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ABSTRACT
In the classical selection problem, the input consists of a collection

of elements and the goal is to pick a subset of elements from the

collection such that some objective function f is maximized. This

problem has been studied extensively in the data-mining commu-

nity and it has multiple applications including influence maximiza-

tion in social networks, team formation and recommender systems.

A particularly popular formulation that captures the needs of many

such applications is one where the objective function f is a mono-

tone and non-negative submodular function. In these cases, the

corresponding computational problem can be solved using a simple

greedy (1 − 1

e )-approximation algorithm.

In this paper, we consider a generalization of the above formula-

tion where the goal is to optimize a function that maximizes the

submodular function f minus a linear cost function c . This formu-

lation appears as a more natural one, particularly when one needs

to strike a balance between the value of the objective function and

the cost being paid in order to pick the selected elements. We ad-

dress variants of this problem both in an offline setting, where the

collection is known apriori, as well as in online settings, where the

elements of the collection arrive in an online fashion. We demon-

strate that by using simple variants of the standard greedy algorithm

(used for submodular optimization) we can design algorithms that

have provable approximation guarantees, are extremely efficient

and work very well in practice.
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1 INTRODUCTION
The element selection problem is central in the data-mining com-

munity and it essentially seeks to pick a set of elements from a

collection so that some objective is optimized. The applications

of such a general formulation abound. The most relevant to this

work are those related to influence maximization in social net-

works [20, 24, 25], team formation [1, 18, 23] and recommender
systems [8, 10, 19]. For example, in influence maximization the goal

is to pick a subset of the nodes of the network so that once they

adopt an item (e.g., idea or product) the spread of this item in the

network is maximized. Similarly, in team formation, given a col-

lection of experts the goal is to pick a subset of them such that

they cover the skills required for a task and also optimize a social

objective. Finally, in recommender systems the goal is to pick a

subset of items from a collection (e.g., restaurants or movies) such

that the selected items best summarize the collection or best match

the users’ interests.

In many of the above examples the problem is formulated as

a submodular-optimization problem where the goal is to pick a

subset of k elements Q from a collection V such that f (Q) is maxi-

mized, where f (Q) is a monotone and non-negative submodular

function. Subsequently, an easy-to-implement and practical greedy

algorithm is used to solve such problems and provide a solution

with approximation guarantee (1 − 1

e ).

Conceptual contributions: In this paper, we consider a gener-

alization of this framework, where the goal is again to pick a set

of elements Q from an input collection V . However, our goal is to
not only maximize the function f (Q), but also to strike a balance

between the benefits of choosing Q , as quantified by f (Q), and the

cost of picking Q , denoted as c(Q). Therefore, our goal is to find

Q ⊆ V to maximize the combined function:

д(Q) = f (Q) − c(Q), (1)

where f (Q) is the monotone and non-negative submodular function

and c(Q) is the sum of the costs of the elements in the solution, i.e.,

a non-negative linear function.

In the case of influence maximization, the goal is to optimize the

expected spread of a product or an idea for a seed of nodesQ minus

the cost of picking such nodes. Similarly, in the team-formation

scenario, this would mean that we want to optimize the coverage of

the task skills that the experts in Q cover minus the cost of hiring

these experts. Finally, in recommender systems the goal could be

to maximize the diversity between proposed movies minus the cost

of their distance from a particular year of being produced.

In order to capture the demands of such application domains

we consider two variants of the general problem outlined in Equa-

tion (1): the constrained and the unconstrained. The former refers

to cases where the maximum number of elements we aim to pick is
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given as part of the input; the latter finds the optimal number of

elements to be picked as part of the solution.

Although for the constrained version we only discuss the cardi-

nality constraint, our methods extend to handle general matroid

constraints as well. While we leave this discussion for an extended

version of this manuscript, we note that this version is relevant to

scenarios where the elements in the collection are partitioned into

groups; then, a matroid constraint would impose an upper bound

on the number of elements that can be selected from every group.

Finally, we also consider the online version of the above problems.

In this setting the elements in the collection become available in an

online fashion. The constant addition of data in online platforms

makes this setting increasingly relevant.

Algorithmic contributions: The structure of the combined objec-

tive in Equation (1) in the offline setting and under the cardinality

constraint has been addressed by previous works [14, 17] as well.

What distinguishes us from these works is that we intentionally

design algorithms with slightly weaker theoretical approximation

guarantees that allow the use of runtime acceleration techniques,

such as lazy greedy evaluations. As a result, we experimentally show

that our proposed algorithms can achieve significant speedups com-

pared to previous approaches in the constrained and unconstrained

settings, respectively, while we also show that in practice they per-

form equally well. In addition, we propose algorithms with provable

guarantees for the online and streaming settings as well as algo-

rithms for more general constraints such as a matroid constraint.

Experimental results:Weexperimentally evaluate our algorithms

on real datasets from a variety of domains such as social networks,

crowdsourcing platforms and recommender systems. For our ex-

periments we use different instances of the submodular function

f and the cost function c – chosen appropriately for the specific

application domain we experiment with. Our experiments show

that our algorithms obtain solutions with quality at least as good

as existing algorithms while being significantly faster.

2 RELATED WORK
In this section, we highlight the relationship between our work and

research done in application and theoretical domains.

Influence maximization: The seminal work of Kempe et al. [20]
ignited a lot of subsequent research on influence maximization on

social graphs [25]. In all of these works, there is an underlying

information propagation model and a social network that captures

the degree of influence that every node has on others. The goal is to

identify k nodes in the network to maximize the expected spread of

any item (e.g., idea or product) that these nodes adopt. Based on this

general idea, there has been a set of followup works [7, 9, 24, 26]. All

these works assume some diffusion model such that the expected

spread is a submodular function and therefore a greedy algorithm

can be deployed to maximize it. Our work generalizes all these

works as we want to maximize the expected spread minus the cost

for convincing these nodes to adopt the particular item.

Team formation: The classic team-formation problem [1, 2, 6,

18, 23, 35] assumes that there is a pool of experts and a subset of

them is selected to cover the requirements of a task, while some

criteria related to the team functionality (e.g., communication cost

as captured in their collaboration network) are optimized. At the

heart of all team-formation problems defined today is a set cover
problem where the goal is to cover the skills of the input task. In

our formulation we consider an extension of this setting where not

all skills need to be covered and we seek to strike a balance between

the covered skills and the cost of building a team.

