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A B S T R A C T   

This paper proposes a machine learning-based approach in conjunction with Monte Carlo simulation (MCS) to 
improve the computation efficiency of composite power system reliability evaluation. Traditional composite 
system reliability evaluation approaches are computationally demanding and may become inapplicable to large 
integrated power grids due to the requirements of repetitively solving optimal power flow (OPF) for a large 
number of system states. Machine learning-based approaches have been used to avoid solving OPF in composite 
system reliability evaluation except in the training stage. However, current approaches have been derived to 
classify system states into success and failure states (i.e., up or down). In other words, they can be used to 
evaluate power system probability and frequency reliability indices, but they cannot be used to evaluate power 
and energy reliability indices unless OPF is solved for each failure state to determine minimum load curtailments. 
In this paper, a convolutional neural network (CNN)-based regression approach is proposed to determine the 
minimum amount of load curtailments of sampled states without solving OPF, except in the training stage. 
Minimum load curtailments are then used to evaluate power and energy indices (e.g., expected demand not 
supplied) as well as to evaluate the probability and frequency indices. The proposed approach is applied on 
several systems including the IEEE Reliability Test Systems (The IEEE RTS and IEEE RTS-96) and Saskatchewan 
Power Corporation in Canada. Results show that the proposed approach is computationally efficient (fast and 
accurate) in calculating the most common composite system reliability indices. The developed source code of the 
proposed method is available to the community for future research and development.   

1. Introduction 

With the increasing dimensionality and uncertainties of modern 
power grids, practical application of traditional composite system reli
ability evaluation methods has become a bottleneck due to their heavy 
computational burden. Machine learning (ML) algorithms can be a 
promising solution to reduce certain computational complex
ities—requirement of solving optimal power flow (OPF)—in the com
posite system reliability evaluation. Existing ML-based reliability 
evaluation methods [1–6] use classification algorithms, which are 
abortive in calculating energy and frequency indices of composite sys
tems. Therefore, it has become indispensable to develop computation
ally efficient reliability evaluation methods that can calculate not only 
probability indices but also energy and frequency indices of composite 
systems. Regression-based ML algorithms have the potential to effi
ciently evaluate probability, energy, and frequency indices of composite 
systems, which are developed, discussed, and demonstrated in this 

paper. 
Several methods have been proposed in the literature to reduce the 

computation burden and convergence time of composite system reli
ability evaluation [7–23]. Among these methods, population-based 
intelligent search (PIS) methods have been used in [7–18] to reduce 
the computation burden of power system reliability evaluation. These 
search-based reliability evaluation methods generally have two steps. In 
the first step, PIS methods, such as genetic algorithm [7], the modified 
genetic algorithm [8], the state space pruning [9–15], and particle 
swarm optimization [16–18], are used to reduce the size of state space. 
In the second step, Monte Carlo simulations (MCSs) are performed on 
the reduced state space to compute reliability indices. In [19], the 
required number of samples to evaluate the reliability of composite 
systems has been reduced using non-sequential MCS with a cross- 
entropy-based optimization method. A multi-parametric linear 
programming-based approach has been proposed to decrease the 
requirement of solving OPF in composite power system reliability 

* Corresponding author. 
E-mail addresses: mkamruzzaman@nevada.unr.edu (Md. Kamruzzaman), bhusalnarayan62@nevada.unr.edu (N. Bhusal), mbenidris@unr.edu (M. Benidris).  

Contents lists available at ScienceDirect 

International Journal of Electrical Power and Energy Systems 

journal homepage: www.elsevier.com/locate/ijepes 

https://doi.org/10.1016/j.ijepes.2021.107468 
Received 11 December 2020; Received in revised form 14 June 2021; Accepted 28 July 2021   

mailto:mkamruzzaman@nevada.unr.edu
mailto:bhusalnarayan62@nevada.unr.edu
mailto:mbenidris@unr.edu
www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
https://doi.org/10.1016/j.ijepes.2021.107468
https://doi.org/10.1016/j.ijepes.2021.107468
https://doi.org/10.1016/j.ijepes.2021.107468
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2021.107468&domain=pdf


International Journal of Electrical Power and Energy Systems 135 (2022) 107468

2

evaluation [20]. In [21], a hierarchical decoupling optimization 
framework and impact-increment-based state enumeration method has 
been proposed to increase the accuracy and calculation speed of power 
system reliability evaluation with integrated energy systems. An 
improved estimation of distribution algorithm-based approach has been 
proposed in [22] to increase the speed of composite power system 
reliability evaluation using MCS by reducing the requirements of 
repeatedly solving OPF. In [23], an intelligent state space reduction and 
pseudo-sequential MCS-based approach has been proposed to reduce the 
computational burden of composite systems reliability evaluation with 
photovoltaic energy sources. Although the proposed methods in [7–23] 
reduce the number of sampled states that require solving OPF for reli
ability evaluation, they still require to perform the OPF for a signifi
cantly large number of system states. 

