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This paper proposes a machine learning-based approach in conjunction with Monte Carlo simulation (MCS) to
improve the computation efficiency of composite power system reliability evaluation. Traditional composite
system reliability evaluation approaches are computationally demanding and may become inapplicable to large
integrated power grids due to the requirements of repetitively solving optimal power flow (OPF) for a large
number of system states. Machine learning-based approaches have been used to avoid solving OPF in composite
system reliability evaluation except in the training stage. However, current approaches have been derived to
classify system states into success and failure states (i.e., up or down). In other words, they can be used to
evaluate power system probability and frequency reliability indices, but they cannot be used to evaluate power
and energy reliability indices unless OPF is solved for each failure state to determine minimum load curtailments.
In this paper, a convolutional neural network (CNN)-based regression approach is proposed to determine the
minimum amount of load curtailments of sampled states without solving OPF, except in the training stage.
Minimum load curtailments are then used to evaluate power and energy indices (e.g., expected demand not
supplied) as well as to evaluate the probability and frequency indices. The proposed approach is applied on
several systems including the IEEE Reliability Test Systems (The IEEE RTS and IEEE RTS-96) and Saskatchewan
Power Corporation in Canada. Results show that the proposed approach is computationally efficient (fast and
accurate) in calculating the most common composite system reliability indices. The developed source code of the
proposed method is available to the community for future research and development.

1. Introduction paper.

Several methods have been proposed in the literature to reduce the

With the increasing dimensionality and uncertainties of modern
power grids, practical application of traditional composite system reli-
ability evaluation methods has become a bottleneck due to their heavy
computational burden. Machine learning (ML) algorithms can be a
promising solution to reduce certain computational complex-
ities—requirement of solving optimal power flow (OPF)—in the com-
posite system reliability evaluation. Existing ML-based reliability
evaluation methods [1-6] use classification algorithms, which are
abortive in calculating energy and frequency indices of composite sys-
tems. Therefore, it has become indispensable to develop computation-
ally efficient reliability evaluation methods that can calculate not only
probability indices but also energy and frequency indices of composite
systems. Regression-based ML algorithms have the potential to effi-
ciently evaluate probability, energy, and frequency indices of composite
systems, which are developed, discussed, and demonstrated in this

* Corresponding author.

computation burden and convergence time of composite system reli-
ability evaluation [7-23]. Among these methods, population-based
intelligent search (PIS) methods have been used in [7-18] to reduce
the computation burden of power system reliability evaluation. These
search-based reliability evaluation methods generally have two steps. In
the first step, PIS methods, such as genetic algorithm [7], the modified
genetic algorithm [8], the state space pruning [9-15], and particle
swarm optimization [16-18], are used to reduce the size of state space.
In the second step, Monte Carlo simulations (MCSs) are performed on
the reduced state space to compute reliability indices. In [19], the
required number of samples to evaluate the reliability of composite
systems has been reduced using non-sequential MCS with a cross-
entropy-based optimization method. A multi-parametric linear
programming-based approach has been proposed to decrease the
requirement of solving OPF in composite power system reliability
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evaluation [20]. In [21], a hierarchical decoupling optimization
framework and impact-increment-based state enumeration method has
been proposed to increase the accuracy and calculation speed of power
system reliability evaluation with integrated energy systems. An
improved estimation of distribution algorithm-based approach has been
proposed in [22] to increase the speed of composite power system
reliability evaluation using MCS by reducing the requirements of
repeatedly solving OPF. In [23], an intelligent state space reduction and
pseudo-sequential MCS-based approach has been proposed to reduce the
computational burden of composite systems reliability evaluation with
photovoltaic energy sources. Although the proposed methods in [7-23]
reduce the number of sampled states that require solving OPF for reli-
ability evaluation, they still require to perform the OPF for a signifi-
cantly large number of system states.

