skeletons displays
the optical behaviour of a monocrystalline struc-
ture with definite orientation of the optical axes [87,
94]. In terms of mechanical behaviour, the rupture
response of the echinoid biocalcite results in con-
choidal fractured surfaces, which differ from the well-
defined cleavage of pure calcite crystals [95-98]. For
many years, this fracturing behaviour was attributed
to the presence of organic components (proteins)
within the stereom structure [95]. Seto et al (2012)
later found evidence that this behaviour is mostly
due to the particular echinoid calcite structure [99].
Indeed, this calcite is a mesocrystal composed by
numerous aligned calcite nanocrystals (~100 nm)
embedded in a matrix of amorphous calcium car-
bonate (ACC) and macromolecules [95—102]. These
last two components cause the conchoidal fracture
properties. Echinoid biocalcite has often been dis-
cussed as representing a composite material because
it contains up to 0.2% proteins by weight [84, 103,
104]. From a material engineering perspective, mate-
rials composed of two or more constituents with dif-
ferent physical, chemical and mechanical properties
are defined composites. The combination of differ-
ent constituents produces a material with advanta-
geous emerging properties, strongly different from
the properties of the same constituents [45]. This is
usually the case when the fraction of each composite
reaches a relevant amount of the total volume [105].
When the amount of one of the components is too
low, the material is not considered a composite; in
fact, the second constituent affects the material prop-
erties by interacting with the main component rather
than contributing its own advantageous properties to
the material composition [105].

Vertebrate bone for example, represents a
high-performance composite material consisting pri-
marily of collagen and hydroxyapatite. The mineral
component provides bone with mechanical rigidity
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and load-bearing strength, whereas the organic
fibrous component provides elasticity and flexibility
[106]. In quantitative terms, the hydroxyapatite frac-
tion should account for 35% of the volume in order
to reinforce the skeletal material effectively. Neverthe-
less, the amount of hydroxyapatite in vertebrate bone
reaches roughly 50% and the collagen represents the
other 50% providing advantageous tensile properties;
for this reason, vertebrate bone represents a true
composite material, of which anisotropy provides
considerable strength and stiffness in at least one
direction [45, 106, 107].

Herman et al (1988) demonstrated that the
amount of organic matrix in echinoid calcite is
not sufficient to form a continuous layer within
the stereom and does not represent a considerable
amount of the total volume; thus, it cannot be consid-
ered as an effective constituent in making the echinoid
calcite a composite material [96, 108]. However, Seto
et al (2012) demonstrated that the mesocrystal struc-
ture of the echinoid calcite contains between 8 and
10 wt % ACC in mature spines, consequently reveal-
ing that ACC calcite could itself serve as a second
component of this composite material [99].

Composite systems, usually feature the advan-
tage that cleavage propagation is prevented by a suit-
able alternating arrangement of stiff, strong materials
with less stiff materials creating a functional interface
where the latter, having a reduced elastic modulus,
assumes a stress-breaking role absorbing stresses [ 105,
107, 109]. This is the case of nacre that is composed of
95% aragonite and 5% proteins and polysaccharides,
as well as, vertebrate bone [45, 107]. The employ-
ment of calcified collagenous fibres consequently
results in an anisotropic material, which is stiff and
tough in one direction, but brittle in at least another
[45, 107].

Recently, Lauer et al (2020) demonstrated that
unlike mechanical properties of other biogenic
ceramic composite materials, such as nacre, the com-
bination of high Mg-calcite with ACC and organic
phases have little effect on macromechanical proper-
ties of the Heterocentrotus mamillatus spines [110].
Thus, although the micromechanical properties of
the echinoid skeleton are governed by the interplay
of ACC, organic phase and Mg calcite [96, 99,
111], the macromechanical properties seem mainly
governed by the porous stereom structure and archi-
tecture resulting in a remarkable damage tolerance
[110].

Interestingly, the crystallographic design and
macromolecule distribution makes the echinoid bio-
calcite a more isotropic material [112]. In this regard,
it has been demonstrated that the anisotropy is
larger in synthetic crystals than in young sea urchin
spines; whereas, mature spines have an extended
anisotropy, ranging between those of synthetic crys-
tals and young spines, suggesting the existence of
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Figure 2. SEM micrographs showing microstructure and stereom variability of the test plates. (A) Topographic reference of the
interambulacral region inspected. (B) Schematic reconstruction of an interambulacral plate: (a) top view, (b) internal view, (c)
lateral view. (C) Top view of Paracentrotus lividus interambulacral plate; (D) enlargement of figure (C). Labyrinthic stereom with
variable porous texture is the dominant microstructural pattern. In the wide circular insertion area of the overall catch apparatus
it is possible to distinguish specific stereom patterns related to muscle and ligament insertions, density and sizes of porosity, closer
and more regular in the ligament area. Adjacent to the tubercle where the stereom structure tends to become imperforate, pore
size decreases. (E) Vertical section of the plate showing a high diversity of the stereom microarchitecture according to zones and
related specific mechanical needs. (F) Details of stereom types detected: (1) imperforate stereom; (2) labyrinthic stereom; (3)
galleried stereom; (4) microperforate stereom. Bar = 100 zm. lia = ligaments insertion area, mia = muscles insertion area,

remarkable differences in the biological crystal com-
position during spine formation and growth [113].
In contrast, vertebrate bones (such as femurs) dis-
play a clear and defined preferential orientation of
collagen and apatite inside trabeculae, as well as, a
highly anisotropic trabecular architecture; thus, it is
capable of transferring loads more effectively in only
one direction [45, 107]. However, apart from the
mineral composition, echinoid stereom is similarly
characterized by a variable oriented trabecular archi-
tecture ensuring a more directional resilience [57,
114]. Moreover, due to its trabecular meshwork, the
echinoid stereom is a lightweight construction and
possesses a high level of robustness, e.g. allowing the
applied forces to bypass malfunctional trabeculae and
to be transferred to the functional surrounding ones.
(57,94, 114].

2. Stereom

Stereom [115] is a 3D mesh of trabeculae, i.e. struts,
made of biocalcite [114]. It represents a key element
responding to the principles of robustness, lightness
and stability, due to three primary factors: (1) mate-
rial composition and related mechanical properties
based on material variations through strategic substi-
tution of calcium (Ca) with magnesium (Mg) in the
calcite crystal, and alterations of fracture behaviour
[94-98, 102, 116—121]; (2) high structural porosity

