
PFPN: Continuous Control of Physically Simulated Characters
using Particle Filtering Policy Network

Pei Xu

peix@clemson.edu

Clemson University

Charleston, South Carolina, USA

Ioannis Karamouzas

ioannis@clemson.edu

Clemson University

Charleston, South Carolina, USA

Figure 1: Motions generated through imitation learning using Particle Filtering Policy Network.

ABSTRACT
Data-driven methods for physics-based character control using re-

inforcement learning have been successfully applied to generate

high-quality motions. However, existing approaches typically rely

on Gaussian distributions to represent the action policy, which

can prematurely commit to suboptimal actions when solving high-

dimensional continuous control problems for highly-articulated

characters. In this paper, to improve the learning performance

of physics-based character controllers, we propose a framework

that considers a particle-based action policy as a substitute for

Gaussian policies. We exploit particle filtering to dynamically ex-

plore and discretize the action space, and track the posterior policy

represented as a mixture distribution. The resulting policy can

replace the unimodal Gaussian policy which has been the staple

for character control problems, without changing the underlying

model architecture of the reinforcement learning algorithm used to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9131-3/21/11. . . $15.00

https://doi.org/10.1145/3487983.3488301

perform policy optimization. We demonstrate the applicability of

our approach on various motion capture imitation tasks. Baselines

using our particle-based policies achieve better imitation perfor-

mance and speed of convergence as compared to corresponding

implementations using Gaussians, and are more robust to external

perturbations during character control. Related code is available at:

https://motion-lab.github.io/PFPN.

CCS CONCEPTS
• Computing methodologies → Animation; Physical simula-
tion; Reinforcement learning.

KEYWORDS
character animation, physics-based control, reinforcement learning

ACM Reference Format:
Pei Xu and Ioannis Karamouzas. 2021. PFPN: Continuous Control of Phys-

ically Simulated Characters using Particle Filtering Policy Network. In

Motion, Interaction and Games (MIG ’21), November 10–12, 2021, Virtual
Event, Switzerland. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3487983.3488301

1 INTRODUCTION
In the last few years, impressive results have been obtained for

physics-based character control using data-driven methods under

https://doi.org/10.1145/3487983.3488301
https://doi.org/10.1145/3487983.3488301
https://doi.org/10.1145/3487983.3488301

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Pei Xu and Ioannis Karamouzas

the framework of deep reinforcement learning (DRL) [Bergamin

et al. 2019; Chentanez et al. 2018; Ma et al. 2021; Merel et al. 2017;

Peng et al. 2018; Won et al. 2020; Yin et al. 2021]. Works from [Jiang

et al. 2019; Lee et al. 2019; Peng and van de Panne 2017; Reda et al.

2020] studied the learning and control performance with different

action spaces using joint or muscle actuation formulations, and

show the impact that action parameterization has on the trained

policies. State-of-the-art approaches typically perform exploration

in the action space of joint angles and control the character using PD

servos to generate high-fidelity motions through imitation learning.

Despite recent success, though, generating high-quality and robust

animation for highly articulated characters is still a challenging

task. Due to the infinite feasible action choices, controlling many

degrees of is inherently ambiguous with respect to most behaviors,

resulting in control problems that are under specified and highly

dimensional.

State-of-the-art approaches for continuous character control

define the action policy as a multivariate Gaussian distribution

with independent components. Nevertheless, the unimodal form of

a Gaussian distribution could prematurely commit to suboptimal

actions when optimizing a reward function that consists of multiple

competing terms and has a multimodal landscape [Hamalainen et al.

2020]. Consider, for example, an articulated character that needs to

learn a mapping from states to actions based on all individual joints

while tracking a reference motion. This is a very challenging task

as for a given DOF and a continuous action space, we need to find a

state-dependent mean and standard deviation. This process can be

imagined as sliding the Gaussian to determine where to place it on

an infinite line while also shrinking and swelling the distribution.

And of course the problem becomes even more complicated as we

need to do the same thing for all DOFs and determine how they

work in synchrony for a given state.

To improve the policy expressivity beyond the unimodal Gauss-

ian, recent works in character animation use primitive actions [Peng

et al. 2019], coactivations [Ranganath et al. 2019], or a mixture of

experts [Won et al. 2020] though the underlying distribution is still

Gaussian. To address the unimodality issue of Gaussian policies, in

the field of DRL, people have been exploring more expressive distri-

butions than Gaussians, with a simple solution being to discretize

the action space and use categorical distributions as multi-modal

action policies [Andrychowicz et al. 2020; Jaśkowski et al. 2018;

Tang and Agrawal 2019]. However, as we show, such a solution

cannot scale well when training expert-guided control policies for

physically simulated characters. The reason is that the performance

of the action-space discretization depends a lot on the choice of

discrete atomic actions, which are usually picked uniformly due

to lack of prior knowledge. Therefore, a simple, fixed action dis-

cretization scheme typically can only provide suboptimal solutions

that are unable to meet the fine control demands.

In this paper, we introduce an expressive, multimodal action pol-

icy for DRL-based learning of physics-based controllers for highly

articulated characters. Following prior work, we employ a joint-

actuation space and learn a mapping from states to joint target

angles that are given as input to PD servos for computing the cor-

responding torque values. Instead of representing each action as a

state-depending Gaussian, though, we exploit a particle approach

to dynamically sample the action space during training and track

the policy represented as a mixture of Gaussian distributions with

state-independent components. We refer to the resulting policy

network as Particle Filtering Policy Network (PFPN). We evalu-

ate PFPN on benchmarks from the DeepMimic framework [Peng

et al. 2018, 2020] involving motor control tasks for a humanoid and

a dog character (see Figure 1 for some results). Our experiments

show that baselines using PFPN exhibit better imitation perfor-

mance and/or speed of convergence as compared to state-of-the-art

Gaussian baselines, and lead to more robust character control under

external perturbation. In addition, PFPN-trained controllers can

generate motions with high visual quality for articulated characters

performing motor tasks with the grace and naturalness of complex

beings. Overall, PFPN offers a great alternative to Gaussian action

policies leading to state-of-the-art controllers for physically sim-

ulated characters without introducing any notable computational

overhead.

2 BACKGROUND
We consider a standard reinforcement learning setup where given a

time horizon 𝐻 and the trajectory 𝜏 = (s1, a1, · · · , s𝐻 , a𝐻) obtained
by a transition modelM(s𝑡+1 |s𝑡 , a𝑡) and a parameterized action

policy 𝜋𝜃 (a𝑡 |s𝑡), with s𝑡 and a𝑡 denoting the state and action taken

at time step 𝑡 , respectively, the goal is to find the policy parameters

𝜃 that maximize the cumulative reward:

𝐽 (𝜃) = E𝜏∼𝑝𝜃 (𝜏) [𝑟 (𝜏)] =
∫

𝑝𝜃 (𝜏)𝑟 (𝜏)𝑑𝜏 . (1)

Here, 𝑝𝜃 (𝜏) denotes the state-action visitation distribution for the

trajectory 𝜏 induced by the transient model M and the action

policy 𝜋𝜃 , and 𝑟 (𝜏) = ∑
𝑡 𝑟 (s𝑡 , a𝑡) where 𝑟 (s𝑡 , a𝑡) is the reward

received at time step 𝑡 . We can maximize 𝐽 (𝜃) by adjusting the

policy parameters 𝜃 through the gradient ascent method, where

the gradient of the expected reward can be determined according

to the policy gradient theorem [Sutton et al. 2000], i.e.

∇𝜃 𝐽 (𝜃) = E𝜏∼𝜋𝜃 (· |s𝑡) [𝐴𝑡∇𝜃 log𝜋𝜃 (a𝑡 |s𝑡) |s𝑡] , (2)

where𝐴𝑡 denotes an estimate to the reward term 𝑟𝑡 (𝜏). In DRL, the

estimator of 𝐴𝑡 often relies on a separate network (critic) that is

updated in tandem with the policy network (actor). This gives rise

to a family of policy gradient algorithms known as actor-critic.

