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1. Introduction

In this paper, we study the problem of maximizing a nonmonotone submodular function subject to a cardinality
(size) constraint in the streaming model. This problem captures problems of interest in a wide range of domains,
such as machine learning, data mining, combinatorial optimization, algorithmic game theory, social networks,
and many others. A representative application is data summarization, in which the goal is to select a small subset
of the data that captures the salient features of the overall data set (Badanidiyuru et al. [4]). One can model these
problems as submodular maximization with a cardinality constraint: the submodular objective captures how in-
formative the summary is as well as other considerations, such as how diverse the summary is, and the cardinali-
ty constraint ensures that the summary is small. Obtaining such a summary is very beneficial when working
with massive data sets that may not even fit into memory because it makes it possible to analyze the data using
algorithms that would be prohibitive to run on the entire data set.

There have been two main approaches to deal with the large size of modern data sets: the distributed computa-
tion approach partitions the data across many machines and uses local computation on the machines and
communication across the machines in order to perform the analysis, and the streaming computation approach
processes the data in a stream using only a small amount of memory and (ideally) only a single pass over the
data. Classical algorithms for submodular maximization, such as the greedy algorithm, are not suitable in these
settings because they are centralized and require many passes over the data. Motivated by the applications as
well as theoretical considerations, there has been a significant interest in studying submodular maximization
problems in both the distributed and streaming settings, leading to many new results and insights (Badanidiyuru
et al. [4], Barbosa et al. [5, 6], Chakrabarti and Kale [14], Chekuri et al. [17], Epasto et al. [21], Feldman et al. [25],
Kumar et al. [33], Mirrokni and Zadimoghaddam [37], Mirzasoleiman et al. [38—40], Norouzi-Fard et al. [43]).
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Despite this significant progress, several fundamental questions remain open in both the streaming and dis-
tributed settings. In the streaming setting, which is the main focus of this paper, submodular maximization is
fairly well understood when the objective function is additionally monotone—that is, we have f(A) < f(B) when-
ever A C B. For example, the greedy approach, which obtains an optimal (1 —1/e)-approximation in the central-
ized setting when the function is monotone (Nemhauser et al. [42]), can be adapted to the streaming model
(Badanidiyuru et al. [4], Kumar et al. [33]). This yields the single-threshold greedy algorithm: make a single pass
over the data and select an item if its marginal gain exceeds a suitably chosen threshold. If the threshold is cho-
sen to be f(OPT)/(2k), where f(OPT) is the value of the optimal solution and k is the cardinality constraint, then
the single-threshold greedy algorithm is guaranteed to achieve 1/2-approximation. Although the value of the op-
timal solution is unknown, it can be estimated based on the largest singleton value even in the streaming setting
(Badanidiyuru et al. [4]). The algorithm uses the maximum singleton value to make O(e 'logk) guesses for
f(OPT), and for each guess, it runs the single-threshold greedy algorithm, which leads to (1/2 — ¢)-approxima-
tion. Remarkably, this approximation guarantee is optimal in the streaming model even if we allow unbounded
computational power: Feldman et al. [27] show that any algorithm for this problem that achieves an approxi-
mation better than 1/2 requires Q(1/k*) memory, where n is the length of the stream. Additionally, the single-
threshold greedy algorithm enjoys a fast update time of O(¢ 'logk) marginal value computations per item and
uses only O(e'klogk) space.’

In contrast, the general problem with a nonmonotone objective has proven to be considerably more chal-
lenging. Even in the centralized setting, the greedy algorithm fails to achieve any constant approximation
guarantee when the objective is nonmonotone. Thus, several approaches have been developed for handling
nonmonotone objectives in this setting, including local search (Feige et al. [22], Lee et al. [35, 34]), continu-
ous optimization (Buchbinder and Feldman [8], Ene and Nguyen [20], Feldman et al. [26]), and sampling
(Buchbinder et al. [12], Feldman et al. [24]). The currently best approximation guarantee is 0.385 (Buchbinder
and Feldman [8]), the strongest inapproximability is 0.491 (Gharan and Vondrak [29]), and it remains a
long-standing open problem to settle the approximability of submodular maximization subject to a cardinali-
ty constraint.

Adapting these techniques to the streaming setting is challenging, and the approximation guarantees are
weaker. The main approach for nonmonotone maximization in the streaming setting has been to extend the
local search algorithm of Chakrabarti and Kale [14] from monotone to nonmonotone objectives. This
approach was employed in a sequence of works (Chekuri et al. [17], Feldman et al. [25], Mirzasoleiman et al.

[38]), leading to the currently best approximation of (3 +2v2)™! ~ 0.1715.? This naturally leads to the follow-
ing questions:

e What is the optimal approximation ratio achievable for submodular maximization in the streaming model? In
particular, is it possible to achieve 1/2 — e-approximation using an algorithm that uses only poly(k, 1/¢) space?

e [s there a good streaming algorithm for nonmonotone functions based on the single-threshold greedy algo-
rithm that works so well for monotone functions?

e Can we exploit existing heuristics for the off-line problem in the streaming setting?

1.1. Our Contributions

In this work, we give an affirmative answer to all of these questions. Specifically, we give a streaming algorithm®
that performs a single pass over the stream and outputs sets of size O(k/¢) that can be postprocessed using any
off-line algorithm for submodular maximization. The postprocessing is itself quite straightforward: we simply
run the off-line algorithm on the output set to obtain a solution of size at most k. We show that, if the off-line al-
gorithm achieves a-approximation, then we obtain (a/(1 + @) — ¢)-approximation. One can note that, if we post-
process using an exact (exponential time) algorithm, we obtain (1/2 — ¢)-approximation. This matches the inap-
proximability result proven by Feldman et al. [27] for the special case of a monotone objective function.
Furthermore, we show that, in the nonmonotone case, any streaming algorithm guaranteeing (1/2 + ¢)-approxi-
mation for some positive constant ¢ must use in fact Q(n) space.* Thus, we essentially settle the approximability
of the problem if exponential-time computation is allowed.

The best (polynomial-time) approximation guarantee that is currently known in the off-line setting is @ = 0.385
(Buchbinder and Feldman [8]). If we postprocess using this algorithm, we obtain 0.2779-approximation in poly-
nomial time, improving over the previously best polynomial-time approximation of 0.1715 from Feldman et al.
[25]. The offline algorithm of Buchbinder and Feldman [8] is based on the multilinear extension and, thus, is
quite slow. One can obtain a more efficient overall algorithm by using the combinatorial random greedy
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algorithm of Buchbinder et al. [12] that achieves 1/e-approximation. Furthermore, any existing heuristic for the
off-line problem can be used for postprocessing, exploiting their effectiveness beyond the worst case.

1.2. Variants of Our Algorithm

Essentially, every algorithm for nonmonotone submodular maximization includes a randomized component.
Oftentimes this component is explicit, but in some cases, it takes more subtle forms such as maintaining multiple
solutions that are viewed as the support of a distribution (Buchbinder and Feldman [7], Feldman et al. [24]) or
using the multilinear extensions (which are defined via expectations) (Buchbinder and Feldman [8], Feldman
et al. [26]). We present in this work three variants of our algorithm based on the preceding three methods of
introducing a randomized component into the algorithm.

Perhaps the most straightforward way to introduce a randomized component into the single-threshold greedy
algorithm is to use the multilinear extension as the objective function and include only fractions of elements in
the solution (which corresponds to including the elements in the solution only with some bounded probability).
This has the advantage of keeping the algorithm almost deterministic (in fact, completely deterministic when the
multilinear extension can be evaluated deterministically), which allows for a relatively simple analysis of the al-
gorithm and a low space complexity of O(kloga~'/e?). However, the time complexity of an algorithm obtained
via this approach depends on the complexity of evaluating the multilinear extension, which, in general, can be
quite high. In Appendix C, we describe and analyze a variant of our algorithm (named STREAMPROCESSEXTENSION),
which is based on the multilinear extension.

To avoid the multilinear extension and its associated time-complexity penalty, one can use true randomization
and pass every arriving element to single-threshold greedy only with a given probability. However, analyzing
such a combination of single-threshold greedy with true randomization is difficult because it requires delicate care
of the event that the single-threshold greedy algorithm fills up the budget. In particular, this was the source of the
subtle error mentioned earlier in one of the results of Chekuri et al. [17]. Our approach for handling this issue is to
consider two cases depending on the probability that the budget is filled up in a run (this is a good event because
the resulting solution has good value). If this probability is sufficiently large (at least ¢), we repeat the basic algo-
rithm O(In(1/¢)/¢) times in parallel to boost the probability of this good event to 1 — ¢. Otherwise, the probability
that the budget is not filled up in a run is at least 1 — ¢, and conditioning on this event changes the probabilities by
only a 1 — ¢ factor. Another issue with true randomness is that some elements can be randomly discarded despite
being highly desirable. Following ideas from distributed algorithms (Barbosa et al. [5, 6], Mirrokni and Zadimog-
haddam [37]), this issue can also be solved by running multiple copies of the algorithm in parallel because such a
run guarantees that, with high probability, every desirable element is processed by some copy. Using this ap-
proach, we get a variant of our algorithm named StrReamMPrOCESSRANDOMIZED, which can be found in Appendix D.
STREAMPROCESSRANDOMIZED is combinatorial and fast (it has an update time of O(¢~2) marginal value computations
per element), but because of the heavy use of parallel runs, it has a slightly worse space complexity of O(k/¢?).

These two discussed variants of our algorithm appeared already in an earlier conference version of this paper
(Alaluf et al. [1]). Our main result, however, is a new variant of our algorithm (named StreaMPRrROCESS) based on
the technique of maintaining multiple solutions and treating them as the support of a distribution. In retrospect,
creating a variant based on this technique is natural because it combines the advantages of the two previous ap-
proaches. Specifically, we get an algorithm that is deterministic and combinatorial, has a relatively simple analy-
sis, and enjoys a low space complexity of O(ke?loga~!) and a low update time of O(¢2log(k/a)) marginal value
computations per element.

Although the last variant of our algorithm has the best time and space guarantees, we give also the two earlier
variants for two reasons. The first reason is that they demonstrate the first use of techniques such as continuous
extensions and random partitions in the context of streaming algorithms for submodular maximization and,
thus, greatly expand the toolkit available in this context. These techniques have proven to be quite versatile in
the sequential and distributed settings, and we hope that they will lead to further developments in the streaming
setting as well. The second reason is that, although the asymptotic approximation guarantees of all three variants
of our algorithm are identical given a black box off-line a-approximation algorithm, they might differ when the
off-line algorithm has additional properties. For example, the approximation ratio of the off-line algorithm might
depend on the ratio between k and the number of elements in its input (see Buchbinder et al. [12] for an example
of such an algorithm). Given such an off-line algorithm, it might be beneficial to set the parameters controlling
the number of elements passed to the off-line algorithm so that only a moderate number of elements is passed,
which is a regime in which the three variants of our algorithm produce different approximation guarantees.
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Hence, one of the first two variants of our algorithm might end up having a better approximation guarantee than
that of the last variant if future research yields off-line algorithms with relevant properties.