of about 50%—-75% [45, 59, 122]; (3) large structural
variability (related to e.g. phylogeny, functional adap-
tations, growth rate and soft tissue types) allowing
specific mechanical demands to be met [46, 54-59,
84, 114, 123, 124]. Consequently, this lightweight
structure denotes an important adaptive achievement
within the entire phylum Echinodermata contribut-
ing to its evolutionary success [125—127]. The com-
plex constructional design of the stereom varies from
species to species and within both individuals and
skeletal elements. Nevertheless, known far away in
time [128], this structural variability was described
in detail by Smith (1980) identifying ten different
stereom types in the test: imperforate, microper-
forate, simple perforate, galleried, rectilinear, reti-
form, laminar, fascicular, labyrinthic and irregular
perforate [114]. All of which can be employed in
a number of combinations, creating species-specific
3D structural patterns easily recognizable in scan-
ning electron microscope (SEM) images. Architec-
tural variability and possible modulations based on
specific mechanical needs have been described in sev-
eral studies regarding: (1) the test and its individ-
ual plates [46, 55-57, 87, 97, 116, 124, 129, 130];
(2) Aristotle’s lantern ossicles [52, 131]; and (3),
more frequently, spines [27, 30, 52, 54, 58, 61, 65,
123, 132—135]. As a rule, stereom density tends to
increase in regions subjected to high mechanical
stresses resulting in imperforate or microperforate
types; in particular, this occurs in those areas exposed
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Figure 3. SEM micrographs showing structure and stereom variability in the Aristotle’s lantern components. (A) Topographic
reference of the skeletal parts inspected. (B) Detail of the intrapyramidal suture: galleried stereom is dominant in those areas near
the suture running perpendicularly in correspondence to its borders; dense labyrinthic stereom prevails in the unspecialized
superficial areas. Bar = 100 pm. (C) Frontal view detail of a jaw showing the epiphyseal arch and the compass-rotula complex.
Labyrinthic stereom is the dominant microstructural pattern. At the epiphyseal fossa level, an increased open pattern provides
suitable anchorage for the protractor muscles. Bar = 400 pm. (D) Internal view of a demi-auricle showing the attachment area of
the retractor muscle. Fascicular-labyrinthic stereom prevails in the upper part of the auricle, whereas microperforate stereom is
the dominant pattern in the central region. Bar = 500 um. (E) In detail the suture of the auricle basal plate (opened
complementary parts): galleried stereom runs perpendicular to the sutural surfaces. (F) Vertical section of the auricle basal plate
showing the variability and complexity of its internal microarchitecture in relation to the ambulacral pore arrangement:
labyrinthic and microperforate stereom prevailing. Bar = 100 m. irm = retractor muscle insertion area, ¢ = compass,

de = demi-epiphysis, dp = demi-pyramid, ef = epiphyseal fossa, p = ambulacral pore, r = rotula, s = suture, subapical fossa, t =

to high frictional and compressive stresses, such as
tubercles (figures 2(C) and (E)), lantern (figure 3(B)),
rotulae (figure 3(C)) and spine bases [27, 52].
Also, the microstructure tends to be specialized in
regions subjected to directional tensile stresses, i.e.
the sutural areas characterized by galleried stereom,
which offers a suitable insertion pattern for the
attached ligament bundles (figures 2(C)—(E), 3(D)
and (E)) [27, 52, 54-57, 114, 123]. On the contrary,
labyrinthic stereom is found in zones subjected to
multi-directional mechanical stresses, such as in the
centre of the plates (figures 2(C)—(E)), lantern demi-
pyramid (figures 3(B) and (C)) and in the radiating
layer of camarodont spines [52, 54, 114]: according to
Grun and Nebelsick (2018) labyrinthic stereom could
equally distribute stresses in multiple directions, thus
reducing local stresses [46].

In the past decades, the mechanical design of
the stereom has been extensively studied in a two-
dimensional view [16, 33, 84, 114, 129, 130, 134,
136, 137]; however, with the advent of affordable
high-resolution computed tomography (CT) scan-
ning, recent studies explored the stereom using 3D
modelling reconstruction, 3D topological and struc-
tural analysis (e.g. finite element analysis, FEA).
These modern methods allow detailed analyses of
mechanical properties, lightweight constructions and

load-bearing systems [55-57, 59, 124, 135, 138].
Accordingly, different mechanical tests on the skeletal
layout demonstrated how these stereom variabilities
have diverse structural implications [54, 61, 67, 90,
122, 132,133, 139].

Hitherto, it is also important to remark that the
echinoderm skeleton is a proper mesodermal tissue,
and that the living stereom contains an organic
stroma, consisting of cells and extracellular matrix
including collagen fibres [45, 114]. The stroma sig-
nificantly contributes to the integrity of the skeleton
providing indispensable resistance and flexibility
qualities. In general, this organic component: (1)
reinforces the endoskeleton, providing greater
mechanical resistance to the overall structure and
continuity to the related ligaments, thus avoiding
the risk of fracture at low applied forces [140]; (2)
transforms the test into a flexible jointed integu-
mental layer meaningfully reducing the impact of
bending stresses [140, 141]; (3), acting as an energy
absorbance system and stress-breaker interrupt-
ing the propagation of fractures due to material
component discontinuity (stereom + stroma
= rigid + elastic components) [52, 142-144];
(4) confers reinforcement, support and poten-
tial repair to the mineral structure [95, 103, 108,
145, 146].
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Figure 4. Stereo-micrographs of regular echinoid test. (A) Lateral view of Arbacia lixula test deprived of its soft tissue component
and accessory appendages. It is possible to distinguish an ‘oral’ side where the mouth opens and an ‘aboral’ side with the anal
opening. (B) Pattern of the apical pole: the detail shows the madreporite, the five genital plates with respective genital pores; five
ocular plates with pores; the periproctal membrane with the centrally positioned anus. (C) Details of the lateral side of the test
showing the arrangement of double columns of interambulacral and ambulacral plates, the latter ones recognizable by the
tube-feet pores. All plates display articular tubercles for spines. Central sutures between two adjacent plate columns are visible.
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3. Test

The echinoid test (figure 4) is a multi-element sys-
tem consisting of a number of skeletal plates joined
by sutures. These sutures can be characterized by the
presence of interdigitating articular surfaces (comb-
joints) often bound together by short collagenous lig-
aments [23, 27, 33, 46, 57, 63, 140, 147-149]. This
constructional design fulfils several mechanical prin-
ciples acting as a resistant, lightweight, load-bearing
and load-transferring system, as well as being an
attachment point for appendages. Structural strength
is achieved by hierarchical constructional adapta-
tions, such as: overall shape, plate layout and arrange-
ment (trivalent vertex arrangement, in which three
plates meet in one point), skeletal interlocking and
reinforcements (e.g. internal buttressing), material
distribution and stereom diversity [27, 46, 55-58,
63, 140, 149—151]. These skeletal features have been
described as functional strategies which, suitably
combined with adaptations of the connective tissue
components, allows the echinoid test to withstand
compressive, tensile and bending stresses [46, 55, 63,
109, 140, 141, 149]. In particular, collagenous sutu-
ral ligaments play a central role in increasing the
structural strengthening of the test by binding rigid
calcite plates at sutures [140, 141]. By measuring
the breaking forces of the Strongylocentrotus purpu-
ratus skeleton with intact or removed soft tissues,
Ellers et al (1998) demonstrated that skeletons with-
out ligaments broke at lower apically applied forces
in respect to those with ligaments [140]. Different
is the case of the minute clypeasteroid Echinocya-
mus pusillus, of which Grun and Nebelsick (2018)
showed that soft tissues do not possess a signifi-
cant structural function. However, the overall layout

and plate connections between Strongylocentrotus and
Echinocyamus are fundamentally different due to the
extensive skeletal plate connections in the Echinocya-
mus responsible for its overall stability [46, 55-58,
149]. Some echinoid morphologies are also optimized
with respect to hydrodynamic property adaptations
such as the lunulae of sand dollars, which are con-
sidered to reduce lift when sand dollars are on the
sea-floor surface and subjected to strong currents
[62].

