PFPN: Continuous Control of Physically Simulated Characters
using Particle Filtering Policy Network

Pei Xu
peix@clemson.edu
Clemson University

Charleston, South Carolina, USA

Ioannis Karamouzas
ioannis@clemson.edu
Clemson University
Charleston, South Carolina, USA

Figure 1: Motions generated through imitation learning using Particle Filtering Policy Network.

ABSTRACT

Data-driven methods for physics-based character control using re-
inforcement learning have been successfully applied to generate
high-quality motions. However, existing approaches typically rely
on Gaussian distributions to represent the action policy, which
can prematurely commit to suboptimal actions when solving high-
dimensional continuous control problems for highly-articulated
characters. In this paper, to improve the learning performance
of physics-based character controllers, we propose a framework
that considers a particle-based action policy as a substitute for
Gaussian policies. We exploit particle filtering to dynamically ex-
plore and discretize the action space, and track the posterior policy
represented as a mixture distribution. The resulting policy can
replace the unimodal Gaussian policy which has been the staple
for character control problems, without changing the underlying
model architecture of the reinforcement learning algorithm used to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MIG °21, November 10~12, 2021, Virtual Event, Switzerland

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9131-3/21/11...$15.00
https://doi.org/10.1145/3487983.3488301

perform policy optimization. We demonstrate the applicability of
our approach on various motion capture imitation tasks. Baselines
using our particle-based policies achieve better imitation perfor-
mance and speed of convergence as compared to corresponding
implementations using Gaussians, and are more robust to external
perturbations during character control. Related code is available at:
https://motion-1lab.github.io/PFPN.

CCS CONCEPTS

« Computing methodologies — Animation; Physical simula-
tion; Reinforcement learning.

KEYWORDS

character animation, physics-based control, reinforcement learning

ACM Reference Format:

Pei Xu and Ioannis Karamouzas. 2021. PFPN: Continuous Control of Phys-
ically Simulated Characters using Particle Filtering Policy Network. In
Motion, Interaction and Games (MIG °21), November 10-12, 2021, Virtual
Event, Switzerland. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3487983.3488301

1 INTRODUCTION

In the last few years, impressive results have been obtained for
physics-based character control using data-driven methods under

https://doi.org/10.1145/3487983.3488301
https://doi.org/10.1145/3487983.3488301
https://doi.org/10.1145/3487983.3488301

MIG 21, November 10-12, 2021, Virtual Event, Switzerland

the framework of deep reinforcement learning (DRL) [Bergamin
et al. 2019; Chentanez et al. 2018; Ma et al. 2021; Merel et al. 2017;
Peng et al. 2018; Won et al. 2020; Yin et al. 2021]. Works from [Jiang
et al. 2019; Lee et al. 2019; Peng and van de Panne 2017; Reda et al.
2020] studied the learning and control performance with different
action spaces using joint or muscle actuation formulations, and
show the impact that action parameterization has on the trained
policies. State-of-the-art approaches typically perform exploration
in the action space of joint angles and control the character using PD
servos to generate high-fidelity motions through imitation learning.
Despite recent success, though, generating high-quality and robust
animation for highly articulated characters is still a challenging
task. Due to the infinite feasible action choices, controlling many
degrees of is inherently ambiguous with respect to most behaviors,
resulting in control problems that are under specified and highly
dimensional.

State-of-the-art approaches for continuous character control
define the action policy as a multivariate Gaussian distribution
with independent components. Nevertheless, the unimodal form of
a Gaussian distribution could prematurely commit to suboptimal
actions when optimizing a reward function that consists of multiple
competing terms and has a multimodal landscape [Hamalainen et al.
2020]. Consider, for example, an articulated character that needs to
learn a mapping from states to actions based on all individual joints
while tracking a reference motion. This is a very challenging task
as for a given DOF and a continuous action space, we need to find a
state-dependent mean and standard deviation. This process can be
imagined as sliding the Gaussian to determine where to place it on
an infinite line while also shrinking and swelling the distribution.
And of course the problem becomes even more complicated as we
need to do the same thing for all DOFs and determine how they
work in synchrony for a given state.

To improve the policy expressivity beyond the unimodal Gauss-
ian, recent works in character animation use primitive actions [Peng
et al. 2019], coactivations [Ranganath et al. 2019], or a mixture of
experts [Won et al. 2020] though the underlying distribution is still
Gaussian. To address the unimodality issue of Gaussian policies, in
the field of DRL, people have been exploring more expressive distri-
butions than Gaussians, with a simple solution being to discretize
the action space and use categorical distributions as multi-modal
action policies [Andrychowicz et al. 2020; Jaskowski et al. 2018;
Tang and Agrawal 2019]. However, as we show, such a solution
cannot scale well when training expert-guided control policies for
physically simulated characters. The reason is that the performance
of the action-space discretization depends a lot on the choice of
discrete atomic actions, which are usually picked uniformly due
to lack of prior knowledge. Therefore, a simple, fixed action dis-
cretization scheme typically can only provide suboptimal solutions
that are unable to meet the fine control demands.

In this paper, we introduce an expressive, multimodal action pol-
icy for DRL-based learning of physics-based controllers for highly
articulated characters. Following prior work, we employ a joint-
actuation space and learn a mapping from states to joint target
angles that are given as input to PD servos for computing the cor-
responding torque values. Instead of representing each action as a
state-depending Gaussian, though, we exploit a particle approach
to dynamically sample the action space during training and track

Pei Xu and loannis Karamouzas

the policy represented as a mixture of Gaussian distributions with
state-independent components. We refer to the resulting policy
network as Particle Filtering Policy Network (PFPN). We evalu-
ate PFPN on benchmarks from the DeepMimic framework [Peng
et al. 2018, 2020] involving motor control tasks for a humanoid and
a dog character (see Figure 1 for some results). Our experiments
show that baselines using PFPN exhibit better imitation perfor-
mance and/or speed of convergence as compared to state-of-the-art
Gaussian baselines, and lead to more robust character control under
external perturbation. In addition, PFPN-trained controllers can
generate motions with high visual quality for articulated characters
performing motor tasks with the grace and naturalness of complex
beings. Overall, PFPN offers a great alternative to Gaussian action
policies leading to state-of-the-art controllers for physically sim-
ulated characters without introducing any notable computational
overhead.

2 BACKGROUND

We consider a standard reinforcement learning setup where given a
time horizon H and the trajectory 7 = (s1, a1, - - - , Sy, afy) obtained
by a transition model M(s;41|ss, a;) and a parameterized action
policy mg(as|s;), with s; and a; denoting the state and action taken
at time step t, respectively, the goal is to find the policy parameters
0 that maximize the cumulative reward:

J(8) = Erepy(n) [r(0)] = / po(Dr()dr.)