1.3. Additional Related Work

The problem of maximizing a nonnegative monotone submodular function subject to a cardinality or a matroid
constraint was studied (in the off-line model) already in the 1970s. In 1978, Nemhauser et al. [42] and Fisher et al.
[28] showed that a natural greedy algorithm achieves an approximation ratio of 1 —1/e ~ 0.632 for this problem
when the constraint is a cardinality constraint and an approximation ratio of 1/2 for matroid constraints. The
1—1/e-approximation ratio for cardinality constraints was shown to be optimal already in the same year by
Nemhauser and Wolsey [41], but the best possible approximation ratio for matroid constraints was open for a
long time. Only a decade ago, Calinescu et al. [13] managed to show that a more involved algorithm, known as
“continuous greedy,” can achieve (1 —1/e)-approximation for this type of constraint, which is tight because mat-
roid constraints generalize cardinality constraints.

Unlike the natural greedy algorithm, continuous greedy is a randomized algorithm, which raises an interesting
question regarding the best possible approximation ratio for matroid constraints that can be achieved by a deter-
ministic algorithm. Very recently, Buchbinder et al. [9] made a slight step toward answering this question. Specif-
ically, they describe a deterministic algorithm for maximizing a monotone submodular function subject to a
matroid constraint whose approximation ratio is 0.5008. This algorithm shows that the 1/2-approximation of the
greedy algorithm is not the right answer for the aforementioned question.

Many works also study the off-line problem of maximizing a nonnegative (not necessarily monotone) submod-
ular function subject to a cardinality or matroid constraint (Buchbinder and Feldman [8], Buchbinder et al. [12],
Chekuri et al. [19], Ene and Nguyen [20], Feldman [23], Feldman et al. [26]). The most recent of these works
achieves an approximation ratio of 0.385 for both cardinality and matroid constraints (Buchbinder and Feldman
[8]). In contrast, it is known that no polynomial-time algorithm can achieve an approximation ratio of 0.497 for
cardinality constraints or 0.478 for matroid constraints, respectively (Gharan and Vondrék [29]).

The study of streaming algorithms for submodular maximization problems is related to the study of online algo-
rithms for such problems. A partial list of works on algorithms of the last kind includes Azar et al. [3], Buchbinder
etal. [10,11], Chan et al. [15], Kapralov et al. [30], and Korula et al. [32].

2. Preliminaries

2.1. Basic Notation

Let V denote a finite ground set of size n:=|V|. We occasionally assume without loss of generality that V =
{1,2,...,n} and use, for example, x = (x1,xy, .. .,x,) to denote a vector in RY. For two vectors X, Y€ RY, we let xXVYy
and x Ay be the vectors such that (xvy), = max{x,,y,} and (x Ay), = min{x,,y.} for alle € V. For a set S C V, we let
15 denote the indicator vector of S, that is, the vector that has one in every coordinate e € S and zero in every coordi-
nate e € V'\ S. Given an element e € V, we use 1, as shorthand for 1. Furthermore, if S is a random subset of V, we
use E[1s] to denote the vector p such that p, = Pr[e € S] forall e € V (i.e., the expectation is applied coordinate-wise).

2.2. Submodular Functions

In this paper, we consider the problem of maximizing a nonnegative submodular function subject to a cardinality
constraint. A set function f : 2" — R is submodular if f(A) + f(B) > f(A N B) + f(A U B) for all subsets A, B C V. Ad-
ditionally, given a set SC V and an element e € V, we use f(e|S) to denote the marginal contribution of e to S
with respect to the set function f, that s, f(e| S) = f(S U {e}) — f(S).

2.3. Continuous Extensions

We make use of two standard continuous extensions of submodular functions. The first of these extensions is
known as the multzlmear extension. To define this extension, we first need to define the random set R(x). For every
vector x € [0, 1] R(x) is defined as a random subset of V that includes every element e € V with probability x, in-
dependently. The multilinear extension F of f is now defined for every x € [0,1]" by

F(x) =E[f(R®)] = > f(A)-Pr[R(x) = Al = D | f(A) -] [xe- [ [A-x0) |
Acv ACV ceA  eeA
One can observe from the definition that F is indeed a multilinear function of the coordinates of x as suggested

ap(x)

by its name. Thus, if we use the shorthand J.F(x) for the first partial derivative of the multilinear extension

F, then d F(x) = F(xv1,) = F(x ATy\(g)-



Alaluf et al.: Streaming Submodular Maximization with a Cardinality Constraint
Mathematics of Operations Research, Articles in Advance, pp. 1-24, © 2022 INFORMS 5

The second extension we need is known as the Lovisz extension. Unlike the multilinear extension that explicitly
appears in one of the variants of our algorithm, the Lovasz extension is not part of any of these variants. Howev-
1V

er, it plays a central role in the analyses of two of them. The Lovész extension f : [0,1]" — R is defined as follows.

For every x € [0, 1]V,f(x) =Eg-j011[f({e € V : x, > 0})], where we use the notation 0 ~ [0, 1] to denote a value cho-
sen uniformly at random from the interval [0,1]. The Lovasz extension f of a nonnegative submodular function
has the following properties: (1) convexity: cf (x)+(1- c)f (y) = f (cx+(1—-c)y) forallx,y € [0,1]" and all c € [0, 1]
(Lovasz [36]); (2) restricted scale invariance: f (cx) = cf (x) for all x € [0,1]” and all ¢ € [0, 1]; (3) it lower bounds the
multilinear extension, that is, F(x) > f (x) for every x € [0, 11V (Vondrak [44, lemma A.4]).

3. Simplified Algorithm
The properties of our main algorithm (STREamMPrOCESs—the third variant discussed earlier) are summarized by
the following theorem.

Theorem 3.1. Assume there exists an a-approximation off-line algorithm OFFLINEALG for maximizing a nonnegative sub-
modular function subject to a cardinality constraint whose space complexity is nearly linear in the size of the ground set.
Then, for every constant ¢ € (0,1], there exists an (a/(1 + a) — €)-approximation semistreaming algorithm for maximizing
a nonnegative submodular function subject to a cardinality constraint. The algorithm stores O(ke=2) elements and makes
O(e™2logk) marginal value computations while processing each arriving element.” Furthermore, if OFFLINEALG is determin-
istic, then so is the algorithm that we get.

In this section, we introduce a simplified version of the algorithm used to prove Theorem 3.1. This simplified
version (given as Algorithm 1) captures our main new ideas but makes the simplifying assumption that it has ac-
cess to an estimate 7 of f(OPT) obeying (1 —¢/2)-f(OPT) < 7 < f(OPT). Such an estimate can be produced using
well-known techniques at the cost of a slight increase in the space complexity and update time of the algorithm.
More specifically, in Section 4, we formally show that one such technique from Kazemi et al. [31] can be used for
that purpose and it increases the space complexity and update of the algorithm only by factors of O(e'loga™)
and O(¢og(k/a)), respectively.

Algorithm 1 gets two parameters: the approximation ratio & of OFFLINEALG and an integer p > 1. The algorithm
maintains p solutions Sy, S»,...,S,. All these solutions start empty, and the algorithm may add each arriving ele-
ment to at most one of them. Specifically, when an element e arrives, the algorithm checks whether there exists a
solution S; such that (1) S; does not already contain k elements, and (2) the marginal contribution of e with respect
to S; exceeds the threshold of ct/k for ¢ = a/(1 + ). If there is such a solution, the algorithm adds e to it (if there
are multiple such solutions, the algorithm adds e to an arbitrary one of them); otherwise, the algorithm discards
e. After viewing all of the elements, Algorithm C.1 generates one more solution S, by executing OFFLINEALG on
the union of the p solutions Sy, S,,...,S,. The output of the algorithm is then the best solution among the p + 1
generated solutions.

Algorithm 1 (StreamProcess, Simplified (p, o))
Letc —a/(1+a).
fori=1topdoLetS; — O.
for each arriving element e do
Lif there exists an integer 1 <i < p such that |S;| <kand f(e| S;) > ¢, then
LUpdate S; < S; U {e} (if there are multiple options for i, pick an arbitrary one).
Find another feasible solution S, € U_, S; by running OrrLINEALG with U?_; S; as the ground set.
return the solution maximizing f among S, and the p solutions Sy, S5, ..., Sp.

NSOl ®N =

Because Algorithm 1 stores elements only in the p + 1 solutions it maintains and all these solutions are feasible
(and, thus, contain only k elements), we immediately get the following observation. Note that this observation
implies (in particular) that Algorithm 1 is a semistreaming algorithm for a constant p when the space complexity
of OFFLINEALG is nearly linear.

Observation 3.1. Algorithm 1 stores O(pk) elements and makes at most p marginal value calculations while proc-
essing each arriving element.

We now divert our attention to analyzing the approximation ratio of Algorithm 1. Let us denote by S, the final
set S; (i.e., the content of this set when the stream ends) and consider two cases. The first (easy) case is when at
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least one of the solutions S1,S,, ..., S, reaches a size of k. The next lemma analyzes the approximation guarantee
of Algorithm 1 in this case.

Lemma 3.1. If there is an integer 1 < i < p such that |S;| = k, then the output of Algorithm 1 has value of at least 2%

1+a

Proof. Denote by ¢1, e, ..., ¢ the elements of S, in the order of their arrival. Using this notation, the value of f (@i)
can be written as follows:

aT

R k
f(si)zf(@)+§f(ej|{€1,ez,- 1¢-1}) 2 Z](1+a<)k 1+a’

where the inequality holds because the nonnegativity of fimplies f(J) > 0 and Algorithm 1 adds an elemente; to S;
only whenf(e; | {e1,e2,...,611}) = ¢ = = it Thelemma now follows because the solution output by Algorithm 1 is
atleastasgoodasS;. O

Consider now the case in which no set S; reaches the size of k. In this case, our objective is to show that at least
one of the solutions computed by Algorithm 1 has a large value. Lemmas 3.3 and 3.4 lower bound the value of
the average solution among S1,S»,...,S, and the solution S,, respectively. The proof of Lemma 3.3 uses the fol-
lowing known lemma.