Several ML-based methods have been proposed in the literature to
reduce/avoid the requirement of performing the OPF for composite
system reliability evaluation [1-6,24-28]. A least-squares support vec-
tor machine classifier-based reliability evaluation method has been
proposed in [1], which requires performing the OPF in both training
stage and evaluation stage (i.e., perform OPF on classified failure states
by the trained network to calculate reliability indices). A multi-label k-
nearest neighbor classification algorithm-based method has been pro-
posed in [2], which utilizes the OPF for the training samples to calculate
the Loss of Load Probability (LOLP) index. In [3], a method based on a
multi-label radial basis classification technique, importance sampling,
and MCS has been proposed to calculate the LOLP using the OPF for
training samples. In [4,5], the authors have combined the group method
data handling-based classification algorithm with non-sequential MCS
to evaluate the reliability of composite systems. However, the calculated
indices in [4,5] are imprecise as compared with the benchmarked results
provided in [1,29,30] for the adapted systems. A self-organizing map-
based classification algorithm with MCS has been used in [6] to calcu-
late the LOLP index. A Bayesian network-based classification approach
has been proposed in [24] to calculate the loss of load (LOL) index. In
[25], a selection approach has been proposed to select training samples
and training convolutional neural networks to calculate the LOLP of
power systems. In [26], a Long Short Term Memory (LSTM)-based
neural network has been used to calculate the LOLP in adequacy-based
power system reliability assessment considering renewable resources.
Another LSTM-based approach has been proposed in [27] to calculate
the LOLP of composite power systems with wind farms. An artificial
neural network-based method to model the output from wind and solar
generators in power system reliability evaluation has been proposed in
[28].

The methods proposed in [1-6,24-28] solve OPF in the training stage
to classify system states in the evaluation stage into either success or
failure states without determining the amount of load curtailments,
which is sufficient only for determining the LOLP and Loss of Load
Frequency (LOLF) indices. However, OPF has to be solved for each
sampled failure state to determine the amount of load curtailment,
which is needed to determine the Expected Demand Not Supplied
(EDNS) index. The EDNS index provides a measure to the severity of
failure states. Thus, the classification-based methods proposed in
[1-6,24-28] are effective in calculating the LOLP and LOLF indices, but
cannot be directly applied to calculate the EDNS index. Therefore, it is
critical to develop a method to determine amounts of load curtailments
during failure states without solving OPF for each sampled state in the
evaluation stage.

In this paper, a convolutional neural network (CNN)-based approach
is proposed to calculate the well-known composite system reliability
indices (i.e., LOLP, LOLF, and EDNS) without performing OPF, except in
the training stage. The proposed approach starts with training the CNN
using historical data. Then, the trained CNN is used to predict load
curtailments for each sampled system state, which are used to calculate
the reliability indices. In the next step, sampled system states are clas-
sified into failure and success states based on predicted load
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curtailments. In the last step, predicted load curtailments are directly
used to calculate the EDNS while classified system states are used to
calculate the LOLP and LOLF indices. The LOLF is calculated using the
classified system states and failure and repair rates of system compo-
nents. Main contributions of the proposed work in comparison with
existing methods are summarized as follows.

e Development of an effective CNN-based approach to calculate the
well-known reliability (probability, energy, and frequency) indices
of power systems without performing OPF except in the training
stage, which reduces the computational burden and time signifi-
cantly compared to the existing methods. The CNN-based approach
can accurately incorporate graph structures of power systems (grid-
like topology), which provides the flexibility of determining mini-
mum load curtailments without performing OPF in the proposed
method.

The proposed CNN-based approach improves the scalability issues of
existing ML-based methods in calculating energy indices by elimi-
nating the requirement of solving the OPF for failure states.

A data generation scheme is developed based on the availability of
system components, hourly loads, and network constraints to
generate diverse historical data for both training the CNN and
calculating the reliability indices.

The proposed method is applied on IEEE Reliability Test System (The
IEEE RTS and IEEE RTS-96) and Saskatchewan Power Corporation in
Canada (SPC) to demonstrate its effectiveness on various system sizes
and typologies.

The rest of the paper is arranged as follows. Section 2 describes the
data generation scheme for the proposed composite system reliability
evaluation method. Section 3 provides procedures to calculate the
composite system reliability indices using the proposed method. Nu-
merical examples to demonstrate the effectiveness of the proposed
method are presented in Section 4. Section 5 provides some concluding
remarks.