Here, pg(7) denotes the state-action visitation distribution for the
trajectory 7 induced by the transient model M and the action
policy 7y, and r(r) = X ; r(st, a;) where r(s;, a;) is the reward
received at time step t. We can maximize J(0) by adjusting the
policy parameters 6 through the gradient ascent method, where
the gradient of the expected reward can be determined according
to the policy gradient theorem [Sutton et al. 2000], i.e.

VoJ(0) = Erony(.ls,) [ArVglog mo(arlss)Ise],)

where A; denotes an estimate to the reward term r;(7). In DRL, the
estimator of A; often relies on a separate network (critic) that is
updated in tandem with the policy network (actor). This gives rise
to a family of policy gradient algorithms known as actor-critic.
Given a multi-dimensional continuous action space, the most
common choice in current DRL baselines is to model the policy
7 as a multivariate Gaussian distribution with independent com-
ponents for each action dimension. For simplicity, let us consider
a simple case with a single action dimension and define the ac-
tion policy as 7y (-|s¢) = N (pg(st), O';(St)). Then, we can obtain
log 79 (at|ss) o —(as — pg(st))?. Given a sampled action a; and the
estimate of cumulative rewards A;, the optimization process based
on the above expression can be imagined as that of shifting 1, (s;)
towards the direction of a; if A; is higher than the expectation, or
to the opposite direction if A; is smaller. Such an approach, though,
can easily converge to a suboptimal solution, if, for example, the re-
ward landscape has a basis between the current location of y, (s¢)
and the optimal solution, or hard to be optimized if the reward
landscape is symmetric around y, (s¢). These issues arise due to the
fact that the Gaussian distribution is inherently unimodal, while
the reward landscape could be multi-modal [Haarnoja et al. 2017].

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network

We refer to Appendix A for further discussion about the limita-
tions of unimodal Gaussian policies and the value of expressive
multimodal policies. Indeed, Hamalainen et al. [2020] showed that
the reward landscape for high-dimensional character control tasks
typically has a complex shape and is often multimodal. This means
that Gaussian policies may face difficulties during optimization for
character control.

3 PARTICLE FILTERING POLICY NETWORK

In this section, we describe our Particle Filtering Policy Network
(PFPN) that addresses the unimodality issues from which typical
Gaussian-based policy networks suffer. Our approach represents
the action policy as a mixture distribution obtained by adaptively
discretizing the action space using state-independent particles. The
policy network, instead of directly generating actions, it is tasked
with choosing particles, while the final actions are obtained by
sampling from the selected particles.

3.1 Particle-Based Action Policy

We define P = {{uj . wik(selO)i = 1,....,mk=1,....m}asa
weighted set of particles for continuous control problems having
an m-dimensional action space and n particles distributed on each
action action space. Here, ; ;. represents an atomic action location
on the k-th dimension of the action space, and w; i (s¢|0) denotes
the associated weight generated by the policy network with pa-
rameters 6 given the input state s;. Let p; r (a; k| ; k- & k) denote
the probability density function of the distribution defined by the
location y; ;. and a stochastic process ¢; ;. for sampling. Given P, we
define the action policy as factorized across the action dimensions:

ny (als) = I_[Z Wik (st10) pik (@il ik &) ()
k i

where a; = {az1,- -+, ar,m}, ar is the sampled action at the time
step ¢ for the action dimension k, and w; i (+|0) is obtained by ap-
plying a softmax operation to the output of the policy network for
the k-th dimension and satisfies }; w; ;. = 1. The state-independent
parameter set, {y; .}, gives us an adaptive discretization scheme
that can be optimized during training. The noise parameter, & .,
provides a way to generate stochastic actions during policy training.
In our implementation, we choose Gaussian distributions with a
standard deviation of &; . for action sampling during training and
then each particle can be regarded as a state-independent Gaussian
of N'(p4; k» §12 k)' Without loss of generality, we define the parameters
ofa particle, as ¢; . = [pij k- &] for the following discussion.
While the softmax operation gives us a categorical distribution
defined by w. . (s¢|6), the nature of the policy for each dimension is
a mixture distribution with state-independent components defined
by ¢; k.- The number of output neurons in PFPN increases linearly
as the number of action dimensions increases, and thus makes it
suitable for high-dimensional control problems. Drawing samples
from the mixture distribution can be done in two steps. first, based
on the weights w. i (s¢|0), we perform sampling on the categorical
distribution to choose a particle ji for each dimension k, i.e.

Jk(st) ~ P(-{w.(sr)). 4)

MIG ’21, November 10-12, 2021, Virtual Event, Switzerland

Then, we can draw actions from the components represented by
the chosen particles with noise as

ark ~ Pjp(se) Cl9je(se))- (5)

3.2 Training

The proposed particle-based policy distribution is general and can
be applied directly to any algorithm using the policy gradient
method with Equation 2. To initialize the training, due to lack of
prior knowledge, the particles can be distributed uniformly along
the action dimensions with a standard deviation covering the gap
between two successive particles. With no loss of generality, let us
consider below only one action dimension and drop the subscript
k. Then, at every training step, each particle i will move along its
action dimension and be updated by

VI($0) =B | Y cowi(st10) Vg, pi(arlgi)lse (©)

t

where a; ~ g)(~|st) is the action chosen during sampling, and

2jwilselO)pjarlgy)
on the same action dimension. Our approach focuses only on the ac-
tion policy representation in general policy gradient methods. The
estimation of A; can be chosen as required by the underlying policy
gradient method, e.g. the generalized advantage estimator [Schul-
man et al. 2015] in PPO/DPPO. Similarly, for the update of the policy
neural network, we have

ct is a coefficient shared by all particles

VJ(0) =E|) cipilarlgi)Vowilse|0)ls: | - ()
;

From the above equations, although sampling is performed on
only one particle for each given dimension, all of that dimension’s
particles will be updated during each training iteration to move to-
wards or away from the location of a; according to A;. The amount
of the update, however, is regulated by the state-dependent weight
wi(s;|6): particles that have small probabilities to be chosen for a
given state s; will be considered as uninteresting and be updated
with a smaller step size or not be updated at all. On the other
hand, the update of weights is limited by the distance between a
particle and the sampled action: particles too far away from the
sampled action would be considered as insignificant to merit any
weight gain or loss. In summary, particles can converge to different
optimal locations near them during training and be distributed mul-
timodally according to the reward landscape defined by A;, rather
than collapsing to a unimodal, Gaussian-like distribution.

3.3 Resampling

Similar to traditional particle filtering approaches, our approach
would encounter the problem of degeneracy [Kong et al. 1994].
During training, a particle placed near a location at which sampling
gives a low A; value would achieve a weight decrease. Once the
associated weight reaches near zero, the particle will not be updated
anymore (cf. Equation 6) and become ‘dead’. We adapt the idea of
resampling from the particle filtering literature [Doucet et al. 2001]
to perform resampling for dead particles and reactivate them by
duplicating alive target particles.