Lemma 3.2 (Buchbinder et al. [12, Lemma 2.2]). Let f : 2V — Ry be a nonnegative submodular function. Denote by A(p)
a random subset of A, where each element appears with probability at most p (not necessarily independently). Then,

E[f(A()] = (1 —p)-f(D).
Let O = OPT\ U’ S;, and let b = |O|/k.

Lemma 3.3. If |S,| <k for every integer 1<i<p, then for every fixed set ACV,p'- S f(S;UA) = (1-p™T)
f(OUA)-abt/(1+a).

Proof. The elements in O were rejected by Algorithm 1. Because no set S; reaches a size of k, this means that the
marginal contribution of the elements of O with respect to every set S; at the time of their arrival was smaller
than c7/k. Moreover, because Algorithm 1 only adds elements to its solutions during its execution, the submodu-
larity of f guarantees that the marginals of the elements of O are below this threshold also with respect to

S{UA,S,U A,.. .,ép U A. More formally, we get

A cT art , .
f(elSiUA)<?—k(1+a) Vee O and integer 1 <i<p.
Using the submodularity of f again, this implies that, for every integer 1 <i <p,
b
FBUOUA) <G UA) + D f(elS U A) <f(5 U A) +]0|- k(1 3 =fGuA) + ad
ecO

Adding up these inequalities (and dividing by p), we get

azb’c

p! Zf(s UA)2p - Zf(s UOUA) -

We now note that p' - 37 £(5; U O U A) can be viewed as the expected value of a nonnegative submodular func-
tion g(S) =f(SU O U A) over a random set S that is equal to every one of the sets 5;,5,, .. .,9,, with probability

1/p. Because the sets S 1,32,. . .,§p are disjoint, S contains every element with probability at most 1/p, and thus,
by Lemma 3.2,

p A
P DS UOUA) =E[g(9)] = (1-p")-g(@) =(1-p!)-FOUA).
i=1

The lemma now follows by combining the last two inequalities. O

As mentioned, our next step is to get a lower bound on the value of f(S,). One easy way to get such a lower

bound is to observe that OPT \ O is a subset of U’f:l S; of size at most k and, thus, is a feasible solution for the
instance faced by the algorithm OFFLINEALG used to find S,, which implies E[f(S,)] = a-f(OPT \ O) because
OFFLINEALG is an a-approximation algorithm. The following lemma proves a more involved lower bound by
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considering the vectors (b1; ) v1opr\o as feasible fractional solutions for the same instance (using rounding
methods, such as pipage rounding or swap rounding (Calinescu et al. [13], Chekuri et al. [18]), such feasible
factional solutions can be converted into integral feasible solutions of at least the same value).
Lemma 3.4. If|§i| <k for every integer 1 <i < p, then E[f(S,)] > abt(1-p~! —ab/(1+a)) + a(1 - b) - f(OPT\ O).
Proof. Fix some integer 1 <7 <p and consider the vector (b1; ) v 1opt\0- Clearly,

(b15) V Toproll <b- 151 +|OPT\ O] < |O] +|OPT\ O] = |OPT| < £,
where the second inequality holds by the definition of b because |S;| < k. Given the last property of the vector
(b13) V 1opr\0, standard rounding techniques such as pipage rounding (Célinescu et al. [13]) and swap rounding
(Chekuri et al. [18]) can be used to produce from this vector a set A; C S; U (OPT\O) c Ule S ; of size at most k
such that f(A;) > F((b15 ) V lopr\0). Because S, is produced by the algorithm OFFLINEALG whose approximation
ratio is a, and A, is one possible output for this algorithm, this implies E[f(S,)] > a - f(A;) = a- F((b1 ) V 1op\0)-
Furthermore, by averaging this equation over all the possible values of i, we get

P
E[f(So)] = ap™*- ZF((blgi) V 1oprm\0)

i=1
>apt-|(1 —b)-if(OPT\O)HJ-if(Si U (OPT\ 0))
i=1 i=1

>a(1-b)-f(OPT\ O) +ab[(1-p~')-f(OPT) - abt/(1+a)],

where the second inequality holds because the multilinear extension F of a submodular function f is known to be
concave along nonnegative directions (Célinescu et al. [13]), which implies that F((¢- 1) V 1opr\0) is a concave

function of t within the range [0,1] (and b falls inside this range). The last inequality holds by Lemma 3.3 (for
A =0PT)\ 0), and the lemma now follows by recalling that f(OPT) >t. O

Combining the guarantees of the last two lemmas, we can now obtain a lower bound on the value of the solu-
tion of Algorithm 1 in the case that |S;| <k for every integer 1 <i < p, which is independent of b.

Corollary 3.1. If |S,| < k for every integer 1 < i < p, then the output of Algorithm 1 has value of at least (ﬁ - Zp‘l)T.

Proof. The corollary follows immediately from the nonnegativity of f when p = 1. Thus, we may assume p > 2 in
the rest of the proof.

Because Algorithm 1 outputs the best solution among the p + 1 solutions it creates, we get by Lemmas 3.3 (for
A =) and 3.4 that the value of the solution it outputs is at least

p A
max{p_lzf(si),f(sg)} >max{(1-p~') f(O)—abt/(1+a),
i=1

abt(1-p™ —ab/(1+a))+a(1-b)-f(OPT\ O)}

= #Jlb)—pl [(1-p™)-f(0) - abr/(1+ )]
1 —p_l

tadopy 1oy bt -p —ab/(L+ ) +a(1-b) fOPT\ O))

Note now that the submodularity and nonnegativity of f guarantee together f(O)+f(OPT \ O) > f(OPT) > .
Using this fact and the nonnegativity of f, the previous inequality yields

max{p‘lzlef(éi),f(so)}

art
1-b)(1-pH—ab(1-b)/1+a)+b(1-pH(1-pt—ab/(1+a))

Zmax{O, al=D)+1-p }
(1= B)(1L—p) = ab(l ~b)/(1 +a) + b(1 —p)(1 —p — ab/(1 + )

Zmax{O, a(l—0)+1 }

_(1-b)—ab(1-b)/(1+a) +b(1-ab/( +a)) _

-1
a(l=D)+1 2
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where the last two inequalities hold because a € (0,1], b € [0,1] and p > 2. Simplifying the last inequality, we get

maX{P‘lzlef S.f (So)} _(1=b)(1+a)—ab(l-b)+b(1+a-ab)
at - 1+ a)a(dl-Db)+1]
_ 1+a(1-b) L1 .
“Uroi-b+1] * IR TR

— 2p_1

The corollary now follows by rearranging this inequality (and recalling that a € (0,1]). O

Note that the guarantee of Corollary 3.1 (for the case it considers) is always weaker than the guarantee of Lem-
ma 3.1. Thus, we can summarize the results we have proven so far using the following proposition.

Proposition 3.1. Algorithm 1 stores O(pk) elements and makes at most p marginal value calculations while processing
each arriving element, and its output set has an expected value of at least (a /(1 + a) — 2p~')z.

Using the last proposition, we can now prove the following theorem. As discussed at the beginning of the sec-
tion, in Section 4, we explain how the assumption that 7 is known can be dropped at the cost of a slight increase
in the number of elements stored by the algorithm and its update time, which yields Theorem 3.1.

Theorem 3.2. Assume there exists an a-approximation off-line algorithm OFFLINEALG for maximizing a nonnegative sub-
modular function subject to a cardinality constraint whose space complexity is nearly linear in the size of the ground set.
Then, for every constant ¢ € (0,1], there exists a semistreaming algorithm that assumes access to an estimate T of f(OPT)
obeying (1—¢/2)-f(OPT) <7 < f(OPT) and provides a (a/(1 + a) — €)-approximation for the problem of maximizing a
nonnegative submodular function subject to a cardinality constraint. This algorithm stores O(ke ™) elements and calculates
O(e™") marginal values while processing each arriving element.

Proof. Consider the algorithm obtained from Algorithm 1 by setting p = [4/¢]. By Proposition 3.1 and the nonne-
gativity of f, this algorithm stores only O(pk) = O(ke™!) elements and calculates only p = O(¢~!) marginal values
while processing each arriving element, and the expected value of its output set is at least

2p*1)f} > (ﬁ - %) -(1-¢/2)-f(OPT) > (ﬁ - e) .f(OPT),

max{O, (% —

where the first inequality holds because p > 4/¢ and 7 obeys, by assumption, 7 > (1 —¢/2) - f(OPT). O

4. Complete Algorithm
In this section, we explain how one can drop the assumption from Section 3 that the algorithm has access to an
estimate 7 of f(OPT). This completes the proof of Theorem 3.1.

Technically, we analyze in this section the variant of Algorithm 1 given as Algorithm 2. It gets the same two
parameters o and p received by Algorithm 1 plus an additional parameter ¢’ € (0,1) controlling the guaranteed
quality of the output. The algorithm is based on a technique originally from Kazemi et al. [31]. Throughout its ex-
ecution, Algorithm 2 tracks in m a lower bound on the value of f(OPT). The algorithm also maintains a set T =
{A+¢&)m/A+e)<(A+¢) <mk/c,i€Z} of values that, given the current value of the lower bound m, are (1)
possible estimates for f(OPT) at the current point and (2) not so large that they dwarf this lower bound (of
course, T includes only a subset of the possible estimates obeying these requirements). For every estimate 7 in T,
the algorithm maintains p sets 5,5;,...,5;. We note that the set of solutions maintained is updated every time
that T is updated (which happens after every update of m). Specifically, whenever a new value 7 is added to T,
the algorithm instantiate p new sets 5,5, ...,5,, and whenever a value 7 is dropped from T, the algorithm dele-
tes 57,553, .. .,S;.

Although a value 7 remains in T, Algorithm 2 maintains the sets 57,53, ..., S), in exactly the same way that Al-
gorithm 1 maintains its sets Sq, S, ...,S, given this value 7 as an estimate for f(OPT). Moreover, we show that, if
7 remains in T when the algorithm terminates, then the contents of S7,S3, ..., S; when the algorithm terminates
are equal to the contents of the sets S1,5,,...,5, when Algorithm 1 terminates after executing with this 7 as the
estimate for f(OPT). Thus, one can view Algorithm 2 as parallel execution of Algorithm 1 for many estimates of
f(OPT) at the same time. After viewing the last element, Algorithm 2 calculates for every 7 € T an output set S,
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based on the sets 57, 53,...,S), in the same way Algorithm 1 does that and then outputs the best output set com-
puted forany T € T.

Algorithm 2 (StreamProcEss (p, @, 7))
1 Letc—a/(1+a).