Due to the structural form and architecture of
the test, echinoids have been extensively investigated
in order to understand their constructional design
and mechanical behaviour in detail [23, 45, 46,
55, 60, 63, 68, 107, 148, 150, 152—154]. Detailed
morphospace analyses were carried out to explain
and predict extinct and extant echinoid test shapes by
considering possible phylogenetic, physical and
mechanical factors [154—158]. Thompson (1917) in
particular, carried out a pioneer study on test shape
using a liquid drop analogy to describe the shape
and growth of regular echinoids [158]. Ellers (1993)
supported this hypothesis using the thin shell theory
to explain test curvature defining the echinoid mor-
phospace in two parameters: (1) the apical curvature;
(2) a proportion of the vertical gradient of pressure
to the internal coelomic pressure [156]. Seilacher
(1979) proposed that the echinoid test should be
analysed as a mineralized pneu-structure that grows
when internal pressure exceeds external tension,
varying its morphology through plate growth
[23, 28]. However, Ellers and Telford (1992) mea-
sured the internal coelomic pressure in the regular
sea urchin S. purpuratus and Lytechinus variegatus
[159]. They found that internal pressure fluctuates
rhythmically about —8 Pa and was negative for 70%
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Figure 5. Virtual models of Paracentrotus lividus’s test. (A) 3D model obtained with a photogrammetric reconstruction. (B)
Parametrized geometry model with visible plates and sutures. (C) 3D mesh used for finite element analyses.

of the time, disempowering the pneu-hypothesis
that requires an internal positive pressure [23, 28,
160]. These rhythmical fluctuations in pressure could
be mainly caused by the lantern movements that
change the curvature and tension of the peristomial
membrane [159]. Telford (1985) analysed the testasa
dome structure utilizing both the membrane theory
and static analysis to determine its behaviour under
different loads; thereby assessing the hypothesis that
the test form was constructed to resist external forces
[63]. On the whole, taking into account these and
other studies, test form and growth were described
and explained using different theoretic models,
based on a total of nine hypotheses, in addition to
different computational models [for review see 152].
The echinoid test growth is mainly based on two
combined processes, namely: plate addition, i.e. the
insertion of new plates in the apical system [21], and
plate growth, based on a peripherally accretion or
reabsorption of skeletal material [161]. However, the
main distinctive feature of the growth process lies
in the mutable collagenous tissue (MCT) present
at plate sutures that can undergo rapid changes in
mechanical properties (switching reversibly between
stiff and compliant states) accommodating little
movement and growth [for review see 162]. In
particular, sutures allow growth maintaining a space
between plate margins (‘plate gapping’) [152, 155,
163] in a manner that they do not unite and contin-
uously expand interacting with the adjacent plates.
Usually in regular echinoids, sutures remain open up
to the adult stage providing the test some degree of
flexibility and mechanical advantages in sustaining
loads [140, 141].

Modern methods such as 3D acquisition (e.g.
pCT and photogrammetry), digital modelling and
simulation, e.g. FEA are recently being adopted, pro-
viding novel answers to questions about test mor-
phology, functional performance and mechanical
behaviour (figure 5) [46, 55, 57, 60, 138, 141, 164,
165]. As pioneers in this field, Philippi and Nachti-
gall (1996) conducted FEA-analysis describing the
behaviour of the regular echinoid test (Echinus escu-
lentus) under diverse loads [60]. Their studies high-
lighted the structural load-bearing efficiency of the
test and interpreted its peculiar spherical shape as
the most adapted form to sustain the tensile stresses

resulting from the tube feet activity [60]. Recently,
Grun and co-workers focussed on the clypeast-
eroid skeleton using x-ray nCT, SEM observations
and physical and virtual tests in order to analyse
the hierarchical structural design of the E. pusil-
Tus test [46, 55, 57]. They displayed in detail the
mechanical properties of the test at different hierar-
chical levels, i.e. from the overall shape—although
consisting in a discontinuous structure divided into
several polygonal plates, it behaves as a monolithic
structure—to the plate micro-architecture, internal
supports and stereom variability, all described as spe-
cific functional devices for bearing and transferring

loads.

4. Aristotle’s lantern

Most regular echinoids, extant or extinct, possess
a complex dental apparatus, traditionally called
Aristotle’s lantern. The apparatus is a biomechanical
and dynamic system arranged according to perfectly
pentameral symmetry and consisting of an intrinsic
part, the lantern itself, and an extrinsic part, the perig-
nathic girdle, i.e. the inner edge of the test [49-53].
These two parts are connected by muscle bundles
(five pairs of retractor muscles and five pairs of
protractor muscles), and ligamentous structures
(peristomial membrane and five pairs of compass
depressor bundles) [51] (figure 6). The lantern con-
sists of forty anatomically distinct skeletal ossicles:
ten demi-pyramids, ten epiphyses, five rotulae, ten
compasses and five teeth (figure 7) [52]. They are all
reciprocally joined by specific articulations (movable
joints, semi-movable or rigid sutures), interconnected
by articular ligaments and moved by anatomically and
functionally well-defined muscles consisting in five
pairs of retractor and protractor bundles, five mas-
sive inter-pyramidal muscles and five compass ele-
vator muscles. The lantern muscular component is
also represented by other muscular elements, namely
myocytes of the lantern coelomic epithelium, which
are involved to a minor extent (such as the thin mus-
cle layer included in the compass depressor ligaments)
(49, 53, 166—169].

Conversely, irregular echinoids do not gener-
ally possess a lantern, although in juveniles of Cas-
siduloida and Spatangoida this can appear as a
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Figure 6. Aristotle’s lantern. (A) Stereo-micrograph representing an oral view of a Sphaerechinus granularis sample showing in
detail the peristomial membrane (dotted circle), the mouth opening and five teeth tips. (B) Stereo-micrograph of the lantern in a
dissected specimen. (C) Schematic illustration of the lantern anatomy showing: five compasses, respective compass elevator
muscles and depressor ligaments; protractor and retractor muscles; inter-pyramidal muscles; auricles; peristomal membrane.
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Figure7. SEM micrographs of a real Aristotle’s lantern (A—C) compared with a three-dimensional reconstruction (D—F). (A)
Front/lateral view of the lantern. The preparation method (semi-digestion of soft tissues) emphasizes the skeletal structure and
permits observation of the five jaws comprising their different components. (B) Internal view of two isolated pyramids, compass
and teeth. The lateral sides of the pyramid possess comb-like indented inner borders and transversely striated surfaces with
regular ridges for the inter-pyramidal muscle attachment. (C) Front/lateral view of a tooth in toto showing a T-shaped structure
(apical plumula partly removed). Bar = 1 mm. (D) A prospective view of the segmented 3D model of Paracentrotus lividus lantern
based on micro-CT imageries. (E) A virtual section of pyramids showing teeth position. (F) Isolated teeth. Blue = pyramids and
compass, yellow = teeth. Bar = 1 mm. ¢ = compass, de = demi-epiphysis, dp = demi-pyramid, k = keel, m = midshaft,

py = pyramid, pl = plumula, r = rotula, t = tooth, tp = tip.

vestigial trait, with the exceptions of adult Holecty-
poida and Clypeasteroida, [37, 38]. However, these
persistent lanterns differ remarkably from regular
lantern models: they are flattened and relatively larger,
non-protrusible [38] and provided with teeth that
move horizontally with respect to the substrate and
designed to crush sediment rather than to grasp [170,
171]. Furthermore, in contrast to the lantern of regu-
lar echinoids, these flattened types appear to be used
only for feeding: the Aristotle’s lantern of regular
sea urchins is employed in other important activities

[33, 53, 166] such as digging, locomotion, respiration
and circulation of coelomic fluid [170, 172, 173].

From Aristotle’s studies [174], the unique struc-
ture of the echinoid dental apparatus has attracted
the attention of many scientists [128, 175—178], but
only in the last century the interest of biologists and
engineers in the lantern has increased, resulting in a
wide range of studies aimed to address its morphology
[51-53, 179], physiology [180-182] and biomechan-
ics [49,49-53, 171, 173, 183—194].

