L)

Check for
updates

Vol. 673: 193-210, 2021 MARINE ECOLOGY PROGRESS SERIES

https://doi.org/10.3354/meps13814 Mar Ecol Prog Ser Published September 2

R ©P
Bayesian approach for predicting photogrammetric

uncertainty in morphometric measurements
derived from drones

K. C. Bierlich%*, R. S. Schick!, J. Hewitt3, J. Dale!, J. A. Goldbogen®*,
A. S. Friedlaender®’, D. W. Johnston!

!Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory,
Beaufort, North Carolina 28516, USA

2Marine Mammal Institute, Department of Fisheries, Wildlife, & Conservation, Oregon State University,
Hatfield Marine Science Center, Newport, Oregon 97365, USA

3Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA
‘Department of Biology, Hopkins Marine Station of Stanford University, Monterey, California 93950, USA

SInstitute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California Santa Cruz,
Santa Cruz, California 95604, USA

ABSTRACT: Increasingly, drone-based photogrammetry has been used to measure size and body
condition changes in marine megafauna. A broad range of platforms, sensors, and altimeters are
being applied for these purposes, but there is no unified way to predict photogrammetric uncer-
tainty across this methodological spectrum. As such, it is difficult to make robust comparisons
across studies, disrupting collaborations amongst researchers using platforms with varying levels
of measurement accuracy. Here we built off previous studies quantifying uncertainty and used an
experimental approach to train a Bayesian statistical model using a known-sized object floating at
the water's surface to quantify how measurement error scales with altitude for several different
drones equipped with different cameras, focal length lenses, and altimeters. We then applied the
fitted model to predict the length distributions and estimate age classes of unknown-sized hump-
back whales Megaptera novaeangliae, as well as to predict the population-level morphological
relationship between rostrum to blowhole distance and total body length of Antarctic minke
whales Balaenoptera bonaerensis. This statistical framework jointly estimates errors from altitude
and length measurements from multiple observations and accounts for altitudes measured with
both barometers and laser altimeters while incorporating errors specific to each. This Bayesian
model outputs a posterior predictive distribution of measurement uncertainty around length
measurements and allows for the construction of highest posterior density intervals to define
measurement uncertainty, which allows one to make probabilistic statements and stronger infer-
ences pertaining to morphometric features critical for understanding life history patterns and
potential impacts from anthropogenically altered habitats.

KEY WORDS: Bayesian modeling - Photogrammetry - Uncertainty analysis - Drones - Unoccupied
aircraft system - UAS - Morphometrics - Marine mammals - Cetaceans

1. INTRODUCTION health, likelihood of survival, and potential reproduc-

tive success of an individual (Arnold 1983, Irschick

The morphology of an animal is one of the most 2003). Collecting accurate morphological measure-
fundamental factors affecting its habitat use and forag- ments of individuals is often essential for monitoring
ing performance, and can reflect details of the current populations, and recent studies have demonstrated
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how animal morphology has profound implications
for conservation and management decisions, espe-
cially for populations inhabiting anthropogenically
altered environments (De Meyer et al. 2020, Miles
2020). However, obtaining accurate morphometric
measurements of marine megafauna is challenging,
particularly for cetaceans, as they are often found in
remote locations, spend little time at the surface of
the water, and their large size can preclude safe cap-
ture and live handling (Johnston 2019).

Recently, unoccupied aircraft systems (UAS), or
drones, have proven to be a valuable, non-invasive
tool for collecting high-resolution photogrammetric
data on cetaceans across a variety of ecosystems.
Durban et al. (2015) first demonstrated the utility of
using UAS for acquiring morphometric measure-
ments of killer whales Orcinus orca in a remote loca-
tion with limited occupied aircraft support. Since then,
UAS have been used from tropical to polar environ-
ments and applied to several cetacean species of vastly
different sizes and body shapes, including blue whales
Balaenoptera musculus, humpback whales Mega-
ptera novaeangliae, southern right whales Eubalaena
australis, North Atlantic right whales E. glacialis, gray
whales Eschrichtius robustus, fin whales B. physalus,
Antarctic minke whales B. bonaerensis, and Bryde's
whales B. brydei (Christiansen et al. 2016, 2018,
2020a,b, Durban et al. 2016, Gough et al. 2019, Lemos
et al. 2020). However, a broad range of UAS plat-
forms, sensors, and altimeters were applied in these
studies, and there is no unified way to predict pho-
togrammetric uncertainty across this methodological
spectrum. As such, it is difficult to make robust com-
parisons among studies, disrupting collaborations
amongst researchers using platforms with varying
levels of measurement accuracy. As the capacity to
collect morphometric data on various species via UAS
continues to grow, there is a need for standardization
of measurements across studies and minimization
and quantification of errors (Castrillon & Bengtson
Nash 2020). This will ultimately build a greater capac-
ity to better monitor populations exposed to a variety
of environmental and anthropogenic stressors.

Traditional methods for acquiring morphometric
measurements of cetaceans have previously been
limited to carcasses collected from scientific whaling
operations (Ichii & Kato 1991) or opportunistically from
commercial whaling (Lockyer 1981, Christiansen et
al. 2013), subsistence hunting (Lambertsen et al. 2005),
stranding events (Palacios et al. 2004), and bycatch
(Read 1990, Koopman et al. 2002). Aerial photogram-
metry from occupied aircraft was adopted as a non-
invasive technique for estimating the length of free-

living cetaceans by Whitehead & Payne (1981). Pho-
tographs of southern right whales next to a boat with
a known-sized disc were collected to set the scale of
the photograph (Whitehead & Payne 1981). This
method was later enhanced by using altimeters to
record the altitude and set the scale of the photo-
graph by calculating the ground sampling distance
(GSD), the distance on the ground that each pixel
represents (Cubbage & Calambokidis 1987, Best &
Riither 1992). These methods have been commonly
used to obtain length measurements of odontocetes
and mysticetes (Perryman & Lynn 1993, Ratnaswamy
& Winn 1993, Perryman & Westlake 1998, Fearnbach
et al. 2011, 2018), as well as width measurements to
assess nutritive condition related to reproduction in
gray whales (Perryman & Lynn 2002) and southern
and North Atlantic right whales (Miller et al. 2012).

Compared to occupied aircraft, UAS have greatly
enhanced opportunities to more efficiently collect
high-resolution aerial photogrammetric data on ceta-
ceans, as they offer a more affordable (Arona et al.
2018) and immediate option that is less limited by
weather and infrastructure (e.g. Cosens & Blouw 2003,
Fearnbach et al. 2011), and, importantly, presents
less risk to wildlife biologists (Sasse 2003). However,
many studies use different UAS platforms equipped
with various cameras and focal length lenses, which
have inherent differences in lens distortion (i.e. Bur-
nett et al. 2019) and GSD (see Fig. 1). These different
platforms and sensors vary in performance, quality,
and photogrammetric accuracy; to date, a rigorous
analysis of the impact of these factors has not been
undertaken.