2 Letme—f(@)and T « {(1+ e m/(1+¢)<(1+ e < mk/c,h € Z}.
3 for each arriving element e do

4 | Letm — max{f({e}), maxcer<is,f(S}.

5 if m <m’ then
6

7

8

9

Delete S7, S5, ..., S}, for every value 7 removed from T in line 6.

LUpdate me—mn’,and then T « {(1+¢’)" | m/(1+¢e)<(1+ e < mk/c,h € Z}.
Initialize S < @ for every value T added to T in line 6 and integer 1 <i < p.

for every T €T do
10 if there exists an integer 1 <i < p such that |Sf| <k and f(e| S7) > ¢ then
11 | Update ST « ST U {e} (if there are multiple options for i, pick an arbitrary one).
12 foreveryt €T do
13 Find another feasible solution St C U?_; ST by running OFFLINEALG with U!_; ST as the ground set.

14 | Let S, be the better solution among S? and the p solutions S, S5, . .., S,
15  return the best solution among {S+}.cr or the empty set if T = Q.

We begin the analysis of Algorithm 2 by providing a basic lower bound on the value of each set S7. This lower
bound can be viewed as a generalized counterpart of Lemma 3.1.

Lemma 4.1. At every point during the execution of the algorithm, for every T €T and 1<i<p, it holds that
f(57) z at-|S{I/I(1 + a)k].

Proof. Denote by ey, e, .. €57 the elements of S} in the order of their arrival. Using this notation, the value of
f(S7) can be written as follows:

ISt ISt

A =1@)+ 3ftq e )= B = 1 o,

i=1

where the inequality holds because the nonnegativity of f implies f(&) > 0 and Algorithm 2 adds an element ¢; to
S7 only when f(e; | {e1,e2,...,¢j-1}) 2 ct/k=at/[(1+a)k]. O

Using the last lemma, we can now prove the following observation, which upper bounds the size of each set
S7 maintained by Algorithm 2 and, thus, serves as a first step toward bounding the space complexity of this
algorithm.

Observation 4.1. At the end of every iteration of Algorithm 2, the size of the set S} is at most mk/(ct) + 1 for ev-
ery 7 € T and integer 1 <i <p.

Proof. Let S; denote the content of the set ST at the beginning of the iteration. Because at most a single element is
added to ST during the iteration, we get via Lemma 4.1 that the value of the set S; is at least

at-[5;|_at-(Sf|=1) _ct-(Sf|-1)
A+a)k~ (1+a)k ko

The way in which Algorithm 2 updates m guarantees that, immediately after the update of m at the beginning of
the iteration, the value of 1 was at least as large as the value of 5;, and thus, we get

ct-(IS71-1)
> -~ 7
m> 2 ,

which implies the observation. O

We are now ready to bound the space complexity and update time of Algorithm 2.
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Lemma 4.2. Algorithm 2 can be implemented so that it stores O(pk(e’)_lloga‘l) elements and makes only O(p(e’)_1
log(k/a)) marginal value calculations when processing each arriving element.

Proof. We begin the proof with two technical calculations. First, note that the number of estimates in T is upper
bounded at all times by

km/c )_ Ink—1Inc Ink—1Inc

_ -1 _
1 + 10g1+€, (m + m < + W = O((é ) (logk log C))

Second, note that

> mesﬂ -1)< Zmin{pk, pmk} < > min{pk, ﬂ}

€T i=1 el ot hez c(1+ é")h
(1+s’)h+12m
m i Pk
< k- .
<pk HheZl 1+€,$(1+é) <m/c}|+hZ=:§(1+e’)h
m/c pk pk-(Inct+2) pk(1+¢)
< . - <
<pk (10g1+6,( m )+2)+1—1/(1+£’)_ In(1 + ¢’) * &

= O(pk(e’) log c™) + O(pk(e’) ") = O(pk(e’) 'logc™),

where the first inequality follows from Observation 4.1 and the fact that all the sets maintained by Algorithm 2
are of size at most k, the second inequality follows from the definition of T, and the third inequality holds because
the first term on its right-hand side upper bounds the part of the sum that appears on its left-hand side corre-

sponding to 1 values obeying m < (1+¢')""! <m(1+¢’)/c, and the second term on the right-hand side of the in-
equality upper bounds the remaining part of the aforementioned sum.

We now observe that, when processing each arriving element, Algorithm 2 makes p marginal value calcula-
tions in association with every value 7 € T and another set of O(p) such calculations that are not associated with
any value of T (in line 4 of the algorithm). Thus, the total number of marginal value calculations made by the al-
gorithm during the processing of an arriving element is

p-ITI+0(p) =p- O((¢') " (logk —log ) + O(p) = O(p(¢") ' (logk ~log ) = O(p(e’) ' log k/c)).

We also note that Algorithm 2 has to store only the elements belonging to S} for some 7 € T and integer 1 <i <p.
Thus, in all these sets together, the algorithm stores O(pk(e’)_llog c~!) elements because

14 p
2 218i1=22 2 (8[| = 1) +pIT|

7€T i=1 T€eT i=1
= O(pk(e’)_llog cH+p- O((e’)_l(logk —logc)) = O(pk(e’)_llog ch).
To complete the proof of the lemma, it remains to note thatc=a/(1+a) > a/2. O

At this point, we divert our attention to analyzing the approximation guarantee of Algorithm 2. Let us denote
by 7z and T the final values of m and T, respectively.

Observation 4.2. We always have c € (0,1/2], and thus, T is not empty unless /i = 0.

Proof. Because a € (0,1] and a/(a + 1) is an increasing function of «,

a ( 0 1

c=ari€lorr1er|OV2 B

The last observation immediately implies that, when T is empty, all the singletons have zero values, and the
same must be true for every other nonempty set by the submodularity and nonnegativity of f. Thus, OPT = O,

which makes the output of Algorithm 2 optimal in the rare case in which T is empty. Hence, we can assume
from now on that T # @. The following lemma shows that T contains a good estimate for f(OPT) in this case.

Lemma 4.3. The set T contains a value % such that (1 ¢’) - f(OPT) < % < f(OPT).
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Proof. Observe that /1 > max{f(J), max.ev{f({e})}}. Thus, by the submodularity of f,

fOPT) <f(@)+ > [f({e}) —f(@)] < maX{ ), >] f({e})} <k < I%

ecOPT ecOPT

In contrast, one can note that m is equal to the value of f for some feasible solution, and thus, f(OPT) > 1. Because

T contains all the values of the form (1 +¢’)' in the range [7it/(1 + ¢’), kit /c], the preceding inequalities imply that
it contains, in particular, the largest value of this form that is still not larger than f(OPT). Let us denote this value
by 7. By definition, 7 < f(OPT). Additionally,

f(OPT)

T-(1+&)=f(OPT) =1 > mz(l—e’)-f(OPT). O

Let us now concentrate on the value 7 whose existence is guaranteed by Lemma 4.3 and let S1,5,,.. .,S,, de-
note the sets maintained by Algorithm 1 when it gets 7 as the estimate for f(OPT). Additionally, let us denote by
e1,e,...,e, the elements of V in the order of their arrival, and let ¢; be the element whose arrival made Algorithm
2add 7 to T (i.e, T was added to T by Algorithm 2 while processing ¢;). If 7 belonged to T from the very begin-
ning of the execution of Algorithm 2, then we define j = 1.

Lemma 4.4. All the sets 51,5,,...,5 p maintained by Algorithm 1 are empty immediately prior to the arrival of e;.

Proof. 1f j = 1, then the lemma is trivial. Thus, we assume j > 1 in the rest of this proof. Prior to the arrival of ¢;, ©
was not part of T. Nevertheless, because 7 € T, we must have at all times

A

m m
>

1+e 1+¢

T2

7

where the second inequality holds because the value m only increases over time. Therefore, the reason that 7 did
not belong to T prior to the arrival of ¢; must have been that m was smaller than c% /k. Because m is at least as
large as the value of any singleton containing an element already viewed by the algorithm we get, for every two
integers 1 <t<j—-land1<i<p,

> fllen) = (e |0) 2 Feldi A, )

where the second inequality follows from the nonnegativity of f and the last from its submodularity. Thus, ¢; is
not added by Algorithm 1 to any one of the sets S1,S,,..., ép, which implies that all these sets are empty at the
moment ¢; arrives. [

According to the preceding discussion, from the moment 7 gets into T, Algorithm 2 updates the sets
st,st, .. .,S; in the same way that Algorithm 1 updates 53,55, .. .,S,, (note that, once 7 gets into T, it remains

there for good because 7 € T). Together with the previous lemma, which shows that §1, S 2,0ee, S p are empty just
like S%,S%, ..., S+ at the moment ¢; arrives, this implies that the final contents of S}, 53, .. ., S; are equal to the final

contents of 51,55, ...,5 p, respectively. Because the set S: is computed based on the final contents of Sf, S;, ., S;[

in the same way that the output of Algorithm 1 is computed based on the final contents of 51,5, ..., 3,,, we get
the following corollary.

Corollary 4.1. If it is quaranteed that the approximation ratio of Algorithm 1 is at least B when (1—¢’)-f(OPT) <7 <
f(OPT) for some choice of the parameters o and p, then the approximation ratio of Algorithm 2 is at least B as well for this
choice of e and p.

We are now ready to prove Theorem 3.1.

Theorem 3.1 (Repeated for Clarity). Assume there exists an a-approximation off-line algorithm OFFLINEALG for maximiz-
ing a nonnegative submodular function subject to a cardinality constraint whose space complexity is nearly linear in the
size of the ground set. Then, for every constant ¢ € (0,1], there exists an (o /(1 + @) — €)-approximation semistreaming algo-
rithm for maximizing a nonnegative submodular function subject to a cardinality constraint. The algorithm stores
O(keloga') elements and makes O(e~2log(k/a)) marginal value computations while processing each arriving element.
Furthermore, if OFFLINEALG is deterministic, then so is the algorithm that we get.
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Proof of Theorem 3.1. The proof of Theorem 3.2 shows that Algorithm 1 achieves an approximation guarantee of
a/(1+a)— e when it has access to a value 7 obeying (1 —¢/2) - f(OPT) < 7 < f(OPT) and its parameter p is set to
[4/¢]. According to Corollary 4.1, this implies that, by setting the parameter p of Algorithm 2 in the same way
and setting ¢’ to €/2, we get an algorithm whose approximation ratio is at least a/(1 + a) — ¢ and does not assume
access to an estimate 7 of f(OPT).