Given a multi-dimensional continuous action space, the most

common choice in current DRL baselines is to model the policy

𝜋𝜃 as a multivariate Gaussian distribution with independent com-

ponents for each action dimension. For simplicity, let us consider

a simple case with a single action dimension and define the ac-

tion policy as 𝜋𝜃 (·|s𝑡) := N(𝜇𝜃 (s𝑡), 𝜎2𝜃 (s𝑡)). Then, we can obtain

log𝜋𝜃 (𝑎𝑡 |s𝑡) ∝ −(𝑎𝑡 − 𝜇𝜃 (s𝑡))2. Given a sampled action 𝑎𝑡 and the

estimate of cumulative rewards 𝐴𝑡 , the optimization process based

on the above expression can be imagined as that of shifting 𝜇
𝜃
(s𝑡)

towards the direction of 𝑎𝑡 if 𝐴𝑡 is higher than the expectation, or

to the opposite direction if 𝐴𝑡 is smaller. Such an approach, though,

can easily converge to a suboptimal solution, if, for example, the re-

ward landscape has a basis between the current location of 𝜇
𝜃
(s𝑡)

and the optimal solution, or hard to be optimized if the reward

landscape is symmetric around 𝜇
𝜃
(s𝑡). These issues arise due to the

fact that the Gaussian distribution is inherently unimodal, while

the reward landscape could be multi-modal [Haarnoja et al. 2017].

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

We refer to Appendix A for further discussion about the limita-

tions of unimodal Gaussian policies and the value of expressive

multimodal policies. Indeed, Hamalainen et al. [2020] showed that

the reward landscape for high-dimensional character control tasks

typically has a complex shape and is often multimodal. This means

that Gaussian policies may face difficulties during optimization for

character control.

3 PARTICLE FILTERING POLICY NETWORK
In this section, we describe our Particle Filtering Policy Network

(PFPN) that addresses the unimodality issues from which typical

Gaussian-based policy networks suffer. Our approach represents

the action policy as a mixture distribution obtained by adaptively

discretizing the action space using state-independent particles. The

policy network, instead of directly generating actions, it is tasked

with choosing particles, while the final actions are obtained by

sampling from the selected particles.

3.1 Particle-Based Action Policy
We define P := {⟨𝜇𝑖,𝑘 ,𝑤𝑖,𝑘 (s𝑡 |𝜃)⟩|𝑖 = 1, . . . , 𝑛;𝑘 = 1, . . . ,𝑚} as a
weighted set of particles for continuous control problems having

an𝑚-dimensional action space and 𝑛 particles distributed on each

action action space. Here, 𝜇𝑖,𝑘 represents an atomic action location

on the 𝑘-th dimension of the action space, and𝑤𝑖,𝑘 (s𝑡 |𝜃) denotes
the associated weight generated by the policy network with pa-

rameters 𝜃 given the input state s𝑡 . Let 𝑝𝑖,𝑘 (𝑎𝑖,𝑘 |𝜇𝑖,𝑘 , 𝜉𝑖,𝑘) denote
the probability density function of the distribution defined by the

location 𝜇𝑖,𝑘 and a stochastic process 𝜉𝑖,𝑘 for sampling. Given P, we
define the action policy as factorized across the action dimensions:

𝜋P
𝜃
(a𝑡 |s𝑡) =

∏
𝑘

∑
𝑖

𝑤𝑖,𝑘 (s𝑡 |𝜃) 𝑝𝑖,𝑘 (𝑎𝑡,𝑘 | 𝜇𝑖,𝑘 , 𝜉𝑖,𝑘), (3)

where a𝑡 = {𝑎𝑡,1, · · · , 𝑎𝑡,𝑚}, 𝑎𝑡,𝑘 is the sampled action at the time

step 𝑡 for the action dimension 𝑘 , and𝑤𝑖,𝑘 (·|𝜃) is obtained by ap-

plying a softmax operation to the output of the policy network for

the 𝑘-th dimension and satisfies

∑
𝑖 𝑤𝑖,𝑘 = 1. The state-independent

parameter set, {𝜇𝑖,𝑘 }, gives us an adaptive discretization scheme

that can be optimized during training. The noise parameter, 𝜉𝑖,𝑘 ,

provides a way to generate stochastic actions during policy training.

In our implementation, we choose Gaussian distributions with a

standard deviation of 𝜉𝑖,𝑘 for action sampling during training and

then each particle can be regarded as a state-independent Gaussian

ofN(𝜇𝑖,𝑘 , 𝜉2𝑖,𝑘). Without loss of generality, we define the parameters

of a particle as 𝜙𝑖,𝑘 = [𝜇𝑖,𝑘 , 𝜉𝑖,𝑘] for the following discussion.

While the softmax operation gives us a categorical distribution

defined by𝑤 ·,𝑘 (s𝑡 |𝜃), the nature of the policy for each dimension is

a mixture distribution with state-independent components defined

by 𝜙𝑖,𝑘 . The number of output neurons in PFPN increases linearly

as the number of action dimensions increases, and thus makes it

suitable for high-dimensional control problems. Drawing samples

from the mixture distribution can be done in two steps. first, based

on the weights𝑤 ·,𝑘 (s𝑡 |𝜃), we perform sampling on the categorical

distribution to choose a particle 𝑗𝑘 for each dimension 𝑘 , i.e.

𝑗𝑘 (s𝑡) ∼ 𝑃 (·|𝑤 ·,𝑘 (s𝑡)) . (4)

Then, we can draw actions from the components represented by

the chosen particles with noise as

𝑎𝑡,𝑘 ∼ 𝑝 𝑗𝑘 (s𝑡) (·|𝜙 𝑗𝑘 (s𝑡)). (5)

3.2 Training
The proposed particle-based policy distribution is general and can

be applied directly to any algorithm using the policy gradient

method with Equation 2. To initialize the training, due to lack of

prior knowledge, the particles can be distributed uniformly along

the action dimensions with a standard deviation covering the gap

between two successive particles. With no loss of generality, let us

consider below only one action dimension and drop the subscript

𝑘 . Then, at every training step, each particle 𝑖 will move along its

action dimension and be updated by

∇𝐽 (𝜙𝑖) = E
[∑

𝑡

𝑐𝑡𝑤𝑖 (𝑠𝑡 |𝜃)∇𝜙𝑖
𝑝𝑖 (𝑎𝑡 |𝜙𝑖) |s𝑡

]
(6)

where 𝑎𝑡 ∼ 𝜋P
𝜃
(·|s𝑡) is the action chosen during sampling, and

𝑐𝑡 =
𝐴𝑡∑

𝑗 𝑤 𝑗 (s𝑡 |𝜃)𝑝 𝑗 (𝑎𝑡 |𝜙 𝑗)
is a coefficient shared by all particles

on the same action dimension. Our approach focuses only on the ac-

tion policy representation in general policy gradient methods. The

estimation of𝐴𝑡 can be chosen as required by the underlying policy

gradient method, e.g. the generalized advantage estimator [Schul-

man et al. 2015] in PPO/DPPO. Similarly, for the update of the policy

neural network, we have

∇𝐽 (𝜃) = E
[∑

𝑡

𝑐𝑡𝑝𝑖 (𝑎𝑡 |𝜙𝑖)∇𝜃𝑤𝑖 (s𝑡 |𝜃) |s𝑡

]
. (7)

From the above equations, although sampling is performed on

only one particle for each given dimension, all of that dimension’s

particles will be updated during each training iteration to move to-

wards or away from the location of 𝑎𝑡 according to𝐴𝑡 . The amount

of the update, however, is regulated by the state-dependent weight

𝑤𝑖 (s𝑡 |𝜃): particles that have small probabilities to be chosen for a

given state s𝑡 will be considered as uninteresting and be updated

with a smaller step size or not be updated at all. On the other

hand, the update of weights is limited by the distance between a

particle and the sampled action: particles too far away from the

sampled action would be considered as insignificant to merit any

weight gain or loss. In summary, particles can converge to different

optimal locations near them during training and be distributed mul-

timodally according to the reward landscape defined by 𝐴𝑡 , rather

than collapsing to a unimodal, Gaussian-like distribution.

