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Fluctuation theorem convergence in a viscoelastic medium
demonstrated experimentally using a dusty plasma
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The convergence of the steady-state fluctuation theorem (SSFT) is investigated in a shear-flow experiment
performed in a dusty plasma. This medium has a viscoelastic property characterized by the Maxwell relaxation
time τM . Using measurements of the time series of the entropy production rate, for subsystems of various sizes,
it is discovered that the SSFT convergence time decreases with the increasing system size until it eventually
reaches a minimum value of τM , no matter the size of the subsystem. This result indicates that the convergence
of the SSFT is limited by the energy-storage property of the viscoelastic medium.
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I. INTRODUCTION

Unlike in the thermodynamic limit, the entropy production
rate for a small system is a highly fluctuating quantity, which
may even have negative transients. The probability of these
events of negative entropy production are expressed by fluc-
tuation theorems [1–9]. The steady-state fluctuation theorem
(SSFT) is typically expressed as the convergence of the ratio
between the probability of positive and negative entropy pro-
duction rates, in the long-time limit,

1

τ
ln

[
P(στ = +C)

P(στ = −C)

]
= C as τ → ∞, (1)

where στ is the mean entropy-production rate over the time
duration τ in the steady state, and P(στ = C) is the probability
that στ equals the specified value ofC.

This fluctuation theorem is useful for small systems, where
the events with negative entropy production can be more
easily detected. On the other hand, as the studied system
size increases, the negative fluctuations become less frequent
and the fluctuation theorem converges to the second law of
thermodynamics [10].

Various experimental systems have been used for fluctu-
ation experiments. These include colloids [11,12], quantum
heat conduction [13], turbulence [10,14], and nonequilibrium
bath systems [15]. In our literature search, we have found few
previous studies of fluctuation theorems in viscoelastic mate-
rials, such as Ref. [16]; however, none of them investigated in
particular the convergence time, as we do here.

The viscoelastic medium that we use is a strongly coupled
dusty plasma, which is a four-component mixture of highly
charged microspheres (dust), free electrons, ions, and neu-
tral gas [17–33]. Due to their high charges and the related
strong Coulomb interaction, these dust particles are strongly
coupled [25]. When it flows, the collection of dust particles
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exhibits viscoelasticity [34–38]. As demonstrated in [39], the
viscoelastic property of dusty plasmas can be described rea-
sonably well by the simple Maxwell model, characterized by
the Maxwell relaxation time τM , as described in Appendix A.
Like other strongly coupled systems, the viscoelasticity of
dusty plasmas is the combination of the liquidlike viscous
dissipation and the solidlike elasticity. For a shorter timescale
< τM , the solidlike energy-storing elasticity dominates [39].
For two-dimensional (2D) dusty plasmas [39], the value of τM
is typically 3 to 5 times the inverse dusty plasma frequency
ωpd

−1.
Experiments with dusty plasmas have the advantage that

they allow tracking the motion of individual particles, so that
one can calculate the instantaneous shear stress Pxy(t ) and
entropy production rate σ (t ), which are needed in the SSFT.
This was exploited recently byWong et al. [40], who analyzed
small subsystems within a sheared flow in a liquidlike dusty
plasma. In [40], it was confirmed that in a dusty plasma,
there is a convergence time beyond which Eq. (1) is satisfied.
However, the underlying physics that governs the value of
this convergence time is still largely unknown. Moreover, the
dependence of the convergence on the size of the subsystem
also requires study. These are the questions that we investigate
in this paper, using data from an experiment and supporting
simulations.

The rest of this paper is organized as follows. In Sec. II,
we introduce our dusty plasma experiment to investigate
the SSFT, as well as the corresponding computer simulation
methods. In Sec. III, we calculate the time series of the
entropy production rate for various subsystems in our exper-
iment. We find that the distribution of the averaged entropy
production rate for various subsystems can be described as
the Gaussian function. Then, based on the Gaussian distri-
bution entropy production rate, the asymptotic trend of our
experimental data to the SSFT is derived analytically. As a
result, we obtain the dependence of the convergence time of
the SSFT on the subsystem size, and find that the Maxwell
relaxation time of viscoelasticity is the lower limit of the
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convergence time. Our computer simulation results further
confirm these findings. Finally, a summary of our findings is
given in Sec. IV.