It remains to bound the space requirement and update the time of the algorithm obtained in this way. Plug-
ging the equalities p = [4/¢] and ¢’ = ¢/2 into the guarantee of Lemma 4.2, we get that the algorithm we have ob-
tained stores O(ke?loga™) elements and makes O(¢?log(k/a)) marginal value calculations while processing
each arriving element. [
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Appendix A. Details About the Error in a Previous Work

As mentioned, Chekuri et al. [17] describes a semistreaming algorithm for the problem of maximizing a nonnegative (not
necessarily monotone) submodular function subject to a cardinality constraint and claims an approximation ratio of roughly
0.212 for this algorithm. However, an error was later found in the proof of this result (Chekuri [16]) (the error does not affect
the other results of Chekuri et al. [17]). For completeness, we briefly describe in this appendix the error found.

In the proof presented by Chekuri et al. [17], the output set of their algorithm is denoted by S. As is standard in the
analysis of algorithms based on single-threshold greedy, the analysis distinguishes between two cases: one case in
which S =k and a second case in which 5 <k. To argue about the second case, the analysis then implicitly uses the
inequality

E[f(5 UOPT)||S| <k] > (1 —~maxPrlee S]) -f(OPT). (A1)

It is claimed by Chekuri et al. [17] that this inequality follows from Lemma 3.2 (originally from Buchbinder et al. [12]).
However, this lemma can yield only the inequalities

E[f(5 UOPT)] > (1 — maxPrle € 5]) -f(OPT)

and

E[£(S UOPT)||S| < k] = (1 — maxPrle € S8 < k]) -f(OPT),
ee
which are similar to (A.1), but do not imply it.

Appendix B. Inapproximability

In this appendix, we prove an inapproximability result for the problem of maximizing a nonnegative submodular func-
tion subject to a cardinality constraint in the data stream model. This result is given by the next theorem. The proof of
the theorem is an adaptation of a proof given by Buchbinder et al. [10] for a similar result applying to an online variant
of the same problem.

Theorem B.1. For every constant ¢ >0, no data stream algorithm for maximizing a nonnegative submodular function subject to
cardinality constraint is (1/2 + €)-competitive unless it uses Q(|V|) memory.

Proof. Let k>1 and h>1 be two integers to be chosen later, and consider the nonnegative submodular function
f: 2V - R*, where V = {ui}f-:ll U {v,-}?:1 U {w}, defined as follows:

S| ifwes,
S) =
) k+‘Sn{ui}§;}‘ ifwes.

It is clear that f is nonnegative. One can also verify that the marginal value of each element in V is nonincreasing, and
hence, f is submodular.

Let ALG be an arbitrary data stream algorithm for the problem of maximizing a nonnegative submodular function sub-
ject to a cardinality constraint, and let us consider what happens when we give this algorithm the preceding function f as
input, the last element of V to arrive is the element w, and we ask the algorithm to pick a set of size at most k. One can
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observe that, before the arrival of w, ALG has no way to distinguish between the other elements of V. Thus, if we denote
by M the set of elements stored by ALG immediately before the arrival of w and assume that the elements of V' \ {w} ar-
rive in a random order, then every element of V'\ {w} belongs to M with the same probability of E[|M|]/|V \ {w}|. Hence,
there must exist some arrival order for the elements of V' \ {w} guaranteeing that

k-E[M]]
VA {w}l

Note now that the preceding implies that the expected value of the output set produced by ALG given the preceding ar-
rival order is at most

k-1
JEHM N {ui}f;}” = Zl] Pr[u; € M] <

k- E[|M]]
VA {w}l”

In contrast, the optimal solution is the set {ui}f;ll U {w}, whose value is 2k — 1. Therefore, the competitive ratio of ALG is
at most

k+

E[IM]]
VA {w}

To prove the theorem, we need to show that, when the memory used by ALG is o(|V|), we can choose large enough
values for k and & that guarantee that the rightmost side of the last inequality is at most 1/2+¢. We do so by show-
ing that the two terms 1/k and E[|M]|]/|V \ {w}| can both be upper bounded by ¢/2 when the integers k and h are
large enough, respectively. For the term 1/k this is clearly the case when k is larger than 2/e. For the term
E[IM[]/IV\{w}| this is true because increasing h can make V as large as want and, thus, can make the ratio
E[IM|]/|V \ {w}| as small as necessary because of our assumption that the memory used by ALG (which includes M)
iso(|V]). O

k+k-E[MII/IV\ {w}] _ 1+ E[MI)/IV\{w} _1

1
%-1 2-1/k =37

Appendix C. Multilinear Extension-Based Algorithm
The properties of the multilinear extension-based variant of our algorithm are summarized by the following theorem.

Theorem C.1. Assume there exists an a-approximation off-line algorithm OFFLINEALG for maximizing a nonnegative submodular
function subject to a cardinality constraint whose space complexity is nearly linear in the size of the ground set. Then, for every
constant € € (0,1], there exists an (a/(1 + @) — €)-approximation semistreaming algorithm for maximizing a nonnegative submodular
function subject to a cardinality constraint. The algorithm stores at most O(ke~*1loga™) elements.

For ease of reading, we present only a simplified version of the multilinear extension-based variant of our algorithm.
This simplified version (given as Algorithm C.1) captures our main new ideas but makes two simplifying assumptions
that can be avoided using standard techniques.

e The first assumption is that Algorithm C.1 has access to an estimate 7 of f(OPT) obeying (1 —¢/8) - f(OPT) < t < f(OPT).
Such an estimate can be produced using well-known techniques, such as a technique of Kazemi et al. [31] used in Section 4, at
the cost of increasing the space complexity of the algorithm only by a factor of O(¢~'loga ™).

e The second assumption is that Algorithm C.1 has value oracle access to the multilinear extension F. If the time complexity
of Algorithm C.1 is not important, then this assumption is of no consequence because a value oracle query to F can be emulated
using an exponential number of value oracle queries to f. However, the assumption becomes problematic when we would like
to keep the time complexity of the algorithm polynomial and we only have value oracle access to f, in which case, this assump-
tion can be dropped using standard sampling techniques (such as the one used in Calinescu et al. [13]).° Interestingly, the round-
ing step of the algorithm and the sampling technique are the only parts of the extension-based algorithm that employ random-
ness. Because the rounding can be made deterministic given either exponential time or value oracle access to F, we get the
following observation.

Observation C.1. If OrrLINEALG is deterministic, then our multilinear extension-based algorithm is also deterministic
when it is allowed either exponential computation time or value oracle access to F.

A more detailed discussion of the techniques for removing the preceding assumptions can be found in an earli-
er version of this paper (available in Alaluf et al. [2]) that had this variant of our algorithm as one of its main
results.

Algorithm C.1 has two constant parameters p € (0,1) and ¢ > 0 and maintains a fractional solution x € [0,1]V. This frac-
tional solution starts empty, and the algorithm adds to it fractions of elements as they arrive. Specifically, when an ele-
ment e arrives, the algorithm considers its marginal contribution with respect to the current fractional solution x. If this
marginal contribution exceeds the threshold of ct/k, then the algorithm tries to add to x a p-fraction of e but might end
up adding a smaller fraction of e if adding a full p-fraction of e to x makes x an infeasible solution, that is, makes ||x||; > k
(note that ||x]|; is the sum of the coordinates of x).
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After viewing all of the elements, Algorithm C.1 uses the fractional solution x to generate two sets S; and S, that are
feasible (integral) solutions. The set S; is generated by rounding the fractional solution x. As mentioned in Section 3, two
rounding procedures, pipage and swap rounding, are suggested for this task in the literature (Calinescu et al. [13], Che-
kuri et al. [18]). Both procedures run in polynomial time and guarantee that the output set S; of the rounding is always
feasible and that its expected value with respect to f is at least the value F(x) of the fractional solution x. The set S, is
generated by applying OFFLINEALG to the support of the vector x, which produces a feasible solution that (approximately)
maximizes f among all subsets of the support whose size is at most k. After computing the two feasible solutions S; and
Sy, Algorithm C.1 simply returns the better one of them.

Algorithm C.1 (StrReamProcessExTeNsIoN (simplified) (p, c))
1 Letx «1g.
for each arriving element e do
| if 9.F(x) > ct /k then x « x +min{p, k — |[xl;} - L.
Round the vector x to yield a feasible solution S; such that E[f(S1)] > F(x).
Find another feasible solution S, C supp(x) by running OrrLINEALG with supp(x) as the ground set.
return the better solution among S; and S,.

N Ul W N

Let us denote by % the final value of the fractional solution x (i.e., its value when the stream ends). We begin the analy-
sis of Algorithm C.1 with the following useful observation. In the statement of observation and in the rest of the section,
we denote by supp(x) the support of vector x, that is, the set {e € V| x, > 0}.

Observation C.2. If |2, <k, then &, = p for every e € supp(®). Otherwise, [|%||; =k, and the first part of the observation is
still true for every element e € supp(¥) except for maybe a single element.

Proof. For every element e added to the support of x by Algorithm C.1, the algorithm sets x, to p unless this makes ||x||;
exceed k, in which case the algorithm sets x, to be the value that makes ||x||; equal to k. Thus, after a single coordinate of
x is set to a value other than p (or the initial zero), ||x||; becomes k, and Algorithm C.1 stops changing x. O

Using the last observation, we can now bound the space complexity of Algorithm C.1 and show (in particular) that it
is a semistreaming algorithm for a constant p when the space complexity of OFFLINEALG is nearly linear.

Observation C.3. Algorithm C.1 can be implemented so that it stores O(k/p) elements.

Proof. To calculate the sets S; and S,, Algorithm C.1 needs access only to the elements of V that appear in the
support of x. Thus, the number of elements it needs to store is O(|supp(®)[) = O(k/p), where the equality follows from
Observation C.2. O

We now divert our attention to analyzing the approximation ratio of Algorithm C.1. The first step in this analysis is
lower bounding the value of F(%), which we do by considering two cases: one when ||%||; = k and the other when ||%||; <k.
The following lemma bounds the value of F(%) in the first of these cases. Intuitively, this lemma holds because supp()
contains many elements, and each one of these elements must have increased the value of F(x) significantly when added
(otherwise, Algorithm C.1 would not have added this element to the support of x).

Lemma C.1. If |[z]|, =k, then F(®) > ct.

Proof. Denote by e1,e,,...,¢; the elements in the support of # in the order of their arrival. Using this notation, the value
of F() can be written as follows.