3.3 Resampling
Similar to traditional particle filtering approaches, our approach

would encounter the problem of degeneracy [Kong et al. 1994].

During training, a particle placed near a location at which sampling

gives a low 𝐴𝑡 value would achieve a weight decrease. Once the

associated weight reaches near zero, the particle will not be updated

anymore (cf. Equation 6) and become ‘dead’. We adapt the idea of

resampling from the particle filtering literature [Doucet et al. 2001]

to perform resampling for dead particles and reactivate them by

duplicating alive target particles.

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Pei Xu and Ioannis Karamouzas

Algorithm 1: Policy Gradient Method using PFPN

Initialize the neural network parameter 𝜃 and learning rate 𝛼 ;

initialize particle parameters 𝜙𝑖 to uniformly distribute particles on

each action dimension;

initialize the threshold 𝜖 to detect dead particles;

initialize the value of interval 𝑛 to perform resampling.

while training does not converge do
for each environment step do

// Record the weight while sampling.
𝑎𝑡 ∼ 𝜋𝜃,P (· |𝑠𝑡) ;W𝑖 ← W𝑖 ∪ {𝑤𝑖 (𝑠𝑡 |𝜃) }

end
for each training step do

// Update parameters using SGD method.
𝜙𝑖 ← 𝜙𝑖 + 𝛼∇𝐽 (𝜙𝑖) // Equation 6
𝜃 ← 𝜃 + 𝛼∇𝐽 (𝜃) // Equation 7

end
for every 𝑛 environment steps do

// Detect dead particles and set up target ones.
for each particle 𝑖 do

if max𝑤𝑖 ∈W𝑖
𝑤𝑖 < 𝜖 then

𝜏𝑖 ∼ 𝑃 (· |E [𝑤𝑘 |𝑤𝑘 ∈ W𝑘] , 𝑘 = 1, 2, · · ·)
T ← T ∪ {𝜏𝑖 }; D𝜏𝑖 ← D𝜏𝑖 ∪ {𝑖 }

end
end
// Resampling.
for each target particle 𝜏 ∈ T do

for each dead particle 𝑖 ∈ D𝜏 do
// Duplicate particles.
𝜙𝑖 ← 𝜙𝜏 with 𝜇𝑖 ← 𝜇𝜏 + 𝜀𝑖
// Duplicate parameters of the last layer in the
policy network.

𝝎𝑖 ← 𝝎𝜏 ; 𝑏𝑖 ← 𝑏𝜏 − log(|D𝜏 | + 1)
end
𝑏𝜏 ← 𝑏𝜏 − log(|D𝜏 | + 1) ; D𝜏 ← ∅

end
T ← ∅;W𝑖 ← ∅

end
end

A particle is considered dead if its maximum weight over all

possible states is too small, i.e.

max

s𝑡
𝑤𝑖 (s𝑡 |𝜃) < 𝜖 (8)

where 𝜖 is a small positive threshold number. In practice, we cannot

check𝑤𝑖 (𝑠𝑡 |𝜃) for all possible states, but can keep tracking it during
sampling based on the observed states collected in the last batch

of environment steps. During resampling, a target particle 𝜏𝑖 is

drawn for each dead particle 𝑖 independently. We consider two

resampling strategies: (1) the unweighted resampling strategy that

picks a 𝜏𝑖 randomly from all alive particles; and (2) the weighted

resampling strategy that draws a target 𝜏𝑖 from the categorical

distribution obtained from the average weight of each particle over

the observed samples, i.e.

𝜏𝑖 ∼ 𝑃
(
·|Es𝑡 [𝑤𝑘 (s𝑡 |𝜃)] , 𝑘 = 1, 2, · · ·

)
. (9)

Both of these two resampling strategies are stochastic. We, by de-

fault, use the weighted resampling, which considers the importance

of the target particle candidates leading to a more stable learning

performance, as we will show empirically in Section 4.5.

St

softmax a1

N(μ1,k, ξ1,k)2

softmax
aN

N(μN,k, ξN,k)2

at

Figure 2: PFPN architecture with a 𝑁 -dimension action
space in our experiment. Each particle represents a state-
independent Gaussian distribution of N(𝜇𝑖,𝑘 , 𝜉2𝑖,𝑘) where 𝑘 =

1, · · · , 35 for 35 particles on each action dimension and 𝑖 =

1, · · · , 𝑁 . ⊕ denotes the concatenation operator.

Theorem. Let D𝜏 be a set of dead particles sharing the same
target particle 𝜏 . Let also the logits for the weight of each particle 𝑘
be generated by a fully-connected layer with parameters 𝝎𝑘 for the
weight and 𝑏𝑘 for the bias. The policy 𝜋P

𝜃
(𝑎𝑡 |s𝑡) is guaranteed to

remain unchanged after resampling via duplicating 𝜙𝑖 ← 𝜙𝜏 ,∀𝑖 ∈
𝐷𝜏 , if the weight and bias used to generate the unnormalized logits of
the target particle are shared with those of the dead one as follows:

𝝎𝑖 ← 𝝎𝜏 ; 𝑏𝑖 , 𝑏𝜏 ← 𝑏𝜏 − log (|D𝜏 | + 1) . (10)

Proof. See Appendix D for the inference. □

The theorem guarantees the correctness of our resampling pro-

cess as it keep the action policy 𝜋P
𝜃
(𝑎𝑡 |s𝑡) identical before and

after resampling. If, however, two particles are exactly the same

after resampling, they will always be updated together at the same

pace during training and lose diversity. To address this issue, we

add some regularization noise to the mean value when performing

resampling, i.e. 𝜇𝑖 ← 𝜇𝜏 + 𝜀𝑖 , where 𝜀𝑖 is a small random num-

ber to prevent 𝜇𝑖 from being too close to its target 𝜇𝜏 . We refer to

Algorithm 1 for the outline of our proposed PFPN approach.

3.4 Action-Value Based Optimization
Algorithm 1 can be applied on general policy gradient algorithms,

like PPO [Schulman et al. 2017] and A3C [Mnih et al. 2016]. How-

ever, we note that a number of algorithms, such as DDPG [Lillicrap

et al. 2015], SAC [Haarnoja et al. 2018a,b] and their variants [Fu-

jimoto et al. 2018; Haarnoja et al. 2017], perform optimization by

maximizing a soft state-action value 𝑄 (s𝑡 , a𝑡). In this case, the ac-

tion policy is required to be reparameterizable such that the sampled

action a𝑡 can be rewritten as a function differentiable to the policy

network parameter 𝜃 , and the optimization can be done through

the gradient ∇a𝑡𝑄 (s𝑡 , a𝑡)∇𝜃 a𝑡 .
Our two-step sampling method for PFPN described in Section 3.1

is non-reparameterizable, because of the standard way of sam-

pling from the categorical distribution through which Gaussians

are mixed. To address this issue and enable the proposed action

policy applicable in state-action value based off-policy algorithms,

we consider the concrete distribution [Jang et al. 2016; Maddison

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

0.0 0.5 1.0 1.5

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it
a
ti
o
n

R
e
w
a
rd

s
Walk

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Punch

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Kick

0 1 2 3

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Dance

PFPN Gaussian DISCRETE GMM

Figure 3: Learning curves of PFPN compared to other baselines using DPPO algorithm on humanoid character control tasks.
Solid lines report the average and shaded regions are the minimum and maximum imitation rewards achieved with different
random seeds during training.

0 1 2 3

of Samples ×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

Pace

0 1 2 3

of Samples ×107

0.0

0.2

0.4

0.6

0.8

1.0

Canter

PFPN Gaussian DISCRETE GMM

Figure 4: Learning performance of baselines using DPPO for
dog character control.

et al. 2016] that generates a reparameterized continuous approxi-

mation to a categorical distribution. We refer to Appendix F for the

reprarameterization trick and further details on the application of

PFPN to off-policy algorithms.