Static and dynamic mechanical studies were car-
ried out on the echinoid lantern, specifically on
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its skeletal ossicles, muscular system and ligaments
[50-53, 194-198], as well as, on the peristomial
membrane (figure 6(A)), a flexible area consist-
ing mainly of fibrous connective tissue surround-
ing the mouth and connecting the lantern to the
test; with its dynamic mechanical behaviour it con-
tributes to the lantern’s stability and motility [168,
169, 199, 200]. Biomechanical models, experimen-
tal mechanical tests and computer simulations were
elaborated and integrated to determine lantern move-
ments, muscular forces and constraints during dif-
ferent activities in regular echinoid lanterns [49, 184,
192, 193], whereas other mechanical studies were
addressed to define the biting forces developed by
the dental apparatus in sand dollars [170]. It was
assessed that the overall lantern can show resistance
to different mechanical stresses directly or indirectly
related to motor activities by means of a number
of specific macro- and micro-structural adaptations.
From a macrostructural perspective, the first mechan-
ical advantage of the lantern lies in its strategic sub-
division into complementary parts and correlated
pieces, starting with the five multipiece jaws (figure 7),
each consisting of distinct elements sutured together
(two symmetrical demi-pyramids and two symmetri-
cal demi-epiphyses) providing a perfect alveolus that
contains and protects the long internal tooth ensuring
its continuous growth (see below) [52] (figures 7(B)
and (C)). The second advantage regards the jaws that
are joined to each other by means of complex mul-
tivalent articulations endowed with specialized artic-
ular ossicles, known as rotulae [52] (figure 3(C)).
They play a role in the basic opening and clos-
ing of the jaw, modulating its reciprocal tilting and
swinging, and in the independent movements of the
compasses (raising/lowering) on the aboral side of
the lantern. These are sophisticated devices enabling
the structure to be mechanically versatile, resistant
and deformable [51-53, 143]. Nonetheless, the major
complex adaptations were found in both skeletal
microstructural variations/differentiations (figure 3)
and material composition. The micromechanical
design of the skeletal parts of the lantern was
extensively investigated and described using SEM
by Candia Carnevali and co-workers in compar-
ative studies of the cidarid [51] and camarodont
[52] lanterns. Detailed SEM studies also focussed on
the micro-structure of sea urchin teeth [171, 183,
187-191, 200]. Subsequently, pyramids and teeth
were further analysed employing Micro-CT imag-
ing, which permitted the acquisition of 3D images
leading to detailed insights into different species-
specific geometries and microstructures [120, 131,
201-205] (figures 7(D)—(F)). These studies demon-
strated that the lantern ossicles tend to have a sim-
ilar basic organization in terms of adaptive stereom
variability in relation to interactions with skeletal
elements, ligaments or muscles, as well as, in rela-
tion to specific functional/mechanical requirements.
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The only exception appears to be the teeth, which dis-
play a unique microstructural architecture composed
of a magnesium-bearing calcite crystal combination,
such as monocrystalline plate-elements, monocrys-
talline fibrous-elements and polycrystalline matrix,
with a variable amount of organic macromolecules
(about 0.2—0.25 wt %) [103, 118, 119, 204, 206—-209].
Echinoid teeth are elongated, moderately curved and
highly variable in shape, and can be classified in
four types (U, T, prism and wedge-shaped teeth)
on the basis of their different cross-sectional pro-
file (figure 7(C)) [21, 173, 191, 205, 210]. Along
the longitudinal axis, each tooth displays three main
well-differentiated parts: an aboral growing portion
(plumula), a midshaft and a mature portion charac-
terized by a sharp oral tip [191]. In order to cope
with the constant tip abrasion due to the interaction
with the substratum, the tooth grows continuously
at the plumula level and then slowly descends along
the jaw following an inner pyramidal furrow [191,
211, 212]. The mature part consists of three main
zones characterized by well differentiated structures
and functions: (1) the primary plate zone, organized
in lamellar plates and prisms obliquely oriented with
respect to the longitudinal tooth axis; (2) the stone
part, formed by calcareous needles surrounded by a
polycrystalline matrix and connected to the primary
plates by lamellae; (3) the keel, consisting mainly of
inner prisms and of outer secondary plates with pecu-
liar carinar prolongations [118—120, 131, 202-205,
213]. Echinoid teeth were analysed in detail using var-
ious techniques, such as SEM, energy-dispersive x-ray
spectroscopy analysis, x-ray micro-tomography and
spectromicroscopy, as well as micro- and nanoinden-
tation, in order to identify their microstructure, mate-
rial distribution, mechanical behaviour, and chemical
composition. These analyses allow an interpretation
of the tooth’s structural architecture and integration
in relation to its complex mechanical performance
[118-120, 214]. In terms of structure—function cor-
relation, the lamellar plate components appear to be
a structural solution adapted to reinforce the zones
subjected to maximum compressive stress (abaxial
part), whereas the fibrous elements are employed in
the zones of maximum tensile stress (adaxial part: the
keel) [52, 120, 202, 215]. At the tooth tip, plates and
fibrous elements split off due to shearing forces conse-
quently creating a fracture at the surrounding organic
layer, generating a mechanism for self-sharpening
[119, 215]. Recently, this mechanism has been further
investigated using 3D techniques in-situ SEM experi-
ments and mechanical measurements combined with
a nonlinear finite-element analysis [216].

In conclusion, the tooth is adapted to minimize
and respond to multiple and combined mechanical
stresses such as shear, bending, torsion and buckling
produced by gripping, scraping, digging and loco-
motion [52, 119, 120, 204, 210, 215]. The strategic
employment of magnesium-calcitic material together
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with its mechanical properties, in combination with
the orientation of a plate-and-prism arrangement
(according to the lines of force of the applied loads),
result in a remarkable increase in tooth hardness
(twice that of inorganic calcite itself) allowing echi-
noids to dig efficiently and deeply into calcareous
rocks [93, 120, 201, 214, 215, 217-222].

5. Accessory appendages

Echinoids possess a variety of articulated accessory
appendages [18, 32, 77] including spines, pedicellar-
iae and sphaeridia. Spines and pedicellariae are pri-
marily involved in defence and cleaning and can often
show signs of damage and repair or can even be auto-
tomised [223-225]. Sphaeridia are minute skeletal
spheres attached to the test around the peristomial
ambulacral regions (lacking in cidaroids) and are con-
sidered to be statoreceptor and proprioceptor organs.
However, little is known about their morphology and
physiology [39, 226, 227].

Pedicellariae are minute pincer-like structures dis-
tributed on the test surface, particularly around the
peristome (figure 8) and periproct [34, 228] and
are employed in different activities such as grip-
ping, defence, covering and cleaning [34, 39, 47,
77, 229-236]. As most musculo-skeletal organs, each
pedicellaria consists of a stalk, neck and two to
five valves. Pedicellariae are highly variable in shape,
often denticulated and sometimes armed with venom
glands [77, 233, 237, 238]. Due to their variable
shape, pedicellariae have been extensively used in
taxonomy [5—11, 34, 239-241]. The valves show spe-
cific stereom structures and are equipped with func-
tionally distinct muscles (abductors, adductors and
flexors) and collagenous ligaments [242], which con-
tribute to its gripping force [231, 233]. They gen-
erally react to chemical and tactile stimuli, in fact
most valves are equipped with fields of chemosen-
sitive cells [243-245]. As reported by Cavey and
Markel [39], and further investigated by Coppard and
co-workers [34], there are four main types of pedi-
cellariae: (1) globiferous pedicellariae, which pos-
sess venom glands and denticulated valves with large
and strong adductor muscles: they are employed
as a deterrent against medium and larger preda-
tors; (2) ophicephalous pedicellariae, which possess
three denticulated valves, provided with a glandu-
lar portion involved in releasing anti-fouling sub-
stances onto the test surface, and larger processes
for muscle attachments enabling them to exert more
strength and reduce muscle fatigue during object
holding (figure 8(B)); (3) triphyllous pedicellariae,
which are the smallest type of pedicellariae, are
characterized by three small valves, long muscu-
lar neck and stalk: they are not sensitive to touch,
have limited holding time and are employed to free
test surface of minute particles (figure 8(C)); (4)
tridentate pedicellariae, which are the largest and
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most common type, consist of three denticulated
valves: they are activated by tactile stimulation and
employed in removing larger particles or preventing
test contamination by invertebrate pests. Past stud-
ies on pedicellariae generally consisted in descriptions
of their morphology, activities and functions [228,
236, 246, 247]. Noteworthy are Campbell’s studies
that analyse in detail the forms and activities of the
pedicellariae, identifying jaw movements, closing and
opening responses (occurring after direct reflex-arc
stimulation or indirect nerve stimulation), as well as,
their latency, speed and duration, receptor distribu-
tion and reaction [229-233, 244].