Several ML-based methods have been proposed in the literature to 
reduce/avoid the requirement of performing the OPF for composite 
system reliability evaluation [1–6,24–28]. A least-squares support vec
tor machine classifier-based reliability evaluation method has been 
proposed in [1], which requires performing the OPF in both training 
stage and evaluation stage (i.e., perform OPF on classified failure states 
by the trained network to calculate reliability indices). A multi-label k- 
nearest neighbor classification algorithm-based method has been pro
posed in [2], which utilizes the OPF for the training samples to calculate 
the Loss of Load Probability (LOLP) index. In [3], a method based on a 
multi-label radial basis classification technique, importance sampling, 
and MCS has been proposed to calculate the LOLP using the OPF for 
training samples. In [4,5], the authors have combined the group method 
data handling-based classification algorithm with non-sequential MCS 
to evaluate the reliability of composite systems. However, the calculated 
indices in [4,5] are imprecise as compared with the benchmarked results 
provided in [1,29,30] for the adapted systems. A self-organizing map- 
based classification algorithm with MCS has been used in [6] to calcu
late the LOLP index. A Bayesian network-based classification approach 
has been proposed in [24] to calculate the loss of load (LOL) index. In 
[25], a selection approach has been proposed to select training samples 
and training convolutional neural networks to calculate the LOLP of 
power systems. In [26], a Long Short Term Memory (LSTM)-based 
neural network has been used to calculate the LOLP in adequacy-based 
power system reliability assessment considering renewable resources. 
Another LSTM-based approach has been proposed in [27] to calculate 
the LOLP of composite power systems with wind farms. An artificial 
neural network-based method to model the output from wind and solar 
generators in power system reliability evaluation has been proposed in 
[28]. 

The methods proposed in [1–6,24–28] solve OPF in the training stage 
to classify system states in the evaluation stage into either success or 
failure states without determining the amount of load curtailments, 
which is sufficient only for determining the LOLP and Loss of Load 
Frequency (LOLF) indices. However, OPF has to be solved for each 
sampled failure state to determine the amount of load curtailment, 
which is needed to determine the Expected Demand Not Supplied 
(EDNS) index. The EDNS index provides a measure to the severity of 
failure states. Thus, the classification-based methods proposed in 
[1–6,24–28] are effective in calculating the LOLP and LOLF indices, but 
cannot be directly applied to calculate the EDNS index. Therefore, it is 
critical to develop a method to determine amounts of load curtailments 
during failure states without solving OPF for each sampled state in the 
evaluation stage. 

In this paper, a convolutional neural network (CNN)-based approach 
is proposed to calculate the well-known composite system reliability 
indices (i.e., LOLP, LOLF, and EDNS) without performing OPF, except in 
the training stage. The proposed approach starts with training the CNN 
using historical data. Then, the trained CNN is used to predict load 
curtailments for each sampled system state, which are used to calculate 
the reliability indices. In the next step, sampled system states are clas
sified into failure and success states based on predicted load 

curtailments. In the last step, predicted load curtailments are directly 
used to calculate the EDNS while classified system states are used to 
calculate the LOLP and LOLF indices. The LOLF is calculated using the 
classified system states and failure and repair rates of system compo
nents. Main contributions of the proposed work in comparison with 
existing methods are summarized as follows.  

• Development of an effective CNN-based approach to calculate the 
well-known reliability (probability, energy, and frequency) indices 
of power systems without performing OPF except in the training 
stage, which reduces the computational burden and time signifi
cantly compared to the existing methods. The CNN-based approach 
can accurately incorporate graph structures of power systems (grid- 
like topology), which provides the flexibility of determining mini
mum load curtailments without performing OPF in the proposed 
method.  

• The proposed CNN-based approach improves the scalability issues of 
existing ML-based methods in calculating energy indices by elimi
nating the requirement of solving the OPF for failure states.  

• A data generation scheme is developed based on the availability of 
system components, hourly loads, and network constraints to 
generate diverse historical data for both training the CNN and 
calculating the reliability indices. 

The proposed method is applied on IEEE Reliability Test System (The 
IEEE RTS and IEEE RTS-96) and Saskatchewan Power Corporation in 
Canada (SPC) to demonstrate its effectiveness on various system sizes 
and typologies. 

The rest of the paper is arranged as follows. Section 2 describes the 
data generation scheme for the proposed composite system reliability 
evaluation method. Section 3 provides procedures to calculate the 
composite system reliability indices using the proposed method. Nu
merical examples to demonstrate the effectiveness of the proposed 
method are presented in Section 4. Section 5 provides some concluding 
remarks. 

2. Data generation scheme 

In the training phase, a set of system states is randomly generated 
and OPF is solved for each state—the OPF is solved only in the training 
stage. Available generation and statuses of transmission lines are pro
vided as input and load curtailments (i.e., no load curtailments for up 
states) at respective states are used as the output to train a CNN. The 
trained CNN is used with MCS in the evaluation phase to determine 
minimum load curtailments of sampled states and evaluate composite 
system reliability indices. The main advantage of this approach is to use 
CNN to eliminate the need for solving OPF for each sampled state and 
that to determine minimum load curtailments for failure states. 

2.1. Input and output parameters for training 

Composite system reliability evaluation depends on network topol
ogy, bus load conditions, and availability of generators and transmission 
lines. Generators and transmission lines may not be available due to 
several reasons including scheduled maintenance and forced outages. In 
the proposed method, system states are sampled based on the avail
ability of generators and transmission lines and total loads of system 
buses (bus loads are considered variable loads when calculating annual 
indices and considered fixed at the peak load when calculating annu
alized indices). In each sampled state, each component can be in either 
up (available) or down (unavailable) state based on its mean time to 
failure and mean time to repair rates. A binary string is used to represent 
the operating state of a component (i.e., ‘1’ represents down/failure 
state or malfunctioning and ‘0’ represents up/normal state and func
tioning). In this work, we generate random numbers and compare them 
with the availability of system components to sample system states. The 
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operating state of each component of a sampled system state is expressed 
as follows. 