4 EXPERIMENTS
The goal of our experiments is to evaluate whether PFPN can out-

perform the corresponding implementations with Gaussian policies

in data-driven control tasks of physics-based character. We focus

on the two aspects of comparisons: (1) the imitation ability of the

trained policies, and (2) the policy robustness facing external force

perturbation. We also perform sensitivity analysis on the learn-

ing performance of PFPN with different number of particles and

resampling strategies.

4.1 Setup
We run benchmarks based on the DeepMimic framework [Peng et al.

2018], which is the state-of-the-art DRL imitation learning frame-

work for physics-based character control. The simulated character

is controlled through stable proportional derivative controllers [Tan

et al. 2011] running with the forward dynamic simulation at 600

Hz, while the policy network provides the control signal at 30 Hz.

Following the settings of DeepMimic, we use the link position, ori-

entation (in the unit of quaternion) and linear and angular velocity

related to the root link position and heading direction, adding a

phase variable to indicate the target pose implicitly at each time

step and a variable indicating the root link height, as the observa-

tion space. We considered two articulated characters, a humanoid

and a dog. The humanoid character has 8 spherical joints and 4

revolute joints, plus a root link and two end-effectors (hands) con-

nected to the forearms with fixed joints, resulting in an observation

space of R197 and action space of R36. The dog character has 18

spherical joints and 4 revolute joints, which lead an observation

space of R301 and action space of R76. All simulations are run using

PyBullet [Coumans and Bai 2021].

PFPN focuses only on the distribution for action policy and

can be applied with any general policy-gradient DRL algorithm.

In the following, we evaluate PFPN with policies trained using

DPPO [Heess et al. 2017] with surrogate policy loss [Schulman

et al. 2017] (We refer to Appendix C for results obtained with the

A3C [Mnih et al. 2016] and IMPALA algorithms [Espeholt et al.

2018], and to Appendix B for all hyperparameters used). In our

DPPO implementation, policy and value networks have a similar

structure of two hidden fully-connected (FC) layers with neurons of

1024 and 512 respectively, as shown in Figure 2. The input state is

normalized by moving average that is dynamically updated during

training. By default, we place 35 particles on each action dimension

and use the set of particles as a mixture of Gaussians with state-

dependent weights but state-independent components.

4.2 Baseline Comparison
In Figure 3 and 4, we compare PFPN to baselines using Gaussian

distribution with state-dependent mean and standard deviation val-

ues on the humanoid and dog character control tasks respectively.

The imitation performance is measured in the term of normalized

cumulative rewards of evaluation rollouts during training. We also

compare PFPN to a fixed discretization scheme (DISCRETE) ob-

tained by uniformly discretizing each action dimension into a fixed

number of bins and sampling actions from a categorical distribu-

tion, and to policies using the distribution of a fully state-dependent

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Pei Xu and Ioannis Karamouzas

(a) Walk (b) Punch (c) Dance

Figure 5: Qualitative comparisons of themotions generated by PFPN (top) and Gaussian (bottom) baselines. Shadow characters
indicate the reference motion.

-1.0 -0.6 -0.2 0.2 0.6 1.0

X Axis

-1.0 -0.6 -0.2 0.2 0.6 1.0

Y Axis

-1.0 -0.6 -0.2 0.2 0.6 1.0

Z Axis

-1.0 -0.6 -0.2 0.2 0.6 1.0

Angle
0

1.5e7

T
ra

in
in

g
S

te
p

s

Figure 6: Evolution of how particles along the four action dimensions of the right hip joint are distributed during training
of the Walk task. Each action dimension is normalized between -1 and 1. Particles are initially distributed uniformly along
a dimension (dark colors) and their locations adaptively change as the policy network is trained (light colors). The training
steps are measured by the number of samples exploited during training.

Gaussian Mixture Model (GMM). All baselines use the same net-

work architecture with the same number of hidden neurons. PFPN,

DISCRETE and GMM also have the same number of atomic actions

(35 particles/bins) at each action dimension. We train five trials of

each baseline with different random seeds that are the same across

PFPN and the corresponding implementations of other methods.

Evaluation was performed ten times every 1,000 training steps

using deterministic actions.

As it can be seen from the figures, PFPN outperforms other base-

lines in all of the tested tasks. Our particle-based scheme achieves

better final performance and exhibits faster convergence while

being more stable across multiple trials. GMM uses Gaussian com-

ponents with state-dependent mean and standard deviation val-

ues, and does not work better than Gaussian baselines. DISCRETE

discretizes the action space using the atomic actions, which are

the same with the initial distribution of the particles employed by

PFPN. Though both DISCRETE and PFPN use the state-independent

atomic action settings, PFPN optimizes the distribution of atomic

actions represented by particles during training, and the resulting

adaptive discretization scheme leads to higher asymptotic perfor-

mance. Intuitively, by introducing more atomic actions, DISCRETE

and PFPN could achieve higher control capacity. However, the

more atomic actions employed the harder the optimization problem

will be due to the increase of policy gradient variance [Tang and

Agrawal 2019] (see Appendix E for theoretical analysis). In theory,

GMM is a more general case of PFPN without resampling. However,

we found that GMM does not usually work quite well and can per-

form even worse than Gaussians. This is consistent with the results

reported by Tang and Agrawal [2018] for torque-based locomotion

L
ef
t
F
o
ot

Reference PFPN Gaussian DISCRETE GMM

R
ig
h
t
F
o
ot

Figure 7: PCA embedding of the character’s foot trajectories
related to the base link position during ten gait cycles of
walking. The reference one is one-gait walking motion ob-
tained through motion capture.

control tasks. A possible reason is that GMM needs a much larger

policy network. This may pose a challenge to the optimization.

Another issue of GMMs observed during our experiments is that

the Gaussian components are easy to collapse together and lose the

advantage of multimodality.

To gain a better understanding of the advantages of using PFPN

for learningmotor tasks, Figure 6 shows how particles evolve during

training for one of the humanoid’s joints in the “Walk” task. We can

see that each of the final active action spaces follows a multimodal

distribution that covers only some small parts of the entire action

space. PFPN optimizes the placement of atomic actions, providing

an effective discretization scheme that reaches better performance

compared to other baselines.

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

4.3 Motion Quality
In Figure 7, we compare the foot trajectories of each baseline during

ten gait cycles in “Walk” tasks. From the figure, GMM generates

jittery motions with unstable foot trajectories. DISCRETE can pro-

vide relatively stable trajectories, in which, however, the character

moves always towards an inclined direction. Gaussian gives gaits

with a cyclic pattern but not quite stable. PFPN generate stable gaits

with a clear cyclic pattern closely following the reference motion.

In Figure 5, we qualitatively compare the motions generated by

PFPN and Gaussian baselines. As can be seen, the motion generated

by PFPN follows the reference motion (shadow character) closely.

Gaussian, though providing a human-like walking motion, exhibits

visual artifacts in the other, more complex tasks, e.g. foot sliding

and character drifting during dancing. Similar conclusions can be

drawn for the dog character. When a fixed number of samples

are exploited for training as reported in Figure 4, PFPN baselines

can track the reference motion closely while Gaussian baselines

perform worse, with the dog, for example, having evident jerky

movements during pacing.

In addition, we note that characters trained with Gaussian-based

policies often lack the grace seen in living beings as compared to

PFPN-trained characters that exhibit behavior more close to the

one seen in the reference data. For example, while the dog is able to

achieve a relatively high reward according to DeepMimic’s tracking

reward function (Figure 4), its tail moves in an unnatural way during

canter. Similarly, while this is more subtle, the Gaussian-based

humanoid character stamps its feet on the ground while walking,

resulting in a heavy-footed gait as compared to the graceful gait

of the PFPN-based humanoid. We refer to the supplemental videos

for more details on the visual quality of the trained controllers.