MIG 21, November 10-12, 2021, Virtual Event, Switzerland

Algorithm 1: Policy Gradient Method using PFPN

Initialize the neural network parameter 6 and learning rate «;

initialize particle parameters ¢; to uniformly distribute particles on
each action dimension;

initialize the threshold e to detect dead particles;

initialize the value of interval n to perform resampling.

while training does not converge do

for each environment step do
// Record the weight while sampling.
ar ~ mgp (-lse); Wi = Wi U {wi(s:10)}
end
for each training step do
/I Update parameters using SGD method.
¢; — ¢i+aV](pi) // Equation 6
0 — 0+aVj(0) |/ Equation7
end
for every n environment steps do
/I Detect dead particles and set up target ones.
for each particle i do
if max,,,cqy, wi < € then
7i ~ P CIE [we|we € Wil k=12,---)
T — TUA{z;}; Dy; — Dy, U {i}
end
end
/| Resampling.
for each target particlet € 7 do
for each dead particlei € D, do
/! Duplicate particles.
$i — ¢ with iy — pr +&;
/! Duplicate parameters of the last layer in the
policy network.
w; — W bi — by —log(|D|+1)
end
by «— by —log(|D;|+1); Dy «— 0

end
T —0;,W; <0

end
end

A particle is considered dead if its maximum weight over all
possible states is too small, i.e.

max w;(s;]0) < e (8)
St

where € is a small positive threshold number. In practice, we cannot
check w; (s¢|0) for all possible states, but can keep tracking it during
sampling based on the observed states collected in the last batch
of environment steps. During resampling, a target particle 7; is
drawn for each dead particle i independently. We consider two
resampling strategies: (1) the unweighted resampling strategy that
picks a 7; randomly from all alive particles; and (2) the weighted
resampling strategy that draws a target 7; from the categorical
distribution obtained from the average weight of each particle over
the observed samples, i.e.

TiNP('UEst [Wk(st|0)],k=l,2,~--). (9)

Both of these two resampling strategies are stochastic. We, by de-
fault, use the weighted resampling, which considers the importance
of the target particle candidates leading to a more stable learning
performance, as we will show empirically in Section 4.5.

Pei Xu and loannis Karamouzas

2
N(p1,16 8110

2
N(kN, K ENK)

Figure 2: PFPN architecture with a N-dimension action
space in our experiment. Each particle represents a state-
independent Gaussian distribution of N (y; i, flz) Where k =

|O0O0-000)
[ooo%ooo]

1,---,35 for 35 particles on each action dimension and i =
1,---,N. ® denotes the concatenation operator.

THEOREM. Let D, be a set of dead particles sharing the same
target particle t. Let also the logits for the weight of each particle k
be generated by a fully-connected layer with parameters wy. for the
weight and by for the bias. The policy 71:9P (at|st) is guaranteed to
remain unchanged after resampling via duplicating ¢; < ¢, Vi €
Dy, if the weight and bias used to generate the unnormalized logits of
the target particle are shared with those of the dead one as follows:

bi,by < by —log (|D|+1). (10)

Wi < Wr;
ProoF. See Appendix D for the inference. O

The theorem guarantees the correctness of our resampling pro-
cess as it keep the action policy ng) (a¢|s¢) identical before and
after resampling. If, however, two particles are exactly the same
after resampling, they will always be updated together at the same
pace during training and lose diversity. To address this issue, we
add some regularization noise to the mean value when performing
resampling, i.e. y; < pr + ¢, where ¢; is a small random num-
ber to prevent y; from being too close to its target . We refer to
Algorithm 1 for the outline of our proposed PFPN approach.

3.4 Action-Value Based Optimization

Algorithm 1 can be applied on general policy gradient algorithms,
like PPO [Schulman et al. 2017] and A3C [Mnih et al. 2016]. How-
ever, we note that a number of algorithms, such as DDPG [Lillicrap
et al. 2015], SAC [Haarnoja et al. 2018a,b] and their variants [Fu-
jimoto et al. 2018; Haarnoja et al. 2017], perform optimization by
maximizing a soft state-action value Q(st, a;). In this case, the ac-
tion policy is required to be reparameterizable such that the sampled
action a,; can be rewritten as a function differentiable to the policy
network parameter 6, and the optimization can be done through
the gradient V,, Q(st,a;) Vgay.

Our two-step sampling method for PFPN described in Section 3.1
is non-reparameterizable, because of the standard way of sam-
pling from the categorical distribution through which Gaussians
are mixed. To address this issue and enable the proposed action
policy applicable in state-action value based off-policy algorithms,
we consider the concrete distribution [Jang et al. 2016; Maddison

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network

MIG ’21, November 10-12, 2021, Virtual Event, Switzerland

Walk Punch Kick Dance

ml.O—' T 1.0 P T T T T .0 P T T T T T T T T T

o] [[[] []
5-“-54 L L L L
0.8 0.8 F F
B r r r r
Q [[[[
Qﬁ 0.6 - 0.6 - - -
g C C C C
S ooaf 0.4 F - -
el [[[[
8 r r r r
é 0.2 - 0.2 - - L

— [] [] [] []

oo e 1. 1 et WP I i P i R I IS e el PRI PP |

0.0 0.5 1.0 1.5 0.0 05 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0 1 2 3

of Samplesx 107 # of Samplesx10” # of Samplesx10” # of Samplesx10”

— PFPN —— Gaussian —— DISCRETE GMM

Figure 3: Learning curves of PFPN compared to other baselines using DPPO algorithm on humanoid character control tasks.
Solid lines report the average and shaded regions are the minimum and maximum imitation rewards achieved with different

random seeds during training.

Pace Canter
T T T ——
w 1.0 F 1.0 F g
gel
; -
0.8 - 0.8 |
3 -
9 [
M oo.6 | q 06 |
=]
L o4l o4
2
®
i
~é()2— Jo2
— -
0.0 ot Tl g AP R
0 1 2 3 0 1 2 3

of Samples X107

—— GMM

of Samples %107

—— PFPN —— Gaussian —— DISCRETE

Figure 4: Learning performance of baselines using DPPO for
dog character control.

et al. 2016] that generates a reparameterized continuous approxi-
mation to a categorical distribution. We refer to Appendix F for the
reprarameterization trick and further details on the application of
PFPN to off-policy algorithms.

4 EXPERIMENTS

The goal of our experiments is to evaluate whether PFPN can out-
perform the corresponding implementations with Gaussian policies
in data-driven control tasks of physics-based character. We focus
on the two aspects of comparisons: (1) the imitation ability of the
trained policies, and (2) the policy robustness facing external force
perturbation. We also perform sensitivity analysis on the learn-
ing performance of PFPN with different number of particles and
resampling strategies.

4.1 Setup

We run benchmarks based on the DeepMimic framework [Peng et al.
2018], which is the state-of-the-art DRL imitation learning frame-
work for physics-based character control. The simulated character
is controlled through stable proportional derivative controllers [Tan
et al. 2011] running with the forward dynamic simulation at 600
Hz, while the policy network provides the control signal at 30 Hz.