II. EXPERIMENT AND SIMULATION

The experiment for this SSFT study was performed in the
setup similar to [28]. Using argon gas at 15.5 mTorr, capac-
itively coupled rf power was applied to generate a plasma.
Introducing �16 000 polymer microspheres of 8.1 μm diam-
eter, they settled into a single horizontal layer, where they
were levitated in a sheath above the lower electrode. A top-
view video camera imaged ≈4400 dust particles in a field
of view of (29.05 × 21.78) mm2, at 55 frames per second.
To generate a pair of counterpropagating dust flows, there
were two oppositely directed laser beams, each with 0.95 W
power. These were shaped into stripes of width 0.2 mm using
scanning mirrors rastered in the x direction at 200 Hz, as
in [28]. These manipulation laser beams drove a shear flow,
leading to the shear-induced melting from the solid lattice,
with a much more anisotropic feature in kinetic temperature
than [40]. After the flow reached a steady state, a 12 s movie
was recorded and analyzed to determine the coordinates and
velocities of the dust particles in each frame. Note that in our
dusty plasma experiment, the strength of the vertical confine-
ment is generally two to three orders of magnitude larger than
the in-plane confinement [41,42], so that as compared with
the in-plane motion, the vertical displacement of dust particles
can be ignored.

The parameters for the collection of dust particles were
as follows. The spacing of particles was characterized by
the Wigner-Seitz radius [22], a = 0.21 mm. As dust particles
moved, they experienced gas damping at the rate [41] ν f =
2.7 s−1. By analyzing wave spectra [43,44] for the thermal
motion of the initial highly ordered lattice, before applying
the manipulation lasers [28], we determined the charge on
each dust particle, Q = −8100e, the screening parameter κ =
a/λD = 0.47, and the nominal 2D dusty plasma frequency
ωpd = 86 s−1, which we will use to normalize the timescales.

The flow velocity of the dust particles was along the x axis,
while the velocity had a gradient in the y direction, as shown
by the time-averaged profile Vx in Fig. 1. To calculate Vx(y),
we converted the velocity data for individual particles into
data for a fluid flow by dividing the field of view into 103
bins (each with the width of a) and using the cloud-in-cell
algorithm [30]. In the inset of Fig. 1, the two prominent
peaks in the positive and negative directions correspond to
two counterpropagating flows in the experiment, as in [28,45].
To illustrate the motion of dust particles in our experiment,
we also present the superposition of particle positions for the
time duration of 0.25 second in our analyzed movie, as shown
in Fig. 2. Clearly, two counterpropagating dust flows can be
observed in Fig. 2, where y/a ≈ 40 and 60, respectively. In
our data analysis, we mainly focus on the central region of the
laminar flow, where the drift velocity is nearly linear, as the
straight-line fit shown in Fig. 1, with a velocity gradient γ . To
confirm the steady conditions in our experiment, we divide the
movie into four portions to calculate the drift velocity profiles,
so that the standard deviation of the velocity for each bin can
be determined, as the error bar shown in Fig. 1.

FIG. 1. Velocity profile in the dusty plasma experiment. Using
laser manipulation, two counterpropagating dust flows were gener-
ated, as shown in the inset. The experiment was symmetric in the x
direction, so that the flow velocity varied only with y. We mainly
analyzed the central region, between the two dashed lines in the
inset, where the velocity profile is nearly linear, as shown in the
main panel. The slope of a linear fit yields the shear rate γ , which is
used to calculate the entropy production rate. In the SSFT analysis,
subsystems of different sizes were chosen; these spanned different
ranges in the x direction, but always the same range of y from 47 a
to 52 a.

To further verify our findings from the experiment, we also
perform Langevin dynamical simulations to mimic our shear-
induced melting dusty plasma experiment. In our simulations,
we use the binary Yukawa repulsion with N = 4096 particles
in a 2D plane, with the periodic boundary conditions. All
simulation parameters are specified to be the same as our
experiment conditions. For example, we choose the screening
parameter as κ = 0.47, the initial coupling parameter as 	 =
800, and the frictional gas damping rate as ν f = 0.031 ωpd . In
fact, in addition to 4096 particles, we also perform a few test
runs with 16 384 particles to make sure all of the presented
results are not affected.