In the USA, the National Institute of Standards and
Technology (NIST) provides guidelines put forth by
the International Committee for Weights and Meas-
ures (CIPM) for how to report measurements and
uncertainty, as a measurement result is complete
only when accompanied by a quantitative statement
of its uncertainty (Taylor & Kuyatt 1994). In the con-
text of collecting aerial imagery of cetaceans for mor-
phometric analysis, measurement errors can be intro-
duced by environmental conditions (e.g. glare, wave
refraction, water clarity) and animal behavior (e.g.
curved vs. straight body at depth/at surface). These
errors are largely uncontrollable, but they can be
mitigated, such as by avoiding flying during times
with high glare and filtering for high-quality images
where the animal is straight at the surface with min-
imal refraction from waves (Christiansen et al. 2018,
Burnett et al. 2019, Raoult et al. 2020). It then becomes
important to understand components in the UAS
photogrammetric workflow that can be controlled to
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minimize systematic errors associated with the UAS
platform and analysis.

In general, assessment of measurement error has
focused on measuring the length of a known-sized
object either on land (Best & Riither 1992, Perryman
& Lynn 1993, Christiansen et al. 2018), floating at the
surface (Perryman & Lynn 2002, Burnett et al. 2019,
Gough et al. 2019, Kahane-Rapport et al. 2020), or on
a research vessel (Durban et al. 2015, 2016) to quan-
tify errors associated with altimeters and analyst
measurements. These different forms of data collec-
tion can lead to significant biases in reported meas-
urement errors associated with altimeters on UAS,
which can have different accuracies depending on
altitude and ground elevation, and whether the UAS
are flown over land or sea (Dawson et al. 2017).
Many studies have accounted for altimeter error by
using correction coefficients from a linear equation
(Best & Riither 1992, Perryman & Lynn 1993) or by
applying a percent error to all measurements (Rat-
naswamy & Winn 1993), e.g. error value of <5% for
all measurements. Since the true length of the whale
is unknown, the coefficient of variation (CV) is often
used to determine the within-frame and between-
frame measurement precision. Within-frame preci-
sion compares measurements of the same whale in a
single image multiple times, often by multiple ana-
lysts, while between-frame precision compares meas-
urements of the same whale between different images
(Cosens & Blouw 2003).

Recently, Christiansen et al. (2018) used a frequen-
tist statistical approach to first measure a known-
sized object at altitudes between 5 and 120 m and
then used resampling methods to build an error dis-
tribution around measurements of southern right
whales described by laser altimeter error, image
quality, and the CV of within- and between-image
measurements. Similarly, Burnett et al. (2019) used
known-sized objects to first independently estimate
the variance around altitude recorded from barome-
ters on small low-cost UAS and measured length,
and then estimated total measurement error via vari-
ance propagation. While these methods greatly im-
prove error estimation, both assume that errors are
independent and adequately described by their stan-
dard deviations and CVs (Christiansen et al. 2018,
Burnett et al. 2019). The apparent length of an object
is dependent on altitude, and errors may have more
complicated features (e.g. skew, and heavy tails or
outliers). Methods that account for these issues may
further improve estimates of measurement error
across UAS platforms, and facilitate error propaga-
tion to additional, derived quantities.

Here, we built off the studies of Burnett et al. (2019)
and Christiansen et al. (2018) and developed a
Bayesian statistical model that propagates the com-
bined impact of measurement errors to UAS pho-
togrammetric measurements and derived quantities,
such as length-based age classifications (e.g. juve-
nile/adult). Similar to Racine-Poon (1988), we used a
designed experiment to generate training data for
the Bayesian statistical model. The experiment used
a known-sized object floating at the surface to study
how measurement error scales with altitude for sev-
eral different UAS platforms equipped with different
cameras, focal length lenses, and altimeters. We then
applied the fitted model to 2 ecological scenarios in
which we (1) predicted the length and measurement
uncertainty around unknown-sized humpback whales
to assign maturity classification, and (2) predicted the
population-level morphological relationship between
rostrum to blowhole distance and total length of
Antarctic minke whales. The Bayesian model offers
several components that improve uncertainty predi-
cations. First, the model provides a framework that
jointly estimates errors from altitude and length
measurements. Second, the model combines altitude
measured with a barometer and laser altimeter while
incorporating the different errors specific to each.
Third, rather than a single point-estimate, the model
outputs a posterior predictive distribution of meas-
urements around an object of unknown length (e.g. a
whale). Fourth, this approach allows for the construc-
tion of highest posterior density (HPD) interval to
define measurement uncertainty, which allows one
to make probabilistic statements and reach stronger
conclusions, e.g. classification of the maturity of an
animal based on its estimated length. Finally, we pro-
vide a framework that can easily incorporate addi-
tional modeling layers. For example, at the data col-
lection level, the effect of additional covariates on
measurement error can be studied; or, at the scien-
tific level, morphological relationships can be jointly
estimated alongside measurement error.

2. MATERIALS AND METHODS
2.1. Calculating Ground Sampling Distance

The GSD sets the scale of the photo in order to con-
vert measurements made in pixels into standard
units (i.e. meters) by using the following equations
(see Torres & Bierlich 2020 for review):

Sw

a
GSD=—x—" 1
T, (1)



196 Mar Ecol Prog Ser 673: 193-210, 2021

Length = GSD x L, (2)
where a is altitude, which is the distance (m) from the
camera to the object of interest (i.e. the whale is as-
sumed to be flat at the surface of the water), £ is the
focal length of the camera (mm), S,, is the sensor
width of the camera (mm), I, is the image width (pix-
els, px), and L, is the length (px) of the object of inter-
est. As altitude increases, GSD also increases, ulti-
mately decreasing the resolution of the image, which
can influence L, measurement accuracy as specific
features and edges of the whale become more diffi-
cult to identify (see Figs. 1 & 2). Furthermore, differ-
ent methods of data collection (i.e. collecting still
images vs. video) will also change the GSD for the
same camera, as video uses fewer pixels in the image
width (f,) compared to still images, ultimately de-
creasing resolution and increasing the GSD (Eq. 1,
Fig. 1).

In Eq. (1), the camera parameters (S, L, f.) are
fixed and can be accounted for. The other parameter,
altitude (a), has the greatest influence on determin-
ing GSD. This is potentially a major source of meas-
urement error due to discrepancies in the correct
scaling of the pixels in the image caused by altimeter
errors (Burnett et al. 2019). All UAS are equipped
with a barometer, which is a pressure sensor for re-
cording altitude, but each will have some level of
inaccuracy when measuring and recording true alti-
tude. Recording the offset from launch height to the
water is critical, as the barometer sets the zero pres-
sure at the takeoff point. Flying from land also adds
complications with allowance for altitude offsets due
to tidal fluctuations. Generally speaking, lower accu-
racy usually arises from the use of low-cost sensors
commonly found on small UAS (Wei et al. 2016). Sev-

eral studies have improved the accuracy of the alti-
tude recorded by using a laser altimeter, e.g. Light-
Ware SF11/C LIDAR (Dawson et al. 2017), or by
measuring a known-sized object during each flight to
correct for barometric altitude inaccuracies using lin-
ear equations (Burnett et al. 2019, Lemos et al. 2020).