{
F(-i') = F(lg) + Z(F(-’?/\l{el,ez,...,z’;}) - F(Q/\l{ehez/...,ei,l}))
i=1

{
= F(IQ) + Z(-”ze{ . az,F(& A 1{81,62,. ..,L’,;1}))
i=1
Ci

> F(lg) + k

3

~ CT .
E %, = F(1g) +?' 1%l > c7,
i=1

where the second equality follows from the multilinearity of F, and the first inequality holds because Algorithm C.1 selects
an element ¢; only when 9, F(X Al ,, .. ¢.,3) = ¢ The last inequality holds because f (and, thus, also F) is nonnegative, and
[|X]l; = k by the assumption of the lemma. O

Consider now the case in which [|%||; <k. Recall that our objective is to lower bound F(%) in this case as well. To do
that, we need a tool for upper bounding the possible increase in the value of F(x) when some of the indices of x are ze-
roed. The next lemma provides such an upper bound.
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Lemma C.2. Let f:2" — Ry be a nonnegative submodular function, let p be a number in the range [0, 1], and let x, y be two
vectors in [0,1]" such that

e supp(x) N supp(y) =D.
oy, <pforeverye€V.
Then, the multilinear extension F of f obeys F(x +vy) = (1 —p) - F(x).

Proof. Let us define the function G,(S) = E[f(R(x) U S)]. It is not difficult to verify that G, is nonnegative and submodu-
lar and G,(J) = F(x). Additionally, because supp(x) Nsupp(y) =D, R(x +y) has the same distribution as R(x) UR(y), and
therefore,
F(x+y) = E[fR(x+1)] = E[f(R(x) UR@®))]
=E[G:RW)]=(1-p)-Cx(D)=(1-p)- F(x),

where the inequality follows from Lemma 3.2. O

Using the last lemma, we now prove two lemmas proving upper and lower bounds on the expression F( + 1opr\supp(s))-
Lemma C.3. If ||&[l; <k, then F(& + 1opr\supp) = (1 =p) - [p-f(OPT) + (1 - p) - f(OPT \ supp(%))].
Proof. Because [|X[l; <k, Observation C.2 guarantees that X, = p for every e € supp(®). Thus, X = p - Loprrsupp(z) + P * Tsupp()\OPT,

and therefore,

F(& + 1OPT\supp(5c)) = F(P : 1OPTﬂsupp(32) +p- 1supp(32)\OPT + lOPT\supp(f))
2 (1 - P) ' F(P ! 1OPTnsupp(7?) + lOPT\supp(i))

= (1 - P) f(P : 1OPTﬂsupp(5c) + 1OPT\supp(£))
=(1-p)-[p-f(OPT) + (1 -p)-f(OPT \ supp(%))],

where the first inequality follows from Lemma C.2, the second inequality holds because the Lovasz extension lower
bounds the multilinear extension, and the last equality follows from the definition of the Lovasz extension. [

In the following lemma and the rest of the section, we use the notation b =k™!-|OPT \ supp(#)|. Intuitively, the lemma
holds because the fact that the elements of OPT \ supp(%) were not added to the support of x by Algorithm C.1 implies
that their marginal contribution is small.

Lemma C.4. If ||&]l, <k, then F(% + 1opr\supp)) < F(X) + bet.

Proof. The elements in OPT \ supp(#) were rejected by Algorithm C.1, which means that their marginal contribution
with respect to the fractional solution x at the time of their arrival was smaller than ct/k. Because the fractional solution
x only increases during the execution of the algorithm, the submodularity of f guarantees that the same is true also with
respect to X. More formally, we get

d.F(%) < %T Ve e OPT \ supp(x).
Using the submodularity of f again, this implies

F& +Topneppe) S F®)+ 5] 9,F®) < F(%) + |OPT \ supp(®)| % = F(%) + ber. O
e€OPT\supp(¥)

Combining the last two lemmas immediately yields the promised lower bound on F(#). To understand the second in-
equality in the following corollary, recall that T < f(OPT).

Corollary C.1. If |[x||; <k, then F(x)>(1—p)-[p-f(OPT)+ (1 —p)-f(OPT \ supp(%))] — bet = [p(1 —p) —bc]t + (1 —p)2 -f(OPT\
supp(%)).

Our next step is to get a lower bound on the expected value of f(S;). One easy way to get such a lower bound is to observe
that OPT N supp(%) is a subset of the support of X of size at most k and, thus, is a feasible solution for OFFLINEALG to return,
which implies E[f(S2)] > a - f(OPT N supp(x)) because the algorithm OFrLINEALG used to find S, is an a-approximation algo-
rithm. The following lemma proves a more involved lower bound by considering the vector (b&) V 1oprnsupp(s) as a fractional
feasible solution (using the rounding methods discussed before it, it can be converted into an integral feasible solution of at
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least the same value). The proof of the lemma lower bounds the value of the vector (b&) V 1oprnsupp(s) Using the concavity of
the function F((t - &) V Toptnsupp(z)) @s well as ideas used in the proofs of the previous claims.

Lemma C.5. If ||z]|, <k, then E[f(S2)] = ab(1 —p —cb)t + (1 —b) - f(OPT N supp(%)).

Proof. Consider the vector (b%) V loprnsupp(s)- Clearly,

1(6%) V 1oprnsupp)lh < b+ 1Rk + I loptrsuppe) It

<|OPT \ supp(%)| + |OPT N supp(&)| = |OPT| <k,

where the second inequality holds by the definition of b because ||¥||; < k. Thus, because of the existence of the rounding meth-
ods discussed in the beginning of the section, there must exist a set S of size at most k obeying f(S) = F((b%) V 1optrsupp(z))- Be-
cause S, is produced by OrFFLINEALG, whose approximation ratio is a, this implies E[f(S2)] > a - F((b&) V 1oprasupp(s))- Thus, to
prove the lemma, it suffices to show that F((b%) V Toptnsupp(z)) is always at least b(1 — p — cb)T + (1 - b) - f(OPT N supp(%)).

The first step toward proving the last inequality is getting a lower bound on F(X V 1oprsupp(s))- Recall that we already
show in the proof of Lemma C.4 that

d.F(%) < % Ve e OPT \ supp(x).

Thus, the submodularity of f implies

F(® V 1opr) < F® V loptreupp) + 2, 0F(®)
ecOPT\supp(%)

ct - |OPT \ supp(%)|
k

< F(ﬁ Vv IOPTﬂsupp(fr)) + = F(}AC Vv IOPTnsupp(ﬁ)) + cbt.

Rearranging this inequality yields
F(& V 1optnsupp)) = F(X V Topr) — cbt 2 (1 = p) - f(OPT) = cbt > (1 —p — cb)t,

where the second inequality holds by Lemma C.2 because Observation C.2 guarantees that every coordinate of % is either
zero or p. This gives us the promised lower bound on F( V 1oprnsupp(s))-

We now note that the submodularity of f implies that F((t- &) V loprnsupp(#)) is @ concave function of + within the range
[0,1]. Because b is inside this range,

F((bzx) V IOPTﬂsupp(fc)) >b-F(&V 1OPTﬁsupp(5:)) +(1-D) f(OPT N supp(fc))
>b(1-p—cb)t+(1-b)-f(OPT Nsupp(x)),

which completes the proof of the lemma. O

Using the last two claims, we can now obtain a lower bound on the value of the solution of Algorithm C.1 in the case
of ||%|l; <k, which is a function of a, 7, and p alone. We note that both the guarantees of Corollary C.1 and Lemma C.5
are lower bounds on the expected value of the output of the algorithm in this case because E[f(S1)] > F(%). Thus, any
convex combination of these guarantees is also such a lower bound, and the proof of the following corollary basically
proves a lower bound for one such convex combination for the specific value of c stated in the corollary.

Corollary C.2. If ||z|l; <k and c is set to a(1—p)/(a+1), then E[max{f(51),f(S2)}] = (1 -p)at/(a +1).

Proof. The corollary follows immediately from the nonnegativity of f when p = 1. Thus, we may assume p < 1 in the
rest of the proof.
By the definition of Sy, E[f(S1)] = F(%). Thus, by Corollary C.1 and Lemma C.5,

E[max{f(51),f(52)}] =2 max{E[f(S51)] E[f(S2)]}
> max{[p(1 - p) - be]t + (1 - p)* - f(OPT \ supp(2)),
ab(l1—p—cb)t+a(l-b)-f(OPT Nsupp(x))}

1-b .
- a(l#m)—mz [[p(1 —p) = bele + (1= p)*-f(OPT \ supp(2))]

) B .
a(—b)+(1—p) [ab(1 —p - cb)T + a(1 - b)-f(OPT N supp())].
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To keep the following calculations short, it is useful to define g=1-p and d =1 —b. Using this notation and the fact that
the submodularity and nonnegativity of f guarantee together f(OPT \ supp(x)) + f(OPT N supp(%)) > f(OPT) > 1, the previ-
ous inequality implies

E[max{f(S1),f(S2)}] , (A = b)lp( —p) — be] +b(1 - pY(1—p—be)+(1-b)(1 -p)*

at a(l-b)+(1—p)
_dlg(—q) = (A =d)c]+¢*(A1 = d)lg = (1 —d)c] +dg’
ad + ¢?
_dlg—-(1—d)c]+ 7(1-d)g-(1-d)] _la+ (1 =d)][q - (1 - d)c]
ad + ¢? ad + g2
qld+*A-d)da+1) dPa+dag® -d*ag® +d+q*—dg?  q c1
T (a+Dda+q?) da + @ a1 (C1)

where the fourth equality holds by plugging in the value we assume for c.
The second fraction in the last expression is independent of the value of d, and the derivative of the first fraction in
this expression as a function of 4 is
(2da + ag? - 2dag® + 1 - g*)[da + ¢*] — a(d®a + dag? — d*ag® + d + g% — dg?)
[dar + 2]

1_‘72 2 2
:m-[q (1-a)+da(da+297)],

which is always nonnegative because both g and a are numbers between zero and one. Thus, we get that the minimal val-
ue of Expression (C.1) is obtained for d = 0 for any choice of g and a. Plugging this value into d yields

at _ (1-plat

E[max{f(51),f(S2)}] = h a+1 -

Note that Lemma C.1 and Corollary C.2 both prove the same lower bound on the expectation E[max{f(51),f(52)}]
when c¢ is set to the value it is set to in Corollary C.2 (because E[max{f(51),f(S2)}] > E[f(51)] = F(%)). Thus, we can sum-
marize the results we have proved so far using the following proposition.

Proposition C.1. Algorithm C.1 is a semistreaming algorithm storing O(k/p) elements. Moreover, for the value of the parameter ¢
given in Corollary C.2, the output set produced by this algorithm has an expected value of at least at(1—p)/(a +1).