Spines are elongated structures consisting of shaft
(neck and tip), milled ring and base [80]. Each spine
is joined to a respective tubercle at a ball-and-socket
joint [80, 114, 248] and can be moved or firmly
maintained in position due to the combined synergic
action of a muscle and a ligament, known as the
‘catch apparatus’ [249]. The spine base enclosed by
an articular envelope including a continuous outer
layer of parallel muscle fibres runs from the spine
to the test, and an inner layer of parallel ligament
fibres with spine-test attachments. The ligaments
consist of MCT [for review see 162, 250] enabled
to drastically and quickly change its mechanical
properties under nervous control. The presence
of MCT allows the tensile state of the ligament to
change rapidly from a soft and flexible condition,
favouring muscle action during movement, to a rigid
condition, locking the spine in position without
muscle involvement, providing a fatigue/ energy-free
holding mechanism [251]. Spine shape and size differ
greatly from species to species: like a needle they
can be long, hollow, thin and pointed as those in
camarodonts; or look cylindrical or flattened, long or
short, streaked or variously decorated, as in cidaroids;
or moreover, appear modified and miniaturized as
in irregular echinoids (figure 9) [29-33]. Spines
perform different functions, such as locomotion,
feeding and burrowing [29, 39, 42, 252]. They also act
as a protection from physical trauma and predators
[40, 253, 254] and as a stress impact reducer [43,
255-258], which is one of their main roles in the
prevention of structural test damage. As reported
by Tsafnat and co-workers [135] this is achieved by
the spine microstructure, which improves resistance
to compression. Thus, spines are structurally highly
adapted to withstand different mechanical stresses,
combining high impact resistance with high-energy
absorption [43, 54, 59, 61, 65, 123, 132, 133, 135,
239, 258-261]. As for other skeletal components, the
mechanical performance of the spines is the result of
three hierarchical features, i.e. material properties,
microarchitecture and shape. With regard to material
properties, even if each spine behaves as a single
calcite crystal with the c-axis oriented to its long
axis [262]—as shown by polarized light microscopy
[89], x-ray diffraction [107], and electron backscatter
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Figure 8. SEM micrographs of pedicellariae. (A) Oral view of Paracentrotus lividus showing the peristomial membrane area
including the mouth with five teeth, spines, tube feet and pedicellariae. Bar = 1 mm. (B) Detail of ophicephalous pedicellaria tip.
Bar = 100 pm. (C) Detail of triphyllous pedicellaria tip. (B) and (C) are identified in (A) with dotted circles. Bar = 40 pm.

p = pedicellariae, pm = peristomial membrane, t = tooth, tf = tube foot, sp = spine.

rb
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Figure 9. Photographs of echinoid spines. A general comparative view of spines from different species of cidaroid and camarodont
regular sea urchins: relevant differences in shape, size and structure (including external, reliefs and tubercles) of shaft, tip and base
are well evidenced. (A) Chandrocidaris giganteus (Cidaroida), (B) Phyllacantus imperialis (Cidaroida), (C) Echinothrix diadema

(Camarodonta), (D) Echinometra lucunter (Camarodonta). Bar = 1 cm, s = ¢ = collar, b = base, rb = ribs, s = shaft, th = thorns.

diffraction [132]—it has a mesocrystalline struc-
ture [99] consisting of a highly oriented array of
nanocrystals embedded in a matrix of ACC and
macromolecules [95-103, 110, 263-265]. The pres-
ence of ACC and intracrystalline macromolecules
determines a typical conchoidal fracture behaviour
resulting in increased fracture resistance and struc-
tural flexibility, as shown in the other skeletal parts
[95-99, 110113, 116, 121]. The material composi-
tion within the spine is highly variable (particularly
the magnesium concentration), implying diverse
mechanical properties in terms of elastic moduli,
hardness and stiffness, and is significantly higher
in the septa rather than in the spine central core
[61, 132, 133]. Apropos the microarchitecture, spine
stereom types greatly vary from species to species and
along the same spine [54, 132, 133]. This leads to a
very specific structural behaviour regarding the stress
pattern distribution and resistance, as shown by the
mechanical tests, such as three-point bending [54,
132, 266] and bulk compression tests [61, 133, 258].
Spine growth lines have also been shown to possess
a mechanical significance and their presence could

enhance resistance to larger force values [54, 59, 61,
67, 123, 133, 267-269]. Spines can display a peculiar
morphology (widely recurrent in nature e.g. feather
shafts and plant stems) consisting mainly of a hollow
cylindrical porous structures, well known for their
efficient mechanical advantage related to high
strength-to-weight ratio [270]. In addition, many
spines are characterized by sets of radial elements
such as wedges [54, 59, 123], barbs and bridges,
optimizing stress distribution [54, 65, 123, 135],
increasing bending stress resistance [259] and pre-
venting fracture propagation [43, 65, 132, 135, 271,
272]. In particular, in Centrostephanus rodgersii, a
detailed analysis of spine behaviour under compres-
sion, tension and torsion loads by means of micro-CT
scan and FE-Analysis has led to the identification of
stress concentration patterns within spines and their
role as mechanical supports [135].

In addition to the true musculo-skeletal
appendages, tube feet (or podia) may also be
considered because they are intrinsically related to
the endoskeleton and their soft wall can include
skeletal spicules [273]. Each tube foot consists of an
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extensible hollow cylindrical stem with a terminal
adhesive disc that includes small calcareous ossicles
(rosette) [273-275]. Symmetrical pairs of podia
(often used in taxonomic work) [276] emerge from
the ambulacral plate test pores [25] and are moved
hydraulically [277-280]. These podia are an integral
part of the internal water vascular system whose
major function is respiration [77], attachment [33,
277-282] and locomotion on different substrates
[283], as well as, having a significant involvement
in climbing, righting, covering [33], photoreception
[284], food handling, burrow-building, and chemo/
mechano-sensory reception [285]. The specific tube
foot attachment/detachment mechanisms are related
to disc adhesive and de-adhesive secretions [281,
282], whereas stem extension, flexion and retrac-
tion are caused by typical hydraulic mechanisms
[277-279] involving the employment of MCT [282].
As revealed by Santos and co-workers [280-285], the
adhesive secretion is composed of inorganic material
(45.5%), proteins (6.4%), neutral carbohydrates
(1.2%) and lipids (2.5%). The adhesive strength
(force per unit area) ranges from 0.09 to 0.54 MPa
[277, 279, 282]. However, the adhesive and tensile
strength and overall attachment capabilities change
according to the number of tube feet involved [278,
279, 286, 287], species and population analysed
[278], animal body size and shape, substratum
and hydrodynamic conditions [255, 278, 279,
286, 287].

6. Biomimetic applications

The term biomimetics identifies an interdisciplinary
approach that combines the understanding of natural
structures, systems and processes with their abstrac-
tion and translation into technological applications
[69, 71-74, 288]. Biomimetics is neither an imitation
of nature nor a mere copy of forms, but rather it is an
in-depth comprehension and translation of natural
working-principles (e.g. constructional principles of
organisms), which can optimize structures in build-
ing constructions, industrial products and technical
processes [74-76].