S =

{
1, if rp⩽𝒜p, p = 1, 2, ⋯, P
0, otherwise (1)  

where P is the total number of system components; rp is the generated 
random number for pth component; 𝒜p is the availability of the pth 

component; and S is a P × 1 vector that represents operating states of all 
the system components. 

The efficiency of a trained neural network depends on the selection 
of input variables with well-defined corresponding output (target) pat
terns in the training data set. In the proposed reliability evaluation 
method, the available power generation at each bus, capacities of 
transmission lines, and loads are used as input parameters and load 
curtailments are used as the target to train the CNN. An input vector for 
the proposed approach is expressed as follows. 

I =

[

G1, G2, ⋯, GM , C1, C2, ⋯, CNt ,

(
∑Nℓ

i=1
Li

) ]

, (2)  

where M is the total number of buses that have generators; Nℓ is the 
number of load buses; Nt is the total number of transmission lines; GM is 
the sum of available generation at bus M; ​ CNt is the capacity of trans
mission line Nt; ​ Li is the load demand of bus i; and I is the input training 
vector. 

It is worth mentioning here that the capacity of a failed line in (2) is 
set to zero only as an input parameter to train the machine learning in 
case of failure of the line, which helps to capture the nonlinear rela
tionship between the input and output data of the machine learning 
model. When calculating the load curtailment using OPF, the failed lines 
are considered open circuits. Also, a constant power load model is used 
in power flow (steady-state) analysis to generate training samples, 
which is widely used in composite system reliability evaluation. 

Outputs from renewable generators can be calculated using existing 
models for renewable energy sources. In this work, we have used the 
proposed artificial neural network-based approach in [28] to calculate 
outputs from wind and solar generators in power system reliability 
evaluation methods. As the main objective of the proposed work is to 
reduce the computational burden of reliability evaluation methods, 
instead of reproducing rigorous models presented in [28], we provide 
main steps of modeling output power from wind and solar generators, 
which are: (i) collecting data for hourly mean wind speed and solar ir
radiances, hourly standard deviations, wind energy, and solar energy 
data for the entire year, (ii) developing a multi-state model using arti
ficial neural network, (iii) calculating wind speed and solar irradiance 
data transitions rates using discrete Markov chains, (iv) modeling of 
wind turbine output power based on cut-in-and cut-out speed, and (v) 
modeling of solar panel output power based on beta probability density 
function. 

The targets (load curtailments) to train the CNN is expressed as fol
lows. 

T =

[(
∑Nℓ

i=1
Lc

i

) ]

, (3)  

where Lc
i is the minimum amount of load curtailment at bus i and T is the 

corresponding output (target). 

2.2. Network modeling 

The linearized power flow model (DC power flow model), which has 
been widely used in composite system reliability evaluation, is utilized 
in this paper to determine minimum load curtailment to train the CNN. 
The objective function to minimize load curtailments for training sam
ples can be expressed as follows [31]. 

Minimize (Load curtailment) = min

(
∑Nℓ

i=1
Lc

i

)

(4) 

The network constraints subject to the objective function (4) are as 
follows. 

Power balance equations, 

Bθ + G + Lc = L (5)  

where B is an (N × N) matrix that represents bus susceptance; θ is an 
(N × 1) vector of nodal voltage angles; G is an (N × 1) vector of power 
generation at buses; Lc is an (N × 1) vector of load curtailments; L is an 
(N × 1) vector of load demand; and N is number of system buses. 

Real power generation constraints, 

Gmin
i ⩽Gi⩽Gmax

i (6)  

where Gmin
i and Gmax

i are respectively the minimum and maximum power 
generation limits at bus i. 

Line capacity constraints, 

−Fmax⩽BlAθ⩽Fmax (7)  

where Fmax is the vector of maximum capacities of transmission lines 
(Nt × 1); ​ Bl is a diagonal (Nt × Nt) matrix where its diagonal elements 
are transmission line susceptances; and A is the element-node incidence 
matrix (Nt × N). 

Load curtailment constraints, 

0⩽Lc⩽L (8) 

Node voltage angle constraints, 

−π⩽θ⩽π (9)  

In order to achieve a feasible solution, one of the bus angles has been 
assumed as zero for the given constraints in (5)–(9). 

3. The proposed approach for composite power system 
reliability evaluation 

This section describes the architecture of convolutional neural 
network used in this work, training attributes of the proposed approach, 
and the proposed mechanism to determine composite power system 
reliability indices. 