Recommender systems: Recommendations in recommender sys-

tems have often been formulated as a submodular function opti-

mization problem, with the goal being to maximize coverage (e.g.,

of product attributes being addressed by reviews), while maximiz-

ing the diversity of the items being recommended [3, 8, 32], or

improving the summarization of a set of items (e.g., restaurants

available) [10, 28]. In all of the above cases, the goal has been to

maximize a submodular function and not the combined function

of the benefit minus the cost associated with these recommenda-

tions. Kazemi et al. [19] model recommender systems as maximizing

benefit minus cost, and we consider their applications in our exper-

imental evaluation. We discuss these applications in Section 3.

Maximizing submodularityminus cost: Several algorithms have

been developed for maximizing both monotone and general sub-

modular functions, but they achieve provable approximation guar-

antees only for non-negative functions, whereas the objective in

Equation (1) is potentially negative. Existing hardness results imply

that no multiplicative approximation guarantees are possible in

polynomial time for maximizing a potentially negative submodular

function with or without constraints [13, 31].
1
Nevertheless, the

objective function we consider has some structure that has been ex-

ploited in previous works [14, 17, 34]. These works have shown that

in this case we should aim for a weaker notion of approximation

and find a solution Q satisfying

f (Q) − c(Q) ≥ α · f (OPT) − c(OPT),

for some α ≤ 1. The aforementioned works propose algorithms

that achieve α = (1 − 1/e) in the offline setting, which is the best

guarantee achievable in polynomial time for a cardinality con-

straint [13, 29]. One of the main downsides of these algorithms

is that the running time can be prohibitive. The works [14, 34]

propose algorithms based on the continuous greedy algorithm that

maximizes the multilinear extension, a continuous function extend-

ing the submodular function to the domain [0, 1]n . The multilin-

ear extension is expensive to evaluate and the continuous greedy

algorithm requires many iterations to converge. As a result, the

algorithms have very high running times. The algorithm of [14] is

based on the standard discrete greedy algorithm, which is much

more efficient, but it applies the greedy approach to a distorted

objective that changes throughout the algorithm and we cannot

use techniques such as lazy evaluations to speed up the algorithm.

Thus the running time of the algorithm of [14] is Θ(n2), where n is

the size of the ground set, whereas the standard greedy algorithm

can be implemented to run in nearly-linear time using approximate

lazy evaluations. Moreover, the implementation of the standard

greedy algorithm using exact lazy evaluations achieves significant

1
One can observe that it is NP-hard to decide whether the optimum value of a sub-

modular objective is positive or not, since we could use such a subroutine and binary

search over the optimum value to obtain arbitrarily good approximate solutions, which

contradicts existing hardness of approximation results for problems such as maximum

cut and maximum coverage [13, 31].



speedups in practice without affecting the approximation guarantee

[27]. Additionally, these algorithms are only for the offline problem.

In this paper, we give a novel approach that overcomes these lim-

itations. Our main insight is very simple but very effective: instead

of maximizing the original objective f (Q) − c(Q), we maximize a

scaled objective f (Q) − s · c(Q), where s > 1 is an absolute constant.

Unlike the approach of [14], our objective does not change through-

out the algorithm and thus we can use lazy evaluations. Moreover,

we can leverage a wide-range of existing algorithmic approaches,

such as the standard greedy algorithm in the offline setting and

variants of greedy in the online setting. As a result, we obtain faster

offline algorithms for the cardinality-constrained problem, algo-

rithms for the online and streaming settings, and algorithms for

more general constraints such as a matroid constraint.

Our problem formulation can be viewed as a Lagrangian relax-

ation of the problem of maximizing a submodular function subject

to a knapsack constraint. Several algorithms have been proposed

for the latter problem, including algorithms achieving the optimal

1 − 1/e approximation guarantee [33]. However, these algorithms

have very high running times and they are primarily of theoretical

interest. For example, the algorithm of [33] has running time Θ(n5),
where n is the size of the ground set. Thus, even if we used lazy

evaluations to speed up the algorithm, the enumeration will still be

a significant bottleneck. Obtaining fast and practical algorithms for

the knapsack problem remains an outstanding open problem (see

e.g. [11] and references therein). Thus, our problem formulation

also comes with significant algorithmic benefits compared to the

formulation with a hard budget constraint.

In contemporaneous work, Kazemi et al. [19] develop streaming

and distributed algorithms for the cardinality-constrained problem.

The streaming algorithms developed in their work and ours are

conceptually very similar and they achieve the same approximation

guarantee.

3 PROBLEM DEFINITION
Throughout the paper we will assume a set of n elements V =
{1, . . . ,n}. We also assume two functions: f : 2

V → R and c :

2
V → R, such that f is a monotone and non-negative submodular

function and c is a non-negative linear function.
Recall that a set function h : 2

V → R is monotone if

h(S) ≤ h(T ) ∀S ⊆ T ⊆ V
The set function h : 2

V → R is submodular if it satisfies the

following diminishing returns property:

h(T ∪ {u}) − h(T ) ≤ h(S ∪ {u}) − h(S) ∀S ⊆ T ,u ∈ V \T
An equivalent definition of submodularity is the following:

h(S) + h(T ) ≥ h(S ∩T ) + h(S ∪T ) ∀S,T ⊆ V
Given the above, we define our objective function д : 2

V → R as

follows:

д(Q) = λ · f (Q) − c(Q). (2)

Note that functionд is also submodular but it can take both negative

and positive values and it is not monotone. The problems we aim

to solve in this paper are related to optimizing this function and

can be defined as follows.

Problem 1 (k-Constrained). Given a set of elements V and an
integer k , find Q ⊆ V such that |Q | ≤ k and

д(Q) = λ · f (Q) − c(Q) (3)

is maximized.

Our approach extends to a general matroid constraint. The algo-

rithm we discuss in Section 4 can be minimally modified to work

for general matroid constraints, including its running time and ap-

proximation bounds. Due to space constraints, we defer this result

to the extended version of our paper.

We also consider the unconstrained version of the above problem,

which is defined as follows.

Problem 2 (Unconstrained). Given a set of elements V find
Q ⊆ V such that

д(Q) = λ · f (Q) − c(Q) (4)

is maximized.

Online problems: In addition to the offline setting, we study the

above problems in online and streaming models of computation. We

consider Problem 2 in the online model where the experts arrive in

an online fashion, one at a time, in an arbitrary (adversarial) order.

When an expert arrives, we need to decide whether to add it to the

solution, and this decision is irrevocable. We refer to this problem

as Online-Unconstrained.