4.4 Robustness
We evaluate policy robustness through projectile testing and also

external force perturbations. During projectile testing, the character

is controlled by the “walk” policy, and a cube projectile with side

length of 0.2m and initial velocity of 0.2m/s is cast towards the torso

of the character. Figure 8 reports the number of frames that a policy

can control the character before falling down on the ground while

varying the mass of the cube. In Table 1, we also report the minimal

force needed to push the character down in “walk” and “punch”

tasks for the humanoid, and in “pace” and “canter” tasks for the

dog character. All experiments were performed after training using

deterministic actions. It is evident that the character controlled by

PFPN are more robust to external disturbances and can sustain

much higher forces than other baselines.

4.5 Ablation Study
Resampling Strategy. In Figure 9a, we compare PFPNwith default,

weighted resampling to PFPN with unweighted resampling (see

Section 3.3), and to PFPN without any resampling. The weighted

resampling strategy draws targets for dead particles according to

the weights of the remaining, alive ones. The unweighted resam-

pling strategy draws targets uniformly from alive particles. It can be

seen that both weighted and unweighted resampling could help im-

prove the training performance significantly. However, unweighted

resampling could lead to high variance by introducing too much

5 10 15 20

Mass [kg]

10

20

30

40

50

60

70

80

90

A
li

v
e

T
im

e
[f

r
a
m

e
s
]

PFPN

Gaussian

DISCRETE

GMM

Figure 8: Policy robustness of “Walk” motion with cube pro-
jectiles of varying mass. Solid lines report the average per-
formance over ten trials and shaded regions indicate the
standard deviation. All policies are obtained using DPPO al-
gorithms without projectile training. Right: a character un-
der projectile testing.

Table 1: Minimal forward and sideways push needed to
make the character fall down. Push force is measured in
Newtons (𝑁) and applied on the chest of the character for
0.1s. The DISCRETE and GMM results are skipped for the
dog character, as the respective trained controllers are un-
able to make the character walk even in the absence of ex-
ternal disturbances.

Task Force Direction PFPN Gaussian DISCRETE GMM

Humanoid

Walk

Forward 588 512 340 373

Sideway 602 560 420 417

Punch

Forward 1156 720 480 721

Sideway 896 748 576 732

Dog

Pace

Forward 735 672 - -

Sideway 412 276 - -

Canter

Forward 418 404 - -

Sideway 344 274 - -

uncertainty, since it could reactivate dead particles and place them

in suboptimal locations with higher probability, compared to the

weighted resampling. After resampling, even though the particles

would be optimized or resampled once more if they are placed in

bad locations, this could make the training process converge slower,

as shown in the figure.

Number of Particles. Since the particle configuration in PFPN is

state-independent, it needs a sufficient number of particles to meet

the fine control demand. Intuitively, employing more particles will

increase the resolution of the action space, and thus increase the

control capacity and make fine control more possible. However, in

Appendix E, we prove that due to the variance of policy gradient

increasing as the number of particles increases, the more particles

employed, the harder the optimization would be. Therefore, it may

negatively influence the performance to employ too many particles.

This conclusion is consistent with the results shown in Figure 9b.

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Pei Xu and Ioannis Karamouzas

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

Punch

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Kick

0 1 2 3

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Dance

Weighted Resampling (Default) Unweighted Resampling w/o Resampling

(a) Learning performance of PFPN with 35 particles on each action
dimension but different resampling strategies.

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

Punch

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Kick

0 1 2 3

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Dance

PFPN-35 (Default) PFPN-5 PFPN-10 PFPN-50 PFPN-100

(b) Comparison of PFPN using 35 particles per action dimension
(PFPN-35) to that using 5, 10, 50 and 100 particles.

Figure 9: Sensitivity of PFPN to different resampling strate-
gies and the number of particles.

0 1 2

of Samples×106

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

SAC

Walk

0 1 2

of Samples×106

0.0

0.2

0.4

0.6

0.8

1.0
SAC

Punch

0 1 2

of Samples×106

0.0

0.2

0.4

0.6

0.8

1.0
SAC

Kick

PFPN Gaussian

Figure 10: Learning performance of SAC with PFPN and
Gaussian baselines.

As it can be seen, PFPN with 5 and 10 particles per action dimension

performs badly; though using 50 or 100 particles per action dimen-

sion slows down the convergence speed a little bit, our approach

is not sensitive in terms of the final learning performance when a

relative large number of particles are employed.

4.6 PFPN Results with SAC
In this section, we highlight PFPN’s performance in state-of-the-

art off-policy DRL algorithm of SAC [Haarnoja et al. 2018b]. As

shown in Figure 10, PFPN outperforms Gaussian baselines with

faster convergence speed in all the tested tasks using SAC. While

SAC has been successfully explored for continuous control prob-

lems in the machine learning community, DPPO is still the most

commonly used DRL algorithm for training physics-based character

controllers in the animation field. During experiments, we found

that PFPNwith SAC is more stable in terms of learning performance

and more sampling efficient compared to DPPO implementations

as reported in Figure 3. We refer to the supplementary video for

comparisons between SAC and DPPO. Overall, PFPN with SAC

needs only 2.5-million samples to train high-quality humanoid con-

trollers in DeepMimic tasks as compared to DPPO that typically

requires around 20 millions or even more samples to achieve the

similar performance.

5 DISCUSSION AND FUTUREWORK
We present PFPN as a general framework for systematic explo-

ration of high-dimensional action spaces during training of physics-

based character controllers. Our approach uses a mixture of state-

independent Gaussians represented by a set of weighted particles to

track the action policy, as opposite to the multivariate Gaussian that

is typically used as the policy distribution in the tasks of physics-

based character control. We show that our method performs better

than Gaussian baselines in various imitation learning tasks leading

to faster learning, higher motion quality and more robustness to

external perturbation.

In the experimental section, we showed applications of PFPN to

the PPO algorithm. However, our approach is applicable to other

common on-policy actor-critic policy gradient DRL algorithms as

we show in Appendix C and off-policy methods such as SAC, as

we discussed in Section 4.6. Overall, PFPN does not change the

underlying architecture or learning mechanism of the DRL algo-

rithms. It is, therefore, complementary to other techniques which

improve the policy expressivity given a base action distribution.

For example, PFPN can serve as the action policy for each expert

in the mixture of experts approach of [Won et al. 2020] or for prim-

itive action learning [Peng et al. 2019]; or as the base distribution

of normalizing flows for motion generation [Henter et al. 2020],

which we would like to investigate in future work.

As shown in Section 4.5, PFPN is not quite sensitive to the num-

ber of particles when more than enough are employed to track the

action distribution. However, some fine-tuningmay be needed to de-

termine the minimal number of particles necessary to achieve high

learning performance with fast convergence speed. In this work, we

only considered short-term imitation learning tasks. Thus, further

experiments are needed to test the performance of PFPN for track-

ing long-term motions with heterogeneous behaviors [Bergamin

et al. 2019; Won et al. 2020]. Currently, we track each action dimen-

sion independently. Accounting for the synergy that exists between

different joints has the potential to further improve performance

and motion robustness, which opens another exciting avenue for

future work.

In any case, we believe that our particle-based action policies pro-

vide a great alternative to Gaussian-based actions policies, which

have been the staple for DRL-based character control over the past

few years. Our work shows significant improvements upon the

state-of-the-art in terms of motion quality, robustness to external

perturbations, and training efficiency, and we hope that more ani-

mation researchers would take advantage of PFPN while training

physics-based controllers for continuous control tasks.

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation

under Grant No. IIS-2047632.

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

REFERENCES
OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob

McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex

Ray, et al. 2020. Learning dexterous in-hand manipulation. The International Journal
of Robotics Research 39, 1 (2020), 3–20.

Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.

DReCon: data-driven responsive control of physics-based characters. ACM Trans-
actions On Graphics 38, 6 (2019), 1–11.