To mimic the strong dust particle flows generated by laser
manipulation in our experiment, we introduce two external

FIG. 2. Superposition of particle positions for the time duration
of 0.25 second in our experiment. The rectangle around the central
portion corresponds to the region of one typical subsystem with
N = 63 dust particles in our reported data analysis.
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FIG. 3. Drift velocity profiles from our experiment and simula-
tions. Using our specified force in our simulations, the resulting drift
velocity in the central region is almost identical to our experiment
results.

forces in two locations in our simulations. In our experiment,
the strong dust particle flow was generated by scanning one
powerful laser beam with the width of ≈ a in the x direction
at 200 Hz, which is much higher than the nominal 2D dusty
plasma frequency. Thus, in our simulations, the force to drive
the particle flow is assumed to be localized in the y direction,
with the width of ≈ a, and also uniform in the x direction.
To satisfy these requirements, we choose these two ex-
ternal forces as F1 = A exp[−(y − 11.08a)2/0.25a2]maω2

pdx
and F2 = −A exp[−(y + 11.08a)2/0.25a2]maω2

pdx in the ±x
directions, respectively. The force amplitude A can be adjusted
in simulations, so that one may calculate the resulting flow
velocity profile to compare with the experimental result. For
our simulation results reported here, we choose A = 0.126
because the resulting drift velocity in the central region is
almost the same as that in our experiment, as shown in Fig. 3.
Other simulation details are the same as [46].

III. RESULTS AND DISCUSSION

The time series Pxy(t ) of the shear stress was calculated
[1,47,48] with an input of data for individual particle positions
and velocities from our experiment. In the central melted
region, the shear stress is calculated using

Pxy =
N∑
i=1

[
m(vix −Vx,i )viy − 1

2

N∑
j �=i

xi jyi j
ri j

∂φ(ri j )

∂ri j

]
, (2)

where the drift motion Vx,i is removed, as in [40,46], and
φ(ri j ) is the binary interparticle Yukawa repulsion between
the particles i and j, i.e., φ(ri j ) = Q2 exp(−ri j/λD)/4πε0ri j .
Here, we determine the drift velocity Vx,i for the particle i
from the linear fit of the drift velocity Vx gradient of γ =
0.0789 ωpd in Fig. 1, and the corresponding y coordinate of
the particle i. For the second term in Eq. (2) here, the interpar-
ticle force may include the pairs of the particles inside i and
outside j of the studied subsystem. Thus, we choose a cutoff
length of ri j � 10 a for the particle pairs in our data analysis,
to exclude the effects of all particles outside the field of view
in our experiment, similar to [49].

Our obtained time series Pxy(t ) of the shear stress
was used to obtain three quantities. First, it was used to

obtain the entropy production rate, σ (t ) = −Pxy(t )γ /kBT .
Second, the Maxwell relaxation time τM was obtained from
Cs(t ), the autocorrelation function of Pxy(t ). In particular,
τM was identified as the time when Cs(t ) decays to 1/e of
its initial value [48,50]. Third, we used Cs(t ) to obtain the
the temperature T of the dust particles, without undue error
arising from the finiteness of the subsystem and time duration,
using [46] kBT = γ [

∫ ∞
0 Cs(t )dt]/Pxy.

For all three of these purposes, calculations were per-
formed within subsystems of various small spatial sizes. Since
the flow velocity varied with y, but not with x, we chose
the subsystems to have various ranges of x but always the
same range of y from 47 a to 52 a. In our subsystems, the
time-averaged numbers of dust particles are 6, 13, 19, 25,
32, 38, 44, 51, 57, and 63, respectively, and for each size of
subsystem, we sample �4 sets of data by varying the location
of the x range, so that the uncertainties of these analyzed
quantities can be determined, as the error bars shown in the
latter figures. The rectangle drawn in Fig. 2 indicates the
corresponding region of one typical subsystem with N = 63
dust particles in our data analysis. In fact, the number of dust
particles inside this fixed-region subsystem fluctuates around
63 briefly, with the 48% observation time of 63 particles or the
86% observation time of 61 to 65 particles, mainly due to the
density fluctuation and the nonuniformity of the shear-induced
melting.

As an example, the time series of our calculated entropy
production rate per unit area σ (t )/A is presented in Fig. 4(a),
for the subsystem with N = 32 particles. Clearly, the obtained
σ (t ) fluctuates around a positive average value, as expected
for the second law of thermodynamics, but sometimes it fluc-
tuates negatively as one would expect for the SSFT.