2. Data generation scheme

In the training phase, a set of system states is randomly generated
and OPF is solved for each state—the OPF is solved only in the training
stage. Available generation and statuses of transmission lines are pro-
vided as input and load curtailments (i.e., no load curtailments for up
states) at respective states are used as the output to train a CNN. The
trained CNN is used with MCS in the evaluation phase to determine
minimum load curtailments of sampled states and evaluate composite
system reliability indices. The main advantage of this approach is to use
CNN to eliminate the need for solving OPF for each sampled state and
that to determine minimum load curtailments for failure states.

2.1. Input and output parameters for training

Composite system reliability evaluation depends on network topol-
ogy, bus load conditions, and availability of generators and transmission
lines. Generators and transmission lines may not be available due to
several reasons including scheduled maintenance and forced outages. In
the proposed method, system states are sampled based on the avail-
ability of generators and transmission lines and total loads of system
buses (bus loads are considered variable loads when calculating annual
indices and considered fixed at the peak load when calculating annu-
alized indices). In each sampled state, each component can be in either
up (available) or down (unavailable) state based on its mean time to
failure and mean time to repair rates. A binary string is used to represent
the operating state of a component (i.e., ‘1’ represents down/failure
state or malfunctioning and ‘O’ represents up/normal state and func-
tioning). In this work, we generate random numbers and compare them
with the availability of system components to sample system states. The
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operating state of each component of a sampled system state is expressed
as follows.

S— 1, if r,<A,,
0, otherwise

=1,2,-,P
p=50 o)

where P is the total number of system components; r, is the generated
random number for p* component; A, is the availability of the p*
component; and S is a P x 1 vector that represents operating states of all
the system components.

The efficiency of a trained neural network depends on the selection
of input variables with well-defined corresponding output (target) pat-
terns in the training data set. In the proposed reliability evaluation
method, the available power generation at each bus, capacities of
transmission lines, and loads are used as input parameters and load
curtailments are used as the target to train the CNN. An input vector for
the proposed approach is expressed as follows.

Ne
I'=|G1,Gs, -+, Gy, C1, Cs, -+, Ci, (ZL,)} @
i=1

where M is the total number of buses that have generators; N, is the
number of load buses; N; is the total number of transmission lines; Gy, is
the sum of available generation at bus M; Cy, is the capacity of trans-
mission line N;; L; is the load demand of bus i; and I is the input training
vector.

It is worth mentioning here that the capacity of a failed line in (2) is
set to zero only as an input parameter to train the machine learning in
case of failure of the line, which helps to capture the nonlinear rela-
tionship between the input and output data of the machine learning
model. When calculating the load curtailment using OPF, the failed lines
are considered open circuits. Also, a constant power load model is used
in power flow (steady-state) analysis to generate training samples,
which is widely used in composite system reliability evaluation.

Outputs from renewable generators can be calculated using existing
models for renewable energy sources. In this work, we have used the
proposed artificial neural network-based approach in [28] to calculate
outputs from wind and solar generators in power system reliability
evaluation methods. As the main objective of the proposed work is to
reduce the computational burden of reliability evaluation methods,
instead of reproducing rigorous models presented in [28], we provide
main steps of modeling output power from wind and solar generators,
which are: (i) collecting data for hourly mean wind speed and solar ir-
radiances, hourly standard deviations, wind energy, and solar energy
data for the entire year, (ii) developing a multi-state model using arti-
ficial neural network, (iii) calculating wind speed and solar irradiance
data transitions rates using discrete Markov chains, (iv) modeling of
wind turbine output power based on cut-in-and cut-out speed, and (v)
modeling of solar panel output power based on beta probability density
function.

The targets (load curtailments) to train the CNN is expressed as fol-
lows.

~[(59)

where L{ is the minimum amount of load curtailment at bus i and T is the
corresponding output (target).