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and

Stefan Jeschke. 2018. Physics-Based Motion Capture Imitation with Deep Rein-

forcement Learning. In Proceedings of the 11th Annual International Conference on
Motion, Interaction, and Games. Association for Computing Machinery, Article 1,

10 pages.

Erwin Coumans and Yunfei Bai. 2016–2021. PyBullet, a Python module for physics

simulation for games, robotics and machine learning. http://pybullet.org.

ArnaudDoucet, NandoDe Freitas, andNeil Gordon. 2001. An introduction to sequential

Monte Carlo methods. In Sequential Monte Carlo methods in practice. Springer,
3–14.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom

Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala:

Scalable distributed deep-rl with importance weighted actor-learner architectures.

arXiv preprint arXiv:1802.01561 (2018).
Scott Fujimoto, Herke Van Hoof, and David Meger. 2018. Addressing function approx-

imation error in actor-critic methods. arXiv preprint arXiv:1802.09477 (2018).

TuomasHaarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Reinforcement

learning with deep energy-based policies. In International Conference on Machine
Learning. 1352–1361.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018a. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochastic

actor. arXiv preprint arXiv:1801.01290 (2018).
Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie

Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. 2018b. Soft

actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905 (2018).
Perttu Hamalainen, Juuso Toikka, Amin Babadi, and Karen Liu. 2020. Visualizing

Movement Control Optimization Landscapes. IEEE Transactions on Visualization &
Computer Graphics 01 (2020), 1–1.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,

Tom Erez, Ziyu Wang, SM Eslami, Martin Riedmiller, et al. 2017. Emergence

of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286
(2017).

Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. 2020. Moglow: Probabilis-

tic and controllable motion synthesis using normalising flows. ACM Transactions
on Graphics (TOG) 39, 6 (2020), 1–14.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparametrization with

Gumble-Softmax. In International Conference on Learning Representations (ICLR
2017).

Wojciech Jaśkowski, Odd Rune Lykkebø, Nihat Engin Toklu, Florian Trifterer, Zdeněk

Buk, Jan Koutník, and Faustino Gomez. 2018. Reinforcement Learning to Run. . .

Fast. In The NIPS’17 Competition: Building Intelligent Systems. Springer, 155–167.
Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. 2019. Synthesis of

biologically realistic human motion using joint torque actuation. ACM Transactions
On Graphics (TOG) 38, 4 (2019), 1–12.

Augustine Kong, Jun S Liu, and Wing Hung Wong. 1994. Sequential imputations and

Bayesian missing data problems. Journal of the American statistical association 89,

425 (1994), 278–288.

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable muscle-

actuated human simulation and control. ACM Transactions On Graphics (TOG) 38,
4 (2019), 1–13.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with deep

reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
Li-Ke Ma, Zeshi Yang, Xin Tong, Baining Guo, and KangKang Yin. 2021. Learning

and Exploring Motor Skills with Spacetime Bounds. In Computer Graphics Forum,

Vol. 40. Wiley Online Library, 251–263.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete distribution: A

continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712
(2016).

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg

Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion capture

by adversarial imitation. arXiv preprint arXiv:1707.02201 (2017).
Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous

methods for deep reinforcement learning. In International conference on machine
learning. 1928–1937.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. Deep-

mimic: Example-guided deep reinforcement learning of physics-based character

skills. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–14.
Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. 2019.

MCP: Learning Composable Hierarchical Control with Multiplicative Composi-

tional Policies. Advances in Neural Information Processing Systems 32 (2019), 3686–
3697.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey

Levine. 2020. Learning agile robotic locomotion skills by imitating animals. arXiv
preprint arXiv:2004.00784 (2020).

Xue Bin Peng and Michiel van de Panne. 2017. Learning locomotion skills using

deeprl: Does the choice of action space matter?. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 1–13.

Avinash Ranganath, Pei Xu, Ioannis Karamouzas, and Victor Zordan. 2019. Low

dimensional motor skill learning using coactivation. In Motion, Interaction and
Games. 1–10.

Daniele Reda, Tianxin Tao, and Michiel van de Panne. 2020. Learning to locomote:

Understanding how environment design matters for deep reinforcement learning.

In Motion, Interaction and Games. 1–10.
John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

2015. High-dimensional continuous control using generalized advantage estimation.

arXiv preprint arXiv:1506.02438 (2015).
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. 2000.

Policy gradient methods for reinforcement learning with function approximation.

In Advances in neural information processing systems. 1057–1063.
Jie Tan, Karen Liu, and Greg Turk. 2011. Stable proportional-derivative controllers.

IEEE Computer Graphics and Applications 31, 4 (2011), 34–44.
Yunhao Tang and Shipra Agrawal. 2018. Boosting trust region policy optimization by

normalizing flows policy. arXiv preprint arXiv:1809.10326 (2018).
Yunhao Tang and Shipra Agrawal. 2019. Discretizing continuous action space for

on-policy optimization. arXiv preprint arXiv:1901.10500 (2019).
Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable Approach to

Control Diverse Behaviors for Physically Simulated Characters. ACM Transactions
On Graphics 39, 4, Article 33 (2020).

Zhiqi Yin, Zeshi Yang, Michiel Van De Panne, and KangKang Yin. 2021. Discovering

diverse athletic jumping strategies. ACM Transactions on Graphics (TOG) 40, 4
(2021), 1–17.

http://pybullet.org

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Pei Xu and Ioannis Karamouzas

A MULTI-MODAL POLICY
In this section, we show the multi-modal representation capacity

of PFPN on a one-step bandit task.

−1.0 −0.5 0.0 0.5 1.0

Action

−0.4

−0.3

−0.2

−0.1

0.0

R
ew

ar
d

Reward

0.0

0.2

0.3

D
en

si
ty

PFPN

Gaussian

Figure 11: One-step bandit task with asymmetric reward
landscape. The reward landscape is defined as the gray line
having two peaks asymmetrically at−0.25 and 0.75. The prob-
ability densities of stochastic action samples drawn from
PFPN (blue) and Gaussian policy (red) are counted after
training with a fixed number of iterations.

This is a simple task with one dimension action space A =

[−1, 1]. It has an asymmetric 2-peak reward landscape inversely

proportional to the minimal distance to points −0.25 and 0.75, as

the gray line shown in Figure 11. The goal of this task is to find out

the optimal points close to −0.25 and 0.75. In Figure 11, we show

the stochastic action sample distributions of PFPN and the naive

Gaussian policy after training with the same number of iterations. It

is clear that PFPN captures the bi-modal distribution of the reward

landscape, while the Gaussian policy gives an unimodal distribution

capturing only one of reward peaks.

B HYPERPARAMETERS

Table 2: Default hyperparameters in PFPN baselines.

Parameter Value

learning rate 1 · 10−4
resampling interval 20 environment episodes

dead particle detection threshold (𝜖) 0.0015

discount factor (𝛾) 0.95

clip range (DPPO) 0.2

GAE discount factor (DPPO, A3C, 𝜆) 0.95

truncation level (IMPALA, 𝑐 , 𝜌) 1.0

coefficient of policy entropy loss term

0.00025

(A3C, IMPALA)

reply buffer size (SAC) 10
6

Since it is infeasible to analytically evaluate the differential en-

tropy of a mixture distribution without approximation, we use

the entropy of the categorical distribution for A3C and IMPALA

benchmarks, which employ differential entropy during policy opti-

mization.

C ADDITIONAL RESULTS
C.1 Time Complexity

0 2 4 6

Running Time [hour]

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

Walk

0 2 4 6 8

Running Time [hour]

0.0

0.2

0.4

0.6

0.8

1.0

Punch

0 2 4 6 8

Running Time [hour]

0.0

0.2

0.4

0.6

0.8

1.0

Kick

PFPN Gaussian DISCRETE GMM

Figure 12: Learning performance as a function of the actual
wall clock time using DPPO.