Following the settings of DeepMimic, we use the link position, ori-
entation (in the unit of quaternion) and linear and angular velocity
related to the root link position and heading direction, adding a
phase variable to indicate the target pose implicitly at each time
step and a variable indicating the root link height, as the observa-
tion space. We considered two articulated characters, a humanoid
and a dog. The humanoid character has 8 spherical joints and 4
revolute joints, plus a root link and two end-effectors (hands) con-
nected to the forearms with fixed joints, resulting in an observation
space of R'7 and action space of R3®. The dog character has 18
spherical joints and 4 revolute joints, which lead an observation
space of R3%! and action space of R7%. All simulations are run using
PyBullet [Coumans and Bai 2021].

PFPN focuses only on the distribution for action policy and
can be applied with any general policy-gradient DRL algorithm.
In the following, we evaluate PFPN with policies trained using
DPPO [Heess et al. 2017] with surrogate policy loss [Schulman
et al. 2017] (We refer to Appendix C for results obtained with the
A3C [Mnih et al. 2016] and IMPALA algorithms [Espeholt et al.
2018], and to Appendix B for all hyperparameters used). In our
DPPO implementation, policy and value networks have a similar
structure of two hidden fully-connected (FC) layers with neurons of
1024 and 512 respectively, as shown in Figure 2. The input state is
normalized by moving average that is dynamically updated during
training. By default, we place 35 particles on each action dimension
and use the set of particles as a mixture of Gaussians with state-
dependent weights but state-independent components.

4.2 Baseline Comparison

In Figure 3 and 4, we compare PFPN to baselines using Gaussian
distribution with state-dependent mean and standard deviation val-
ues on the humanoid and dog character control tasks respectively.
The imitation performance is measured in the term of normalized
cumulative rewards of evaluation rollouts during training. We also
compare PFPN to a fixed discretization scheme (DISCRETE) ob-
tained by uniformly discretizing each action dimension into a fixed
number of bins and sampling actions from a categorical distribu-
tion, and to policies using the distribution of a fully state-dependent

MIG 21, November 10-12, 2021, Virtual Event, Switzerland

(a) Walk

(b) Punch

Pei Xu and loannis Karamouzas

Figure 5: Qualitative comparisons of the motions generated by PFPN (top) and Gaussian (bottom) baselines. Shadow characters

indicate the reference motion.

Angle

|

o Training Steps <

&
<}
2

Figure 6: Evolution of how particles along the four action dimensions of the right hip joint are distributed during training
of the Walk task. Each action dimension is normalized between -1 and 1. Particles are initially distributed uniformly along
a dimension (dark colors) and their locations adaptively change as the policy network is trained (light colors). The training
steps are measured by the number of samples exploited during training.

Gaussian Mixture Model (GMM). All baselines use the same net-
work architecture with the same number of hidden neurons. PFPN,
DISCRETE and GMM also have the same number of atomic actions
(35 particles/bins) at each action dimension. We train five trials of
each baseline with different random seeds that are the same across
PFPN and the corresponding implementations of other methods.
Evaluation was performed ten times every 1,000 training steps
using deterministic actions.

As it can be seen from the figures, PFPN outperforms other base-
lines in all of the tested tasks. Our particle-based scheme achieves
better final performance and exhibits faster convergence while
being more stable across multiple trials. GMM uses Gaussian com-
ponents with state-dependent mean and standard deviation val-
ues, and does not work better than Gaussian baselines. DISCRETE
discretizes the action space using the atomic actions, which are
the same with the initial distribution of the particles employed by
PFPN. Though both DISCRETE and PFPN use the state-independent
atomic action settings, PFPN optimizes the distribution of atomic
actions represented by particles during training, and the resulting
adaptive discretization scheme leads to higher asymptotic perfor-
mance. Intuitively, by introducing more atomic actions, DISCRETE
and PFPN could achieve higher control capacity. However, the
more atomic actions employed the harder the optimization problem
will be due to the increase of policy gradient variance [Tang and
Agrawal 2019] (see Appendix E for theoretical analysis). In theory,
GMM is a more general case of PFPN without resampling. However,
we found that GMM does not usually work quite well and can per-
form even worse than Gaussians. This is consistent with the results
reported by Tang and Agrawal [2018] for torque-based locomotion

Reference PFPN Gaussian DISCRETE GMM
R P ™, [] - 1]
3 I . p s L f 1
ST s |

Py
= e 3 1]
E . L. ooyl 3 ool o E o
. o 4
Eoese? P S L L L L O | s N L L
e, iliaane " - o F =
§ .. o oo0h & pappe b .]
= [e RN 4 :‘q.&; "
< e - 0 1+ -
2 [1F]
o 04 " . -
e |

Figure 7: PCA embedding of the character’s foot trajectories
related to the base link position during ten gait cycles of
walking. The reference one is one-gait walking motion ob-
tained through motion capture.

control tasks. A possible reason is that GMM needs a much larger
policy network. This may pose a challenge to the optimization.
Another issue of GMMs observed during our experiments is that
the Gaussian components are easy to collapse together and lose the
advantage of multimodality.

To gain a better understanding of the advantages of using PFPN
for learning motor tasks, Figure 6 shows how particles evolve during
training for one of the humanoid’s joints in the “Walk” task. We can
see that each of the final active action spaces follows a multimodal
distribution that covers only some small parts of the entire action
space. PFPN optimizes the placement of atomic actions, providing
an effective discretization scheme that reaches better performance
compared to other baselines.

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network

4.3 Motion Quality

In Figure 7, we compare the foot trajectories of each baseline during
ten gait cycles in “Walk” tasks. From the figure, GMM generates
jittery motions with unstable foot trajectories. DISCRETE can pro-
vide relatively stable trajectories, in which, however, the character
moves always towards an inclined direction. Gaussian gives gaits
with a cyclic pattern but not quite stable. PFPN generate stable gaits
with a clear cyclic pattern closely following the reference motion.
In Figure 5, we qualitatively compare the motions generated by
PFPN and Gaussian baselines. As can be seen, the motion generated
by PFPN follows the reference motion (shadow character) closely.
Gaussian, though providing a human-like walking motion, exhibits
visual artifacts in the other, more complex tasks, e.g. foot sliding
and character drifting during dancing. Similar conclusions can be
drawn for the dog character. When a fixed number of samples
are exploited for training as reported in Figure 4, PFPN baselines
can track the reference motion closely while Gaussian baselines
perform worse, with the dog, for example, having evident jerky
movements during pacing.

In addition, we note that characters trained with Gaussian-based
policies often lack the grace seen in living beings as compared to
PFPN-trained characters that exhibit behavior more close to the
one seen in the reference data. For example, while the dog is able to
achieve a relatively high reward according to DeepMimic’s tracking
reward function (Figure 4), its tail moves in an unnatural way during
canter. Similarly, while this is more subtle, the Gaussian-based
humanoid character stamps its feet on the ground while walking,
resulting in a heavy-footed gait as compared to the graceful gait
of the PFPN-based humanoid. We refer to the supplemental videos
for more details on the visual quality of the trained controllers.