2.2. Network modeling

The linearized power flow model (DC power flow model), which has
been widely used in composite system reliability evaluation, is utilized
in this paper to determine minimum load curtailment to train the CNN.
The objective function to minimize load curtailments for training sam-
ples can be expressed as follows [31].
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Ne
Minimize (Load curtailment) = min < Z Lf) “4)
i=1
The network constraints subject to the objective function (4) are as
follows.
Power balance equations,

BO+G+L =L ®

where B is an (N x N) matrix that represents bus susceptance; ¢ is an
(N x 1) vector of nodal voltage angles; G is an (N x 1) vector of power
generation at buses; L€ is an (N x 1) vector of load curtailments; L is an
(N x 1) vector of load demand; and N is number of system buses.

Real power generation constraints,

G"<Gi<G™ (6

where G'"™ and G"™ are respectively the minimum and maximum power
generation limits at bus i.
Line capacity constraints,

7
. @)

where F"™ is the vector of maximum capacities of transmission lines
(N¢ x 1); By is a diagonal (N; x N;) matrix where its diagonal elements
are transmission line susceptances; and A is the element-node incidence
matrix (N; x N).

Load curtailment constraints,

0<L°<L (8)
Node voltage angle constraints,

)]

—n<0<n

In order to achieve a feasible solution, one of the bus angles has been
assumed as zero for the given constraints in (5)-(9).

3. The proposed approach for composite power system
reliability evaluation

This section describes the architecture of convolutional neural
network used in this work, training attributes of the proposed approach,
and the proposed mechanism to determine composite power system
reliability indices.

3.1. Convolutional neural network

Convolutional Neural Networks (CNNs) have been used in several
applications. Variant of CNN model applied in [32] for image classifi-
cation won the ILSVRC-2012 competition after which CNN received
significant attention from researchers all around the world. We used
CNN because it has the capability to accurately incorporate graph
structures of power systems (grid-like topology), which is similar to
image structure in image classification tasks. It has been successively
applied in various power system related prediction and classification
problems [33-41]. In power system, CNN has been used with 1-dimen-
sional (1-D) input dataset as well as multi-dimensional dataset. Some of
the examples that use 1-D input for power system problems similar to
proposed work are as follows. CNN and LightGBM are combined in [34]
for ultra-short-term wind power forecasting in which 1-Dimension (1-D)
(containing various features including wind speed, temperature, etc.)
vector is used as an input to the proposed model. In [35], photovoltaic
power has been forecasted using deep CNN with 1-D input vector for the
CNN model. Location of false data injection attack has been detected in
[36] using CNN through multi-label classification approach in which the
input of the CNN architecture is the 1-D measurement vector. In [41],
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recurrent inception CNN is used for multi short-term load forecasting
which also uses various 1-D features for input for the CNN architecture.
Due to its ability to capture complex patterns within power system
measurements and states, CNN is used in this work to replace OPF in
determining minimum load curtailments. Other benefits of CNN is that it
is easier to train, can automatically extract system features, and have
fewer parameters compared to the fully connected neural network with
the same number of hidden units. CNNs generally have a convolutional
layer followed by a pooling layer. The convolutional and pooling layers
find the low level feature of the input vector. Fully connected layers are
added after the convolutional and pooling layers to predict the output.
Although CNN architecture is well-suited for 2-D input, it can be used
efficiently for 1-D inputs like the proposed work. In the proposed work,
the pooling layer doesn’t have any significant impact; therefore, only
convolutional and dense layers are used. Fig. 1 shows the architecture of
CNN for the proposed work. The feature map of the CNN and the dense
layers is described as follows.

The feature map generated by the input layer can be expressed as
follows.

cnny = o(z,*hy +by) (10)

where h; is a convolutional kernel (1-D filter) and b; is bias vector.
Similarly, the feature map of the hidden layer can be presented as fol-
lows.

cnng = o(cnng_*hy +b,) 1)

where cnny_; is the feature map of the (g —1)-th layer, and h; and b, are
convolutional kernel and bias vector of the g-th layer, respectively.
Before outputting the final results from the final dense layer, a fully
connected layer is required to flatten the last convolutional layer. The
feature map of the hidden fully connected (FC) (dense) layer can be
expressed as follows.

flat,,, = o(wp*ennyy + by) (12)

where cnny, is the feature map of the last layer of the hidden con-
volutional layers, and wy and by are respectively the weight and bias
vectors of the hidden dense layer. The feature map of the final output
dense layer is as follows.