All policies were trained on a machine with Intel 6148G CPU and

Nvidia V100 GPU. Training stops when a fixed number of samples

is collected as reported in Figure 3. PFPN has a good time consump-

tion performance compared to other baselines. Though the action

sampling and particles resampling processes would take extra time,

PFPN performs better because its fast convergence avoids wasting

time on environment reset when early termination occurs.

C.2 Baselines

0.0 0.5 1.0 1.5

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

A3C

Walk

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0
A3C

Punch

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0
A3C

Kick

0.0 0.5 1.0 1.5

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

IMPALA

Walk

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0
IMPALA

Punch

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0
IMPALA

Kick

PFPN Gaussian DISCRETE

Figure 13: Additional baseline results using A3C and IM-
PALA.

D POLICY NETWORK LOGITS CORRECTION
DURING RESAMPLING

Theorem. Let D𝜏 be a set of dead particles sharing the same
target particle 𝜏 . Let also the logits for the weight of each particle 𝑘
be generated by a fully-connected layer with parameters 𝝎𝑘 for the
weight and 𝑏𝑘 for the bias. The policy 𝜋P

𝜃
(𝑎𝑡 |s𝑡) is guaranteed to

remain unchanged after resampling via duplicating 𝜙𝑖 ← 𝜙𝜏 ,∀𝑖 ∈

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

𝐷𝜏 , if the weight and bias used to generate the unnormalized logits of
the target particle are shared with those of the dead one as follows:

𝝎𝑖 ← 𝝎𝜏 ; 𝑏𝑖 , 𝑏𝜏 ← 𝑏𝜏 − log (|D𝜏 | + 1) . (11)

Proof. The weight for the 𝑖-th particle is achieved by softmax

operation, which is applied to the unnormalized logits 𝐿𝑖 , which is

the direct output of the policy network:

𝑤𝑖 (𝑠𝑡) = softmax(𝐿𝑖 (𝑠𝑡)) =
𝑒𝐿𝑖 (𝑠𝑡)∑
𝑘 𝑒

𝐿𝑘 (𝑠𝑡)
. (12)

Resampling via duplicating makes dead particles become iden-

tical to their target particle. Namely, particles in D𝜏 ∪ {𝜏} will
share the same weights as well as the same value of logits, say 𝐿′𝜏 ,
after resampling. To ensure the policy identical before and after

sampling, the following equation must be satisfied∑
𝑘

𝑒𝐿𝑘 (𝑠𝑡) =
∑
D𝜏∪{𝜏 }

𝑒𝐿
′
𝜏 (𝑠𝑡) +

∑
𝑘∉D𝜏∪{𝜏 }

𝑒𝐿𝑘 (𝑠𝑡) (13)

where 𝐿𝑘 is the unnormalized logits for the 𝑘-th particle such that

the weights for all particles who are not in D𝜏 ∪ {𝜏} unchanged,
while particles in D𝜏 ∪ {𝜏} share the same weights.

A target particle will not be tagged as dead at all, i.e. 𝜏 ∉ D𝑘 for

any dead particle set D𝑘 , since a target particle is drawn according

to the particles’ weights and since dead particles are defined as

the ones having too small or zero weight to be chosen. Hence,

Equation 13 can be rewritten as∑
𝑖∈D𝜏

𝑒𝐿𝑖 (𝑠𝑡) + 𝑒𝐿𝜏 (𝑠𝑡) = (|D𝜏 | + 1)𝑒𝐿
′
𝜏 (𝑠𝑡) , (14)

Given that 𝑒𝐿𝑖 (𝑠𝑡) ≈ 0 for any dead particle 𝑖 ∈ D𝜏 and that the

number of particles is limited, it implies that

𝑒𝐿𝜏 ≈ (|D𝜏 | + 1)𝑒𝐿
′
𝜏 (𝑠𝑡) . (15)

Taking the logarithm of both sides of the equation leads to that for

all particles in D𝜏 ∪ {𝜏}, their new logits after resampling should

satisfy

𝐿′𝜏 (𝑠𝑡) ≈ 𝐿𝜏 (𝑠𝑡) − log(|D𝜏 | + 1) . (16)

Assuming the input of the full-connected layer who generates

𝐿𝑖 is x(𝑠𝑡), i.e. 𝐿𝑖 (𝑠𝑡) = 𝝎𝑖x(𝑠𝑡) + 𝑏𝑖 , we have

𝝎 ′𝑖x(𝑠𝑡) + 𝑏
′
𝑖 = 𝝎𝜏x(𝑠𝑡) + 𝑏𝜏 − log (|D𝜏 | + 1) . (17)

Then, Theorem can be reached. □

If we perform unweighted resampling, it is possible to pick a

dead particle as the target particle for some particles. In that case

𝐿′𝜏 (𝑠𝑡) ≈ 𝐿𝜏 (𝑠𝑡) − log(|𝐷𝜏 | + (1 −
∑
𝑘

𝛿 (𝜏,D𝑘))), (18)

where𝐿′𝜏 (𝑠𝑡) is the new logits shared by particles inD𝜏 and𝛿 (𝜏,D𝑘)
is the Kronecker delta function

𝛿 (𝜏,D𝑘) =
{

1 if 𝜏 ∈ D𝑘

0 otherwise

(19)

that satisfies

∑
𝑘 𝛿 (𝜏,D𝑘) ≤ 1. Then, for the particle 𝜏 , its new

logits can be defined as

𝐿′′𝜏 (𝑠𝑡) ≈ (1 −
∑
𝑘

𝛿 (𝜏,D𝑘))𝐿′𝜏 (𝑠𝑡) +
∑
𝑘

𝛿 (𝜏,D𝑘)𝐿𝜏 . (20)

Consequently, the target particle 𝜏 may or may not share the same

logits with those in D𝜏 , depending on if it is tagged as dead or not.

E VARIANCE OF POLICY GRADIENT IN PFPN
CONFIGURATION

Since each action dimension is independent to others, without

loss of generality, we here consider the action 𝑎𝑡 with only one

dimension along which 𝑛 particles are distributed and the particle 𝑖

to represent a Gaussian distribution N(𝜇𝑖 , 𝜎2𝑖). In order to make it

easy for analysis, we set up the following assumptions: the reward

estimation is constant, i.e. 𝐴𝑡 ≡ 𝐴; logits to support the weights of

particles are initialized equally, i.e. 𝑤𝑖 (𝑠𝑡 |𝜃) ≡ 1

𝑛 for all particles

𝑖 and ∇𝜃𝑤1 (s𝑡 |𝜃) = · · · = ∇𝜃𝑤𝑛 (s𝑡 |𝜃); particles are initialized to

equally cover the whole action space, i.e. 𝜇𝑖 =
𝑖−𝑛
𝑛 , 𝜎2

𝑖
≈ 1

𝑛2
where

𝑖 = 1, · · · , 𝑛.
From Equation 7, the variance of the policy gradient under such

assumptions is

V[∇𝜃 𝐽 (𝜃) |𝑎𝑡] =
∫

𝐴𝑡

∑
𝑖 𝑝𝑖 (𝑎𝑡 |𝜇𝑡 ,𝜎𝑡) ∇𝜃𝑤𝑖 (s𝑡 |𝜃)∑
𝑖 𝑤𝑖 (𝑠𝑡 |𝜃)𝑝𝑖 (𝑎𝑡 |𝜇𝑡 ,𝜎𝑡) 𝑎2𝑡 d𝑎𝑡

∝ ∑
𝑖 ∇𝜃𝑤𝑖 (s𝑡 |𝜃)

∫
𝑎2𝑡 𝑝𝑖 (𝑎𝑡 |𝜇𝑡 , 𝜎𝑡)d𝑎𝑡

∝∼ ∑
𝑖 (𝜇2𝑖 + 𝜎

2

𝑖
)∇𝜃𝑤𝑖 (s𝑡 |𝜃)

∝ ∑
𝑖
(𝑖−𝑛)2+1

𝑛2

= 𝑛
3
+ 7

6𝑛 −
1

2

∼ 1 − 3

2𝑛 +𝑂 (
1

𝑛2
).