3.1. Convolutional neural network 

Convolutional Neural Networks (CNNs) have been used in several 
applications. Variant of CNN model applied in [32] for image classifi
cation won the ILSVRC-2012 competition after which CNN received 
significant attention from researchers all around the world. We used 
CNN because it has the capability to accurately incorporate graph 
structures of power systems (grid-like topology), which is similar to 
image structure in image classification tasks. It has been successively 
applied in various power system related prediction and classification 
problems [33–41]. In power system, CNN has been used with 1-dimen
sional (1-D) input dataset as well as multi-dimensional dataset. Some of 
the examples that use 1-D input for power system problems similar to 
proposed work are as follows. CNN and LightGBM are combined in [34] 
for ultra-short-term wind power forecasting in which 1-Dimension (1-D) 
(containing various features including wind speed, temperature, etc.) 
vector is used as an input to the proposed model. In [35], photovoltaic 
power has been forecasted using deep CNN with 1-D input vector for the 
CNN model. Location of false data injection attack has been detected in 
[36] using CNN through multi-label classification approach in which the 
input of the CNN architecture is the 1-D measurement vector. In [41], 
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recurrent inception CNN is used for multi short-term load forecasting 
which also uses various 1-D features for input for the CNN architecture. 
Due to its ability to capture complex patterns within power system 
measurements and states, CNN is used in this work to replace OPF in 
determining minimum load curtailments. Other benefits of CNN is that it 
is easier to train, can automatically extract system features, and have 
fewer parameters compared to the fully connected neural network with 
the same number of hidden units. CNNs generally have a convolutional 
layer followed by a pooling layer. The convolutional and pooling layers 
find the low level feature of the input vector. Fully connected layers are 
added after the convolutional and pooling layers to predict the output. 
Although CNN architecture is well-suited for 2-D input, it can be used 
efficiently for 1-D inputs like the proposed work. In the proposed work, 
the pooling layer doesn’t have any significant impact; therefore, only 
convolutional and dense layers are used. Fig. 1 shows the architecture of 
CNN for the proposed work. The feature map of the CNN and the dense 
layers is described as follows. 

The feature map generated by the input layer can be expressed as 
follows. 

cnn1 = σ(zt*h1 + b1) (10)  

where h1 is a convolutional kernel (1-D filter) and b1 is bias vector. 
Similarly, the feature map of the hidden layer can be presented as fol
lows. 

cnnq = σ(cnnq−1*hq + bq) (11)  

where cnnq−1 is the feature map of the (q −1)-th layer, and hq and bq are 
convolutional kernel and bias vector of the q-th layer, respectively. 
Before outputting the final results from the final dense layer, a fully 
connected layer is required to flatten the last convolutional layer. The 
feature map of the hidden fully connected (FC) (dense) layer can be 
expressed as follows. 

flatcnn = σ(wf *cnnlast + bf ) (12)  

where cnnlast is the feature map of the last layer of the hidden con
volutional layers, and wf and bf are respectively the weight and bias 
vectors of the hidden dense layer. The feature map of the final output 
dense layer is as follows. 

T̂ = σ(wd × mlpd−1 + bd) (13)  

where wd and bd are the weight and bias of the output layer and mlpd−1 is 
the feature map of the layer just before the final layer. 

3.2. Training attributes 

To use the proposed model, we need to train it to optimize the 

learning parameters such as weights, w, and bias, b, in each layer. The 
optimized parameters can map the relationship between the input vec
tor and the output load curtailments. 

Following the normal trend in the machine learning, the training and 
testing dataset are separated as 7/10 and 3/10. Mini-batch size of 64 and 
number of epochs of 200 are used. We have adopted the commonly used 
mean absolute error (MAE) as loss function which is the arithmetic 
average of absolute error between predicted load curtailment and the 
actual load curtailment. Adaptive moment estimation (Adam) is adopted 
as an optimizer to obtain the optimal parameters. 

3.3. Selection of training samples 

Typically, the failure probability of power systems is very low. 
Therefore, the probability of success subspaces of a power system is 
much larger than the probability of failure subspaces. If all the sampled 
states of a power system are taken into consideration for training the 
neural networks, then a very large number of samples is required in the 
training data set. This will eventually demolish the goal of reducing the 
computational cost of power system reliability evaluation using machine 
learning algorithms. In [2], most of the success states are discarded to 
generate a balanced training data set with reduced size. In [1,4], two 
success states for each failure state are selected to generate a more 
balanced training data set. It is worth mentioning here that a large 
number of repeated patterns of the input and output vectors remain in 
the power system states due to the high availability of system compo
nents, which may cause overtraining for the used training samples in 
[2,1,4]. Therefore, in this work, repeated states are removed from the 
training data set to train the algorithm on a diverse set of states. In 
calculating the annual indices, load levels are also added to the criterion 
of removing repeated states. Then, the OPF is performed to determine 
targets for the generated data set. It should be noted that the size of the 
data set needs to be large enough to contain a reasonable number of 
success and failure states, which can be determined by analyzing the 
training performance of the CNN. Also, it is worth mentioning here that 
power systems are typically very reliable and most of the samples will 
have no load curtailment for annual reliability evaluation. In this work, 
following the same convention of [3,42], we have used load clusters to 
calculate annual reliability indices, and the CNN is trained only for the 
load clusters that have load curtailments. The annual reliability indices 
of the system are calculated based on the weight of each cluster. 

3.4. The proposed method to Compute Reliability Evaluation 

After training the CNN, system states (total available generation and 
loads) are sampled based on the procedure described in Section 2.1. 
Then, sampled system states are fed as input to the trained CNN and 
predicted load curtailments are used to calculate the reliability indices 

Fig. 1. Architecture of 1-Dimensional CNN for the proposed work. The Input in the figure are generations injected at generation buses, line capacities of all the lines, 
and the total loads of the system. The output is the total load curtailments of the system for the given input parameters. 
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including the LOLP, EDNS, and LOLF indices. The definitions and pro
cedure to calculate the reliability indices are presented as follows. 

3.4.1. Calculation of EDNS 
The EDNS index is used to measure the expected amount of load 

shedding due to system failure to meet the demand. In this work, pre
dicted load curtailments by the trained CNN are directly used to calcu
late the EDNS index. The expression to calculate the EDNS is as follows. 