T =o(wy x mlp,_, +by) 13)
where wy and by are the weight and bias of the output layer and mip,_, is
the feature map of the layer just before the final layer.

3.2. Training attributes

To use the proposed model, we need to train it to optimize the

=

Input

Conv Layer  Conv Layer
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learning parameters such as weights, w, and bias, b, in each layer. The
optimized parameters can map the relationship between the input vec-
tor and the output load curtailments.

Following the normal trend in the machine learning, the training and
testing dataset are separated as 7/10 and 3/10. Mini-batch size of 64 and
number of epochs of 200 are used. We have adopted the commonly used
mean absolute error (MAE) as loss function which is the arithmetic
average of absolute error between predicted load curtailment and the
actual load curtailment. Adaptive moment estimation (Adam) is adopted
as an optimizer to obtain the optimal parameters.

3.3. Selection of training samples

Typically, the failure probability of power systems is very low.
Therefore, the probability of success subspaces of a power system is
much larger than the probability of failure subspaces. If all the sampled
states of a power system are taken into consideration for training the
neural networks, then a very large number of samples is required in the
training data set. This will eventually demolish the goal of reducing the
computational cost of power system reliability evaluation using machine
learning algorithms. In [2], most of the success states are discarded to
generate a balanced training data set with reduced size. In [1,4], two
success states for each failure state are selected to generate a more
balanced training data set. It is worth mentioning here that a large
number of repeated patterns of the input and output vectors remain in
the power system states due to the high availability of system compo-
nents, which may cause overtraining for the used training samples in
[2,1,4]. Therefore, in this work, repeated states are removed from the
training data set to train the algorithm on a diverse set of states. In
calculating the annual indices, load levels are also added to the criterion
of removing repeated states. Then, the OPF is performed to determine
targets for the generated data set. It should be noted that the size of the
data set needs to be large enough to contain a reasonable number of
success and failure states, which can be determined by analyzing the
training performance of the CNN. Also, it is worth mentioning here that
power systems are typically very reliable and most of the samples will
have no load curtailment for annual reliability evaluation. In this work,
following the same convention of [3,42], we have used load clusters to
calculate annual reliability indices, and the CNN is trained only for the
load clusters that have load curtailments. The annual reliability indices
of the system are calculated based on the weight of each cluster.

3.4. The proposed method to Compute Reliability Evaluation

After training the CNN, system states (total available generation and
loads) are sampled based on the procedure described in Section 2.1.
Then, sampled system states are fed as input to the trained CNN and
predicted load curtailments are used to calculate the reliability indices

Conv Layer FC layers

Fig. 1. Architecture of 1-Dimensional CNN for the proposed work. The Input in the figure are generations injected at generation buses, line capacities of all the lines,
and the total loads of the system. The output is the total load curtailments of the system for the given input parameters.
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including the LOLP, EDNS, and LOLF indices. The definitions and pro-
cedure to calculate the reliability indices are presented as follows.

3.4.1. Calculation of EDNS

The EDNS index is used to measure the expected amount of load
shedding due to system failure to meet the demand. In this work, pre-
dicted load curtailments by the trained CNN are directly used to calcu-
late the EDNS index. The expression to calculate the EDNS is as follows.

1 Ny
EDNS = (E ; y\.> , a4

where N; is the total number of samples from MCS; and y; is the pre-
dicted load curtailment by the trained CNN for the s input sample.

3.4.2. Calculation of LOLP

The LOLP index is used to measure the probability of system failure.
Thus, instead of using the predicted load curtailments, system states are
classified into failure and success states to calculate the LOLP. The
predicted outputs from the proposed model are used to classify the
system states. A system state is represented by a binary string—1’
represents failure state and ‘0’ represents success state. The expression
to calculate the LOLP is as follows.