We also consider Problem 1 in the streaming model where the

experts arrive one at a time as in the online setting but we are

allowed to store a small set of experts in memory and select the

final solution from this set. We refer to this problem as Streaming-

k-Constrained.

The normalization coefficient λ: In the above definitions, λ is a

normalization coefficient that encodes our bias between the prizes

and the costs. One can also think of λ as a way to convert the two

quantities into the same units. Determining its value is application-

dependent and is discussed in Section 7.2. Our algorithmic analysis

is independent of this coefficient, and therefore from now onwewill

use f (Q) to refer to λ · f (Q). We will also refer toд(Q) = f (Q)−c(Q)
as the combined objective function.
Approximation guarantees: Note that while function f is mono-

tone submodular and non-negative, the combined objective func-

tion д is a potentially negative submodular function. As discussed

in the introduction, no multiplicative factor approximation is possi-

ble for the problem of maximizing a submodular function that is

potentially negative. Similarly to previous work (see Section 2), our

algorithms construct solutions with the following kind of weaker

approximation guarantees:

f (Q) − c(Q) ≥ α f (OPT) − c(OPT),

where OPT is an optimal solution to the problem and α ≤ 1.

Problem instances: In our experimental evaluation, we consider

several instantiations of the monotone submodular function f and

the linear function c , arising in influence maximization in social

networks, team formation, and recommender systems.

Influence maximization in social networks: The ground set V cor-

responds to social network nodes and the goal is to pick a subset of

the nodes Q ⊆ V such that the spread of a product (or an idea) in

the network is maximized. The function f (Q) corresponds to the



expected number of people that adopt the product given seed setQ .

The way the expectation is computed depends on the information
propagation model being used. In this paper, we focus on the in-

dependent cascade and linear-threshold models [20] which makes

f (Q) submodular. We also use a non-negative linear function c(Q)
to quantify the sum of the costs of convincing each node to adopt

a product. Assuming that influential nodes are more expensive to

convince, in our experiments, we model the cost for convincing

each individual as being proportional to the node’s degree.

Recommender systems: Kazemi et al. [19] consider several applica-
tions to recommender systems and show that they can be modeled

as instances of the problem k-Constrained. In our experimental

evaluation, we use the following two problem instances proposed

by them, which we describe here for completeness. In both appli-

cations, the ground set V corresponds to items — e.g., restaurants

or movies — and each item i is associated with a set of features

which are then used to compute the distance between two items

d(i, j). A similarity matrix M between items is formed by setting

M(i, j) = e−d (i, j).
The first application considers restaurant recommendations. The

items are restaurants. The submodular function f is defined as:

f (Q) =
n∑
i=1

max

j ∈Q
M(i, j). (5)

For the linear cost function c(Q) =
∑
i ∈Q ci , the cost ci corresponds

to the distance of restaurant i to the center of the city.

The second application considers movie recommendations. The

items are movies. The submodular function f is defined as:

f (Q) = log det(I + αMQ ), (6)

where MQ is the principal submatrix of M indexed by Q , I is the
identity matrix and α is a positive scalar. Informally, this objective

aims to diversify the vectors in Q . For the linear cost function

c(Q) =
∑
i ∈Q ci , the costs are given by ci = 10 - ratingi , where

ratingi denotes the average rating that movie i has received.
Team formation: The ground set V is a set of experts and each

expert i is associated with a set of skills Si ⊆ S , where S is a universe
of skills. Given a task T ⊆ S and a set of experts Q ⊆ V we define

the coverage function to be the number of skills inT that is covered

by at least one expert in Q . Thus

f (Q) =
�� (∪i ∈QSi ) ∩T �� . (7)

Each expert i is also associated with a cost ci needed to hire the

expert. The cost of hiring a team is the sum of the expert costs, i.e.,

c(Q) =
∑
i ∈Q ci .

4 THE COST-SCALED GREEDY ALGORITHM
In this section, we consider the cardinality-constrained prob-

lem k-Constrained. Our algorithm for this problem is shown in

Algorithm 1.
2
Throughout the paper, by elements we mean the ele-

ments of the ground setV . For a set function h, we use the notation
h(e |Q) := h(Q∪{e})−h(Q) to denote themarginal gain of e on top of
Q . Our approach is very simple but effective: we apply the standard

Greedy algorithm to the scaled objective д̃(Q) = f (Q) − 2c(Q), and
we stop adding elements once the marginal gains become negative

2
The algorithm and its analysis extend to a general matroid constraint. We defer this

result to an extended version of this paper.

Algorithm 1 The CSG algorithm for the cardinality-constrained

problem k-Constrained.

Input: Ground set V , scaled objective д̃(Q) = f (Q) − 2c(Q),
cardinality k .
Output: Team Q .

1: Q ← ∅
2: for i = 1, . . . ,k do
3: ei = argmaxe ∈V д̃(e |Q)
4: if д̃(ei |Q) ≤ 0 then
5: break

6: end if
7: Q ← Q ∪ {ei }
8: end for
9: return Q

(line 5). As we discuss below, the algorithm can be implemented

using lazy evaluations, which leads to a very efficient and practical

algorithm. In Appendix A, we show the following guarantee:

Theorem 4.1. Algorithm 1 returns a solution Q of size at most k
satisfying f (Q) − c(Q) ≥ 1

2
f (OPT) − c(OPT).

Running time and speedups: Similarly to the standard Greedy

algorithm, the running time of CSG is O(nk) evaluations of the
functions f and c , where n is the number of experts and k is the

cardinality constraint: there are k iterations and, in each iteration,

we spend O(n) function evaluations to compute all of the marginal

gains and find the expert with maximum marginal gain.

The computational bottleneck of the algorithm is in finding the

element with maximum marginal gain д̃(e |Q) in every iteration. To

speed up these computations and avoid unnecessary evaluations, we

deploy the lazy evaluations technique introduced by Minoux [27]

for the standard Greedy algorithm. That is, we store each element in

a maximum priority queue with a keyv(e). We initialize the keys to

v(e) = д̃(e |∅). The keys are storing potentially outdaded marginal

gains and the algorithm updates them in a lazy fashion. Since д̃
is submodular, marginal gains can only decrease as the solution

Q grows and, as a result, the keys are always an upper bound on

the corresponding marginal gains. In each iteration, the algorithm

uses the queue to find the element with maximum marginal gain as

follows. We remove from the queue the element e with maximum

key and evaluate its marginal gain д̃(e |Q)with respect to the current
solution Q . We then compare the marginal gain д̃(e |Q) to the key

v(e ′) of the element e ′ that is now at the top of the queue (before

removing e from the queue, e ′ was the element with the second-

largest key). If д̃(e |Q) ≥ v(e ′), then e is the element with largest

marginal gain, since the key of every element is an upper bound on

its current marginal gain. Otherwise, we reinsert e into the queue

with key д̃(e |Q) and repeat.