4.4 Robustness

We evaluate policy robustness through projectile testing and also
external force perturbations. During projectile testing, the character
is controlled by the “walk” policy, and a cube projectile with side
length of 0.2m and initial velocity of 0.2m/s is cast towards the torso
of the character. Figure 8 reports the number of frames that a policy
can control the character before falling down on the ground while
varying the mass of the cube. In Table 1, we also report the minimal
force needed to push the character down in “walk” and “punch”
tasks for the humanoid, and in “pace” and “canter” tasks for the
dog character. All experiments were performed after training using
deterministic actions. It is evident that the character controlled by
PFPN are more robust to external disturbances and can sustain
much higher forces than other baselines.

4.5 Ablation Study

Resampling Strategy. In Figure 9a, we compare PFPN with default,
weighted resampling to PFPN with unweighted resampling (see
Section 3.3), and to PFPN without any resampling. The weighted
resampling strategy draws targets for dead particles according to
the weights of the remaining, alive ones. The unweighted resam-
pling strategy draws targets uniformly from alive particles. It can be
seen that both weighted and unweighted resampling could help im-
prove the training performance significantly. However, unweighted
resampling could lead to high variance by introducing too much

MIG ’21, November 10-12, 2021, Virtual Event, Switzerland

L B B B |
%0 F — PFPN E

o 80 F —— Gaussian - ‘f‘

g E —— DISCRETE]

é v GMM 4/7

& 60 .

QE) 50 3) r 2 ‘

;‘ 40 3 !l v . |

- N

? 30 : ‘ &

£) J =

< 20 | 4 | \ J/
0 F 1 1 1 I_ ‘ r ‘

Mass [kg]

Figure 8: Policy robustness of “Walk” motion with cube pro-
jectiles of varying mass. Solid lines report the average per-
formance over ten trials and shaded regions indicate the
standard deviation. All policies are obtained using DPPO al-
gorithms without projectile training. Right: a character un-
der projectile testing,.

Table 1: Minimal forward and sideways push needed to
make the character fall down. Push force is measured in
Newtons (N) and applied on the chest of the character for
0.1s. The DISCRETE and GMM results are skipped for the
dog character, as the respective trained controllers are un-
able to make the character walk even in the absence of ex-
ternal disturbances.

Task Force Direction PFPN Gaussian DISCRETE GMM

Humanoid
Walk Ff)rward 588 512 340 373
Sideway 602 560 420 417
Punch Forward 1156 720 480 721
Sideway 896 748 576 732
Dog
Pace Forward 735 672 - -
Sideway 412 276 - -
Canter Forward 418 404 - -
Sideway 344 274 - -

uncertainty, since it could reactivate dead particles and place them
in suboptimal locations with higher probability, compared to the
weighted resampling. After resampling, even though the particles
would be optimized or resampled once more if they are placed in
bad locations, this could make the training process converge slower,
as shown in the figure.

Number of Particles. Since the particle configuration in PFPN is
state-independent, it needs a sufficient number of particles to meet
the fine control demand. Intuitively, employing more particles will
increase the resolution of the action space, and thus increase the
control capacity and make fine control more possible. However, in
Appendix E, we prove that due to the variance of policy gradient
increasing as the number of particles increases, the more particles
employed, the harder the optimization would be. Therefore, it may
negatively influence the performance to employ too many particles.
This conclusion is consistent with the results shown in Figure 9b.

MIG 21, November 10-12, 2021,

Imitation Rewards

—— Weighted Resampling (Default)

0.2

0.0

Punch

Virtual Event, Switzerland

Dance

) T T T T

0.6

0.4

0.2

) T T T T

0.6

0.4

0.2

T T T

.0
0.0 05 1.0 1.5 2.0

of Samples x10

0

00 05 1.0 1.5 20
of Samples x10

0.0

0

—— Unweighted Resampling

1 2 3
of Samples X107

—— w/o Resampling

(a) Learning performance of PFPN with 35 particles on each action
dimension but different resampling strategies.

Imitation Rewards

—— PFPN-35 (Default)

Punch

Kick

Dance

m) T T T

WAy

) 0.0
0.0 05 1.0 1.5 20

of Samples x107

«

—— PFPN-5

0.0 05 1.0 1.5 2.0
of Samples *10°

—— PFPN-10

0

—— PFPN-50

1 2 3
of Samples x10”

PFPN-100

(b) Comparison of PFPN using 35 particles per action dimension

(PFPN-35) to that using 5, 10, 50 and 100 particles.

Figure 9: Sensitivity of PFPN to different resampling strate-
gies and the number of particles.

Walk

Punch

)]
SAC

)
SAC

Imitation Rewards
>
T
1
>
T
1
>
T
1

0.0 L L 0.0 Lk L 0.0 Lk L
0 1 2 0 1 2 0 1 2

of Samples x10° # of Samples x10° # of Samples x10°

-~ PFPN

~—— Gaussian

Figure 10: Learning performance of SAC with PFPN and
Gaussian baselines.

As it can be seen, PFPN with 5 and 10 particles per action dimension
performs badly; though using 50 or 100 particles per action dimen-
sion slows down the convergence speed a little bit, our approach
is not sensitive in terms of the final learning performance when a
relative large number of particles are employed.

4.6 PFPN Results with SAC

In this section, we highlight PFPN’s performance in state-of-the-
art off-policy DRL algorithm of SAC [Haarnoja et al. 2018b]. As
shown in Figure 10, PFPN outperforms Gaussian baselines with
faster convergence speed in all the tested tasks using SAC. While
SAC has been successfully explored for continuous control prob-
lems in the machine learning community, DPPO is still the most
commonly used DRL algorithm for training physics-based character
controllers in the animation field. During experiments, we found
that PFPN with SAC is more stable in terms of learning performance
and more sampling efficient compared to DPPO implementations

Pei Xu and loannis Karamouzas

as reported in Figure 3. We refer to the supplementary video for
comparisons between SAC and DPPO. Overall, PFPN with SAC
needs only 2.5-million samples to train high-quality humanoid con-
trollers in DeepMimic tasks as compared to DPPO that typically
requires around 20 millions or even more samples to achieve the
similar performance.

5 DISCUSSION AND FUTURE WORK

We present PFPN as a general framework for systematic explo-
ration of high-dimensional action spaces during training of physics-
based character controllers. Our approach uses a mixture of state-
independent Gaussians represented by a set of weighted particles to
track the action policy, as opposite to the multivariate Gaussian that
is typically used as the policy distribution in the tasks of physics-
based character control. We show that our method performs better
than Gaussian baselines in various imitation learning tasks leading
to faster learning, higher motion quality and more robustness to
external perturbation.