Besides the time series of σ (t ), the averaged entropy pro-
duction rate within the time duration τ , στ = [

∫ τ

0 σ (t )dt]/τ ,
is calculated to characterize its behaviors within different time
intervals. In Fig. 4(b), we present distributions of στ for dif-
ferent time intervals, all for a fixed subsystem size of N = 32.
Similarly, for a fixed time interval of τωpd = 1.57, we also
prepared distributions of στ for various sizes of subsystems in
Fig. 4(c). We find that these distributions of στ /A are well fit
by a Gaussian distribution,

P(στ ) = exp
[−(στ − σ̄ )2

/(
2σ 2

d,τ

)]/
(
√
2πσd,τ ), (3)

as the curves show in Figs. 4(b) and 4(c). In Eq. (3), σ 2
d,τ is

the variance of στ , and σ̄ is the average of στ . Clearly, as the
time duration increases, in Fig. 4(b), or as the subsystem size
increases, in Fig. 4(c), σ 2

d,τ becomes smaller, i.e., the Gaussian
distribution becomes narrower, while σ̄ is almost unchanged.

The results in Figs. 4(b) and 4(c) show that the exten-
sion of the time duration and the expansion of the system
size both suppress the στ fluctuations, and the distribution
of στ becomes narrower. As a result, the probability of the
negative στ /A events is reduced, indicating that the second
law of thermodynamics is obeyed more. The fitting result of
σ̄ just corresponds to the viscous heating term −ηγ 2/kBT
[28,48,51], where η is the viscosity, so that for the same
subsystem ofN = 32, the peak location of the Gaussian fitting
is unchanged in Fig. 4(b). In Fig. 4(c), the peak location from
fitting varies briefly, probably due to the nonuniformity in the
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FIG. 4. (a) Time series of the entropy production rate per unit
area σ (t )/A for the subsystem of N = 32 dust particles and (b) the
corresponding distribution of the entropy production rate στ /A av-
eraged for different time durations, as well as (c) the distribution of
στ /A of different subsystems for the same time duration of tωpd =
1.57. For all panels, the dotted and dashed lines correspond to the
averaged and zero entropy production rates, respectively. In (b) and
(c), we find that our obtained distributions of στ /A can fit to a
Gaussian distribution quite well. When the time duration increases
in (b) or the subsystem size increases in (c), the negative entropy
production rate always occurs less frequently. In (b) and (c), the
center of the Gaussian fit is almost unchanged, suggesting that the
averaged entropy production rate is an unchanged positive value due
to viscous heating. Note that for clarity, we lift different distributions
upward in steps of unity and magnify the vertical probability 10 times
in (b) and (c).

x direction in our experiment, and the viscous heating effect
fluctuates for various sizes of subsystems.

According to the SSFT, as the time duration increases, the
left-hand side (LHS) of Eq. (1) gradually approaches the RHS
of Eq. (1), C. For convenience, we define the left side of
Eq. (1) as f (στ ), i.e., f (στ ) = {ln[P(στ )/P(−στ )]}/τ , so that
the SSFT is just limτ→∞ f (στ ) = στ .

As shown in Fig. 5(a), the results of f (στ ) for different
time durations are plotted as a function of στ , calculated from
Fig. 4(a). For each time duration, the f (στ ) results show the
linear relationship with στ , as the linear fit shown with the
straight lines. This linear characteristic of f (στ ) is the key ev-
idence of the SSFT [7]. More importantly, as the time duration
increases, the linear fit gradually converges to the dashed line
of the RHS of Eq. (1), indicating that Eq. (1) of the SSFT is
then satisfied.

To quantify this asymptotic behavior of the linear fit in
Fig. 5(a), we define this discrepancy D as

D = slope ( f (στ )) − slope(στ ) (4)

=
(
2

σ̄

σ 2
d,τ

τ

)
− 1, (5)

which is the discrepancy of the slopes between the solid and
dashed lines in Fig. 5(a), for various time durations. Here,
Eq. (5) is our simplified version of Eq. (4) derived from the

FIG. 5. Obtaining the SSFT convergence time τC . (a) Variation
trends of the LHS of Eq. (1) for different τ values; (b) discrep-
ancies between the two sides of Eq. (1). In (a), the symbols are
1
τ
ln[ P(στ =+C)

P(στ =−C) ], the LHS of Eq. (1), calculated from Fig. 4(a), ex-
hibiting the linear feature. Solid lines in (a) are the linear fit of the
symbols, while the dashed line corresponds to the RHS of Eq. (1).
As the time duration increases, clearly the linear fit converges to the
dashed line, following the SSFT. In (b), we use Eq. (4) to quantify
the discrepancy D of the slopes between the solid and dashed lines
in (a), for various time durations. For the Gaussian distribution of στ ,
as for our system in Fig. 4, Eq. (4) can be simplified to Eq. (5), as
verified from the data points overlapping in (b). In (c) and (d), with
logarithmic and linear coordinates, respectively, we use the values
from Eq. (5) to represent the discrepancy D of the two sides of
Eq. (1) for various subsystem sizes. From Appendix C, the decay of
Eq. (5) for the Gaussian distribution of στ contains two timescales,
and we mainly focus on the longer one, so that we ignore the first
four data points for each set, marked as filled symbols. We find that
all open symbols in (c), i.e., the discrepancy for longer times, can fit
D0 exp(−τ/τC ) well. The result of this analysis is the fit parameter
τC , for the convergence time of the SSFT.