2.1.1. Training and calibration data (x)

Seven UAS flights were conducted on 26 June
2019 at the Duke University Marine Lab in Beaufort,
NC, USA (34°43'0.156" N, 76°40'24.42" W) and are
detailed in Table 1. Each aircraft was launched from
a dock ~100 m from a known-sized floating calibra-
tion object made of PVC pipe (1.48 m x 1.15 m). The
calibration frame was foam-filled to maintain flota-
tion at the surface of the water and anchored via rope
with a buoy to prevent drifting. The site was chosen
because it is sheltered from ocean swell and thus
ensured the calibration frame remained relatively
flat at the surface during data collection. Prior to
takeoff, the launch height was measured from the
water surface to the camera lens and then later
added to the recorded barometer altitude to account
for the bias introduced from the barometer zeroed at
launch height (see Durban et al. 2015) and the local
rising tide. Each aircraft collected imagery of the cal-
ibration frame at altitudes between 10 and 120 m in
10 m increments, similar to Christiansen et al. (2018).
For the P4Pro flight with video, a still frame was cap-
tured using the snapshot function in VLC Media
Player Software (Version 3.08, VideoLAN), as in
Lemos et al. (2020). To test for possible effects of lens
distortion at various altitudes, the calibration frame

5 @ DJI Phantom 3 Pro &
DJI Phantom 4 Std (Burnett et al. 2019)

DJI Phantom 4 Pro (video)
(Lemos et al. 2020)

Splash Drone (Christiansen et al. 2016)

w

2020a)

GSD (cm px)

N

0
10 20 30 40 50 60 70 80 90 100 110 120
Altitude (m)

DJI Inspire 1 Pro (video) (Christiansen et al.

DJl Inspire 1 Pro (Christiansen et al. 2018) &
APH-22 (Durban et al. 2015)

LemHex-44 & Alta 6 w/ 35 mm focal length
(Gough et al. 2019)

LemHex-44 & Alta 6 w/ 50 mm focal length
(Gough et al. 2019)

DJI Phantom 4 Pro (Gough et al. 2019)

Fig. 1. Ground sampling distance
(GSD) for unoccupied aircraft sys-
tem (UAS) platforms commonly
used for cetacean photogramme-
try. The GSD displayed is exact,
meaning it does not account for
distortion or altitude errors. GSD
increases with increasing alti-
tude, lowering image resolution.
See Table 1 for list of UAS plat-
forms used in this current study;
px: pixel
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Table 1. Camera specifications for each flight and aircraft. All aircraft contained a barometer and laser altimeter, except for Phantom 3 Std. The Olympus EPM2 camera

has also been used on other UAS platforms, e.g. APH-22 (Durban et al. 2015, 2016). px: pixel

f-number

Pixel dimensions

Image dimensions

Camera
sensor (mm)

Focal length

Camera

Altimeter

Data
collected

Aircraft

Flight

(mm px )

(px)

(mm)

1.8

0.00392 x 0.00390
0.00392 x 0.00390
0.00392 x 0.00390
0.00375 x 0.00376
0.00241 x 0.00286
0.00322 x 0.00407
0.00154 x 0.00154

6000 x 4000
6000 x 4000
6000 x 4000
4608 x 3456
5472 x 3078
4096 x 2160
4000 x 3000

23.5x 15.6
23.5x 15.6
23.5x 15.6

50
35
35
25
8.8

Sony a5100

Sony a5100

Sony a5100
Olympus EPM2

Barometer & Laser

Images

Alta 6

1.8

Images Barometer & Laser

Alta 6
Lemhex-44

1.8

Barometer & Laser

Images

1.8
£/2.8-t/11

17.3 x 13
13.20 x 8.80

Images Barometer & Laser

CineStar
Phantom 4 Pro

Phantom 4 Pro

Barometer & Laser

Images

£/2.8-£/11

8.8 13.20 x 8.80

Phantom 4 Pro

Video Barometer & Laser

Images

Phantom 4 Pro

/2.8

6.16 x 4.62

3.61

Phantom 3 Std

Barometer

Phantom 3 Std

7

was positioned in the center of the image during the
ascent and in the corner during the descent. We also
tested the distortion of each camera using the Math-
Works Single Camera Calibrator App in MATLAB,
following the provided tutorial (MathWorks 2017)
and Burnett et al. (2019).

In addition to an onboard barometer, each aircraft
except for the P3Std was equipped with a LightWare
SF11/C laser altimeter that simultaneously recorded
altitude along with the barometer (Table 1). A cus-
tom designed housing was created to support and
power the laser altimeter on the P4Pro (installation
instructions at https://github.com/marrs-lab/DJI_PH4_
LaserAltimeter). The LightWare SF11/C laser altime-
ter is rated for altitude measurements up to 120 m
above land and 40 m above moving water with +0.1 m
of error (LightWare Optoelectronics 2018). Each plat-
form contained the laser altimeter and camera co-
located on a 2-axis gimbal with pitch angle con-
trolled via remote control to ensure image collection
at nadir, except for P4Pro, which had the laser fixed
on the aircraft frame, and we accounted for the pitch
and roll to calculate the vertical altitude during
image collection (Dawson et al. 2017). Timestamp
drift can lead to improper scaling of images due to
incorrect altitudes used in calculating GSD (Voges et
al. 2018, Raoult et al. 2020). To correct for this, we
took images of an iPad screen connected to a Bad Elf
GPS unit displaying the current GPS time prior to
take off. This ensures we can accurately link the
timestamp of an image to the altitude recorded by
the barometer and laser altimeter.

2.1.2. Photogrammetry

The length of the calibration frame was measured
in pixels (L,') using the straight-line tool in ImageJ
1.5 (Schneider et al. 2012) by 3 separate analysts (2
considered ‘expert’, one considered 'novice'). To as-
sess measurement bias between analysts, the coeffi-
cient of variation (CV %) was calculated between the
3 L," measurements for each image, following the
approach of Christiansen et al. (2016).

To compare the measurement error amongst differ-
ent UAS platforms, i.e. to derive the uncorrected
measurement error, we used Egs. (1) and (2) to con-
vert each L," measurement into 2 length measure-
ments (m), one using the altitude recorded from the
barometer and one from the laser altimeter. The
uncorrected percent error was then calculated as:

(Lp,ijk, - Lco)

'CO

uncorrected % error = x100 3)
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where L, is the true length of the calibration object
(1.48 m) and L, ;' is the length (px) of the calibration
object in each image i, measured by analyst j, using
altimeter k (barometer or laser) (Christiansen et al.
2018, Burnett et al. 2019).

2.2. Model development
2.2.1. Overview of Bayesian approach

Unlike frequentist statistical theory, the Bayesian
approach views both data and the underlying para-
meters (i.e. variances) that generated the data as ran-
dom (see Austin et al. 2002 and Ellison 2004 for re-
views). Using Bayes' theorem, a model of the observed
data, called the likelihood function, is combined with
prior knowledge pertaining to the underlying para-
meters, called the prior probability distribution, to
form the posterior probability distribution. The poste-
rior probability distribution serves as updated knowl-
edge about the underlying parameter and can be
used as prior information for subsequent studies.