In the experimental section, we showed applications of PFPN to
the PPO algorithm. However, our approach is applicable to other
common on-policy actor-critic policy gradient DRL algorithms as
we show in Appendix C and off-policy methods such as SAC, as
we discussed in Section 4.6. Overall, PFPN does not change the
underlying architecture or learning mechanism of the DRL algo-
rithms. It is, therefore, complementary to other techniques which
improve the policy expressivity given a base action distribution.
For example, PFPN can serve as the action policy for each expert
in the mixture of experts approach of [Won et al. 2020] or for prim-
itive action learning [Peng et al. 2019]; or as the base distribution
of normalizing flows for motion generation [Henter et al. 2020],
which we would like to investigate in future work.

As shown in Section 4.5, PFPN is not quite sensitive to the num-
ber of particles when more than enough are employed to track the
action distribution. However, some fine-tuning may be needed to de-
termine the minimal number of particles necessary to achieve high
learning performance with fast convergence speed. In this work, we
only considered short-term imitation learning tasks. Thus, further
experiments are needed to test the performance of PFPN for track-
ing long-term motions with heterogeneous behaviors [Bergamin
et al. 2019; Won et al. 2020]. Currently, we track each action dimen-
sion independently. Accounting for the synergy that exists between
different joints has the potential to further improve performance
and motion robustness, which opens another exciting avenue for
future work.

In any case, we believe that our particle-based action policies pro-
vide a great alternative to Gaussian-based actions policies, which
have been the staple for DRL-based character control over the past
few years. Our work shows significant improvements upon the
state-of-the-art in terms of motion quality, robustness to external
perturbations, and training efficiency, and we hope that more ani-
mation researchers would take advantage of PFPN while training
physics-based controllers for continuous control tasks.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation
under Grant No. IIS-2047632.

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network

REFERENCES

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex
Ray, et al. 2020. Learning dexterous in-hand manipulation. The International Journal
of Robotics Research 39, 1 (2020), 3-20.

Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.
DReCon: data-driven responsive control of physics-based characters. ACM Trans-
actions On Graphics 38, 6 (2019), 1-11.

Nuttapong Chentanez, Matthias Miiller, Miles Macklin, Viktor Makoviychuk, and
Stefan Jeschke. 2018. Physics-Based Motion Capture Imitation with Deep Rein-
forcement Learning. In Proceedings of the 11th Annual International Conference on
Motion, Interaction, and Games. Association for Computing Machinery, Article 1,
10 pages.

Erwin Coumans and Yunfei Bai. 2016-2021. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.org.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. 2001. An introduction to sequential
Monte Carlo methods. In Sequential Monte Carlo methods in practice. Springer,
3-14.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
arXiv preprint arXiv:1802.01561 (2018).

Scott Fujimoto, Herke Van Hoof, and David Meger. 2018. Addressing function approx-
imation error in actor-critic methods. arXiv preprint arXiv:1802.09477 (2018).

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Reinforcement
learning with deep energy-based policies. In International Conference on Machine
Learning. 1352-1361.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018a. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290 (2018).

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. 2018b. Soft
actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905 (2018).

Perttu Hamalainen, Juuso Toikka, Amin Babadi, and Karen Liu. 2020. Visualizing
Movement Control Optimization Landscapes. IEEE Transactions on Visualization &
Computer Graphics 01 (2020), 1-1.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, Martin Riedmiller, et al. 2017. Emergence
of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286
(2017).

Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. 2020. Moglow: Probabilis-
tic and controllable motion synthesis using normalising flows. ACM Transactions
on Graphics (TOG) 39, 6 (2020), 1-14.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparametrization with
Gumble-Softmax. In International Conference on Learning Representations (ICLR
2017).

Wojciech Jaskowski, Odd Rune Lykkebg, Nihat Engin Toklu, Florian Trifterer, Zdenék
Buk, Jan Koutnik, and Faustino Gomez. 2018. Reinforcement Learning to Run...
Fast. In The NIPS’17 Competition: Building Intelligent Systems. Springer, 155-167.

Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. 2019. Synthesis of
biologically realistic human motion using joint torque actuation. ACM Transactions
On Graphics (TOG) 38, 4 (2019), 1-12.

Augustine Kong, Jun S Liu, and Wing Hung Wong. 1994. Sequential imputations and
Bayesian missing data problems. Journal of the American statistical association 89,
425 (1994), 278-288.

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable muscle-
actuated human simulation and control. ACM Transactions On Graphics (TOG) 38,
4(2019), 1-13.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

Li-Ke Ma, Zeshi Yang, Xin Tong, Baining Guo, and KangKang Yin. 2021. Learning
and Exploring Motor Skills with Spacetime Bounds. In Computer Graphics Forum,
Vol. 40. Wiley Online Library, 251-263.

Chris] Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete distribution: A
continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712
(2016).

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg
Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion capture
by adversarial imitation. arXiv preprint arXiv:1707.02201 (2017).

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous
methods for deep reinforcement learning. In International conference on machine
learning. 1928-1937.

MIG ’21, November 10-12, 2021, Virtual Event, Switzerland

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. Deep-
mimic: Example-guided deep reinforcement learning of physics-based character
skills. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1-14.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019.
MCP: Learning Composable Hierarchical Control with Multiplicative Composi-
tional Policies. Advances in Neural Information Processing Systems 32 (2019), 3686~
3697.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey
Levine. 2020. Learning agile robotic locomotion skills by imitating animals. arXiv
preprint arXiv:2004.00784 (2020).

Xue Bin Peng and Michiel van de Panne. 2017. Learning locomotion skills using
deeprl: Does the choice of action space matter?. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 1-13.

Avinash Ranganath, Pei Xu, Ioannis Karamouzas, and Victor Zordan. 2019. Low
dimensional motor skill learning using coactivation. In Motion, Interaction and
Games. 1-10.

Daniele Reda, Tianxin Tao, and Michiel van de Panne. 2020. Learning to locomote:
Understanding how environment design matters for deep reinforcement learning.
In Motion, Interaction and Games. 1-10.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
2015. High-dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438 (2015).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems. 1057-1063.

Jie Tan, Karen Liu, and Greg Turk. 2011. Stable proportional-derivative controllers.
IEEE Computer Graphics and Applications 31, 4 (2011), 34-44.

Yunhao Tang and Shipra Agrawal. 2018. Boosting trust region policy optimization by
normalizing flows policy. arXiv preprint arXiv:1809.10326 (2018).

Yunhao Tang and Shipra Agrawal. 2019. Discretizing continuous action space for
on-policy optimization. arXiv preprint arXiv:1901.10500 (2019).

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable Approach to
Control Diverse Behaviors for Physically Simulated Characters. ACM Transactions
On Graphics 39, 4, Article 33 (2020).