1 & 0, ify,=0
LOLP_(NS;Lk>’ Lk:{l, if y, >0 as)

3.4.3. Calculation of LOLF

The LOLF index represents the measure of how often a power system
fails. It is worth mentioning here that the calculation of LOLF using the
system states is not a straight forward process. However, the proposed
method in [10] can be adopted to determine the LOLF. Instead of
reproducing the rigorous procedure provided in [10], we provide only
the required expressions to calculate the LOLF based on our proposed
method, which are as follows.

1 Ny
LOLF = <ﬁ ; (p) , 16)

where,

A —27), ify >0
b, = 2. ) a7
0, ify, =0

where 4 is the transition rate of component i from its state in failure
state to higher states; and 4; is the transition rate of component i from its
state in failure state to lower states.

3.4.4. Convergence criterion to calculate the indices
A convergence criterion needs to be applied to stop the algorithm
when the reliability indices reach a steady state. The coefficient of
variance of reliability indices is usually used as a convergence criterion
in power system reliability studies, which is adapted in this work. The
coefficient of variance of a reliability index is expressed as follows [43].
v/ Var(RI)

p= “ERD (18)

where f is the coefficient of variance of a reliability index; and RI is the
reliability index. The proposed algorithm is performed until the value of
B reaches a predefined tolerance level, e.

In reliability evaluation studies of power systems, the energy indices
have been observed as the slowest indices in terms of convergence using
MCS [44]. Following the same convention, we applied the stopping
criterion on the EDNS index in this work. A flowchart to evaluate the
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composite system reliability using the proposed method is shwon in
Fig. 2.

3.5. Performance evaluation metrics

Evaluation metrics used to evaluate the performance of the machine
learning model are as follows. Mean absolute error (MAE) and root mean
square error (RMSE) are used to evaluate the prediction (regression)
performance of the model (predicted load curtailment is used to calcu-
late EDNS). The classification dataset to calculate LOLP and LOLF are
determined using a threshold (different value of threshold are used
based on their load levels) in the predicted load curtailment. That is, if
the predicted curtailment is more than the threshold, label ‘1’ (down/
failure state) is used, and if the curtailment is below the threshold label
‘0’ (normal/up state) is used. The predicted labels are compared with the
actual labels and the classification performance is evaluated using pre-

cision, recall, and the F;-score.

( Sample system states to train a CNN h
based on the availability of system
g components using (1). )

(" Minimize load curtailments for the )
training samples using DC power flow
with linear programming subject to

_ network constraints of (4) —(9). W
(" Select input parameters and construct h
input and output training vectors using
N (2) and (3). Y
Train the CNN using the constructed
L input and output training vectors. )

(" Construct an initial number of input
L samples using (1) and (2). )
N
Predict the load curtailments using the
L trained CNN )

v

6 Use the predicted load curtailments to h
calculate EDNS, LOLP, and LOLF
using (14), (15), and (16), respectively.

-
-

Calculate the value for the termination
criterion, S, described in (18) and
\__compare with the selected threshold, €. )

Update the

number of input
samples

Yes

Fig. 2. Flowchart to calculate reliability indices for composite power systems
using the proposed method.
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1. Mean Absolute Error (MAE):

1 & e
MAE:N;wﬁ\ 19)

2. Root Mean Square Error (RMSE):

(20)

3. Precision: It is the fraction of true predicted positive labels among all
positive predicted labels, which can be expressed as follows.

P= T

=7 21
T,+F, @

4. Recall: It is the fraction of true predicted positive labels among the
actual positive labels, which can be expressed as follows.

"’ (22)

5. F;-Score: It is the harmonic mean of precision and recall, which can
be expressed as follows.
P xR
P+R

F) — Score =2 x (23)

where N is the total number of test samples; and x* and X' represent
actual and predicted states, respectively. T, represents true positive—-
down states labeled as down states; T, denotes true negative—up states
labeled as up states; F, denotes the false positive—up states labeled as
down states; and F, is false negative—down states labeled as up states.