Following this framework, we first estimated the
posterior probability distribution for a vector of pho-
togrammetric error parameters (0) from different
UAS platforms using calibration data (x) of a known
sized object via:

f(x16)f(®)
fx

where f(x10) is the likelihood function, f(0) is the prior
probability distribution that defines the potential
range for 0, f(x) is the marginal distribution of the
measurement data, and f(0lx) is the posterior distri-
bution that defines the likely range of 6 given data x.
We designed the likelihood function to account for
sources of UAS measurement error (see Section 2.2.2).
Taking a similar approach as Racine-Poon (1988), we
then used the posterior probability distributions for 6,
specific to UAS platform, as prior information to form
posterior predictive distributions for measurements
of an unknown-sized object (L,ey) from observations
(Xnew) collected in the field (e.g. of whales) using that
UAS platform via:

fLnewl X Xnew) = J- f (Lnewl®, Xpew) f(61x)d0 ()

where f(Lpewl0,Xmew) 1S @ conditional likelihood, and
f®lx) is the posterior probability distribution from
Eq. (4), which effectively serves as an updated prior
probability distribution. The posterior predictive dis-
tribution f(Lpew!X Xnew) quantifies uncertainty in meas-
urements of an unknown-sized object based on the

fOlx)= (4)

experimental study of measurement errors for a
given UAS platform.

2.2.2. Error estimation

We used Eqgs. (1) and (2) to design the likelihood
function. We assumed that L, a, and L, represent the
length of a target object, the exact altitude at which
an image is taken, and the length of the object in the
image, in pixels, respectively. The data x = (a.', ag',
L,') are the altitude as measured by a laser altimeter
(aL") and barometer (ag'), and the measured length of
the object in the image, in pixels (L,'), all of which
represent noisy versions of the exact values a and Ly,
respectively. We assigned a uniform prior distribu-
tion to a (min = 5 m and max = 130 m), which restricts
the model to the altitude range of UAS image collec-
tion but is otherwise uninformative. We expect most
altimeter measurement errors are smaller than a few
meters at worst, and that the errors are normally dis-
tributed around the true altitude a such that:

a.' ~ N(a,of) (6)
ap' ~ N(a,08) (7)
The altimeters have separate variance parameters
of and og, to each of which we assign an inverse
gamma prior distribution (shape = 2, rate = 1). Meas-
urement error is assumed to have constant variance
over unknown altitudes, which simplifies modeling
and estimation. Impacts of the constant variance as-
sumption are evaluated in model validation (Section
2.3.1).
We also assumed the measured length of the object,
in pixels, L' is normally distributed around the exact
value L, by specifying the prior distribution:

Ly ~ N(Lp,06%,) (8)

to which we assigned an inverse gamma prior distri-
bution (shape = 5, rate = 4) for the variance parame-
ter Gfp. Egs. (1) and (2) imply that the exact length of
the object in pixels, L, depends on the length L of
the target object and the altitude at which the image
is taken (a) via:

I _ Lxf.xI,
P axs,

9

The length L of the target object is known in the
calibration experiment, yielding the likelihood:

F01x) = [ f(a) f(ai'la,8) flas'a) f(Ly'la8)da (10)

in which f(a) is the uniform prior density for the true
altitude, f(a.'la,0) and f(ap'la,0) are the densities for
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the altimeter measurement errors (Egs. 6 and 7),
f(Ly'la,0) is the measurement error distribution of the
pixel length (Eq. 8), the parameter vector is 8 = (67,
o3, 0fp), and the calibration object length L, is sub-
stituted for L in Eq. (9). We then can use measure-
ments of L., as training data to estimate error para-
meters 0 specific to UAS platforms.

2.2.3. Measurement predictions

After estimating 6, we can use the posterior predic-
tive distribution (Eq. 5) to make inferences about the
size of an unknown object (L), €.9. length of a whale,
which is conditional on a new set of measurements
Xnew = (AL,new'r @Bnew 1 Lpnew') @nd our error parameter
estimates from the UAS platforms used in data col-
lection. The conditional likelihood f(Lyew!0, Xpew) in
Eq. (9) is formed from Bayes' rule. The rule implies
the known-length likelihood (Eq. 10) is weighted by
the prior distribution for the unknown object length
f(Lyew), and is proportional to:

f(Lnewleanew) o< f(Xnewleanew) f(Lnew) (11)

in which f(Xuewl6,Lyew) is the likelihood Eq. (10), but
for which the unknown object length L, is substi-
tuted for Lin Eq. (9). We assigned a uniform prior dis-
tribution (min = 0 m, max = 30 m) to the unknown
lengths of humpback whales, which restricts the
model to reasonable size ranges but is otherwise
uninformative. We discuss an alternate choice for
f(Lyew) in Section 2.3 that allows for estimation of
morphological relationships between multiple length
measurements.

Model development and analyses were conducted
in R (version 4.0.2, R Core Team 2020). Estimation
and prediction were performed using Markov chain
Monte Carlo sampling in NIMBLE (de Valpine et al.
2017) with 1000 burn-in followed by 1000 000 itera-
tions. Three independent chains were run to confirm
consistency between runs and inspected visually for
convergence. Model code is freely available at the
Duke University Research Data Repository (https://
doi.org/10.7924/14sj1jj6s).

2.3. Testing data (L,ew)
2.3.1. Model validation
We validated the ability of the model to estimate

unknown lengths by studying the out-of-sample pre-
diction error of the model in 2 scenarios. In the first

scenario, we randomly split the LemHex-44 and Alta
6 data (collected in Section 2.1.1) into equal-sized
training and testing subsets. In the second scenario,
we ensured the training and testing subsets were
also balanced with respect to images taken at low,
medium, and high altitudes (respectively 0-30, 31—
60, and 61-120 m). To be precise, the LemHex-44
and Alta 6 data included 42 images nominally taken
at altitudes between 0 and 30 m; the second scenario
ensured that the training and testing subsets each
had 21 of these images, while the first scenario did
not. The first scenario is more general, while the sec-
ond scenario allows out-of-sample prediction error to
be studied with respect to altitude.

In both scenarios, we used the training subset to
estimate the error parameters 3 separate times: when
altitude information is taken from (1) both the barom-
eter and laser altimeters, (2) only the barometer, and
(3) only the laser. We used each set of parameter esti-
mates to predict the length measurements of the test-
ing subset. Next, we compared the predicted lengths
to the known length of the calibration object (L),
using root mean square error (RMSE) and mean
absolute error (MAE) to summarize the prediction
errors. Comparing the 3 sets of predictions lets us test
how altimeter choice influences uncertainty.