The biomimetic process is supported by a
series of analogies between biological and technical
structures enabling the transfer of solutions on
functional bases [289-292]. Indeed, organisms and
artefacts are often faced with similar problems,
such as the need to increase structural stability and
resistance (skeleton/frame), pressure drag reduction
(streamline shape and ribbing surfaces of marine
animals/hull of boats) and reaction to external
conditions (nastic movement of plants/dynamic
facades) [45, 103, 293]. Hence, by understanding and
modelling the adaptive principles of organisms, func-
tional solutions for innovative design inspirations
or ‘bioinspirations’ can be identified stimulating
technical implementations [69, 71, 74-76, 289-292].
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Nevertheless, the constructional design of organisms
is subjected to different factors such as heritage
constraints and morpho-functional adaptations to
biotic and abiotic factors [28]. Hence, structural and
functional solutions adopted by organisms are often
neither the most advantageous nor the most adapted
in any situation and context, since they represent
a compromise respect to evolutionary constraints
[28]. A specific contextualization and optimisation of
biomimetic technical solutions is therefore required
and can be performed through an interdisciplinary
collaboration between biology and other scientific
fields (e.g. engineering, design, architecture, material
science, etc) with the aid of specific tools, such as
‘computer-aided design’ (CAD), ‘computer-aided
optimization’, knowledge database and algorithms
[294, 295]. Consequently, the abstracted, interpreted
and contextualized biological principles can lead to
new inspirations for the improvement of structures
and/or processes based on analogies of functions [28,
69,71, 74-76, 288—291, 295, 296].

On the other hand, biological structures signif-
icantly differ from artificial ones in various impor-
tant aspects such as: growth process generating struc-
tures with full functionality and integrity at all stages
of life [158, 297]; use of basic autochthonous and
sustainable materials usually characterized by het-
erogeneity, anisotropy and hierarchy that determine
multiple functions and emerging properties [45, 109,
158, 298]; integration in the environment and ability
to interact with biotic and abiotic components [299].
On pair with analogies, these differences can also lead
to new design perspectives and opportunities [66, 76,
288, 300], e.g. growing structures of material ecol-
ogy [301, 302] responsive dynamic fagades for build-
ing constructions [288], and hybrid design products
[303, 304].

The biomimetic procedure is carried out in
different steps and tools [for review see 74]. Although
the methods adoptable in this field are different and
numerous, they can be allocated in two types of
approaches: bottom-up and top-down [305, 306]. The
bottom-up approach begins by identifying adaptive
functional solutions in biological species, followed
by the identification of the most suitable design and
technological area for their transfer. This approach
in literature has also been defined in diverse
ways: solution-based, solution-driven, biology push,
biomimetics by induction and biology to design. The
top-down approach begins from the analysis of
complex technical problems to the pursuing in
nature of biological models offering novel solutions.
In literature, this approach is also also known as:
problem-driven, problem-based, challenge to biol-
ogy, technology pull and biomimetics by analogy
[69, 71-74,305, 306].

A general bottom-up is here simplified in five key
steps [74]; in addition, a case study on Paracentro-
tus lividus’s test is used as an example [141, 165].
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2. INVESTIGATION

1. BIOLOGICAL MODEL

Fusaro of University of Campania ‘Luigi Vanvitelli’).

Figure 10. Biomimetic process. A five-step scheme of the biomimetic solution transfer: from a biological model to a technical
application as exemplified by the Paracentrotus lividus case study. (1) Identification of a biological model: P. lividus test. (2)
Investigation of structures, performances and functions of the biological model: a finite element analysis of the discontinuous
shell structure divided into rigid hexagonal plates and semi-flexible joints. (3) Abstraction of functional mechanisms and design
principles: a discontinuous shell structure with semi-flexible joints reduce bending moments. (4) Modelling and analysis
determining and optimising the artificial system based on the biomimetic design principle: a 3D model of a bioinspired plexiglass
open shell. (5) Biomimetic design application: the final implementation, manufacturing and testing of a bioinspired building
construction (images designed by Gabriele Pontillo, Simona Landj, Lisa Vitale, Ilenia Rubino, Pasquale Ciardiello, Alessandro

4. MODELLING AND ANALYSIS 5. APPLICATION

(1) Identification of a biological model, usually iden-
tifiable on the basis of an analogy of function and
of problem solving related to the final application: P.
lividus test model as a shell structure enduring envi-
ronmental mechanical stress. (2) Investigation of the
structure, performance and function of the biologi-
cal model: FEA of the discontinuous shell structure
divided into rigid hexagonal plates and semi-flexible
sutures. (3) Abstraction of functional mechanisms and
design principles: a discontinuous shell structure with
semi-flexible joints reducing bending moments. (4)
Modelling and analysis to determine and optimize
the artificial system based on the biomimetic design
principle: developed in design sketches and concepts,
the abstracted principle is then implemented in a 3D
model of a bioinspired shell structure. The technolog-
ical implementation includes the choice of material,
form and structure supported by virtual simulations
and validations, with particular attention and adap-
tation to the final use. (5) Application and manufac-
turing of the bioinspired artefact: realization and final
acceptance test of the pavilion inspired by P. lividus
test (figure 10).

This process is not frequently linear due to con-
straints, context and scaling difficulties [288]. In
this regard, the dimensional scale is a crucial factor:
organisms have highly different working principles
based on their dimensional realm [109, 307]. A direct
scaling of the biological solution to the design dimen-
sion is not always possible, particularly in building
constructions that concern not only size but also
materials, external loading, life cycle, required safety
range etc [288]. For this reason, the abstracted princi-
ples need to be usually translated, redesigned and con-
textualized to be successfully applied as new technical
solutions [74, 305].

In all these approaches, knowledge integra-
tion and interdisciplinary methods and tools are
essential for investigation and designing of biologi-
cally inspired structures. The study of biomimetics
embraces both life and engineering disciplines

[72, 289, 308]. Although, the functional charac-
teristics and processes of nature conducting to the
design of new innovative artefacts are immeasur-
able (e.g. bio-mineralization, growth processes
and regeneration), bio-mechanical aspects are the
most studied and implemented in the biomimetic
field. A series of mechanical principles based on
physical-mathematical laws appear to govern the
structure—function relationship in organisms, as in
artificial structures [45, 288]. Hence, the physical-
mathematical approach can successfully describe
bio-structures and their mechanical problems and
performances. As shown by d’Arcy Thompson
(1917), this biomechanical approach has been
applied for decades [109, 158, 292, 293, 309-311].
Nevertheless, the contemporary advances in com-
putational imaging acquisition, virtual simulation
and manufacturing, together with the increased
instrumental biological analysis resolution, lead to
new developments for inter-disciplinary mechanical
studies and biomimetics [71, 164, 295, 312]. Both
biological structures and principles can be digi-
tally analysed in depth at a micro- and nanoscale
and better transferred into a multitude and var-
ious constructions and industrial products [295,
301-304, 313]. Consequently, biological structures
are converted and analysed as 2D/3D models and
directly connected to the technical process, becoming
archetypes and/or guides for the genesis of the
products [66, 295]. This creates a supporting process
with efficacious tools for designers, engineers and
scientists in the transition from real (organism)
to digital (2D/3D archetype) and from digital (3D
model) to the real entity (physical building, device
or product), involving digital manufacturing tech-
niques, which reproduce in a rigorous and functional
way the analogous strategies and mathematical laws
of nature [289].

These biomimetic methods and tools enable not
only a successful transfer and unique application,
but also a deeper understanding of biological struc-
tures, their bauplan and evolutionary process. This
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enhancing knowledge of the biological realm based
on biomimetic approaches is referred to as ‘reverse
biomimetics’. In particular, it can be conceived as
an interactive spiral where the results achieved by
the biomimetic approach lead to a more detailed
understanding of the biological systems, represent-
ing the basis for further investigation and conduct-
ing to eventual new transfers and developments in
biomimetic products [305].