We use CSLG to refer to the implementation of CSG with lazy

evaluations. The correctness of CSLG follows directly from submod-

ularity, and the solution constructed is the same as that of CSG.
While the worst-case running time of CSLG and CSG are the same,

lazy evaluations lead to significant speedups in practice.

We note that there is also an approximate version of the lazy eval-

uations technique that allows us to obtain worst-case running time



Algorithm 2 The Online-CSG algorithm.

Input: Stream of elements V , scaled objective д̃ = f − 2c .
Output: Team Q .

1: Q ← ∅
2: for each arriving element e do
3: if д̃(e |Q) > 0 then
4: Q ← Q ∪ {e}
5: end if
6: end for
7: return Q

Algorithm 3 The Streaming-CSG algorithm.

Input: Stream of elementsV , scaled objective д̃ = f − s · c (s ≥ 1 is

an absolute constant), cardinality k , threshold τ .
Output: Team Q .

1: Q ← ∅
2: while stream not empty do
3: e ←next stream element

4: if д̃(e |Q) ≥ τ and |Q | < k then
5: Q ← Q ∪ {e}
6: end if
7: end while
8: return Q

that is nearly-linear at a small loss in the approximation guarantee

[5]. We do not consider this variant in this paper.

5 THE ONLINE ALGORITHM
We now turn our attention to the Unconstrained problem in the

online model where the elements arrive one at a time. When an

element arrives, we need to decide whether to add it to the solution,

and this decision is irrevocable. Algorithm 2 considers the scaled

objective д̃(Q) = f (Q) − 2c(Q) and it accepts every element that

has positive marginal gain with respect to this scaled objective. The

following theorem states our approximation guarantee. We defer

the proof to an extended version of this paper.

Theorem 5.1. Algorithm 2 returns a solution Q satisfying f (Q) −
c(Q) ≥ 1

2
f (OPT) − c(OPT).

6 THE STREAMING ALGORITHM
This section considers the k-Constrained problem in the stream-

ing model. The algorithm is an extension of the online algorithm

from Section 5. As before, we consider the scaled objective д̃(Q) =
f (Q) − s · c(Q), where s ≥ 1 is an absolute constant (the right

choice for s is no longer 2, see Theorem 6.1 below). Now, instead of

picking elements whose scaled marginal gain is positive, we pick

elements whose scaled marginal gain is above a suitable threshold.

In other words, we apply the single-threshold Greedy algorithm

[4, 22] to the scaled objective. The resulting algorithm is shown in

Algorithm 3. The following theorem shows that there is a way to

set τ and s so that Algorithm 3 returns a good approximate solution,

and we give its proof in Appendix B.

Theorem 6.1. When run with scaling constant s = 1

2

(
3 +
√
5

)
and threshold τ = 1

k

(
1

2
(3 −
√
5)f (OPT) − c(OPT)

)
, Algorithm 3

returns a solution Q such that |Q | ≤ k and

f (Q) − c(Q) ≥
1

2

(
3 −
√
5

)
f (OPT) − c(OPT)

Setting the threshold as suggested by the above theorem requires

knowing д̂(OPT), where д̂(Q) := 1

2
(3 −
√
5)f (Q) − c(Q). To remove

this assumption, we use the standard technique introduced by [4]

and run several copies of the basic algorithm in parallel with dif-

ferent guesses for д̂(OPT). We only lose ϵ in the approximation

due to guessing and we use O (k logk/ϵ) total space to store the

O(logk/ϵ) solutions.

Theorem 6.2. There is a streaming algorithm Streaming-CSG
for the cardinality-constrained problem max |Q | ≤k f (Q) − c(Q) that
takes as input any ϵ > 0 and it returns a solution Q satisfying

f (Q) − c(Q) ≥

(
1

2

(
3 −
√
5

)
− ϵ

)
f (OPT) − c(OPT)

The algorithm uses O (k logk/ϵ) space.

The result presented in this section was obtained independently

and concurrently by [19] and a preliminary version of our work

[12].

7 EXPERIMENTS
In this section, we experimentally evaluate our algorithms on real-

world datasets.

7.1 Algorithms of the comparative study
We compare our algorithms to a variety of baseline methods, as

well as to the state-of-the-art algorithms.

Algorithms used for the k-Constrained problem: We exper-

imentally evaluate our main algorithms for the k-Constrained
problem: the cost-scaled Greedy algorithm (CSG) and its variant

with lazy evaluations (CSLG) (see Section 4). Recall that the two

algorithms return the same solution, but CSLG is expected to be sig-

nificantly faster due to the lazy evaluations. Thus, in the objective

evaluation plots we only include CSLG. However, in the running-

time evaluation plots we present both algorithms to demonstrate

the speedups achieved due to lazy evaluations.

We also evaluate our streaming algorithm, Streaming-CSG, de-
scribed in Section 6. The algorithm is designed for the more chal-

lenging setting where the elements arrive in a stream, one at a time,

and the algorithm can make only one pass over the elements and

store only a small number of elements in memory. We evaluate

the performance of Streaming-CSG against offline algorithms that

have complete knowledge of the input datasets and can make many

passes over the elements.

The baselines we consider are algorithms proposed in prior work

as well as some intuitive heuristics. We list them below:

• DistortedGreedy [17]: Builds on the Greedy approach but, in-

stead of considering a constant scaled objective like we do, the

authors design a distorted objective which changes throughout

the algorithm. The distorted objective initially places higher

relative importance on the modular cost term c , and gradually



increases the relative importance of the coverage function as

the algorithm progresses. DistortedGreedy makes O(nk) eval-
uations and returns a solution Q of size at most k satisfying

f (Q) − c(Q) ≥ (1 − 1

e )f (OPT) − c(OPT).

• StochasticDistortedGreedy [17]: Uses the same distorted ob-

jective as DistortedGreedy but has faster asymptotic runtime

because it optimizes over a random sample in each iteration.

• Greedy: This is the greedy algorithm for maximizing submod-

ular set functions [30]. The only difference from CSG is that

instead of computing the marginal value with respect to the

scaled objective we use the original objective д = f − c .