2.3.2. Ecological scenarios

We then tested the model in 2 ecological scenarios
to (1) predict total body length measurements of
humpback whales (n = 48) in order to assign maturity
class, and (2) estimate the morphological relationship
between total length and rostrum to blowhole dis-
tance of Antarctic minke whales (n = 27). Both sce-
narios used images collected with the LemHex-44
(35 mm {,) (referred to as '‘LemHex') and Alta 6 (re-
ferred to as ‘Alta’) with either a 35 or 50 mm f.. Both
scenarios compare predicted lengths under 2 models:
Model 1 assumes that each platform contains only a
barometer to record altitude for length measure-
ments, whereas Model 2 assumes that each platform
has both a barometer and a laser altimeter. Images
were selected for each individual and ranked for
quality in measurability following Christiansen et al.
(2018), where a score of 1 (good quality), 2 (medium
quality), or 3 (poor quality) was applied to 7 attrib-
utes: camera focus, straightness of body, body roll,
body arch, body pitch, total length measurability,
and body width measurability. Images with a score of
3 in any attribute were removed from analysis, as
well as any images that received a score of 2 in both
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roll and arch, roll and pitch, or arch and pitch (Chris-
tiansen et al. 2018). Data were collected along the
Western Antarctic Peninsula between 2017 and 2019
as part of long-term ecological research projects
focused on understanding population dynamics and
the impacts of interannual environmental variability
on whale body condition. We used MorphoMetriX
open-source photogrammetry software (Torres &
Bierlich 2020) to measure (in pixels) (1) the total
length (TL), as tip of rostrum to fluke notch, of hump-
back and Antarctic minke whales, as well as (2) ros-
trum to blowhole distance (RB) of Antarctic minke
whales. Both scenarios used the error parameters for
the LemHex and Alta to generate posterior predic-
tive distributions for each measurement. Measure-
ment uncertainty was defined by constructing 95 %
HPD intervals, which is an interval that represents
the region with a 95 % probability of encompassing
the parameter.

2.3.2.1. Scenario 1: Predicting length-based matu-
rity class. A single image was used for each individ-
ual to obtain length measurements. Length is often
used to classify individuals as mature or immature
(e.g. Christiansen et al. 2016, 2020a, Lemos et al. 2020).
Individuals were assigned as ‘mature’ if >50 % of their
predicted TL posterior distribution was greater than
the average length at maturity of 11.2 m, as used in
previous studies (Christiansen et al. 2016, 2020a) that
were based on data collected at whaling stations
(Chittleborough 1955a,b). We then compared meas-
urement uncertainty (as 95% HPD interval widths)
and maturity classification between Model 1 and 2,
as well as how uncertainty changes with altitude.

2.3.2.2. Scenario 2: Predicting morphological rela-
tionships. In Scenario 2, we demonstrate how to use
the Bayesian uncertainty model to estimate standard
morphological relationships between TL and RB of a
whale. Morphological relationships are commonly
used to identify differences between species (e.g.
Leslie et al. 2020), track ontological growth (Chris-
tiansen et al. 2016), and estimate TL when a TL meas-
urement is unobtainable (e.g. Ratnaswamy & Winn
1993, Fearnbach et al. 2018, Groskreutz et al. 2019).
We used measurements from up to 4 images per indi-
vidual, for a total of 40 images.

Within our hierarchical Bayesian framework, the
morphological model replaces the independent prior
distribution f(Lyew) for the unknown lengths in Eq. (11),
allowing the morphological model to be estimated
with respect to photogrammetric measurement
errors. Using the morphological model within our
framework allows an explicit, population-level rela-
tionship between TL and RB to be estimated from

photogrammetric data. The prior distribution is set to
restrict the support of measurements and parame-
ters, but is also large enough to be practically unin-
formative. We assumed RB measurements are linearly
related to TL measurements. The ith RB measure-
ment, RB;, is modeled as a truncated normal random
variable (min = 0 m, max = 30 m) with location
parameter ; and scale parameter o2 via:

RB;Ij1;, 685 ~ trunc — N(u;, 0gg; 0,30) (12)

;= PBs + BoTL; (13)
The location y; models the morphological relation-
ship between RB; and TL; and the scale 62 quanti-
fies the amount of population-level variability around
the morphological relationship. The truncated range
for RB; is the same as the original prior distribution
f Lnew)-
The prior distribution for the morphological rela-
tionship is designed to be largely uninformative via:

B1 ~ U(=3,30) (14)
B, ~ Beta(1,1) (15)
o¢s ~ Inv-Gamma(0.01,100) (16)

The prior distribution for the intercept B, is mostly
non-negative, which strongly assumes that the inter-
cept can be interpreted as a baseline size parameter.
The slope B, quantifies the population-level ratio be-
tween RB and TL, which is a priori known to be <1
since TL is the largest length measurement of a whale.
The prior distribution for 6%; is designed to be conju-
gate, heavy-tailed, and uninformative.

The TL measurements are modeled as truncated
normal random variables with location parameter p.
and scale parameter 2. The truncation is wide enough
so that the location pr; describes the population-
level mean TL value well, and the scale 6% quantifies
the amount of population-level variability around the
mean:

TL;lury, 6%, ~ trunc — N(ur,64; 0,30) (17)

Within our context, both parameters 1, and 6%, are
modeled with uninformative priors:

ur, ~ U(0,30) (18)

6% ~ Inv-Gamma(0.01,100) (19)

The posterior distribution for the morphological re-
lationship is a variation of the posterior predictive
distribution, specified via:

£(B1, B2 O&p, lrL, OFL| X, Xpp, ¥r1) o
JATILf (xkp,i16,RB) f (1,116, TL;)] x
f(RB;ITL;, By, B2, 08s) f (TL;l iy, 6%1) (
£(B1,B2 Ok, 1L, 0FL) f(O1x)} ARB; dTL; d6

20)
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in which x and 6 represent the collection of training
data and measurement error parameters as before,
respectively; xgp; and xrp ; represent the altitude and
pixel-length measurements for RB and TL measure-
ments, respectively; RB; and TL,; represent the un-
known RB and TL measurements, respectively, tak-
ing the place of the generic object length L in previous
equations; and the distributions comprise the likeli-
hood and prior for a Bayesian analysis. We then com-
pared the estimated morphological relationship and
associated measurement uncertainty between Model
1 (barometer only) and Model 2 (barometer and laser
altimeter).

3. RESULTS
3.1. Training data

The max altitude recorded by the laser altimeter
varied between platforms in the training dataset,
but each platform recorded to an altitude of at least
62 m (Table S1 in the Supplement at www.int-res.
com/articles/suppl/m673p193_supp.pdf). Of the 1068
total measurements (across 3 analysts), 189 meas-
urements had nulled laser values (i.e. altitudes
greater than the max altitude recorded by the laser
altimeter for each UAS) and were removed from
the training data in the analysis. This resulted in a
total of 534 length measurements in the training
dataset using the barometer and 345 using the
laser altimeter.

There were clear resolution differences amongst
platforms due to GSD, especially with the DJI P4Pro
with video (Fig. 2). Differences in L’ measurements
of the same image amongst the 3 analysts were low,
with CV <5% for all measurements (min = 0.01 %,
max =4.02 %, mean = 0.87 %, SD = 0.83 %). Thus, the
analyst variable (within-frame precision) was ex-
cluded from the model.

Overall, each aircraft had greater uncorrected
measurement error (before uncertainty model applied)
when using the barometer for altitude compared to
using the laser altimeter (Fig. 3; Table S2). The Alta
with 50 mm f. had the lowest average uncorrected %
error compared to other platforms with the barometer,
but also had the third highest SD (Fig. 3; Table S2),
likely due to an outlier at a low altitude (Fig. 3). The
mean uncorrected % error was reduced to <1 % when
the laser was used for all aircraft, except CineStar
(Fig. 3; Table S2). Interestingly, the uncorrected %
error was also slightly negatively biased for each plat-
form when the laser altimeter was used. The P4Pro
with video displayed wide variation in uncorrected %
error for both barometer and laser (Fig. 3, Table S2),
and was removed from the analysis. These results show
that the choice of altimeter can have significant im-
pacts on measurement error, with altitude measured
by the barometer resulting with greater error (Fig. 3).