Using the last proposition, we can now prove the following theorem. As discussed at the beginning of the section, the
assumption that 7 is known can be dropped at the cost of a slight increase in the number of elements stored by the algo-
rithm, which yields Theorem C.1.

Theorem C.2. For every constant ¢ € (0,1], there exists a semistreaming algorithm that assumes access to an estimate T of f(OPT)
obeying (1—¢/8)-f(OPT) <1 <f(OPT) and provides (a/(1 + ) — €)-approximation for the problem of maximizing a nonnegative
submodular function subject to a cardinality constraint. This algorithm stores O(ke™') elements.

Proof. Consider the algorithm obtained from Algorithm C.1 by setting p = ¢/2 and c as is set in Corollary C.2. By Proposition
C.1, this algorithm stores only O(k/p) = O(ke!) elements, and the expected value of its output set is at least

aT(l—p)>a(1—e/8)(1—£/2) (1 )
a+1l a+1

foPT) > 2" £(OPT) > (7 - s) -f(OPT),

where the first inequality holds because 7 obeys, by assumption, 7 > (1-¢/8)-f(OPT). O

Appendix D. Algorithm with True Randomization

The variant of our algorithm that involves true randomization is shown in Algorithm D.1. For simplicity, we describe the
algorithm assuming the knowledge of an estimate of the value of the optimal solution, f(OPT). To remove this assump-
tion, we use the standard technique introduced by Badanidiyuru et al. [4]. The basic idea is to use the maximum single-
ton value v = max,f({e}) as a k-approximation of f(OPT). Given this approximation, one can guess a 1+ ¢ approximation
of f(OPT) from a set of O(log(k/a)/¢) values ranging from v to kv/a (recall that « is the approximation guarantee of the
off-line algorithm OFFLINEALG that we use in the postprocessing step). The final streaming algorithm is simply
O(log(k/)/€) copies of the basic algorithm running in parallel with different guesses. As new elements appear in the
stream, the value v=max,f({e}) also increases over time, and thus, existing copies of the basic algorithm with small
guesses are dropped and new copies with higher guesses are added. An important observation is that, when we intro-
duce a new copy with a large guess, starting it from midstream has exactly the same outcome as if we started it from
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the beginning of the stream: all previous elements have marginal gain much smaller than the guess and smaller than the
threshold so they would have been rejected anyway. We refer to Badanidiyuru et al. [4] for the full details.

Theorem D.1. There exists a streaming algorithm STREAMPROCESSRANDOMIZED for nonnegative, nonmonotone submodular maximi-
zation with the following properties (¢ >0 is any desired accuracy, and it is given as input to the algorithm):
o The algorithm makes a single pass over the stream.

o The algorithm uses O(e~3 /klog(k/a)log(1/¢)) space.
e The update time per item is O(e~2 /log(k/a)log(1/¢)) marginal gain computations.

At the end of the stream, we postprocess the output of STREAMPROCESSRANDOMIZED using any off-line algorithm OFFLINEALG
for submodular maximization. The resulting solution is a a/(1 +a) — ¢ approximation, where « is the approximation of
OFFLINEALG.

Algorithm D.1 (Streaming Algorithm for maxs<f(S)). PostProcEss uses any off-line algorithm OFFLINEALG with approxi-
mation a. The algorithm does not store the sets V;;; they are defined for analysis purposes only.
1 //f:2" — Ryg: submodular and nonnegative
//k: cardinality constraint
// € € (0,1]: accuracy parameter
//x: threshold
STREAMPROCESSRANDOMIZED(f, k, €, k)
r—o(n(/0)/0)
me1/e
Sij QD forallie[r],je[m]
9 Vij«forallie(r],j€[m]//notstored, defined for analysis purposes only
10  for each arriving element e do
11 fori=1tordo

IO Ul W

12 choose an index j € [m] uniformly and independently at random
13 Vij < Vij U {e}//not stored, defined for analysis purposes only
14 1ff(S,J U {e}) _f(Si,j) >k and |S,,]| <k then

15 |_Sf,f — S,',]' U {6}

16  return{S;;:i€[r],j€ [m]}

17 PostProcess(f k, €)

18  //Assumes an estimate for f(OPT); see text on how to remove this assumption
19  //Uses any off-line algorithm OFFLINEALG with approximation a

20 k<« a/[(1+a)k]-f(OPT)//threshold

21 {S;;} « StREAMPROCESSRANDOMIZED (f, k, €, 1)

22 if[S;j| =k for some i and j then

23 Lreturn Siy

24  else

25 U« U,',]'S,',j

26 T « OFFLINEALG (f, k, U)

27 return arg max{f(51,1),f(T)}

Algorithm D.2 (Single Threshold Greedy Algorithm) The algorithm processes the elements in the order in which they
arrive in the stream, and it uses the same threshold x as STREAMPROCESSRANDOMIZED.
1 STGreepY(f,N,k, «):
S0
for each e € N in the stream order do
if f(SU{e})—f(S) = xand |S| < k then
BRG]

AN Ul WD

return S

In the remainder of this section, we analyze Algorithm D.1 and show that it achieves a a/(1+a)— ¢ approximation,
where « is the approximation guarantee of the off-line algorithm OFFLINEALG.

We divide the analysis into two cases, depending on the probability of the event that a set S;; (for some i € [r]) con-
structed by STREAMPROCESSRANDOMIZED has size k. For every i€ [r], let F; be the event that |S;1|=k. Because each of the r
repetitions (iterations of the for loop of STREAMPROCESSRANDOMIZED) use independent randomness to partition V, the events
Fi,...,F, are independent. Additionally, the events F,...,F, have the same probability. We divide the analysis into
two cases, depending on whether Pr[F;] > ¢ or Pr[F;] <e. In the first case, because we are repeating r = O(In(1/¢)/¢)
times, the probability that there is a set S;; of size k is at least 1 —¢, and we obtain the desired approximation because
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f(Sij) = % |S;j|= kk = af (OPT)/(1 + a). In the second case, we have Pr[F1]>1-¢, and we argue that U;;S;; contains a good
solution. We now give the formal argument for each of the cases.

D.1. The Case Pr[¥1]> ¢
As noted earlier, the events F,...,F, are independent and have the same probability. Thus,

Pr[FiU—UF]<(1-¢) <exp(-er)<e

because r = O(In(1/¢)/¢). Thus, Pr[F1 U - UF, | >1—¢.
Conditioned on the event 1 U --- U F,, we obtain the desired approximation because of the following lemma. The lem-
ma follows from the fact that the marginal gain of each selected element is at least «.

Lemma D.1. We have f(S;;) >« |S; | for all i € [r], j € [m].

We can combine the two facts and obtain the desired approximation as follows. Let S be the random variable equal to
the solution returned by PostProcess. We have
a

E[f(S)] ZE[f(S)|F1 U -+ UF,|Pr[F1U - UF,] =21 -e)xk=(1 —8)1 a

F(OPT).

D.2. The Case Pr[¥]<e

In this case, we show that the solution arg max{f(T),f(S1,1)}, which is returned on the last line of PostProcEss, has
good value in expectation. Our analysis borrows ideas and techniques from the work of Barbosa et al. [6]: the probabili-
ties p. defined as follows are analogous to the probabilities used in that work; the division of OPT into two sets based on
these probabilities is analogous to the division employed in Barbosa et al. [6, section 7.3]; Lemma D.3 shows a consisten-
cy property for the single threshold greedy algorithm that is analogous to the consistency property shown for the stan-
dard greedy algorithm and other algorithms by Barbosa et al. [6]. We emphasize that Barbosa et al. [6] use these concepts
in a different context (specifically, monotone maximization in the distributed setting). When applied to our context—non-
monotone maximization in the streaming setting—the framework of Barbosa et al. [6] requires Q(Vik) memory if used
with a single pass (alternatively, they use Q(min{k, 1/¢}) passes) and achieves worse approximation guarantees.

D.2.1. Notation and Definitions. For analysis purposes only, we make use of the Lovasz extension f. We fix an opti-
mal solution OPT € arg max{f(A): ACV,|A| <k}. Let V(1/m) be the distribution of 1/m samples of V, where a 1/m sam-
ple of V includes each element of V independently at random with probability 1/m. Note that V;; ~V(1/m) for every i€
[7], j € [m] (see STREAMPROCESSRANDOMIZED). Additionally, for each i € [r], Vi1,..., Vi, is a partition of V into 1/m samples.

For a subset N CV, we let STGReeDY(N) be the output of the single threshold greedy algorithm when run as follows
(see also Algorithm D.2 for a formal description of the algorithm): the algorithm processes the elements of N in the order
in which they arrive in the stream, and it uses the same threshold x as STrReAMPROCESSRANDOMIZED; starting with the empty
solution and continuing until the size constraint of k is reached, the algorithm adds an element to the current solution if
its marginal gain is above the threshold. Note that S;; = STGreepyY (V) for all i € [r],j € [m]. For analysis purposes only,
we also consider STGreeDY(N) for sets N that do not correspond to any set V.

For each e € V, we define

{PrX~V(1 /myle € STGreeDY(X U {e})] if e € OPT
Pe =

0 otherwise.

We partition OPT into two sets:
O1={ecOPT:p, > ¢}
0, =0PT\ O;.
We also define the following subset of Oy:
0, ={e € O, : e & STGreEDY(V11 U {e})}.

Note that (O;,0,) is a deterministic partition of OPT, whereas O'2 is a random subset of O,. The role of the sets
Ol,Oz,O'2 become clearer in the analysis. The intuition is that, using the repetition, we can ensure that each element of
O1 ends up in the collected set U = U;;S;; with good probability: each iteration i € [r] ensures that an element ¢ € Oy is in
Si1U -+ US;,, with probability p. > ¢, and because we repeat r = O(In(1/¢)/¢) times, we ensure that E[1o,nu] > (1 - ¢)10,.
We also have that IE[IO;] >(1-¢)lo,: an element e€ O, \ O, ends up being picked by STGreepy when run on input
V1,1 U {e}, which is a low-probability event for the elements in O,; more precisely, the probability of this event is equal to
pe (because Vi1 ~V(1/m)) and p, < e (because e € O,). Thus, E[l(olmu)uo;] > (1 -¢)1opr, which implies that the expected

value of (O;NU)UO; is at least (1-¢)f(OPT). However, whereas O; N U is available in the postprocessing phase,
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elements of O'2 may not be available, and they may account for most of the value of O,. The key insight is to show that
S1,1 makes up for the lost value from these elements.