(21)

Given V[∇𝜃 𝐽 (𝜃) |𝑎𝑡] = 0 when 𝑛 = 1, from Equation 21, for any

𝑛 > 0, the variance of policy gradient V[∇𝐽 (𝜃) |𝑎𝑡] will increase
with 𝑛. Though the assumptions usually are hard to meet perfectly

in practice, this still gives us an insight that employing a large

number of particles may result in more challenge to optimization.

This conclusion is consistent with that in the case of uniform

discretization [Tang andAgrawal 2019] where the variance of policy

gradient is shown to satisfy

V[∇𝜃 𝐽 (𝜃) |𝑎𝑡]discrete ∼ 1 − 1

𝑛
. (22)

That is to say, in either PFPN or uniform discretization scheme,

we cannot simply improve the control performance of the police by

employing more atomic actions, i.e. by increasing the number of

particles or using more bins in the uniform discretization scheme,

since the gradient variance increases as the discretization resolution

increases. However, PFPN has a slower increase rate, which implies

that it might support more atomic actions before performance drops

due to the difficulty in optimization. Additionally, compared to the

fixed, uniform discretization scheme, atomic actions represented

by particles in PFPN are movable and their distribution can be

optimized. This means that PFPN has the potential to provide better

discretization scheme using fewer atomic actions to meet the fine

control demand and thus be more friendly to optimization using

policy gradient.

F PFPNWITH OFF-POLICY POLICY
GRADIENT ALGORITHMS

To enable PFPN applicable in state-action value based off-policy

algorithms, we propose a reparamterization trick in this section

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Pei Xu and Ioannis Karamouzas

such that a sampled action 𝑎P
𝜃
(s𝑡) can be differentiable to the policy

network parameter 𝜃 .

F.1 Reparameterization Trick
Let x(s𝑡 |𝜃) ∼ Concrete({𝑤𝑖 (s𝑡 |𝜃); 𝑖 = 1, 2, · · · }, 𝜆) is a sampling

result of a relaxed version of the one-hot categorical distribution

supported by the probability of {𝑤𝑖 (s𝑡 |𝜃); 𝑖 = 1, 2, · · · }, where
x(s𝑡 |𝜃) = {𝑥𝑖 (s𝑡 |𝜃); 𝑖 = 1, 2, · · · } is reparametrizable and 𝜆 is

picked to be 1 in our implementation.We apply the Gumbel-softmax

trick [Jang et al. 2017] to get a sampled action value as

𝑎′(s𝑡) = stop

(∑
𝑖

𝑎𝑖𝛿 (𝑖, argmax x(s𝑡 |𝜃))
)
, (23)

where 𝑎𝑖 is the sample drawn from the distribution represented

by the particle 𝑖 with parameter 𝜙𝑖 , stop(·) is a “gradient stop”

operation, and 𝛿 (·, ·) denotes the Kronecker delta function. Then,
the reparameterized sampling result can be written as follows:

𝑎P
𝜃
(s𝑡) =

∑
𝑖

(𝑎𝑖 −𝑎′(s𝑡))𝑚𝑖 +𝑎′(s𝑡)𝛿 (𝑖, argmax x) ≡ 𝑎′(s𝑡), (24)

where 𝑚𝑖 := 𝑥𝑖 (s𝑡 |𝜃) + stop(𝛿 (𝑖, argmax x(s𝑡 |𝜃)) − 𝑥𝑖 (s𝑡 |𝜃)) ≡
𝛿 (𝑖, argmax x(s𝑡 |𝜃)) composing a one-hot vector that approximates

the samples drawn from the corresponding categorical distribution.

Since 𝑥𝑖 (s𝑡 |𝜃) drawn from the concrete distribution is differentiable

to the parameter 𝜃 , the gradient of the reparameterized action

sample can be obtained by

∇𝜃𝑎P𝜃 (s𝑡) =
∑
𝑖 (𝑎𝑖 − 𝑎′(s𝑡))∇𝜃𝑥𝑖 (s𝑡 |𝜃);

∇𝜙𝑖
𝑎P
𝜃

= 𝛿 (𝑖, argmax x(s𝑡 |𝜃))∇𝜙𝑖
𝑎𝑖 .

(25)

Through these equations, both the policy network parameter 𝜃

and the particle parameters 𝜙𝑖 can be updated by backpropagation

through the sampled action 𝑎′(s𝑡).

F.2 Policy Representation with Action Bounds
In off-policy algorithms, like DDPG and SAC, an invertible squash-

ing function, typically the hyperbolic tangent function, will be

applied to enforce action bounds on samples drawn from Gaussian

distributions, e.g. in SAC, the action for the 𝑘-th dimension at the

time step 𝑡 is obtained by

𝑎𝑡,𝑘 (𝜀, s𝑡) = tanh𝑢𝑡,𝑘 (26)

where 𝑢𝑡,𝑘 ∼ N(𝜇𝜃 (s𝑡), 𝜎2𝜃 (s𝑡)), 𝜇𝜃 (s𝑡) and 𝜎
2

𝜃
(s𝑡) are parameters

generated by the policy network with parameter 𝜃 , and 𝑢𝑡,𝑘 can

be written 𝑢𝑡,𝑘 = 𝜇𝜃 (s𝑡) + 𝜉𝑡,𝑘𝜎2𝜃 (s𝑡) given a noise variable 𝜉𝑡,𝑘 ∼
N(0, 1) such that 𝑎𝑡,𝑘 is reparameterizable.

Let a𝑡 = {tanh𝑢𝑡,𝑘 } where 𝑢𝑡,𝑘 , drawn from the distribution

represented by a particle with parameter 𝜙𝑡,𝑘 , is a random variable

sampled to support the action on the 𝑘-th dimension. Then, the

probability density function of PFPN represented by Equation 3

can be rewritten as

𝜋P
𝜃
(a𝑡 |s𝑡) =

∏
𝑘

∑
𝑖

𝑤𝑖,𝑘 (s𝑡 |𝜃)𝑝𝑖,𝑘 (𝑢𝑡,𝑘 |𝜙𝑖,𝑘)/(1 − tanh2 𝑢𝑡,𝑘),

(27)

and the log-probability function becomes

log𝜋P
𝜃
(a𝑡 |s𝑡) =

∑
𝑘 log

[∑
𝑖 𝑤𝑖,𝑘 (s𝑡 |𝜃)𝑝𝑖,𝑘 (𝑢𝑡,𝑘 |𝜙𝑖,𝑘)

−2
(
log 2 − 𝑢𝑡,𝑘 − softplus(−2𝑢𝑡,𝑘)

)]
.

(28)

In our SAC implementation, we use Gaussian noises to generate

action samples, i.e. 𝑢𝑖,𝑘 ∼ N(𝜇𝑖,𝑘 , 𝜉2𝑖,𝑘) where 𝜇𝑖,𝑘 and 𝜉𝑖,𝑘 are the

parameters for the 𝑖-th particle at the 𝑘-th action dimension.

	Abstract
	1 Introduction
	2 Background
	3 Particle Filtering Policy Network
	3.1 Particle-Based Action Policy
	3.2 Training
	3.3 Resampling
	3.4 Action-Value Based Optimization

	4 Experiments
	4.1 Setup
	4.2 Baseline Comparison
	4.3 Motion Quality
	4.4 Robustness
	4.5 Ablation Study
	4.6 PFPN Results with SAC

	5 Discussion and Future Work
	Acknowledgments
	References
	A Multi-modal Policy
	B Hyperparameters
	C Additional Results
	C.1 Time Complexity
	C.2 Baselines

	D Policy Network Logits Correction during Resampling
	E Variance of Policy Gradient in PFPN Configuration
	F PFPN with Off-Policy Policy Gradient Algorithms
	F.1 Reparameterization Trick
	F.2 Policy Representation with Action Bounds