EDNS =

(
1
Ns

∑Ns

s=1
ys

)

, (14)  

where Ns is the total number of samples from MCS; and ys is the pre
dicted load curtailment by the trained CNN for the sth input sample. 

3.4.2. Calculation of LOLP 
The LOLP index is used to measure the probability of system failure. 

Thus, instead of using the predicted load curtailments, system states are 
classified into failure and success states to calculate the LOLP. The 
predicted outputs from the proposed model are used to classify the 
system states. A system state is represented by a binary string—‘1’ 
represents failure state and ‘0’ represents success state. The expression 
to calculate the LOLP is as follows. 

LOLP =

(
1
Ns

∑Ns

s=1
Lk

)

, Lk =

{
0, if ys = 0
1, if ys > 0 (15)  

3.4.3. Calculation of LOLF 
The LOLF index represents the measure of how often a power system 

fails. It is worth mentioning here that the calculation of LOLF using the 
system states is not a straight forward process. However, the proposed 
method in [10] can be adopted to determine the LOLF. Instead of 
reproducing the rigorous procedure provided in [10], we provide only 
the required expressions to calculate the LOLF based on our proposed 
method, which are as follows. 

LOLF =

(
1
Ns

∑Ns

s=1
ϕs

)

, (16)  

where, 

ϕs =

⎧
⎪⎨

⎪⎩

∑N

i=1
(λ+

i − λ−
i ), if ys > 0

0, if ys = 0

(17)  

where λ+
i is the transition rate of component i from its state in failure 

state to higher states; and λ−
i is the transition rate of component i from its 

state in failure state to lower states. 

3.4.4. Convergence criterion to calculate the indices 
A convergence criterion needs to be applied to stop the algorithm 

when the reliability indices reach a steady state. The coefficient of 
variance of reliability indices is usually used as a convergence criterion 
in power system reliability studies, which is adapted in this work. The 
coefficient of variance of a reliability index is expressed as follows [43]. 

β =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(RI)

√

E(RI)
, (18)  

where β is the coefficient of variance of a reliability index; and RI is the 
reliability index. The proposed algorithm is performed until the value of 
β reaches a predefined tolerance level, ∊. 

In reliability evaluation studies of power systems, the energy indices 
have been observed as the slowest indices in terms of convergence using 
MCS [44]. Following the same convention, we applied the stopping 
criterion on the EDNS index in this work. A flowchart to evaluate the 

composite system reliability using the proposed method is shwon in 
Fig. 2. 

3.5. Performance evaluation metrics 

Evaluation metrics used to evaluate the performance of the machine 
learning model are as follows. Mean absolute error (MAE) and root mean 
square error (RMSE) are used to evaluate the prediction (regression) 
performance of the model (predicted load curtailment is used to calcu
late EDNS). The classification dataset to calculate LOLP and LOLF are 
determined using a threshold (different value of threshold are used 
based on their load levels) in the predicted load curtailment. That is, if 
the predicted curtailment is more than the threshold, label ‘1’ (down/ 
failure state) is used, and if the curtailment is below the threshold label 
‘0’ (normal/up state) is used. The predicted labels are compared with the 
actual labels and the classification performance is evaluated using pre
cision, recall, and the F1-score. 

Fig. 2. Flowchart to calculate reliability indices for composite power systems 
using the proposed method. 
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1. Mean Absolute Error (MAE): 

MAE =
1
N

∑N

t=1
|xt − x̂t

| (19)    

2. Root Mean Square Error (RMSE): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

t=1
(xt

i − x̂t
i)

2

√
√
√
√ (20)    

3. Precision: It is the fraction of true predicted positive labels among all 
positive predicted labels, which can be expressed as follows. 

P =
Tp

Tp + Fp
(21)    

4. Recall: It is the fraction of true predicted positive labels among the 
actual positive labels, which can be expressed as follows. 

R =
Tp

Tp + Fn
(22)    

5. F1-Score: It is the harmonic mean of precision and recall, which can 
be expressed as follows. 

F1 − Score = 2 ×
P × R
P + R

(23)   

where N is the total number of test samples; and xt and x̂t represent 
actual and predicted states, respectively. Tp represents true positive—
down states labeled as down states; Tn denotes true negative—up states 
labeled as up states; Fp denotes the false positive—up states labeled as 
down states; and Fn is false negative—down states labeled as up states. 

4. Numerical examples 

The proposed method is demonstrated on the IEEE RTS [45], SPC in 
Canada [46], IEEE RTS-96 [47]. It is worth mentioning here that these 
systems are selected due to the variations in their sizes, line constraints, 
loading levels, and availability of system components. For example, the 
SPC system has more capacity margin than IEEE RTS and IEEE RTS-96, 
which makes it less stressful than the IEEE RTS and IEEE RTS-96. Also, 
several load curtailment scenarios are found during annualized reli
ability evaluation of the SPC system with the mean load while the IEEE 
RTS and IEEE RTS-96 has no curtailments for the mean load. Moreover, 
the probability of all the system components are being in the up states 
for the SPC is 0.44306 and that for the IEEE RTS and IEEE RTS-96 are 
0.23044 and 0.01218, respectively. The training and testing dataset 
required for each of the systems is generated using the procedure 
described in Section 2. The reliability indices are calculated using the 
proposed method. 