4. Numerical examples

The proposed method is demonstrated on the IEEE RTS [45], SPC in
Canada [46], IEEE RTS-96 [47]. It is worth mentioning here that these
systems are selected due to the variations in their sizes, line constraints,
loading levels, and availability of system components. For example, the
SPC system has more capacity margin than IEEE RTS and IEEE RTS-96,
which makes it less stressful than the IEEE RTS and IEEE RTS-96. Also,
several load curtailment scenarios are found during annualized reli-
ability evaluation of the SPC system with the mean load while the IEEE
RTS and IEEE RTS-96 has no curtailments for the mean load. Moreover,
the probability of all the system components are being in the up states
for the SPC is 0.44306 and that for the IEEE RTS and IEEE RTS-96 are
0.23044 and 0.01218, respectively. The training and testing dataset
required for each of the systems is generated using the procedure
described in Section 2. The reliability indices are calculated using the
proposed method.

Also, reliability indices for the adapted systems are calculated using
the MCS, which are used as references to analyze the accuracy of the
proposed method. To evaluate the reliability indices using the MCS, the
system states are sampled using (1) and (2). Then, the DC power flow
with linear programming is used to calculate minimum load curtail-
ments for all sampled states using (4)-(9). Finally, the obtained load
curtailments using the DC power flow and linear programming for the
sampled states are used to calculate the reliability indices. The rigorous
procedure to evaluate composite power system reliability using the MCS
can be found in [44,48]. The stopping criterion described in (18) is used
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to terminate the simulation. The tolerance level for f is used as (<0.025)
[49]. The performed case studies for each of the adapted systems are
described as follows.

4.1. Case I: reliability evaluation of the IEEE RTS

The total number of buses, generating units, and transmission lines of
the IEEE RTS are 24,32, and 38, respectively. The total generation ca-
pacity and peak load are 3405 MW and 2850 MW, respectively. The
detailed data of the IEEE RTS are provided in [45]. Both the annualized
and annual reliability indices are calculated.

To calculate the annualized indices using the proposed approach,
2000 unique samples are generated to train CNN. The training set con-
tains 1424 failure states and 576 success states. The hyperparameters of
the CNN and threshold to eliminate the prediction error of the trained
network for this case are shown in the second row of Table 1. The
hyperparameters are selected empirically. Since the input vector to the
machine learning model includes available outputs at all the generating
buses (10 generating buses), the capacity of all the transmission lines (38
transmission lines), and total load, the size of the input vector to the
machine learning model for this case at any instance is 49. The output is
the amount of load curtailment for each input sample.

It is worth mentioning here that several strategies such as data
processing, feature engineering, appropriate model selection, parameter
tuning, parameter optimization, etc. are integral parts for real applica-
tions of machine learning-based approaches, which are widely
addressed in the existing related works. Although details on optimal
parameter tuning, feature engineering, data cleaning, etc., are out of
scope of this work, a training performances of several other approaches
such as support vector machines, K-Nearest Neighbors, and Multi-Layer
Perceptron are provided in Table 2 to validate effectiveness of the CNN.
K-nearest Neighbor and Support Vector Machine models are taken as
default from Scikit learn library. For Multi-layer perceptron the three
hidden layers with 100 neurons in each layers and rectified linear unit as
activation function is used. From Table 2, it can be seen that CNN shows
better performance compared to the other machine learning models.
Therefore, reliability indices are calculated only using the predictions
obtained from the CNN. The variation in the training performances of
the CNN for 15 different number of initial training samples for this case
is shown in Fig. 3. From Fig. 3, it can be seen that the training perfor-
mances are almost similar for all the initial training samples, which
validates the robustness of the training procedure. The calculated
annualized reliability indices for this case are provided in Table 3.

To calculate the annual reliability indices, a total number of 33,000
unique samples is generated among which 5620 are failure states and
the remaining are success states. The RMSE, MAE, accuracy, precision,
recall, and F_1 score of the trained network to calculate the annual
reliability indices are 0.16243, 0.05387, 97.1496, 97.8425, 91.5456,
and 94.5477, respectively. The hyperparameters of the CNN and
threshold to eliminate the prediction error of the trained network to
calculate annual indices of the IEEE RTS are shown in the third row of
Table 1. Similar to the annualized indices, the hyperparameters to

Table 1
Hyperparameters of CNNs and threshold.