• TopK: This is a natural heuristic baseline algorithm that runs as

follows. The algorithm gives each element e ∈ V a linear weight

w(e) = f ({e})−c(e) and it selects the (at most) k elements with

the largest positive weights. If there are fewer than k elements

with positive weight, the algorithm selects all of the elements

with positive weights; otherwise, the algorithm selects the k
elements with largest weights.

Algorithms used for the Unconstrained problem: For the Un-
constrained problem we evaluate all the methods that we used

for the k-Constrained problem by setting k = n. So all algorithms

described above are included in the comparison.

Additionally, we evaluate our online algorithm, Online-CSG,
described in Section 5. This algorithm addresses the harder online

problem where the elements are presented in an online fashion,

and the algorithm needs to irrevocably decide whether to include

the element in the solution when the element arrives. We evaluate

the algorithm’s performance against offline algorithms that have

complete knowledge of the input datasets.

In terms of baselines, we also consider the following:

• UnconstrainedDistortedGreedy [17]: A linear-time algorithm

for the unconstrained problem that runs for n iterations and in

each iteration evaluates the marginal gain of a single element

sampled uniformly at random.

7.2 Experimental setup
For all our experiments we evaluate the algorithmic performances

on different subsets of the original data and we report the average

performance value of each algorithm over these 15 samples, denoted

as its line, as well as the confidence interval of the result, denoted

as the bar around the line. Our code is in Python and for all our

experiments we use single-process implementations on a 64-bit

MacBook Pro with an Intel Core i7 CPU at 2.6GHz and 16 GB RAM.

Our experiments assume hyperparameters, whose selection process

will be described in an extended version of this manuscript. For

replication purposes we make the code, the datasets and the chosen

hyperparameters available online.
3

Selecting the value of the normalization coefficient λ: The
combined objective introduced in Section 3 compares the gain and

the cost; the gain corresponds to the value of a submodular function

and the cost is the value of a linear function. The purpose of the

parameter λ is to transform these two quantities into comparable

units and we set it as follows. First, we use the well-known greedy

3
https://www.dropbox.com/sh/vu87zte0p4hrybz/AACs0liWgCejxj5R9FEowhRza?dl=0

algorithm [30] to find the set of elements Q∗ that maximize the

submodular function. Then, we define λ = β
c(Q∗)
f (Q∗) , with β ∈ {2, 4}

depending on the dataset such that the gain and the cost are in a

comparable scale.

Setting the algorithmic parameter ϵ : Recall that algorithms

StochasticDistortedGreedy and Streaming-CSG require an er-

ror parameter ϵ as part of their input. This is a trade-off parameter

between the quality of the solution and the algorithm’s running

time. To select an appropriate value ϵ we performed a set of experi-

ments for different ϵ values and picked the one that achieves the best
(for the algorithm) solution, without sacrificing the running time.

Due to lack of space we omit these plots. Throughout the experi-

ments we fix ϵ=0.01 and ϵ=0.05 for StochasticDistortedGreedy
and Streaming-CSG respectively.

Applications and datasets: We experimentally evaluate the pro-

posed algorithms on datasets from application domains we dis-

cussed in Section 3.

Influence Maximization: In these experiments, we follow the

experimental setup of [9, 20]. We use the academic collaboration

network from the “High Energy Physics-Theory” section of the

e-print arXiv that was used in these prior works. We consider a

network which contains 1077 nodes and 3505 edges (one of the

largest components of the whole dataset) and we refer to this as

the NetHEPT dataset. In our experiments, we use the independent

cascade model, but similar results hold for the linear threshold

model as well. We treat the multiplicity of edges as weights and

similar to the experiments of [9, 20] we assign a uniform probability

of p = 0.01 to each edge. The specific instantiations of functions f
and c in this application are the ones described in Section 3.

Team Formation: In these experiments, we follow the experimen-

tal setup of [2, 15]. We use a real-world dataset from the online

expertise-management platform guru.com that henceforth we refer
to as Guru. All expert-related data used in this work are obtained

from anonymized profiles of members registered in the marketplace.

Our dataset has 6120 experts and 20 tasks, each requiring 15 skills.

For each expert we also know the set of skills the expert has. Since

we consider multiple tasks, we evaluate our algorithms for each

task separately and report the average performance value of each

algorithm over all tasks as well as the confidence interval of the

results. The instantiations of functions f and c in this application

are the ones described in Section 3 (see Eq. (7)).

Recommender Systems: For the recommender systems application

we consider two separate applications from the work of [19]: (i)

restaurant summarization, and (ii) movie recommendation. We

follow the experimental setup of [19].

For the restaurant summarization task we use a subset of restau-

rant businesses obtained from the Yelp Academic dataset.
4
We use

features that cover a range of restaurant attributes.
5
We focus on

the restaurants from the metropolitan area of Las Vegas and the

goal is to identify representative restaurants in that area. To evalu-

ate our algorithms we consider random restaurant subsets of size

651 (5% of the data) and report the average performance of our

algorithms over all subsets as well as their confidence interval. We

4
https://www.yelp.com/dataset

5
To extract the features of each restaurant we use the script provided at https://github.

com/vc1492a/Yelp-Challenge-Dataset.

https://www.yelp.com/dataset
https://github.com/vc1492a/Yelp-Challenge-Dataset
https://github.com/vc1492a/Yelp-Challenge-Dataset
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Figure 1: Running time (sec) comparisons of all algorithms for the k-Constrained problem.

(a) NetHEPT (b) Guru (c) Yelp (d) Movielens

Figure 2: Combined objective value (д) comparisons of all algorithms for the k-Constrained problem.

refer to this dataset as Yelp. The instantiations of functions f and c
in this application are the ones described in Section 3 (see Eq. (5)).

For the movie recommendation task we use the MovieLens [16]

dataset. In this dataset we are given user ratings for different movies.

To extract the feature vector for each movie we use gradient de-

scent [21]. At the end of this process we obtain 40 latent factors for

each movie. After filtering out movies with less than 50 ratings , we

consider random subsets of 658 movies to evaluate our algorithms

over different inputs. We refer to this dataset as Movielens. The
instantiations of functions f and c in this application are the ones

described in Section 3 (see Eq. (6)).

7.3 Evaluation for k-Constrained
Here we evaluate the running time and empirical performance

of the algorithms for the k-Constrained problem. In summary,

we demonstrate that using our algorithm CSLG can lead to faster

running time without sacrificing the quality of the solution.

Runtime analysis: We start by evaluating the scalability of our

methods. We vary the cardinality parameter k and compute the

running time of each algorithm. The results of their running time

performance are shown in Figure 1. The y-axis represents the run-
ning time (in sec), and the x-axis represents the cardinality k .