Some differences were observed between uncor-
rected measurements of the calibration frame in the
center vs. corner of the image, but further inspection
revealed that these differences in error were likely
driven by inaccuracies of the barometer, rather than

Alta 6 w/ 50 mm fc

~20m

Altitude

~120 m

P4 Pro

I S

P4 Pro w/ video

=

Fig. 2. Image of the calibration frame (1.48 x 1.15 m) to demonstrate differences in resolution due to ground sampling distance
(GSD) amongst the Alta 6, P4Pro, and P4Pro with video at altitudes of ~20 and ~120 m; fc: focal length of the camera
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Fig. 3. Uncorrected % error for measurements from each unoccupied aircraft system (UAS) platform. Black dashed line repre-
sents 0 % uncorrected error (true length = 1.48 m). The gray dashed lines represent the under- and over-estimation of the true
length by 5% (1.41 and 1.55 m, respectively). The middle line in each box represents the median (50th percentile), the lower
and upper hinges of the box represent the first and third quartiles (25th and 75th percentiles), respectively, and the lower and
upper whiskers represent the smallest and largest values that extend at most 1.5x the interquartile range. Any data beyond
these whiskers are considered outlying points and are plotted individually. Three analysts measured n images for each aircraft
using a barometer and laser: Alta 6 with 50 mm focal length lens (‘Alta-50mm’, Nyarometer = 25, Niager = 16), Alta 6 with 35 mm fo-
cal length lens (‘Alta-35mm’, Nparometer = 24, Niaser = 9), LemHex-44 (‘LemHex', Nyarometer = 25, Nyager = 23), Cinestar (Mparometer = 23,
Nyaser = 20), P3Std (Mparometer = 24, Naser = 0), PAPIO (Mparometer = 21, Nyaser = 11), P4Pro w/ video (‘P4Pro-video’, Dparometer = 36, Niaser = 36)

object positioning (see Fig. S1). For this reason, object
positioning was removed from the model. Each cam-
era displayed low distortion (mean error <1.03 pixels)
and was thus assumed negligible for incorporating in
the model.

3.2. Measurement predictions
3.2.1. Model validation

The model validation study compared the model
when altitude is collected using different altimeters
(barometer only, laser only, and both barometer and
laser) under 2 scenarios. Results from the first scenario,
which looks at overall prediction error, shows that er-
rors are typically small across altimeters, with RMSE
and MAE <0.08 m, although using only the barometer
had larger RMSE and MAE values (Table 2). Results
from the second scenario, which allows us to study

prediction error with respect to changing altitude, in-
dicate that errors tend to decrease with altitude, but
that the differences are scientifically negligible for
large animals (Table S3). In both scenarios, errors
were nearly identical when using only a laser altime-
ter and using both a barometer and laser altimeter, in-
dicating that the laser altimeter results in lower meas-
urement uncertainty (Table 2; Table S3).

Table 2. Results from validation test comparing how altime-

ter choice influences uncertainty predictions by comparing

the root mean square error (RMSE) and mean absolute error

(MAE) of the predicted measurements using altitude from

only the barometer, only the laser altimeter, and both the
barometer and laser altimeter

RMSE (m) MAE (m)
Barometer only 0.072 0.062
Laser altimeter only 0.021 0.014
Barometer and laser altimeter 0.021 0.016
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3.2.2. Ecological Scenario 1

We predicted length distributions of humpback
whales (n = 48) using altitude from only a barometer
(Model 1) and from both a barometer and laser alti-
meter (Model 2) to assign sexual maturity. An exam-
ple of an individual's posterior predictive length dis-
tribution and 95 % HPD intervals from Models 1 and
2 is shown in Fig. 4. This individual would be classi-
fied as ‘mature’ if using Model 1, but as ‘immature’ if
using Model 2. This result highlights the importance

Model 1: barometer

1.00 -

0.75-

0.50-

0.25-

0.00-

1
Model 2: barometer & laser

1.00 - :
1
1
1
0.75-

0.50 -

0.25-

0.00-

i ! L}
8 10 12 14
Predicted length (m)

Fig. 4. Example of predicted posterior length distributions
from Models 1 and 2 for the same individual humpback
whale. The longer black bars represent the 95% highest
posterior density (HPD) intervals, the thicker shorter black
bars represent the 65 % HPD interval, and the black dot rep-
resents the mean value. The red dashed line represents the
average length at maturity for humpback whales (11.2 m)

of altimeter choice and incorporating uncertainty
into maturity classification. Overall, Model 1 (barom-
eter only) predicted longer measurements with much
greater uncertainty compared to Model 2 (barometer
and laser altimeter), across all individuals (Fig. 5).
Each 95% HPD interval quantifies the most likely
range in which an exact measurement lies. As such,
we can represent the total uncertainty in each meas-
urement using the width of the estimated 95 % HPD
interval. Model 1 predicted wider 95 % HPD inter-
vals (mean + SD =3.81 + 1.47 m, min = 1.52 m, max =
6.84 m) compared to Model 2 (1.10 + 0.42, min =
0.42 m, max = 2.00 m) (Figs. 5 & 6). These wider pre-
dictive distributions from Model 1 resulted with more
overlap across the 11.2 m maturity cutoff length, with
several points in particular that would be considered
‘mature’ if using Model 1, but ‘immature’ if using
Model 2 (Fig. 5). These results suggest that when
measurements are made solely with the barometer,
extra caution needs to be taken to classify measured
individuals into different life-history classes. The
widths of the 95% HPD intervals decreased as alti-
tude increased for both models (Figs 5 & 6). All un-
corrected total length measurements (before applying
the uncertainty model) fit within the respective 95 %
HPD interval of each individual (Fig. S2).

3.2.3. Ecological Scenario 2

We used the Bayesian uncertainty model to estimate
the population-level morphological relationship be-
tween RB and TL for Antarctic minke whales (n = 27)
when using altitude from only a barometer (Model 1)
compared to from both a barometer and laser altime-
ter (Model 2). Linear regression confirmed a linear re-
lationship between empirical RB and TL estimates
(r? = 0.73, p < 0.001). The mean posterior distribution
for the slope parameter (f,) indicates the population-
level ratio between RB and TL. Model 1 predicted a
slightly smaller B, with much wider uncertainty
(mean + SD = 0.17 + 0.045 [95% HPD interval: 0.08,
0.25]) compared to Model 2 (0.18 + 0.021 [95% HPD:
0.13, 0.22]) (Table 3, Fig. 7). Overall, Model 1 pre-
dicted larger TL measurements with greater uncer-
tainty compared to Model 2 (Fig. S3), resulting in a
larger population-level mean TL value (urp) for Model
1 (mean =8.53 + 0.196 m) compared to Model 2 (7.67 +
0.218 m) (Table 3, Fig. 7). Model 2 more reliably cap-
tured the population variability in TL, 6%, (mean =
1.171 + 0.383) compared to Model 1 (0.635 + 0.308)
(Table 3, Fig. 7). There was also a decrease in the esti-
mated value and posterior uncertainty in the popula-
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Fig. 5. Comparison of the predictive length measurements of humpback whales (n = 48) using Model 1 and Model 2. Each

point represents the mean of the predictive posterior length distribution and the lines around each point represent the 95 %

highest posterior density (HPD) interval. Each individual is colored by the % probability of being mature, defined as the

proportion of their predictive posterior length distribution that is greater than 11.2 m, the average length of maturity for
humpback whales (represented by the red dashed line) used by Christiansen et al. (2016, 2020a)

tion variability of RB, o7z, in Model 2 (mean = 0.010 +
0.003) compared to Model 1 (0.013 + 0.005). Altogether,
the regression parameters (B, 3,) had larger uncertainty
in Model 1 compared to Model 2 (Table 3, Fig. 7).