combination of Eqs. (1) and (3), described in Appendix B,
valid for any systems with the Gaussian distribution entropy
production rates. The calculated results of D from the data
in Fig. 5(a) are presented in Fig. 5(b), with two sets of data
corresponding to Eqs. (4) and (5), respectively. Clearly, as the
time duration increases, the discrepancy D diminishes mono-
tonically to zero, as predicted by the SSFT. These two sets of
data in Fig. 5(b) are almost the same, further suggesting that
our simplified Eq. (5) from the Gaussian distribution can be
used with our experimental data analysis, as we will use later.
Besides the discrepancy D data for the subsystem of N = 32
in Fig. 5(b), we also calculate the discrepancy of various time
durations for all other studied subsystems, as in Fig. 5(c).

035207-4



FLUCTUATION THEOREM CONVERGENCE IN A … PHYSICAL REVIEW E 104, 035207 (2021)

FIG. 6. Convergence times of SSFT τC for various subsystems,
compared to the Maxwell relaxation times τM . We discover that as
the analyzed system size increases, the convergence time of SSFT
τC rapidly decreases, but this decrease ceases when τC reaches a
minimum value that nearly matches the Maxwell relaxation time τM .
This is our chief result, which we attribute to the elastic property that
dominates our viscoelastic substance at short timescales.

After our further derivation in Appendix C, we find that the
key term in Eq. (5) can be expressed as

σ 2
d,τ τ = I1 − I2. (6)

Here, I1 and I2 are two time integrals, suggesting that σd,τ τ

exhibits the long-time and short-time convergence behaviors,
respectively. The convergence of Eq. (5) is mainly domi-
nated by the behavior of the long-time integral of I1 from
Appendix C, so that we mainly focus on the determination of
the convergence timescale of I1 from our calculated D. Since
the timescale of I1 is much longer than that of I2, the obtained
discrepancyD data at longer times are almost completely from
I1, such as those in Fig. 5(b). Thus, for each subsystem, we
always ignore the first four data points of D, marked as the
filled symbols in Fig. 5(c), and only focus on the later data
points, marked as the open symbols.

We obtain the convergence time τC using these discrepancy
data. For each subsystem, we fit the obtained discrepancy
D to an exponential, starting from the fifth data point using
the expression of D0 exp(−τ/τC ). This fit, as the dashed line
shown in Fig. 5(c), has two free parameters: D0 and τC . This
fit is good, indicating that the long-time convergence trend of
the discrepancy is exponential, no matter whether the system
size varies, consistent with [40]. The result of this fitting that
is of greatest interest to us is the convergence time, τC . The
discrepancy D data and the fitting result from Fig. 5(c) are
also replotted in Fig. 5(d) in linear coordinates, to show their
asymptotic feature.

The Maxwell relaxation time was also determined for vari-
ous subsystem sizes. The Maxwell relaxation time τM , shown
as square symbols in Fig. 6, was obtained as the 1/e decay
time of Cs(t ), the autocorrelation function of the fluctuations
of the shear stress Pxy [48,50], as described in detail in Ap-
pendix A. Generally, the Maxwell relaxation time here is in
the range of 4 < τMωpd < 4.5.

As the major result of this paper, we find that the SSFT
convergence time τC decreases with the increasing system size
only until it reaches a minimum value, which is the Maxwell
relaxation time τM . This result is clearly presented in Fig. 6,
where the filled circular symbols of the convergence times τC
are obtained from fitting in Fig. 5(c). Clearly, as the subsystem
size increases, this convergence time τC decreases rapidly at
first, but this decrease ceases at a minimum convergence time
and thereafter becomes a constant. That minimum conver-
gence time is τCωpd ≈ 4, which nearly matches the Maxwell
relaxation time.