We note that DistortedGreedy and CSG require the most time

to run and have very close performances. Next, we consider the

StochasticDistortedGreedy algorithm, which is faster than the

aforementioned algorithms because in each iteration it only evalu-

ates the marginal gain of a subset of the elements. We now draw the

attention to the computational savings when using our proposed

cost scaled greedy with lazy evaluations. In all datasets and specifi-

cally for larger values of k , a reasonable setting in all of our applica-

tions, CSLG is more than 100x faster than both DistortedGreedy
and CSG, and 10x faster than StochasticDistortedGreedy. The
only algorithm whose running time is comparable to CSLG is TopK,
but the latter algorithm achieves lower objective value.

Performance evaluation:Here we show that the aforementioned

computational gains are achieved without sacrificing the solution

quality. For the performance evaluation we vary the cardinality

parameter k and compute the combined objective function (д) of
the obtained solution. We present the results in Figure 2.

We observe that the performance trends of the algorithms are

overall consistent between all datasets and applications. Note that

as k increases so does the objective value of the solutions found by

the algorithms. For the case of Guru and Yelp we notice that the

performance of the algorithms increases up until some point where

it seems to stabilize. A possible explanation is that initially the

algorithms benefit from adding more elements to the solution be-

cause increasing the submodular gain outweighs the cost. However,

for some cardinality k the algorithms may reach a solution where

adding more elements does not benefit them. This happens in two

cases; (i) when we have reached the maximum possible submodular

value (e.g. covering all the requirements of a task), and (ii) when

the benefit from increasing the submodular value is smaller than

paying the corresponding cost. We see that this is less pronounced

in NetHEPT and is not observed at all in Movielens.
Comparison across algorithms reveals that the baseline TopK

and Streaming-CSG have the worse performance. Intuitively, the

latter has a lower performance because it is an online algorithm and
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Figure 3: Running time (sec) comparisons of all algorithms for the Unconstrained problem.

8000

10000

12000

14000

16000

C
o
m

b
in

e
d
 o

b
je

c
ti
v
e
 (

g
)

CSLG (Our Algo)

DistortedGreedy

Greedy

TopK

StochasticDistortedGreedy

Online-CSG (Our Algo)

UnconstrainedDistortedGreedy

(a) NetHEPT

6000

6500

7000

7500

C
o
m

b
in

e
d
 o

b
je

c
ti
v
e
 (

g
)

CSLG (Our Algo)

DistortedGreedy

Greedy

TopK

StochasticDistortedGreedy

Online-CSG (Our Algo)

UnconstrainedDistortedGreedy

(b) Guru

220

240

260

280

300

320

C
o
m

b
in

e
d
 o

b
je

c
ti
v
e
 (

g
)

CSLG (Our Algo)

DistortedGreedy

Greedy

TopK

StochasticDistortedGreedy

Online-CSG (Our Algo)

UnconstrainedDistortedGreedy

(c) Yelp

22000

23000

24000

25000

26000

27000

28000

29000

C
o
m

b
in

e
d
 o

b
je

c
ti
v
e
 (

g
)

CSLG (Our Algo)

DistortedGreedy

Greedy

TopK

StochasticDistortedGreedy

Online-CSG (Our Algo)

UnconstrainedDistortedGreedy

(d) Movielens

Figure 4: Combined objective value (д) comparisons of all algorithms for the Unconstrained problem.
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Figure 5: Combined objective value (д) and running time (sec) comparisons of all algorithms for the Unconstrained problem.

we expect it to perform worse compared to the offline algorithms.

Among the offline algorithms, the StochasticDistortedGreedy
is slightly outperformed by DistortedGreedy, CSLG and Greedy
in all datasets except from Movielens where it has the same per-

formance. Finally, DistortedGreedy, CSLG and Greedy perform

similarly, with the last performing slightly worse for larger k values.

We note that even though Greedy is a heuristic without provable
approximation guarantees it still performs well. The comparison

between DistortedGreedy and CSLG shows that in practice the

two algorithms perform the same for the cardinality constraint

problem. Overall, we see that CSLG can achieve solutions of the

same value as DistortedGreedy but is orders of magnitude faster

as discussed above.

7.4 Evaluation for Unconstrained
Here we evaluate the algorithms for the Unconstrained problem.

In this setting our algorithm can achieve even higher speedups at a

slight performance cost.

Runtime analysis: We start by comparing the running times of

each algorithm; the results are shown in Figure 3, where the y-axis
is in the log-scale. The box plots show the medians of the runtime

performance of each algorithm and the short lengths of the box

plots indicate small deviations from the mean; that is, the running

time of the algorithms is consistent among all random samples.

We observe that CSG and DistortedGreedy have similar run-

ning times, with the former being slightly faster. Overall how-

ever, their running times are orders of magnitude slower compared

to the other algorithms. Let us now investigate the gains we get

by using lazy evaluations on CSG. When considering our results

at an application-wise level we see that the highest benefits are



in the team-formation application (Figure 3b) where we see that

CSLG achieves 1000x of speedup, compared to the standard greedy

based approach without lazy evaluations and to DistortedGreedy.
Slightly smaller gains are obtained in Figures 3a, 3c and 3d but

they are still significant; i.e., in Figure 3a we see that while CSG and
DistortedGreedy need half an hour to produce their results, CSLG
requires only 2 minutes. In addition, we see that in these three cases

a subset of the algorithms TopK, Online-CSG, DistortedGreedy
and UnconstrainedDistortedGreedy is faster than CSLG but as

we see next the performance of these algorithms with respect to

the objective function is either similar to CSLG or worse.

Performance evaluation: For the performance evaluation we

compare the combined objective value (д) of the solution of each

algorithm. We present the results in Figure 4. The box plots show

medians (solid line), means (triangle) and interquartile ranges for

the combined objective of each algorithm.

We note that CSLG compares favorably to DistortedGreedy. The
performance of the two algorithms is similar in the team-formation

(Figures 4b) and movie-recommendation (Figures 4d) applications.

In the remaining applications (Figures 4a and 4c), CSLG has slightly

worse performance but faster running time than DistortedGreedy.
Figure 5 summarizes the performance of all algorithms (across all

iterations) for the two evaluation criteria: combined objective (y-
axis) and running time (x-axis).