4. DISCUSSION
4.1. Novelty
Here we built off of previous methods for quantify-
ing photogrammetric error (e.g. Christiansen et al.

2018, Burnett et al. 2019) and present a Bayesian sta-
tistical framework for predicting photogrammetric

uncertainty around UAS-derived measurements. We
developed this Bayesian statistical model for re-
searchers using a range of UAS platforms containing
different cameras, focal length lenses, and altimeters
(barometer vs. both a barometer and laser altimeter).
We applied this framework to unknown-sized objects
(e.g. whales) that can be used for probabilistic as-
sessments of ecological importance, e.g. determining
sexual maturity, or assessing morphological relation-
ships. Our results represent a standardized practice
for reporting measurement uncertainty and facilitat-
ing collaboration amongst researchers using differ-
ent UAS platforms and sensors. Importantly, these
results also allow us to better measure and predict
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Table 3. Results from Model 1 (barometer only) and Model 2
(barometer and laser altimeter) in ecological Scenario 2 for
estimating the population-level morphological relationship
between total body length (TL) and rostrum to blowhole dis-
tance (RB) for Antarctic minke whales (n = 27). The mean,
standard deviation (SD), and 95 % highest posterior density
(HPD) intervals of the posterior distribution are shown for
each parameter: the intercept (B,), slope parameter (j)
which indicates the population-level ratio between RB and
TL, the population-level mean TL value (|r.), and the scale
parameter which quantifies the amount of population-level
variability around the mean TL (0% ) and RB (2g)

Mean SD 95 % HPD interval
Lower Upper Width

Model 1

B, -0.175 0.380 -0.93 0.58 1.51
B2 0.166 0.045 0.08 0.25 0.17
[Thee 8.531 0.196 8.14 8.91 0.77
De 0.013 0.005 0.01 0.02 0.01
0% 0.635 0.308 0.15 1.25 1.1
Model 2

B, -0.223 0.161 -0.54 0.10 0.64
B2 0.175 0.021 0.13 0.22 0.09
[Thee 7.670 0.218 7.24 8.10 0.86
De 0.010 0.003 0.00 0.02 0.02
04 1.171 0.383 0.56 1.93 1.37
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morphological features critical to understanding life
history patterns and potential impacts from anthro-
pogenically altered habitats.

4.2. Laser altimeter reduces measurement
uncertainty

The results of the present study demonstrate that
using a laser altimeter for altitude (Scenarios 1 and 2:
Model 2) reduces measurement uncertainty com-
pared to only using a barometer (Scenarios 1 and 2:
Model 1). This was also confirmed in the validation
study (Table 2; Table S3). While 95% HPD interval
widths decreased with altitude for both models in
Scenario 1, all mean widths for Model 2 were <2.0 m
compared to <6.8 m for Model 1 (Figs. 4-6). The val-
idation study also revealed that while uncertainty is
highest when using only a barometer, using only a
laser altimeter yields similar results to using a barom-
eter and laser altimeter, indicating that the laser
altimeter drives the reduction in uncertainty. Thus,
we recommend that whenever feasible, a laser alti-
meter should be used for recording altitude. We
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Fig. 7. Comparison of the morphological relationship between total body length (TL) and rostrum to blowhole distance (RB) for
Antarctic minke whales (n = 27) between (A,C) Model 1: barometer only and (B,D) Model 2: barometer and laser altimeter.
The predictive posterior estimates of RB and TL and their 95 % highest posterior density (HPD) intervals (as bars) for each indi-
vidual are shown along with the confidence band for the population-level morphological relationship for Model 1 (A) and
Model 2 (B). The standard linear regression between the empirical, or ‘uncorrected’, measurements of RB and TL is repre-
sented by the blue line with confidence bands in both (A) and (B). Posterior samples for regression parameters highlight the
strong posterior correlation between regression parameters, intercept (;) and slope (j,), for Model 1 (C) and Model 2 (D). The
pink diamond represents the mean population-level morphological relationship for each model: f, = 0.166 in Model 1 (C) and
B2 =0.175in Model 2 (D)

demonstrate how this can be achieved for ‘off-the-
shelf’ products, such as the DJI P4Pro, with a custom-
made housing (https://github.com/marrs-lab/DJI_
PH4_LaserAltimeter). However, because DJI P4Pro
with video displayed lower resolution and wider
variation in uncorrected % error compared to DJI
P4Pro with still images (Figs. 2 & 3; Table S2), we rec-
ommend using still images instead of video to reduce
measurement uncertainty.

While the maximum altitude recorded with the
laser in the training data varied across platforms
(Table S2), all platforms obtained a minimum read-
ing of 62 m (non-nulled). Thus, flying at altitudes
below 62 m may help ensure consistent laser altime-
ter readings to yield tighter uncertainty predictions
when using this particular laser altimeter. If only
using a barometer for recording altitude, then flying
at altitudes greater than 30 m may help reduce the
risk of obtaining measurements with larger uncer-
tainty (Fig. 6; Table S3). Researchers should thus
consider collecting data at altitudes that will yield an
appropriate GSD (i.e. Eq. 1, Fig. 1) and 95% HPD

interval width (Fig. 6; Table S3) that will best accom-
plish research objectives based on the UAS aircraft,
camera, focal length lens, altimeter, and expected
length of the target species. For example, to measure
changes in body condition of a small cetacean, such
as a harbor porpoise Phocoena phocoena, smaller
95 % HPD interval widths will be required compared
to measuring a larger species, such as a blue whale,
and the altitude required to achieve this will depend
on the UAS aircraft, camera, focal length lens, and
whether a laser altimeter is used in addition to a
barometer.