Also, reliability indices for the adapted systems are calculated using 
the MCS, which are used as references to analyze the accuracy of the 
proposed method. To evaluate the reliability indices using the MCS, the 
system states are sampled using (1) and (2). Then, the DC power flow 
with linear programming is used to calculate minimum load curtail
ments for all sampled states using (4)–(9). Finally, the obtained load 
curtailments using the DC power flow and linear programming for the 
sampled states are used to calculate the reliability indices. The rigorous 
procedure to evaluate composite power system reliability using the MCS 
can be found in [44,48]. The stopping criterion described in (18) is used 

to terminate the simulation. The tolerance level for β is used as (⩽0.025) 
[49]. The performed case studies for each of the adapted systems are 
described as follows. 

4.1. Case I: reliability evaluation of the IEEE RTS 

The total number of buses, generating units, and transmission lines of 
the IEEE RTS are 24, 32, and 38, respectively. The total generation ca
pacity and peak load are 3405 MW and 2850 MW, respectively. The 
detailed data of the IEEE RTS are provided in [45]. Both the annualized 
and annual reliability indices are calculated. 

To calculate the annualized indices using the proposed approach, 
2000 unique samples are generated to train CNN. The training set con
tains 1424 failure states and 576 success states. The hyperparameters of 
the CNN and threshold to eliminate the prediction error of the trained 
network for this case are shown in the second row of Table 1. The 
hyperparameters are selected empirically. Since the input vector to the 
machine learning model includes available outputs at all the generating 
buses (10 generating buses), the capacity of all the transmission lines (38 
transmission lines), and total load, the size of the input vector to the 
machine learning model for this case at any instance is 49. The output is 
the amount of load curtailment for each input sample. 

It is worth mentioning here that several strategies such as data 
processing, feature engineering, appropriate model selection, parameter 
tuning, parameter optimization, etc. are integral parts for real applica
tions of machine learning-based approaches, which are widely 
addressed in the existing related works. Although details on optimal 
parameter tuning, feature engineering, data cleaning, etc., are out of 
scope of this work, a training performances of several other approaches 
such as support vector machines, K-Nearest Neighbors, and Multi-Layer 
Perceptron are provided in Table 2 to validate effectiveness of the CNN. 
K-nearest Neighbor and Support Vector Machine models are taken as 
default from Scikit learn library. For Multi-layer perceptron the three 
hidden layers with 100 neurons in each layers and rectified linear unit as 
activation function is used. From Table 2, it can be seen that CNN shows 
better performance compared to the other machine learning models. 
Therefore, reliability indices are calculated only using the predictions 
obtained from the CNN. The variation in the training performances of 
the CNN for 15 different number of initial training samples for this case 
is shown in Fig. 3. From Fig. 3, it can be seen that the training perfor
mances are almost similar for all the initial training samples, which 
validates the robustness of the training procedure. The calculated 
annualized reliability indices for this case are provided in Table 3. 

To calculate the annual reliability indices, a total number of 33,000 
unique samples is generated among which 5620 are failure states and 
the remaining are success states. The RMSE, MAE, accuracy, precision, 
recall, and F_1 score of the trained network to calculate the annual 
reliability indices are 0.16243, 0.05387, 97.1496, 97.8425, 91.5456, 
and 94.5477, respectively. The hyperparameters of the CNN and 
threshold to eliminate the prediction error of the trained network to 
calculate annual indices of the IEEE RTS are shown in the third row of 
Table 1. Similar to the annualized indices, the hyperparameters to 

Table 1 
Hyperparameters of CNNs and threshold.  

Systems Hyper-parameters 

CNN L, F, K  Dense L, N  AH  AO  

IEEE RTS (Annualized) 2, 64, 3  3, 150  ReLU Linear 
IEEE RTS (Annual) 2, 64, 3  3, 100  ReLU Linear 

SPC 2, 64, 3  1, 100  ReLU Linear 
IEEE RTS-96 1, 64, 3  3, 300  ReLU Linear 

Note: L denotes number of layers, F denotes the filter size, K denotes kernel size, 
N denotes the number of neurons in a dense layer, AH and AO are the activation 
functions of hidden and output layers, respectively. 
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calculate annual indices are also selected empirically. Load clusters are 
typically used in calculating annual reliability indices of power systems 
[47,4]. Following the same convention, we have used load clusters to 
calculate annual reliability indices using both the proposed approach 
and MCS. CNN is trained for each cluster to calculate annual reliability 
indices using the proposed approach. For the low load levels, the 
number of success states is very high compared to failure states. 
Therefore, a large number of success states is discarded from the training 
samples (the ratio between the number of success states and failure 
states is kept 1 : 5) to reduce the training time. The calculated annual 
indices of the IEEE RTS using the proposed method and MCS are shown 
in Table 4. The reduction in the number of OPF solutions and simulation 

time is discussed in Section 4.4. 

4.2. Case II: reliability evaluation of the SPC in Canada 

The SPC system consists of 29 generating units, 71 transmission lines, 
and 45 buses. The total generation capacity and annual peak load of the 
SPC are 25,300 MW and 18,025 MW, respectively. Among 45 buses, four 
buses are used to represent assistance from Manitoba Hydro System. One 
of the four buses is represented as a fictitious bus to import 300 MW 
power from the Manitoba Hydro System. The fictitious bus is connected 
with the remaining buses. The imported 300 MW power is represented 
using three independent generating units (each of 100 MW). 