8 CONCLUSIONS
In this paper, we focused on the problem of balancing between the

goal of optimizing a submodular function by picking a subset of

elements from a collection with the actual cost of picking these

elements. We formalized this problem as the problem of optimizing

a non-negative monotone submodular function minus a linear cost

function, and we designed effective and efficient algorithms with

provable approximation guarantees. This framework enables us to

generalize problem formulations that appear in many data-mining

applications. In our experiments we demonstrate that our proposed

algorithms are highly efficient and, despite their slightly weaker

theoretical bounds compared to existingwork, their practical perfor-

mance is equivalent to the latter in terms of the objective function.

Finally, although we focused here on the cardinality-constraint ver-

sion of the k-Constrained problem, we point out that our results

generalize to general matroid constraints, with significant practical

and theoretical implications.
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A ANALYSIS OF ALGORITHM 1
In this section, we analyze our algorithm for the cardinality-constrained

problem k-Constrained. We show the following guarantee.

Theorem A.1. Algorithm 1 returns a solution Q of size at most k
satisfying f (Q) − c(Q) ≥ 1

2
f (OPT) − c(OPT).

Proof. The starting point of our analysis is the following order-

ing of the elements inQ ∪OPT, which we call the Greedy ordering.

The Greedy ordering orders the elements in Q ∪ OPT as

e1, e2, . . . , e |Q∪OPT | (GreedyOrdering)

where ei ∈ argmaxe ∈(Q∪OPT)\{e1, ...,ei−1 } д̃(ei |{e1, . . . , ei−1}) for
each i ∈ [|Q ∪ OPT|]. That is, we select the next element ei in
the ordering to be the element from the remaining set with max-

imum marginal gain on top of the previously selected elements

e1, . . . , ei−1.
It follows from the execution of the algorithm that the first |Q |

elements in the Greedy ordering (GreedyOrdering) are the elements

of Q in the order in which they were added to Q by the algorithm.

In the remainder of the analysis we first identify a solution,

which is a prefix of the Greedy ordering, that we will analyze and

show that its value is competitive with that of OPT. This solution

is simply the first ℓ = |OPT| elements in the Greedy ordering, and

we denote it by S(ℓ). We analyze this solution and relate its value

to OPT. We then relate the value of the solution Q returned by the

algorithm to the value of S(ℓ).

Let S(i) = {e1, . . . , ei } for all 1 ≤ i ≤ |Q ∪ OPT|. Let ℓ = |OPT|.

As noted above, the solution S(ℓ) plays a key role in our analysis.

Relating S(ℓ) to OPT. We now analyze the solution S(ℓ) and
relate it to OPT. To this end, we construct an appropriate mapping

between S(ℓ) and OPT as follows. Since S(ℓ) and OPT have the

same size, there is a bijection π : OPT→ S(ℓ) such that, for every

i ≤ ℓ, π−1(ei ) appears after or at the same position as ei in the

Greedy ordering (GreedyOrdering), i.e., π−1(ei ) = ej for some index

j ≥ i . We can obtain such a mapping π by iteratively matching each

element ofOPT to the earliest element of S(ℓ) that is still unmatched.

Since |OPT| = |S(ℓ) | and S(ℓ) is comprised of the first ℓ elements

in the Greedy ordering, every element o ∈ OPT will be matched

to exactly one element π (o) ∈ S(ℓ) such that π (o) appears no later

than o in the Greedy ordering, as needed.

We can use this bijective mapping π to “charge” OPT to S(ℓ) as
follows. By construction of the Greedy ordering and π , for every
i ≤ ℓ, we have

д̃(ei |S
(i−1)) ≥ д̃(π−1(ei )|S

(i−1)) (8)

Let OPT
(i) = π−1(S(i)) for all i ≤ ℓ. By submodularity and the fact

that OPT
(i) = OPT

(i−1) ∪ {π−1(ei )}, we have

д̃(π−1(ei )|S
(i−1)) ≥ д̃(π−1(ei )|S

(ℓ) ∪ OPT(i−1))

= д̃(S(ℓ) ∪ OPT(i−1)) − д̃(S(ℓ) ∪ OPT(i−1)) (9)

By combining (8) and (9), we obtain

д̃(ei |S
(i−1)) ≥ д̃(S(ℓ) ∪ OPT(i−1)) − д̃(S(ℓ) ∪ OPT(i−1))

We sum up the above inequalities over all i ≤ ℓ. Note that the sums

telescope. Additionally, we have OPT
(ℓ) = π−1(S(ℓ)) = OPT. Thus

we obtain

д̃(S(ℓ)) − д̃(∅) ≥ д̃(S(ℓ) ∪ OPT) − д̃(S(ℓ))

and thus

д̃(S(ℓ)) ≥
1

2

д̃(S(ℓ) ∪ OPT) (10)

Relating Q to S(ℓ). We now relate the solution Q constructed

by the algorithm to the solution S(ℓ). Recall that it follows from the

execution of the algorithm thatQ is a prefix of the Greedy ordering.

By definition, S(ℓ) is also a prefix of the Greedy ordering. However,

Q and S(ℓ) may be different prefixes and one may be included in

the other, and we consider each of these cases in turn. To relate

their values, we crucially use the following properties ensured by

the algorithm: each element of Q has positive marginal gain with

respect to the scaled objective д̃ on top of the elements that come

before it in the Greedy ordering; additionally, if Q has less than k
elements, all of the remaining elements have non-positive marginal

gain with respect to д̃ on top ofQ . These properties follow from the

fact that, when each element is added toQ , it has positive marginal

gain with respect to д̃. Moreover, the algorithm terminates when

either it reaches the size constraint k or it terminates early on line 5

since the marginal gains of the remaining elements are non-positive

with respect д̃.
We now give the precise analysis. We will show that д̃(Q) ≥

д̃(S(ℓ)) by considering two cases: |Q | ≥ ℓ and |Q | < ℓ.