Because barometers are susceptible to rapid
changes in pressure unrelated to a shift in aircraft
altitude, e.g. from gusts of wind, temperature, and
changes in barometric pressure during flight, in gen-
eral they have been noted to have poor accuracy
(Sabatini & Genovese 2014) and problems with drift
and delay. These problems are more severe with
low-cost sensors commonly found on small UAS (Wei
et al. 2016). Barometric altimeters convert changes
in aerostatic pressure, the difference between the
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atmospheric pressure at a given altitude and the
pressure set as the zero point, to altitude measure-
ment (Jan et al. 2008). Variations in temperature and
humidity can impact the aerostatic pressure, and
thus the recorded altitude (m) (Bao et al. 2017). These
factors may be particularly influential when flying
over water and may have contributed to the greater
predicted uncertainty, especially at lower altitudes
(Fig. 6). Jech et al. (2020) noted differences in barom-
eter accuracies compared to Durban et al. (2015,
2016), despite using the same UAS platform (APH-
22), that were likely influenced by differences in
temperature. Jan et al. (2008) highlighted how a nor-
mal procedure for airplanes before arrival at a desti-
nation is to adjust the onboard barometer to local
barometric pressure provided by air traffic control.
These studies suggest that UAS flown in different
environments may be susceptible to different levels
of barometric error.

Model 2 in Scenario 1 also displayed greater 95 %
HPD interval widths at lower altitudes, though not
nearly as wide as Model 1 (Fig. 6). The LightWare
user manual states an accuracy of 0.1 m on a 70 %
reflective target at 20°C (LightWare Optoelectronics
2018), so perhaps a combination of temperature and
a less reflective surface at lower altitudes caused this
increased uncertainty. We recommend that future
studies record environmental data on each UAS
flight to further explore how different oceanic envi-
ronments influence barometric and laser accuracy.
This may be particularly important for studies com-
paring migrating populations with foraging and
breeding grounds in polar vs. tropical regions.

It is important to note that the training data used in
both models were collected in a much warmer cli-
mate compared to the testing data (North Carolina
vs. Western Antarctic Peninsula). Future studies
should also record location and date of the training
data to see how changes in environment influences
measurement predictions. An advantage of the
Bayesian framework is that it allows for the integra-
tion of new training data. Thus, researchers working
in different environments or in similar places at dif-
ferent times of the year can collect, share, and update
training data to further improve predictive distribu-
tions for future work.

4.3. Bias

No measurement bias was observed across the 3
different analysts, but these images were all pre-
selected by a single analyst and were all of high

quality in terms of measurability (a flat object float-
ing at the surface). Future studies should further
examine the potential for bias introduced when ana-
lysts have to choose which images to measure. This
would likely have little influence in the present study,
but could have an effect when selecting images of
whales with larger variation in image quality, such as
glare, refraction, water visibility, and different body
orientations (e.g. such as straight, fluke-down, etc.)
and depths, as shown by Christiansen et al. (2018).
The Bayesian framework allows for straightforward
integration of additional covariates to the model for
studies with length predictions that are more heavily
influenced by different analysts, image quality, and
repeated measurements of individuals in different
body orientations.

4.4. Interpreting predicted measurements
4.4.1. Ecological Scenario 1

Overall, measurements using only the barometer
(Model 1) had larger mean predicted length posterior
distributions compared to using the barometer and
laser altimeter (Model 2). Lengths are a common
metric used to classify organisms into demographic
units, such as sexual maturity (i.e. Christiansen et al.
2016, 2020a, Lemos et al. 2020) and to determine
population-level impacts of stressors on growth (Stew-
art et al. 2021). Figs. 4 & 5 demonstrate the impor-
tance of including uncertainty around a measure-
ment in these types of analyses, as the conclusion for
maturity classification changes depending on which
altimeter is used. Several measurements could be
classified differently, and Fig. 4 provides an example
of an individual that would be classified as immature
if using the laser and barometer, but as mature ani-
mals if using only the barometer (Fig. 4).

By generating posterior distributions around meas-
urements in these types of analyses, the probability
that an animal exceeds a specific length can be com-
puted to assist in classification and allow ages to be
discussed and studied under uncertainty. For exam-
ple, classification decisions can incorporate uncer-
tainty through rules, as this present study classified
individuals as sexually mature if 50 % of their predic-
tive distribution was >11.2 m. In studies with greater
uncertainty around each measurement (i.e. only
using a barometer), stricter classification rules can be
applied, such as ‘individuals were classified as sexu-
ally mature if 80% of their predictive distribution
was >11.2 m'. This further demonstrates the advan-
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tages of using a Bayesian approach to predict uncer-
tainty, where a frequentist approach is limited by
standard deviations and confidence intervals, which
may be less accurate and precise.

4.4.2. Ecological Scenario 2

As in Scenario 1, Model 1 had larger mean pre-
dicted TL posterior distributions with greater uncer-
tainty compared to Model 2 (Fig. S3). This led to a
larger population-level mean TL (ur) for Model 1
compared to Model 2 (Table 3, Fig. 7). Because the
laser altimeter provides more precise and informa-
tive measurements than the barometer, Model 2 bet-
ter captures the variability in the population-level TL
measurements (64 ) compared to Model 1 (Table 3,
Fig. 7). This is evident in Fig. 7A,B, where Model 1
measurements are larger, have greater uncertainty,
are more closely clustered together, and are shifted
to the right and up from the empirical relationship
between RB and TL (blue line) compared to Model 2.
Since RB is modeled as a dependent variable relative
to TL, oZs models the deviation from the linear rela-
tionship between RB and TL. The estimated 6#; value
is smaller for Model 2 compared to Model 1, and with
less uncertainty (Table 3), which yields the narrower
model-based confidence bands (grey shading) in
Fig. 7A,B.

Overall, the regression parameters (B; B,) had
greater uncertainty in Model 1 compared to Model 2
(Table 3, Fig. 7). The mean population-level morpho-
logical relationship between RB and TL of Antarctic
minke whales was smaller with much greater uncer-
tainty for Model 1 compared to Model 2 (Table 3,
Fig. 7). This further highlights the importance of using
a laser altimeter when estimating morphological re-
lationships from UAS-based imagery. Morphological
relationships pertaining to the skull are commonly
used for distinguishing species (Leslie et al. 2020),
tracking ontological growth (Christiansen et al. 2016),
and estimating TL when direct measurements of TL
are not obtainable (Ratnaswamy & Winn 1993, Fearn-
bach et al. 2018, Groskreutz et al. 2019). The Bayesian
framework we present here demonstrates how mor-
phological relationships are simultaneously esti-
mated with photographically derived measurements,
rather than in 2 stages, in which physical measure-
ments are first extracted from photographs and then
used to estimate morphological relationship. This
hierarchical Bayesian framework naturally allows
complex correlations and dependencies between the
measurement error parameters to be accounted for

during estimation. This framework also allows
repeated observations of the same lengths to be
directly incorporated, rather than being manually
averaged or otherwise summarized before analysis,
and incorporates altitude measurements from multi-
ple altimeters (barometer and laser).

The present study provides a robust method for
predicting photogrammetric measurement uncer-
tainty specific across UAS platforms. This approach
will help researchers set protocols to minimize meas-
urement errors during data collection to yield scien-
tifically robust conclusions through an analytical
workflow. Standard frameworks like the one pre-
sented here can facilitate collaboration amongst re-
searchers using different UAS platforms to pool re-
sources for comparative studies using past and future
photogrammetric data to better monitor species and
populations.

Data availability. The data and uncertainty model code can
be found at the Duke University Research Data Repository
(https://doi.org/10.7924/14sj1jj6s), and instructions for DJI
Phantom 4 Pro laser altimeter installation can be found at
https://github.com/marrs-lab/DJI_PH4_LaserAltimeter.
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