The detailed data of the SPC are also given in [50]. The DC power 
flow and linear programming are performed for 3, 000 unique training 
samples which contains 113 failure states and 2, 887 success states. 
Fourth row of Table 1 shows the hyperparameters and threshold. The 
hyperparameters for this case are also selected empirically. Since the 
input vector to the machine learning model includes the output at all the 
generation buses (8 generation buses), the capacity of all the trans
mission lines (71 transmission lines), and total load, the size of the input 
vector to the machine learning model for this case is 80. The output is 
the amount of the load curtailment. Table 2 shows the training perfor
mances of CNN compared to the other approaches for this case. Similar 
to Case I, K-nearest Neighbor and Support Vector Machine models are 
taken as default from Scikit learn library. For Multi-layer perceptron, 
three hidden layers with 150 neurons in each layer and rectified linear 
unit as activation function are used. Since CNN shows the comparable 
performance with other machine learning models and its performance is 
better for highly reliable practical power system model such as SPC, we 
have calculated the reliability indices only using the results obtained 

Table 2 
Comparison of MLP, CNN, KNN, and Support Vector Machine (SVM) in terms of RMSE, MAE, precision, recall, and F1 score for IEEE RTS and SPC.  

Models IEEE RTS SPC 

RMSE MAE P (%) R (%) F1-Score RMSE MAE P(%) R (%) F1-Score 

CNN 0.1038  0.022  100 97.10  98.53  0.047  0.0028  100 95.56  97.72  
MLP 0.0855  0.0394  100 96.54  98.24  0.1830  0.0649  98.85  7.644  14.20  
SVM 0.72  0.41  100 59.52  74.62  0.1806  0.0689  98.85  8.43  15.53  
KNN 0.24  0.058  99.6  96.90  98.23  0.0917  0.0089  80.45  72.16  76.08   

Fig. 3. Training performance for different number of initial training samples of the IEEE RTS.  

Table 3 
Annualized Reliability Indices for the IEEE RTS.  

Reliability Methods Difference 

Indices Proposed MCS (%) 

EDNS (MW/yr) 14.7111 14.7533 0.286 
LOLP 0.08508 0.08505 0.035 

LOLF (Occurrence/yr) 19.5969 19.4927 0.535  

Table 4 
Annual Reliability Indices for the IEEE RTS.  

Reliability Methods Difference 

Indices Proposed MCS (%) 

EDNS (MW/yr) 0.12543 0.13134 4.50 
LOLP 0.00118 0.00125 5.6 

LOLF (Occurrence/yr) 0.41216 0.40086 2.82  
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from the CNN. 
The calculated reliability indices for this case using the proposed 

method and MCS are provided in Table 5. The reduction in the number 
of OPF solutions and simulation time of the proposed method compared 
to the MCS is discussed in Section 4.4. 

4.3. Case III: reliability evaluation of the IEEE RTS-96 

The IEEE RTS-96 has 73 buses, 96 generating units, and 120 trans
mission lines. The total generation capacity and peak load of the IEEE 
RTS-96 are 10.21 GW and 8.55 GW, respectively. The detailed 
description of the IEEE RTS-96 is provided in [47]. The IEEE RTS-96 is 
very reliable, and therefore, loads and generators of the IEEE RTS-96 are 
increased by 40% to make it stressed. 

To calculate the annualized indices for the IEEE RTS-96 using the 
proposed approach, a total number of 7000 unique samples are gener
ated to train the CNN for this case. The number of failure and success 
states in the training data are 2451 and 4549, respectively. The size of 
the input vector for the IEEE RTS-96 is 151 (30 generation buses, 120 
transmission lines, and one aggregate load). The RMSE, MAE, accuracy, 
precision, recall, and F_1 score of the trained network to calculate the 
annualized reliability indices are 0.40, 0.1479, 94.0366, 91.5254, 
87.0967, and 89.2561, respectively. The hyperparameters of the CNN 
and threshold to eliminate the prediction error of the trained network to 
calculate annualized indices of the IEEE RTS-96 are shown in the fifth 
row of Table 1. The calculated annualized reliability indices for this case 
are provided in Table 6. The reduction in the number of OPF and 
simulation time for this case is also discussed in Section 4.4. 

4.4. Results and discussion 

The proposed method is implemented on the above-mentioned test 
systems. Annualized (for peak load) reliability indices are calculated for 
all the tested systems using both the proposed method and MCS. Also, to 
demonstrate the effectiveness of the proposed approach in calculating 
annual reliability indices, annual indices for the IEEE RTS are calculated 
as an example. In the first stage of the proposed approach, a CNN is 
trained to predict load curtailments. Then, predicted load curtailments 
are used to classify system states into failure and success states. Finally, 
load curtailments and classified system states are used to calculate the 
reliability indices. 

Table 2 shows the performance of the proposed approach in terms of 
RMSE, MAE, precision (P), Recall (R), and F1-score. From Table 2, we 
can see that the values of RMSE and MAE are very small, which indicate 
high accuracy in the predicted load curtailments. Also Table 2 shows 
that the values of P, R, and F-score are very high, which validate that the 
true prediction levels are almost perfect in the proposed approach. 
Therefore, it can be claimed that the proposed method can predict both 
the failure states and load curtailments in the failure states accurately. 