Suppose |Q | ≥ ℓ. We have S(ℓ) ⊆ Q . Since the algorithm only

adds elements with positive marginal gain, we have

д̃(Q) − д̃(S(ℓ)) =

|Q |∑
i=ℓ+1

д̃(ei |S
(i−1)) ≥ 0

Suppose |Q | < ℓ. We haveQ ⊆ S(ℓ). Since the algorithm terminates

when the marginal gain of every element becomes non-positive,

we have

д̃(S(ℓ)) − д̃(Q) =
ℓ∑

i= |Q |+1

д̃(ei |S
(i−1)) ≤

ℓ∑
i= |Q |+1

д̃(ei |Q) ≤ 0

Thus, in either case, we have that

д̃(Q) ≥ д̃(S(ℓ)) (11)

RelatingQ to OPT.We now put everything together and establish

the approximation guarantee. By (10) and (11), we have

д̃(Q) ≥
1

2

д̃(S(ℓ) ∪ OPT)

Recall that д̃ = f − 2c . Thus

f (Q) − c(Q) ≥
1

2

f (S(ℓ) ∪ OPT) − c(S(ℓ) ∪ OPT) + c(Q)

Since f is monotone, we have f (S(ℓ) ∪ OPT) ≥ f (OPT). Thus

f (Q) − c(Q) ≥
1

2

f (OPT) − c(S(ℓ) ∪ OPT) + c(Q)

Thus, to finish the proof, it only remains to verify that

c(OPT) + c(Q) ≥ c(S(ℓ) ∪ OPT)



As before, we consider two cases: |Q | ≥ ℓ and |Q | < ℓ. Suppose

that |Q | ≥ ℓ. Then S(ℓ) ⊆ Q and thus c(Q) ≥ c(S(ℓ)), since c is

non-negative. Thus

c(OPT) + c(Q) ≥ c(OPT) + c(S(ℓ)) ≥ c(OPT ∪ S(ℓ))

Suppose that |Q | < ℓ. Then Q ⊆ S(ℓ) and S(ℓ) \ Q ⊆ OPT. Thus

OPT ∪Q = OPT ∪ S(ℓ) and hence

c(OPT) + c(Q) ≥ c(OPT ∪Q) = c(OPT ∪ S(ℓ))

Putting everything together, we have

f (Q) − c(Q) ≥
1

2

f (OPT) − c(OPT)

□

B ANALYSIS OF ALGORITHM 3
In this section, we analyze our streaming algorithm for the k-
Constrained problem. The following theorem assumes that the

parameters can be set appropriately if we know the value of the op-

timal solution. This assumption can be removed using a technique

due to [4].

Theorem B.1. When run with scaling constant s = 1

2

(
3 +
√
5

)
and threshold τ = 1

k

(
1

2
(3 −
√
5)f (OPT) − c(OPT)

)
, Algorithm 3

returns a solution Q such that |Q | ≤ k and

f (Q) − c(Q) ≥
1

2

(
3 −
√
5

)
f (OPT) − c(OPT)

Proof. It is clear from the execution of the algorithm that |Q | ≤
k . Therefore we focus on analyzing the function value. We consider

two cases, depending on whether |Q | = k or |Q | < k .

Case 1: |Q | = k .We have

д̃(Q) ≥ τk ⇒ f (Q) − s · c(Q) ≥ τk

Case 2: |Q | < k . For every item o ∈ OPT \Q , we have д̃(o |Q) ≤ τ .

This is due to the fact that o had marginal gain less than τ when it

arrived and the marginal gains can only decrease due to submodu-

larity of д̃. Therefore

τ |OPT \Q | ≥
∑

o∈OPT\Q

д̃(o |Q)

≥ д̃(Q ∪ OPT) − д̃(Q)

=
(
f (Q ∪ OPT)︸         ︷︷         ︸
≥f (OPT)

−f (Q)
)
− s

(
c(Q ∪ OPT) − c(Q)︸                  ︷︷                  ︸
=c(OPT\Q )≤c(OPT)

)
≥ f (OPT) − f (Q) − s · c(OPT)

The third inequality is by monotonicity of f and non-negativity and

linearity of c . The second inequality follows from submodularity

as follows. Let O = OPT \Q and let o1,o2, . . . ,o |O | be an arbitrary

ordering of O . Let O(i) = {o1, . . . ,oi }. Then

д̃(Q ∪O) − д̃(Q) =

|O |∑
i=1

(
д̃(Q ∪O(i)) − д̃(Q ∪O(i−1))

)
=

|O |∑
i=1

д̃(oi |Q ∪O
(i−1)) ≤

|O |∑
i=1

д̃(oi |Q)

where the inequality is by submodularity.

Rearranging, we obtain

f (Q) ≥ f (OPT) − s · c(OPT) − τ |OPT \Q |︸      ︷︷      ︸
≤k

≥ f (OPT) − s · c(OPT) − τk

On the other hand, since the algorithm only added elements with

marginal gain at least the threshold, we can show that

д̃(Q) ≥ τ |Q |

Indeed, let e1, e2, . . . , e |Q | be the elements ofQ in the order in which

they were added. Let Q(i) = {e1, . . . , ei }. We have

д̃(Q) − д̃(∅) =

|Q |∑
i=1

(
д̃(Q(i)) − д̃(Q(i−1))

)
=

|Q |∑
i=1

д̃(ei |Q
(i−1)) ≥ τ |Q |

Since д̃(∅) = f (∅) − c(∅) = f (∅) ≥ 0, we have д̃(Q) ≥ τ |Q |. Thus

f (Q) − s · c(Q) ≥ τ |Q | ≥ 0

To summarize, we showed the following two inequalities:

f (Q) ≥ f (OPT) − s · c(OPT) − τk

f (Q) − s · c(Q) ≥ 0

Combining the two inequalities with coefficients s − 1 and 1 gives

f (Q) − c(Q) ≥
s − 1

s
(f (OPT) − s · c(OPT) − τk)

Setting s,τ . We now put together the two cases and set the two

parameters s ≥ 1 and τ .
In case 1, we obtain a solution Q with value

f (Q) − c(Q) ≥ f (Q) − s · c(Q) ≥ τk

where the first inequality is due to c ≥ 0 and s ≥ 1, and the second

inequality is by our analysis above.

In case 2, we obtain a solution Q with value

f (Q) − c(Q) ≥
s − 1

s
(f (OPT) − s · c(OPT) − τk)

Thus overall we get a solution with value at least

min

{
τk,

s − 1

s
(f (OPT) − s · c(OPT) − τk)

}
We set τ to balance the two terms:

τk =
s − 1

2s − 1
(f (OPT) − s · c(OPT))

We set s so that the coefficient of c(OPT) becomes 1:

s(s − 1)

2s − 1
= 1⇒ s2 − 3s + 1 = 0

The above equation has two solutions: s1 =
1

2

(
3 −
√
5

)
and s2 =

1

2

(
3 +
√
5

)
. We want s ≥ 1, so we pick the latter. For this choice,

the threshold τ and the objective value obtained are

τ =
1

k

(
1

2

(
3 −
√
5

)
f (OPT) − c(OPT)

)
f (Q) − c(Q) ≥

1

2

(
3 −
√
5

)
f (OPT) − c(OPT)

□
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