We provide our interpretation of the convergence time
of SSFT in our experiment, which has its minimum of the
Maxwell relaxation time. This result can be regarded as a con-
sequence of the elastic properties of a viscoelastic substance.
It seems that the SSFT convergence time τC is always limited,
which means that Eq. (1) is not satisfied when the timescale is
shorter than this limit, no matter how large the studied system.
For the sheared flow systems where the entropy production
rate mainly arises from viscous heating, as studied here, this
limit of τC equals the Maxwell relaxation time τM . For a
viscoelastic substance, the energy-storing elastic effects dom-
inate for the timescales shorter than τM , while at the longer
timescales, the dissipative viscous property is dominant. The
entropy production rate studied here arises only from the
dissipative processes.

To further verify the experimental result that the conver-
gence time trends toward a minimum value of the Maxwell
relaxation time, we also perform the same calculations using
our Langevin simulation data. The advantage of our simu-
lation is that the much longer time duration provides much
better statistics than in the experiment, and also allows us to
vary the subsystem size over a wider range. The calculation
procedure of the time series of the shear stress and the latter
physical quantities in our simulations is exactly the same as
our experiment data analysis. We also confirm that the distri-
bution of the entropy production rate per unit area στ /A can
also be described as the Gaussian, the same as the experiment
result. From Fig. 6, clearly, the obtained results of τC and τM
from our simulation follow the same variation trend as those
from our experiment. Especially for the larger system size,
τC diminishes to a minimum value of ≈4ω−1

pd which nearly
matches the Maxwell relaxation time τM , as in the experiment.
In short, all of our experimental findings described above are
further verified from our simulations.

IV. SUMMARY

In summary, we studied the SSFT using the entropy pro-
duction rate in our sheared flow dusty plasma experiment
with various subsystem sizes containing 6 to 63 dust par-
ticles. Using the observed particle positions and velocities
in our experiment, we calculate the time series of the en-
tropy production rate for various subsystems. For various
subsystems, it is found that the distribution of the averaged
entropy production rate can be fit to the Gaussian function
quite well. Using the Gaussian distribution entropy production
rate, we derive the analytical expression of the asymptotic
trend of our experimental data to the SSFT, given by Eqs. (4)
and (5). Based on these obtained data, we find that as the
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subsystem size gradually increases, the SSFT convergence
times τC gradually diminish until reaching the minimum,
which is just the Maxwell relaxation time τM . Using our
Langevin simulations, these findings are further verified by a
wider range of the subsystem size. We interpret the observed
minimum convergence time as a consequence of the elastic
properties of a viscoelastic substance. For other experiments,
such as the heat conduction or convection dominated systems,
the corresponding SSFT convergence time may be quite dif-
ferent from our current result, which can be studied in the
future.
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APPENDIX A: THE MAXWELL MODEL

It is widely known that most materials in nature are vis-
coelastic [28,52], which means that they exhibit both the
liquidlike viscous and the solidlike elastic properties to the
mechanical disturbance. In the viscoelasticity theory, to char-
acterize the viscoelastic property, the frequency-dependent
viscosity η(ω) [30], i.e., the viscous and elastic properties
varying with the frequency (or different timescales), is ob-
tained using the Laplace-Fourier transformation of

η(ω) = 1

AkBT

∫ ∞

0
〈 Pxy(t ) Pxy(0)〉eiωt dt . (A1)

Here, Pxy is the off-diagonal element of the stress tensor, kBT
is the kinetic temperature, and A is the area of the analyzed
region for 2D systems. In general, η(ω) is a complex function,
which is

η(ω) = η′(ω) − iη′′(ω), (A2)

with the real part η′(ω) corresponding to the viscous property,
and the imaginary part η′′(ω) corresponding to the elastic
property. Based on the viscoelastic approximation [48], η(ω)
can be expressed as

η(ω) = G∞
−iω + 1/τM

, (A3)

where G∞ is an instantaneous (high-frequency) modulus of
rigidity, and the τM is the Maxwell relaxation time. As a result,
for the shorter timescales of ω−1 
 τM , the response of the
material is dominated by the solidlike elastic property, corre-
sponding to the energy storage, while for the longer timescales
of ω−1 � τM , the response of the material is dominated by
the liquidlike viscous property, corresponding to the energy
dissipation. The real and imaginary parts of Eq. (A3) can also
be expressed as [28]

η′(ω)/η0 = 1

1 + τ 2
Mω2

(A4)

and

η′′(ω)/η0 = τMω

1 + τ 2
Mω2

. (A5)

The Maxwell relaxation time refers to the timescale when the
real and imaginary parts of the frequency dependence η(ω) are
the same, i.e., ω = 1/τM , as in [39]. Typically, to determine
theMaxwell relaxation time τM , one can calculate the autocor-
relation function of stress fluctuation, 〈Pxy(t )Pxy(0)〉, and then
determine the time when this autocorrelation function falls to
1/e of its initial value [48,50], as we do in the main text.