In this complex framework, the skeletal compo-
nents and mechanical properties of the echinoid con-
structional design have revealed a high potential in
transferring functional bioinspired solutions into new
diverse technical applications [27, 55-58, 64, 258].
Recent studies have shown how the echinoid structure
can be digitally investigated generating 3D models
and applying FE-analyses to identify possible struc-
tural and mechanical principles [54-58, 64, 138, 216].
In addition, based on their primary function, skele-
tal components have found a major and coherent
field of technological application from engineering
and architecture to robotics, biomedical and material
sciences.

6.1. Engineering and architecture

Echinoids have a long history as inspiring models
for engineering structures. This interest has recently
increased, in particular regarding rotationally sym-
metrical constructions, defined as echinodomes [314,
315]. Detailed analyses of these structures includ-
ing their mechanical advantages and limits have been
technically described and generally well understood.
Different load conditions, such as self-weight, snow
loads, wind and hydrostatic loads, which can generate
over- or under-pressure, can be calculated adapting
constructions to specific mechanical needs and func-
tions [315]. Echinodomes have been applied to several
constructions including long-term storage containers
for gas and liquid fuels such as automobile and aircraft
gasoline, mineral oil, and other volatile substances
[315]. The advantages of echinodomes are specif-
ically due to their thin-shelled and double-curved
architecture that results in mechanical behaviour
predominantly following the membrane theory, i.e.
in-plane membrane stress, reduced bending stress
[315-318].

Additional studies have not only focussed on
the overall shape of an echinoid test, but also
on specific working principles that have recently
been implemented in civil engineering. Grun et al
[64, 319, 320] provided an overview on echinoid
skeletal strategies in building constructions, by iden-
tifying in the skeleton various structural work-
ing principles on different hierarchical levels and
their transfer into demonstrators. These are architec-
tural constructions providing a proof-of-concept of
specific functional aspects. Transferred structural
principles based on echinoid skeleton include: (1)
mosaic-arranged plates, where three plates meet in
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one point in order to avoid straight edges, which may
cause kinking; (2) clypeasteroid-type plates, intercon-
nected by skeletal protrusions leading to secure plate
interlocking; (3) fibre-connected plates; (4) light-
weight constructions; and (5) double-wall construc-
tions as found in Clypeaster rosaceus [27, 64].

Both structural elements and processes lead-
ing to specific echinoid morphologies have been
investigated [64]. Plate distribution has been opti-
mized using the echinoid skeleton as a role model
[64, 321] and high-performance structures, identi-
fied and analysed, have been abstracted and trans-
ferred in various ways into demonstrators. For
example, the ICD/ITKE Research Pavilion 2011
(figure 11(A)) [64, 321, 322] has well demon-
strated the application of three structural principles
among those cited above: (1) mosaic-arranged mod-
ules, where three modules meet in one point; (2)
single hollow modules, made from multi-elements
reflecting a lightweight construction; (3) modules
interconnected by comb-joints. Similarly, a building
construction in the form of the Landesgartenschau
Exhibition Hall 2014 was realized (figure 11(B)) [64,
321, 323-326]. A second ICD/ITKE Research Pavil-
ion developed in 2015 (figure 11(C)) focussed on (1)
modules arrangement; (2) comb-joint refinement;
(3) material differentiation using textile connections;
(4) light-weight construction; (5) a double-shelled
structure; (6) an evolutionarily optimized growth
algorithm based on the echinoid growth process by
plate addition [64, 321]. In 2018, the Rosenstein
Timber Pavilion was exhibited demonstrating further
developed, high-performance characteristics based
on echinoid skeleton, focussing on improved plate
connections and optimized plate distribution [323].
Furthermore, these characteristics have also inspired
the BUGA Wood Pavilion (2019, ICD/ITKE Univer-
sity of Stuttgart) (figure 11(D)), which was realized
combining a new digital design approach for shape-
funding structures with an automated robotic man-
ufacturing using wood, thus receiving the German
Design Award 2020 in the ‘Excellent Architecture’
category [327]. As a final example, the Rosenstein
Pavilion was realized in 2019 as a functional graded
concrete shell structure inspired by the stereom of
Heterocentrotus mammillatus spines. In particular, the
spine structure was investigated as a main biological
model for the designing of a new functional graded
porosity of a concrete shell. The abstracted princi-
ple lead to a structural efficiency improvement of
the porous pavilion through a functional distribution
of material in accordance to a dominant stress state,
resulting 40% lighter [328].

6.2. Robotics

Various studies were carried out in the robotic
sector from the analysis of echinoid biology and
structures to the development of new robotic designs
[329]. As an example, a sea urchin-like robot was
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Figure 11. Echinoids in Architecture. Research pavilions and building constructions inspired by both morphological and
mechanical principles of the genera Clypeaster and Phyllacantus. (A) ICD/ITKE Research Pavilion 2011. (B) Landesgartenschau
Exhibition Hall 2014. (C) ICD/ITKE Research Pavilion 2015—-16. (D) BUGA Wood Pavilion 2019 (© Photo A-D curtesy of Prof.
Jan Knipper, curtesy of Prof. Jan Knipper, Institute of Building Structures and Structural Design, University of Stuttgart.

designed as a new exploration platform enhancing
access to unstructured environments or danger-
ous places [330]. Based on tube feet and spine
locomotion a flexible spherical rolling robot was
developed with retractable linear actuators and
pendulum-driven mechanisms. Both strategies
intended to overcome the locomotion difficulties of
spherical robots on irregular surfaces [330]. Echin-
oderm tube feet have been a source of inspiration
for a wide range of soft robotic actuators [331-333].
For example, studies based on tube feet models
have resulted in a magnetically controlled crawling
mechanism [334] and suction device optimized
for grasping rough surfaces with a rapid release
mechanism [335].

An interdisciplinary team of engineers and marine
biologists from the Jacobs School of Engineering
(University of San Diego, California USA) used the
Aristotle’s lantern to develop a space exploration
robot with a new gripping device for sediment sam-
ple collection (figure 12) [336]. Starting from the
analysis of the opening and closing mechanism of
the lantern system and the bio-exploration of keeled
and non-keeled teeth, a bioinspired model was built
and tested via FEA determining the efficiency of the
lantern-like mechanism and confirming the struc-
tural importance of the keel in the reinforcement of
the sea urchin’s tooth [336].

6.3. Biomedical engineering

An optomechanical biopsy device for minimally
invasive surgery was realized [337] adopting the
lantern’s ability to simultaneously scrape and engulf
food in alternating and combined movements of

opening/protrusion and closing/retraction following
Scarpa’s pioneering bionic model [338, 339]. The
prototype was implemented as an extrudable steel
tube (0.15 mm thickness and 4.3 mm diameter)
provided with a cutting device, i.e. a crown-shaped
system characterized by triangular teeth, designed to
perform an accurate biopsy in less than a millisecond
(figure 13) [337].

In the biomimetic industrial design field, espe-
cially in the biomedical sector, a recent study on the
mechanical design of P. lividus test was carried out
by an Italian team (Hybrid Design Lab, University of
Campania ‘Luigi Vanvitelli’ and Department of Struc-
tures for Engineering and Architecture, University of
Naples FedericoII) [141, 165, 340]. As an example, the
identified adaptive solutions of the test, as a modular
system guaranteeing high integrity and structural sta-
bility in different stress conditions, were transferred
into the design of two different biomedical devices:
an arm-tutor and a cranial harmonizer. Shape and
structure of the biological models were abstracted and
applied, according to principles of functional anal-
ogy, and reproduced in parametric 3D CAD mod-
els responding to specific innovation needs expressed
by users and medical experts, these are: (1) light-
ness, ensured by a controlled porous arrangement
mimicking stereom structure; (2) resistance and sta-
bility, obtained by a discontinuous structure consist-
ing of hexagonal modules connected by semi-flexible
material reflecting the modular plated structure of
P. lividus test and its low flexural stiffness at the
sutures; (3) breathability, ensured by the high struc-
tural porosity and modular subdivision, reducing the
presence of closed spaces; (4) free customization for
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types of sand on the beach. This image is adapted from [336].