Zhigqi Yin, Zeshi Yang, Michiel Van De Panne, and KangKang Yin. 2021. Discovering
diverse athletic jumping strategies. ACM Transactions on Graphics (TOG) 40, 4
(2021), 1-17.

http://pybullet.org

MIG 21, November 10-12, 2021, Virtual Event, Switzerland

A MULTI-MODAL POLICY

In this section, we show the multi-modal representation capacity
of PFPN on a one-step bandit task.

car s PFPN
Reward
0.0 Gaussian
10.3
b —0.1p =
Z —o2f £
= 0.2
031
—0.41
-1.0 —-0.5 0.0 0.5 1.0 00
Action

Figure 11: One-step bandit task with asymmetric reward
landscape. The reward landscape is defined as the gray line
having two peaks asymmetrically at —0.25 and 0.75. The prob-
ability densities of stochastic action samples drawn from
PFPN (blue) and Gaussian policy (red) are counted after
training with a fixed number of iterations.

This is a simple task with one dimension action space A =
[-1, 1]. It has an asymmetric 2-peak reward landscape inversely
proportional to the minimal distance to points —0.25 and 0.75, as
the gray line shown in Figure 11. The goal of this task is to find out
the optimal points close to —0.25 and 0.75. In Figure 11, we show
the stochastic action sample distributions of PFPN and the naive
Gaussian policy after training with the same number of iterations. It
is clear that PFPN captures the bi-modal distribution of the reward
landscape, while the Gaussian policy gives an unimodal distribution
capturing only one of reward peaks.

B HYPERPARAMETERS

Table 2: Default hyperparameters in PFPN baselines.

Parameter Value

learning rate 1-107*
resampling interval 20 environment episodes
dead particle detection threshold (€) 0.0015

discount factor (y) 0.95
clip range (DPPO) 0.2
GAE discount factor (DPPO, A3C,) 0.95
truncation level (IMPALA, ¢, p) 1.0
coefficient of policy entropy loss term

(A3C, IMPALA) 0.00025
reply buffer size (SAC) 100

Since it is infeasible to analytically evaluate the differential en-
tropy of a mixture distribution without approximation, we use
the entropy of the categorical distribution for A3C and IMPALA
benchmarks, which employ differential entropy during policy opti-
mization.

Pei Xu and loannis Karamouzas

C ADDITIONAL RESULTS
C.1 Time Complexity

Walk Punch Kick

w 1.0 P T T T O,0F T T T 0 [T T T T
el
3

o.s F Jos F Jos | 3
z
Q
~ o6 | o6 F o6 F 3
=]
2 04l Hoa JoaF 3
e
@
B o2 H0.2 qo02F —
~ 0.0 . 0.0 . : L1 0.0 : : :

0 2 4 6 0 2 4 6 8 0 2 4 6 8

Running Time [hour] Running Time [hour] Running Time [hour]

—— PFPN —— Gaussian —— DISCRETE GMM

Figure 12: Learning performance as a function of the actual
wall clock time using DPPO.

All policies were trained on a machine with Intel 6148G CPU and
Nvidia V100 GPU. Training stops when a fixed number of samples
is collected as reported in Figure 3. PFPN has a good time consump-
tion performance compared to other baselines. Though the action
sampling and particles resampling processes would take extra time,
PFPN performs better because its fast convergence avoids wasting
time on environment reset when early termination occurs.

C.2 Baselines

‘Walk Punch Kick
w 1.0) T T |8 1.0) T T T 0 1.0 T T T T 18
o A3C A3C A3C
[
< 0.8 | Hos f 0.8 F .
2
Q
~ o6 | 0.6 | Jo6 | 3
o
2 o0af JoaF Joaf]
e}
@
h
Euz— o2 | o2 F 4
=
0.0 L L 0.0 1 L L 0.0 L L
0.0 0.5 1.0 1.5 0.0 05 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

of Samples x10’ # of Samples x 107 # of Samples x107

Walk Punch Kick
w 1.0 T Ti0 [T T D0 [T T T T
o IMPALA IMPALA IMPALA

&

S 0.8 F Jos8F - 0.8 F .
z
Q

~ o6 f o6 | H 0.6 | .
=]

E 0.4 F Joaf Joa | .

guz— -1 0.2 | -4 0.2 | -1
£

0.0 L L Ho.0 L L L U o.0 L L L L

0.0 0.5 1.0 1.5 0.0 05 1.0 1.5 2.0 0.0 0.5 1.0 1.5 20

of Samples x10” # of Samples x10" # of Samples x 10’

—— PFPN —— Gaussian —— DISCRETE

Figure 13: Additional baseline results using A3C and IM-
PALA.

D POLICY NETWORK LOGITS CORRECTION
DURING RESAMPLING

THEOREM. Let D be a set of dead particles sharing the same
target particle T. Let also the logits for the weight of each particle k
be generated by a fully-connected layer with parameters wy. for the
weight and by for the bias. The policy ng) (ar|st) is guaranteed to
remain unchanged after resampling via duplicating ¢; «— ¢, Vi €

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network

Dy, if the weight and bias used to generate the unnormalized logits of
the target particle are shared with those of the dead one as follows:

w; — w73 bibr < br —log (|D[+1). (11)

Proor. The weight for the i-th particle is achieved by softmax
operation, which is applied to the unnormalized logits L;, which is
the direct output of the policy network:

eLi(st)
Z K el (se) "
Resampling via duplicating makes dead particles become iden-
tical to their target particle. Namely, particles in D, U {r} will
share the same weights as well as the same value of logits, say L/,

after resampling. To ensure the policy identical before and after
sampling, the following equation must be satisfied

ZeLk(St) - Z eLe(s) 4

k D U{r}

(12)

wi(st) = SOFTMAX(L;(s¢)) =

oLk (st) (13)
k¢D,U{r}
where Ly is the unnormalized logits for the k-th particle such that
the weights for all particles who are not in D; U {7} unchanged,
while particles in D; U {r} share the same weights.

A target particle will not be tagged as dead at all, i.e. 7 ¢ Dy for
any dead particle set Dy, since a target particle is drawn according
to the particles’ weights and since dead particles are defined as
the ones having too small or zero weight to be chosen. Hence,
Equation 13 can be rewritten as

Z eLi(se) 4 pLe(st) — (1D + 1)eLfr(St), (14)
ieD,
Given that el1(s) ~ 0 for any dead particle i € D, and that the
number of particles is limited, it implies that

el ~ (|Dg| + 1)ele 1), (15)

Taking the logarithm of both sides of the equation leads to that for
all particles in D, U {r}, their new logits after resampling should
satisfy
Li(st) = Le(st) = log(|Dr| + 1). (16)
Assuming the input of the full-connected layer who generates
L; is x(s), i.e. Li(s;) = w;ix(s;) + b;, we have
@ix(st) +b] = wrx(st) + by —log (|D7]| +1). (17)

Then, Theorem can be reached. m]

If we perform unweighted resampling, it is possible to pick a
dead particle as the target particle for some particles. In that case

Ly(st) ~ Le(st) = log(IDe| + (1 - Z 6(z,Dr))). (18)
k

where L/ (s;) is the new logits shared by particles in D, and 6(z, D)
is the Kronecker delta function

|1 ifre Dy
(7, Dy) -{ 0 otherwise

that satisfies Y j (7, D) < 1. Then, for the particle z, its new
logits can be defined as

LY (s0) ~ (1=) 8(e. DILi(se) +) 8(r. Dp)Le. (20)
k k

(19)

A

MIG ’21, November 10-12, 2021, Virtual Event, Switzerland

Consequently, the target particle 7 may or may not share the same
logits with those in D7, depending on if it is tagged as dead or not.