APPENDIX B: DERIVATION OF EQ. (5)

Here, we present our detailed derivation of the discrepancy
D expression of Eq. (5), from the combination of Eq. (4) and
the Gaussian distribution of στ . From Fig. 4, we find that the
distribution of the entropy production rate στ in our experi-
ment can be described as the Gaussian distribution, given by
Eq. (3), quite well. In Eq. (3), σ̄ is the average of the time
series of σ (t ) over the whole time duration, and σ 2

d,τ is the
variance for στ . Thus, from the Gaussian distribution function,
we obtain

P(στ )

P(−στ )
= exp

(
2
στ σ̄

σ 2
d,τ

)
. (B1)

On the other hand, the steady-state fluctuation theorem
(SSFT) predicts the ratio of the relative probabilities as

1

τ
ln

[
P(στ )

P(−στ )

]
= στ as τ → ∞, (B2)

which is just Eq. (1). After comparing Eq. (B1) with Eq. (B2),
we obtain

1

τ
ln

[
P(στ )

P(−στ )

]
= 2

σ̄

σ 2
d,τ

τ
στ , (B3)

which is the SSFT form for the Gaussian distribution of στ .
For convenience, we define the LHS of Eq. (B3) as f (στ ),

so that the SSFT is expressed as limτ→∞ f (στ ) = στ . As a
result, the discrepancy D can be simplified as

D = slope( f (στ )) − slope(στ ) =
(
2

σ̄

σ 2
d,τ

τ

)
− 1, (B4)

which is just Eq. (5). This expression indicates that for the
Gaussian distribution of στ , this discrepancy D can be analyt-
ically expressed as the function of the time duration τ , as well
as the variance and the mean value of στ .

APPENDIX C: DERIVATION OF EQ. (6)

Here, we present our detailed derivation of Eq. (6). In Eq.
(5), or Eq. (4), the mean value of στ for our observed dust
flow is a constant value, corresponding to the dotted line in
Fig. 4(a). As a result, the variation of D purely depends on the
change of σ 2

d,τ τ as the time goes. We know that the variance
of στ is defined as

σ 2
d,τ = 〈(στ − σ̄ )2〉

=
〈
1

τ 2

{∫ τ

0
[σ (s1) − σ̄ ]ds1

}{∫ τ

0
[σ (s2) − σ̄ ]ds2

}〉
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FIG. 7. Sketch of the integral region in the x-y coordinate system
for Eq. (C2). Using changing variables of x = s1 − s2, y = s1 + s2
in Eq. (C2), the integral region of 0 � s1 � τ and 0 � s2 � τ in the
s1-s2 coordinate is changed to 0 � x + y � 2τ and 0 � y − x � 2τ
in the x-y coordinate, as the square with the four corners of ABCD
shown here. To simplify the later derivation, we divide this square
into two triangles of �ABC and �ADC next.

= 1

τ 2

∫ τ

0
ds1

∫ τ

0
〈[σ (s1) − σ̄ ][σ (s2) − σ̄ ]〉ds2

= 1

τ 2

∫∫
S
〈[σ (s1) − σ̄ ][σ (s2) − σ̄ ]〉ds1ds2. (C1)

Here, the integral region S is in the squared region of 0 � s1 �
τ and 0 � s2 � τ . For convenience, we define J (t ) = σ (t ) −
σ̄ as the fluctuation of σ . Then, we change the variables as x =
s1 − s2 and y = s1 + s2, following the integral transformation
rule [53]. Thus, Eq. (C1) above can be rewritten as

σ 2
d,τ = 1

τ 2

∫∫
S
〈[J (s1)][J (s2)]〉ds1ds2

= 1

τ 2

∫∫
SD

〈[
J
(x + y

2

)][
J
(y − x

2

)]〉∣∣∣∣∂ (s1, s2)∂ (x, y)

∣∣∣∣dxdy,
(C2)

where | ∂ (s1,s2 )
∂ (x,y) | is the Jacobi determinant. In our integral

transformation, | ∂ (s1,s2 )
∂ (x,y) | = |0.5 0.5

−0.5 0.5| = 0.5 with the inte-

gral region, which satisfies the two conditions of 0 � x + y �
2τ and 0 � y − x � 2τ simultaneously, as the square with
the four corners of ABCD shown in Fig. 7. To simplify
the derivation later, we divide this square of ABCD into
two triangles of �ADC and �ABC, as shown in Fig. 7, so

that

σ 2
d,τ = 1

2τ 2

∫∫
�ADC

〈[
J
(x + y

2

)][
J
(y − x

2

)]〉
dxdy

+ 1

2τ 2

∫∫
�ABC

〈[
J
(x + y

2

)][
J
(y − x

2

)]〉
dxdy.