Figure 12. Echinoids in robotics. Gripping device for sediment sample collection inspired by Aristotle’s lantern. Computer aided
design images of the bioinspired device (A) closed, (B) fully opened. (C) 3D printed bioinspired device in collecting different

different therapeutic needs and personal preferences,
provided by an elevated versatility of shapes, geome-
tries, colours and styles obtainable by parametric
designs and digital manufacturing [340].
Pedicellariae-like devices have also been devel-
oped into new versatile tools in micromanipulation
and micro-robotics fields for healthcare. Leigh and
co-workers [341] designed bioinspired forceps using
micro-stereolithography creating a pneumatic cham-
ber that opens and closes the jaws by changing pres-
sure using a syringe. The device can be used for
functional grasping of microparticles and in addition
can be activated hydraulically exhibiting a self-healing
behaviour (isolating the damaged regions and main-
taining the hydraulic mechanism efficiency) [341].

6.4. Material science

Echinoid spines revealed an important potential for
innovative bio-inspired applications due to their
sophisticated lightweight structure and material
properties, in combination with strategic failure
behaviour, high impact resistance and high-energy
absorption [59, 61, 65, 133, 258, 342].

In particular, the calcitic microstructure of echi-
noid spines inspired: (1) new porous biomaterials
useful for prosthetic applications, especially for syn-
thetic teeth and bone replacement [343]; (2) opti-
mized microporous vascular prostheses [344]; (3)
bone implant materials obtained from the conver-
sion of sea urchin spines to Mg-substituted trical-
cium phosphate [345]; (4) model preparation of new
materials by combination of crystals, polymers and
functional molecules [135]; (5) a macroporous cop-
per with greater mechanical properties [346]; (6) new
functionally graded concrete [258].

In particular, the echinoid microstructure was
deeply studied as a functional model to create new
prosthetic materials. During the 70’s, Weber et al
[343] successfully replicated the skeletal structure
of the Heterocentrotus spines in epoxy resin and in
sodium silicate. In particular, they recognized in the
arrangement of the echinoid 3D microstructure some

important characteristics, which transferred into new
functional prosthetic materials, were able to provide
structural strength and proficient surface for tissue
growth. In this regard, the stereom was identified as an
optimized construction ensuring a good permeability
and functional porosity, as well as a periodic minimal
surface structure, in which the interface between cal-
cite and the organic phase offers maximum contact
for crystal growth [116]. Following studies involved a
direct conversion from echinoderm material to bio-
implant materials [345, 347]. In particular, based on
a hydrothermal conversion, the spines of the echi-
noids H. mammillatus and Heterocentrotus trigonar-
ius have been converted in Mg-substituted tricalcium
phosphate for bone implant, maintaining the inter-
connected porous structure with a good bioactiv-
ity and osteoconductivity. Currently, high-resolution
and advanced techniques in tissue engineering are
able to reproduce new artificial scaffolds with a con-
trolled porosity at micro and nanoscale; thus, these
bioinspired solutions can be more effectively trans-
ferred creating new opportunities to realize innova-
tive synthetic or hybrid materials [348, 349].

In addition, different studies on the cidaroid
Phyllacanthus imperialis and H. mammillatus spines
were carried out, showing how the specific arrange-
ment of porous material, associated with different
densities and architectures, allows these species to
have extremely light and resistant structures identi-
fied as ideal models for the realization of new alu-
minium ceramic and concrete materials [59, 65, 67,
139, 261].

Lightweight structural ceramics have also been
developed using the echinoid skeletal plates to tem-
plate the synthesis of effective porous materials. As
an example, porous gold structures with nearly regu-
lar 15 pim channels were prepared by coating skeletal
plates with gold and dissolving them and leaving the
original structural form [350, 351]. These materials
with a pore dimension comparable to optical wave-
lengths could be applied for their optical properties
or used as catalyst supports.
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during surgical activity. This image is adapted from [336].

Figure 13. Echinoids in bioengineering. Optomechanical biopsy device inspired by Aristotle’s lantern. (A) Drawing of the
Aristotle’s lantern bionic model. (B) Crown-shaped system characterized by triangular teeth in closed and opened positions. (C)
Prototype implemented as an extrudable steel tube thick 0.15 mm and 4.3 mm in diameter. (D) Drawing of the bionspired device

These examples highlight how biological princi-
ples can be successfully abstracted and transferred
into technical applications [308]. Moreover, in a
reverse biomimetic view, these analyses also provided
a more detailed insight on morphology, function and
integration of an organism in its ecosystem [46, 58,
269]. In particular, this allows a better understand-
ing of an organism’s adaptation to its environment,
the evolutionary pathway of its structure, and its
ecological and paleontological implementation [352,
353]. For example, the comprehension of the struc-
tural design, skeletal strength and weaknesses of the
echinoid test consents to interpret taphonomic pro-
cesses and the potential preservation of the echinoid
taxa [56]. Such knowledge can help ecologists and
palaeontologists to better assess the effect of tapho-
nomic filters and biases on echinoid communities
helping to determine e.g. if predatory drill holes or
other biotic traces can promote the potential preser-
vation of an echinoid [354] or lead to a loss of
information.

7. Conclusion

In the course of time, the original constructional
design of the echinoid endoskeleton has attracted the
attention of researchers from different scientific fields
due to its unique morphology, structure and mate-
rial properties. Currently, these features reveal a great
potential for biomimetic applications, thus moti-
vating further investigations. This review presents a
comprehensive synthesis of important studies on
mechanical design and principles of echinoid skele-
tal structures, emphasised the efficiency of the
endoskeleton at different hierarchical levels. Each
constructional element of the echinoid’s skeleton

demonstrated to have a major application as a bio-
logical role model: the test in building construc-
tion; Aristotle’s lantern and pedicellariae in grabbing
devices; tube feet in robotic locomotion systems;
spine stereom and biomineral composition in innova-
tive materials. Contemporary technological advances
in computational imaging, numerical simulation and
fabrication have paved the way to a new era for
the study of mechanical principles in organisms
and their functional transfer [64, 295, 301-304,
340, 355]. Mechanical strategies and performances
of the various components can be highlighted by
means of different types of digital advanced tech-
niques, such as high-resolution x-ray microcomputed
tomography, imagine analysis, 3D modelling and
FEA. These technologies ensure high fidelity in the
acquisition of biological models, great reliability of
results and high reproducibility of complex geome-
try and structures through the new frontiers of digi-
tal manufacturing techniques [64, 164, 301-304, 319,
356, 357].

Consequently, a new virtual biology is emerg-
ing capable to provide novel answers to questions
concerning the morphology, function and evolution
of living and fossil species [164, 356, 357]. In this
regard, studies of mechanical design in organisms
are just at an initial phase. Nonetheless, according to
present literature, there is evidence of a significant
increase in research [46, 55,57, 59, 124, 135,217,218
regarding new future integrations between cutting-
edge computer science and biology. In conclusion,
this review aims to illustrate how the constructional
design of echinoids reflects animal adaptations to spe-
cific mechanical needs related to different environ-
mental stresses and lifestyles, which abstracted and
transferred into engineering and industrial design,
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provide functional solutions improving structures,
processes, and human health.
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