We start the analysis with two helper lemmas, which follow from standard arguments that have been used in previous
works. The first of these lemmas follows from an argument based on the Lovasz extension and its properties.

Lemma D.2. Let 0<u<v<1. Let SCV\OPT and O COPT be random sets such that E[1s] < uly\opr and E[1o] = vlopr.
Then, E[f(SU O)] = (v —u)f (OPT).

Proof. Let f be the Lovdsz extension of f. Using the fact that f is an extension and it is convex, we obtain
ELf(S U O)] = E|f(1su0) | = f (El1su0]) = F El1s] + E[10))
Let x := E[15] + E[10]. Note that

Prlee S| <u ifeeV\OPT
X, =
‘ Prlee O] >v ifee OPT.

Thus, we have
N 1 v
Fx) = / flee Vix, > 0))d0 > / Flfe € V: x, > 0))d0 = (v — u)f(OPT).
0 u

The first equality is the definition of f . The inequality is by the nonnegativity of f. The second equality is because, for
u<6<v,wehave{eeV:x,>0}=0PT. O

The following lemma establishes a consistency property for the STGRreEDY algorithm, analogous to the consistency
property shown and used by Barbosa et al. [6] for algorithms such as the standard greedy algorithm. The proof is also
very similar to the proof shown by Barbosa et al. [6].

Lemma D.3. Conditioned on the event |Sy,| <k,

STGREEDY(Vy1 U O,) = STGREeEDY(V11) = S11.

Proof. To simplify notation, we let V; =V7; and S =5;3. Let X = STGreeDY(V; U O’z). Suppose for contradiction that
S1 # X. Let €1, -, €y,u0,) be the elements of V; U O'2 in the order in which they arrived in the stream. Let i be the

smallest index such that STGreepY({es, . .., ei}) # STGREEDY({ey, . .., i} N V7). By the choice of i, we have
STGREEDY({e1, . ..,ei_1}) = STGREEDY({ey, . .., €1} N V1) := A.

Note that |A| <k because A C S; and |S1| <k by assumption. Because STGREEDY({ey, . . ., e;}) # STGREEDY({ey, ..., e} N V1), we
must have ¢; ¢ V; (and, thus, e; € O, \ Vi) and f(A U {e;}) — f(A) > k. The latter implies that ¢; € STGreEDY(V] U {e¢;}): after
processing all of the elements of V; that arrived before ¢;, the partial greedy solution is A; when ¢; arrives, it is added to
the solution because |A| <k and f(A U {e;}) — f(A) > x. But then ¢; ¢ O,, which is a contradiction. O

We now proceed with the main analysis. Recall that PostProcEss runs OFFLINEALG on U to obtain a solution T and re-
turns the better of the two solutions S;; and T. In the following lemma, we show that the value of this solution is pro-
portional to f(S11 U (O1 N U)). Note that S1; U (O1 N U) may not be feasible because we could have |Sq1|>|O,|. Therefore,
it is natural that an equation relating the value of this set to the values of feasible sets (such as S;; and T) include a fac-
tor to correct for the “unfair” advantage that S;; U (O; N U) might have as an infeasible set. This correction factor takes
the form of 1 —|O;|/k in the next lemma.

Lemma D.4. We have

max(f(S11),(T)) > - O _£(S11 U (0 N L))
+

Proof. To simplify notation, we let S; = S11. Let b =|0,|. First, we analyze f(T). Let X C S; be a random subset of S; such
that |X] < b and E[1x] = b1g, /k. We can select such a subset as follows: we first choose a permutation of S; uniformly at

random and let X be the first s := min{b, |S1|} elements in the permutation. For each element of X, we add it to X with
probability p :=|S;|b/(sk).



Alaluf et al.: Streaming Submodular Maximization with a Cardinality Constraint
Mathematics of Operations Research, Articles in Advance, pp. 1-24, © 2022 INFORMS 21

Because X U ((O1 NU)\ S1) is a feasible solution contained in U and OFFLINEALG achieves an a-approximation, we have
AT) 2 af (XU (01 nU)\ S1)).

By taking expectation over X only (more precisely, the random sampling that we used to select X) and using that f is a
convex extension, we obtain

F(T) = aBx[f(X U (01 N U)\ $1))] = aBx[ f (Ixuornunsy)]

> af (Ex[1xuqo,nunsy]) = af ( 15, +1<olnu>\sl)

Next, we lower bound max{f(S1),f(T)} using a convex combination (1 — 0)f(S1) + 6f(T) with coefficient 0 = 1/(1 + a(1 - b/k)).
Note that 1 -0 = 0a(1 - b/k). By taking this convex combination, using the previous inequality lower bounding f(T), and the
convexity and restricted scale invariance off, we obtain

max{f(51),f(T)} = (1 -0)f(51) +O6f(T) = Qa(l - ?{)f(sl) +6f(T)

> Qa(l - —) (151) + Gaf( 15, + l(OlﬁU)\Sl)
b

n(1- k2
= 90[( %) 7bf(151) f( I, + 1(01f‘lu)\51)
2- A 2-

<
= s

b\ a1 % 1
ZQa(Z—E)f _?151"1'—2_é
k k

k151 + 1(omu)\sl)

A
| S

b\~ 1
= 9“(2—%)f — Lswoinw Z%f(sl uO;nl)). O
1 +a(1 ——)

Next, we analyze the expected value of f(S11 U (O; N U)). We do so in two steps: first, we analyze the marginal gain of
O'2 on top of S1; and show that it is suitably small, and then, we analyze f(Si; U(O1nU)U O’z) and show that its ex-
pected value is proportional to f(OPT). We use the notation f(A | B) to denote the marginal gain of set A on top of set B,
that is, f(A | B) = f(A U B) —f(B).

Lemma D.5. We have E[f(O, | S1,1)] < kb + ¢f (OPT).

Proof. As before, to simplify notation, we let S; =511 and V7 = V3 ;. We break down the expectation using the law of to-
tal expectation as follows:

EIf(0} 151)1= BIf(O} |81)| 181 < k- PrliSi| < K+ ELf (0} 151) I 1811= K- PellS1| = K

<! <f(OPT) ¢
< E[f(O5181)| IS1l< k] +£f(OPT).

We have used that f(O, | S1) < f(O}) < f(OPT), for which the first inequality follows by submodularity. We have also used
that Pr[|S1|=k] = Pr[F1] < e. Thus, it only remains to show that E[f(O, | S1)| |S1|<k] < xb.

We condition on the event [Si|< k for the remainder of the proof. By Lemma D.3, we have STGreepy(V; U O,) = S;. Be-
cause |S1|< k, each element of O'2 \ S; was rejected because its marginal gain was below the threshold when it arrived in
the stream. This, together with submodularity, implies that

F(Oy1S1) <x |04l < xb. O

Lemma D.6. We have E[f(S1, U (01 N U) U O,)] = (1 —2¢)f(OPT).

Proof. We apply Lemma D.2 to the following sets:
§=2511\OPT
= (51,1 NOPT) U (O; N U) U O,.

We show that E[15] < e1y\opr and E[1o] > (1 - €)1opr. Assuming these bounds, we can take = ¢ and v=1-¢ in Lemma
D.2, which gives the desired result.
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Because SC 517 C Vi1 and Vi is a (1/m) sample of V, we have E[1s] S%1V\OPT = ely\opr. Thus, it only remains to
show that, for each e € OPT, we have Pr[e€ O] > 1—¢. Because (O; N U) U O, C O, it suffices to show that Pr[e € (01 N
U) U O,] > 1~ ¢ or, equivalently, that Prle (O; \ U) U (0, \ O,)] < e.

Recall that (O1,0,) is a deterministic partition of OPT. Thus, e belongs to exactly one of O; and O,, and we consider
each of these cases in turn.

Suppose that e € O;. A single iteration of the for loop of STREAMPROCESSRANDOMIZED ensures that e is in S;1 U -+ U S
with probability p,>e¢. Because we perform r=0(In(1/¢)/¢) independent iterations, we have Prle¢ U] <(1-¢)
<exp(—er) <e.

Suppose that e € O,. We have

Prle € O, \ O,] = Pr[e € STGreeDY(Vy 1 U {e})] = p. <&,
where the first equality follows from the definition of O’Z, the second equality follows from the definition of p, and the
fact that V3,1 ~ V(1/m), and the inequality follows from the definition of O,. O
Lemmas D.5 and D.6 immediately imply the following:
Lemma D.7. We have E[f(S11 U (O1 N U))] > (1 - 3¢)f(OPT) — «b.
Proof. Recall that we use the notation f(A | B) =f(A U B) — f(B). We have

f(811U (01N L)) =£(S12U (01 NU) U 0y) ~£(O | S11 U (01 N L)
>f(S1,1 U (01 nU)UO,) —f(O, | S1,0),
where the inequality is by submodularity.
By taking expectation and using Lemmas D.5 and D.6, we obtain the desired result. O
Finally, Lemmas D.4 and D.7 give the approximation guarantee.
Lemma D.8. We have E[max{f(S1,.1),f(T)}] = (a/(1 + ) —3¢) f(OPT).
Proof. By Lemmas D.4 and D.7, we have

Elmax{ f($1,), AN} 2 —— 5 ELf(S11 U (01 n )]
1+afl- 7)
k
> % ((1 - 3€)f (OPT) — xb)
1+afl- 7)
k
- Lb((l - 3)f(OPT) - 5 j‘: _ % £(OPT)
1+ a( - —)
> (% - 3¢)f(OPT). O

Endnotes
1 A variant of the algorithm from Kazemi et al. [31] has an even better space complexity of O(k/¢).

2 Chekuri et al. [17] claimed an improved approximation ratio of (2 +¢)™' — ¢ for a cardinality constraint, but an error was later found in the
proof of this improved ratio Chekuri [16]. See Appendix A for more details.

3 Formally, all the algorithms we present are semistreaming algorithms, that is, their space complexity is nearly linear in k. Because this is
unavoidable for algorithms designed to output an approximate solution (as opposed to just estimating the value of the optimal solution),
we ignore the difference between streaming and semistreaming algorithms in this paper and use the two terms interchangeably.

# This result is a simple adaptation of a result from Buchbinder et al. [10]. For completeness, we include the proof in Appendix B.

5 Formally, the number of elements stored by the algorithm and the number of marginal value computations also depend on loga~". Because
a is typically a positive constant or at least lower bounded by a positive constant, we omit this dependence from the statement of the
theorem.

8 We note, however, that, although the sampling technique keeps the algorithm polynomial, it does increase the time complexity of the algo-
rithm significantly because © (k*¢*a~2) samples are necessary in order to replace each value oracle query to F.
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