(C3)

For the integral region of �ADC, we can convert the integral
to ∫∫

�ADC

〈[
J
(x + y

2

)][
J
(y − x

2

)]〉
dxdy

=
∫ τ

0
dy

∫ y

−y

〈[
J
(x + y

2

)][
J
(y − x

2

)]〉
dx. (C4)

For the integral region of �ABC, we can convert the integral
to∫∫

�ABC

〈[
J
(x + y

2

)][
J
(y − x

2

)]〉
dxdy

=
∫ 2τ

τ

dy
∫ 2τ−y

y−2τ

〈[
J
(x + y

2

)][
J
(y − x

2

)]〉
dx

=
∫ 0

τ

d (−z)
∫ z

−z

〈[
J

(
x + 2τ − z

2

)][
J

(
2τ − z − x

2

)]〉
dx

=
∫ τ

0
dz

∫ z

−z

〈[
J

(
x + 2τ − z

2

)][
J

(
2τ − z − x

2

)]〉
dx

=
∫ τ

0
dz

∫ z

−z

〈[
J
(x − z

2

)][
J
(−z − x

2

)]〉
dx

=
∫ τ

0
dz

∫ z

−z

〈[
J
(x + z

2

)][
J
( z − x

2

)]〉
dx. (C5)

FIG. 8. Sketch of the integral region for Eq. (C6), the shaded
region in the x-y coordinate system. In Eq. (C6), we swap the integral
order of variables, so that the integral is simplified as I1 + I2.
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Here, we use the variable z to replace the variable
y as z = 2τ − y. We also simplify the expressions
of 〈[J ( x+2τ−z

2 )][J ( 2τ−z−x
2 )]〉 = 〈[J ( x−z

2 )][J (−z−x
2 )]〉 and

〈[J ( x−z
2 )][J (−z−x

2 )]〉 = 〈[J ( x+z
2 )][J ( z−x

2 )]〉, using the
translation invariance of the correlation function [54],
because only the difference between the two variables of the
correlation function (which are both x here) determines the
final integral. Thus, the integral of Eq. (C5) is just the same
as Eq. (C4). As a result, we get

σ 2
d,τ = 1

τ 2

∫ τ

0
dy

∫ y

−y

〈[
J
(x + y

2

)][
J
(y − x

2

)]〉
dx

= 2

τ 2

∫ τ

0
dy

∫ y

0
〈[J (x)][J (0)]〉dx, (C6)

also from the translation invariance of the correlation function
[54] in the last step. Finally, we swap the integral order of
variables of Eq. (C6) from Fig. 8 to get

τσ 2
d,τ = 2

τ

∫ τ

0
dy

∫ y

0
〈[J (x)][J (0)]〉dx

= 2

τ

∫ τ

0
dx

∫ τ

x
〈[J (x)][J (0)]〉dy

= 2

τ

∫ τ

0
〈[J (x)][J (0)]〉(τ − x)dx

= 2
∫ τ

0
〈[J (x)][J (0)]〉dx

− 2

τ

∫ τ

0
〈[J (x)][J (0)]〉xdx

= I1 − I2, (C7)

where

I1 = 2
∫ τ

0
〈[J (x)][J (0)]〉dx (C8)

and

I2 = 2

τ

∫ τ

0
〈[J (x)][J (0)]〉xdx. (C9)

We know that as τ increases, 〈[J (x)][J (0)]〉 in Eq. (C8) is an
autocorrelation function of J (x), indicating that I1 increases
gradually and approaches to a constant value of the total
integral of this autocorrelation function when τ increases
to infinity. However, since there is a denominator of τ in
Eq. (C9), as τ increases, I2 decays quickly to 0. From Eq. (C7),
the value of τσ 2

d,τ is mainly determined by the value of I1 as
τ increases. Thus, when the value of τ is larger, as the time
range for our data fitting in Fig. 5(c) increases, the value of
τσ 2

d,τ is almost completely determined by I1.
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