E VARIANCE OF POLICY GRADIENT IN PFPN
CONFIGURATION

Since each action dimension is independent to others, without
loss of generality, we here consider the action a; with only one
dimension along which n particles are distributed and the particle i
to represent a Gaussian distribution N (y;, oiz). In order to make it
easy for analysis, we set up the following assumptions: the reward
estimation is constant, i.e. A; = A; logits to support the weights of
particles are initialized equally, i.e. w;(s:|0) = % for all particles
i and Vgwi(st|0) = --- = Vgwp(s¢|0); particles are initialized to
equally cover the whole action space, i.e. y; = % 0'1.2 x # where
i=1,---,n

From Equation 7, the variance of the policy gradient under such
assumptions is

V0 Oer] = [At

o Zive‘vvi(sfl@)fa?pi(azlﬂ:, or)da;
~ Zi(lliz + UiZ)VHWi(StW)

(1)
i—n)?+1
“Zi(l:Z
—n, 7 _1
~376n" 2

~1- 5 +0(%).

Given V[VgJ(6)|a;] = 0 when n = 1, from Equation 21, for any
n > 0, the variance of policy gradient V[V]J(68)|a;] will increase
with n. Though the assumptions usually are hard to meet perfectly
in practice, this still gives us an insight that employing a large
number of particles may result in more challenge to optimization.

This conclusion is consistent with that in the case of uniform
discretization [Tang and Agrawal 2019] where the variance of policy
gradient is shown to satisfy

V[VoJ(0)lat]piscrere ~ 1 - % (22)
That is to say, in either PFPN or uniform discretization scheme,
we cannot simply improve the control performance of the police by
employing more atomic actions, i.e. by increasing the number of
particles or using more bins in the uniform discretization scheme,
since the gradient variance increases as the discretization resolution
increases. However, PFPN has a slower increase rate, which implies
that it might support more atomic actions before performance drops
due to the difficulty in optimization. Additionally, compared to the
fixed, uniform discretization scheme, atomic actions represented
by particles in PFPN are movable and their distribution can be
optimized. This means that PFPN has the potential to provide better
discretization scheme using fewer atomic actions to meet the fine
control demand and thus be more friendly to optimization using
policy gradient.

F PFPN WITH OFF-POLICY POLICY
GRADIENT ALGORITHMS

To enable PFPN applicable in state-action value based off-policy
algorithms, we propose a reparamterization trick in this section

MIG 21, November 10-12, 2021, Virtual Event, Switzerland

such that a sampled action ag) (s¢) can be differentiable to the policy
network parameter 0.

F.1 Reparameterization Trick

Let x(s;|0) ~ CoNCRETE({w;(s¢|0);i = 1,2,---},) is a sampling
result of a relaxed version of the one-hot categorical distribution
supported by the probability of {w;(s¢|6);i = 1,2,---}, where
x(st10) = {xi(s¢|0);i = 1,2,---} is reparametrizable and A is
picked to be 1 in our implementation. We apply the Gumbel-softmax
trick [Jang et al. 2017] to get a sampled action value as

d’(sy) = sTOP Z a;8(i, arg max x(s¢10)) |, (23)

1

where a; is the sample drawn from the distribution represented
by the particle i with parameter ¢;, sTop(-) is a “gradient stop”
operation, and §(, -) denotes the Kronecker delta function. Then,
the reparameterized sampling result can be written as follows:

a?(st) = Z(a,-—a'(st))mi+a’(st)5(i, argmaxx) = a’(s;), (24)

where m; = x;(s¢|0) + sTor(5(i, arg max x(s¢|0)) — x;(s¢|0)) =
d(i, arg max x(s;|0)) composing a one-hot vector that approximates
the samples drawn from the corresponding categorical distribution.
Since x;j(s¢|0) drawn from the concrete distribution is differentiable
to the parameter 0, the gradient of the reparameterized action
sample can be obtained by

Voah (st) = Xi(ai —a’(s))Voxi(st|60);

o (25)
V¢ia9 = 6(i,arg max x(s¢0)) V4, a;.

Through these equations, both the policy network parameter 0
and the particle parameters ¢; can be updated by backpropagation
through the sampled action a’(s;).

F.2 Policy Representation with Action Bounds

In off-policy algorithms, like DDPG and SAC, an invertible squash-
ing function, typically the hyperbolic tangent function, will be
applied to enforce action bounds on samples drawn from Gaussian
distributions, e.g. in SAC, the action for the k-th dimension at the
time step ¢ is obtained by

az (e s¢) = tanhu, g (26)

where u; ;. ~ N(pg(se), og(st)), Ho(st) and og(st) are parameters
generated by the policy network with parameter 0, and u, ;. can
be written u; . = pg(s¢) + §t,k0'z(5t) given a noise variable & ;. ~
N(0,1) such that a; j is reparameterizable.

Let a; = {tanhu,;} where u;j, drawn from the distribution
represented by a particle with parameter ¢, t, is a random variable
sampled to support the action on the k-th dimension. Then, the
probability density function of PFPN represented by Equation 3
can be rewritten as

mg (aclse) = [| D wik(se10)pik (el i) /(1 - tanh® uy),
ki
(27)

Pei Xu and loannis Karamouzas

and the log-probability function becomes
logzy (arlse) = g log [i wik(se10)pik (uekldik) (28)
-2 (log 2 — uy g — softplus(—2u, x))] -

In our SAC implementation, we use Gaussian noises to generate
action samples, i.e. u; . ~ N (k. fzk) where p; ;. and &; ;. are the
parameters for the i-th particle at the k-th action dimension.

	Abstract
	1 Introduction
	2 Background
	3 Particle Filtering Policy Network
	3.1 Particle-Based Action Policy
	3.2 Training
	3.3 Resampling
	3.4 Action-Value Based Optimization

	4 Experiments
	4.1 Setup
	4.2 Baseline Comparison
	4.3 Motion Quality
	4.4 Robustness
	4.5 Ablation Study
	4.6 PFPN Results with SAC

	5 Discussion and Future Work
	Acknowledgments
	References
	A Multi-modal Policy
	B Hyperparameters
	C Additional Results
	C.1 Time Complexity
	C.2 Baselines

	D Policy Network Logits Correction during Resampling
	E Variance of Policy Gradient in PFPN Configuration
	F PFPN with Off-Policy Policy Gradient Algorithms
	F.1 Reparameterization Trick
	F.2 Policy Representation with Action Bounds