Tables 3,5,6 show the calculated annualized reliability indices using 
both the proposed method and MCS for IEEE RTS and SPC, respectively. 
From Table 3, we can see that the difference in the calculated reliability 
indices using the proposed method and MCS vary from 0.035–0.535% 
for the IEEE RTS. Table 5 shows that the difference in the calculated 
reliability indices using the proposed method and MCS varies from 
0.802–3.67% for the SPC. Table 6 shows that the difference in the 
calculated annualized reliability indices using the proposed method and 

MCS varies from 0.435–3.66% for the IEEE RTS-96. Table 4 shows that 
the calculated annual reliability indices using both the proposed method 
and MCS for IEEE RTS. The difference in the calculated annual reliability 
indices of the IEEE RTS using the proposed method and MCS vary from 
2.82–5.6%. This indicates that the proposed method has high accuracy 
in calculating the reliability indices for the tested systems. Therefore, it 
can be concluded that the CNN can capture the complex pattern within 
input generations and loads and the output load curtailments precisely. 

Table 7 shows the reduction in the number of OPF solutions and 
simulation time for the proposed method compared to the MCS. 

From Table 7, it can be seen that the reduction in the number of 
samples that needs to perform the OPF to calculate annualized and 
annual indices of the IEEE RTS are 97.66% and 68.27%, respectively, 
less for the proposed method compared to the MCS. Table 7 also shows 
that the proposed method reduces 99.127% of samples that need solu
tion of OPF compared to the MCS for the SPC. Moreover, from Table 7, 
we can see that the reduction in the number of samples for which the 
OPF needs to be solved for the proposed method is 91.81% compared to 
the MCS for the IEEE RTS-96. This happens because the proposed 
method uses the OPF only for a small number of training samples, and 
the trained network emulates the OPF using weights and biases for a 
large number of samples that require the calculation of the reliability 
indices. Also, Table 7 shows that the reduction in the number of samples 
that require OPF solutions is highest for the SPC system among the tested 
systems. This happens due to the fact that the SPC system is more reli
able compared to the other tested systems, and it takes the highest 
number of samples to converge using the MCS. Moreover, Table 7 shows 
that the reduction in the simulation time for the SPC is significantly 
larger than the IEEE RTS and IEEE RTS-96. This happens because the 
same sequence is followed in the reduction of the number of samples 
that require to solve OPF. 

The results show that the proposed approach not only calculates all 
the reliability indices with high accuracy but also is able to reduce the 
computational complexity and time significantly. 

Also, the advantages of the proposed work over the state enumera
tion, improved Monte Carlo simulation, and previously proposed ML- 
based methods are demonstrated through a comparison analysis in 

Table 5 
Reliability Indices for the SPC-Canada.  

Reliability Methods Difference 

Indices Proposed MCS (%) 

EDNS (MW/yr) 0.0377 0.0374 0.802 
LOLP 0.00105 0.00109 3.67 

LOLF (Occurrence/yr) 0.88270 0.89097 0.92  

Table 6 
Annualized Reliability Indices for the IEEE RTS-96.  

Reliability Methods Difference 

Indices Proposed MCS (%) 

EDNS (MW/yr) 6.3615 6.6035 3.66 
LOLP 0.02975 0.02988 0.435 
LOLF (Occurrence/yr) 10.5656 10.3093 2.48  

Table 7 
Reduction in the number of DC power flow and simulation time for all the 
adapted systems.  

Systems  Proposed 
method 

MCS Reduction 

IEEE- OPF 2,000 85,500 83,500 
RTS (No. of samples)    

(Annualized) Simulation time 
(s) 

93.59  1652.28 1558.69 

IEEE- OPF 33,000 104,000 71,000 
RTS (No. of samples)    

(Annual) Simulation time 
(s) 

778.203 1004.57 277.099  

OPF 3,000 344,000 341,000 
SPC (No. of samples)     

Simulation time 
(s) 

130.91  4136.367 4005.457 

IEEE OPF 7,000 85,500 78,500 
RTS-96 (No. of samples)    

(Annualized) Simulation time 
(s) 

508.844 1138.1861 629.342  
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Table 8. 

5. Conclusion and future work 

This paper has proposed a CNN-based method to evaluate the reli
ability of composite power systems. The CNN was trained using samples 
that consist of generations, transmission line capacities, and total loads 
as input and total load curtailments as output. The training samples were 
generated using the MCS, linear programming technique, and DC power 
flow. After training the CNN, a new data set was fed as input to the 
trained CNN to calculate the reliability indices. This data set was 
generated based on the total loads and availability of generators and 
transmission lines. The predicted load curtailments were used to 
calculate the reliability indices without performing the OPF. Three case 
studies were carried out to analyze the effectiveness of the proposed 
method. In these case studies, the IEEE RTS, SPC, and IEEE RTS-96 were 
used to verify the effectiveness of the proposed method for different 
systems. The results showed that the OPF was performed for small 
number of samples in the proposed method, which reduces the 
computation complexity and simulation time significantly. The results 
also showed that the calculated reliability indices using the proposed 
method were close to those calculated using the OPF for each sampled 
state. Moreover, the results showed that the number of samples that 
require the solution of OPF for the proposed method for the tested sys
tems are significantly lower compared to the Monte-Carlo simulation. 

Incorporating several strategies such as data processing, hyper
parameter optimization, feature engineering, etc. in the proposed 
approach are left as future scope of research. Also, analyzing the impacts 
of several composite load models on the performance of power system 
reliability methods can be a great scope of future research. 

Source Code 

The source code of this work is provided online (https://github.com/ 
nbhusal/Composite-Reliability-Analysis-) for future research and 
development. 
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