Systems Hyper-parameters
CNNL, F, K Dense L, N An Ao
IEEE RTS (Annualized) 2, 64, 3 3, 150 ReLU Linear
IEEE RTS (Annual) 2, 64, 3 3, 100 ReLU Linear
SPC 2, 64, 3 1, 100 ReLU Linear
IEEE RTS-96 1, 64,3 3, 300 ReLU Linear

Note: L denotes number of layers, F denotes the filter size, K denotes kernel size,
N denotes the number of neurons in a dense layer, Ay and Ao are the activation
functions of hidden and output layers, respectively.
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Table 2
Comparison of MLP, CNN, KNN, and Support Vector Machine (SVM) in terms of RMSE, MAE, precision, recall, and F; score for IEEE RTS and SPC.
Models IEEE RTS SPC
RMSE MAE P (%) R (%) F;-Score RMSE MAE P(%) R (%) F,-Score
CNN 0.1038 0.022 100 97.10 98.53 0.047 0.0028 100 95.56 97.72
MLP 0.0855 0.0394 100 96.54 98.24 0.1830 0.0649 98.85 7.644 14.20
SVM 0.72 0.41 100 59.52 74.62 0.1806 0.0689 98.85 8.43 15.53
KNN 0.24 0.058 99.6 96.90 98.23 0.0917 0.0089 80.45 72.16 76.08
IEEE RTS 24 bus system
0.10 mmm RMSE
I MAE
0.08
» 0.06
g
[s]
1%
n
0.04
0.02
0.00 -
6 7 8 9 10 11 12 13 14 15
Experiment NUmber
Fig. 3. Training performance for different number of initial training samples of the IEEE RTS.
time is discussed in Section 4.4.
Table 3
Annualized Reliability Indices for the IEEE RTS.
Reliability Methods Difference 4.2. Case II: reliability evaluation of the SPC in Canada
Indices Proposed MCS % . . . — .
P 6 The SPC system consists of 29 generating units, 71 transmission lines,
EDNS (MW/yr) 14.7111 14.7533 0.286 and 45 buses. The total generation capacity and annual peak load of the
LOLP 0.08508 0.08505 0.035 .
LOLF (Occurrence/yr) 19,5969 10,4927 0.535 SPC are 25,300 MW and 18,025 MW, respectively. Among 45 buses, four

calculate annual indices are also selected empirically. Load clusters are
typically used in calculating annual reliability indices of power systems
[47,4]. Following the same convention, we have used load clusters to
calculate annual reliability indices using both the proposed approach
and MCS. CNN is trained for each cluster to calculate annual reliability
indices using the proposed approach. For the low load levels, the
number of success states is very high compared to failure states.
Therefore, a large number of success states is discarded from the training
samples (the ratio between the number of success states and failure
states is kept 1 : 5) to reduce the training time. The calculated annual
indices of the IEEE RTS using the proposed method and MCS are shown
in Table 4. The reduction in the number of OPF solutions and simulation

Table 4
Annual Reliability Indices for the IEEE RTS.
Reliability Methods Difference
Indices Proposed MCS (%)
EDNS (MW/yr) 0.12543 0.13134 4.50
LOLP 0.00118 0.00125 5.6
LOLF (Occurrence/yr) 0.41216 0.40086 2.82

buses are used to represent assistance from Manitoba Hydro System. One
of the four buses is represented as a fictitious bus to import 300 MW
power from the Manitoba Hydro System. The fictitious bus is connected
with the remaining buses. The imported 300 MW power is represented
using three independent generating units (each of 100 MW).

The detailed data of the SPC are also given in [50]. The DC power
flow and linear programming are performed for 3,000 unique training
samples which contains 113 failure states and 2,887 success states.
Fourth row of Table 1 shows the hyperparameters and threshold. The
hyperparameters for this case are also selected empirically. Since the
input vector to the machine learning model includes the output at all the
generation buses (8 generation buses), the capacity of all the trans-
mission lines (71 transmission lines), and total load, the size of the input
vector to the machine learning model for this case is 80. The output is
the amount of the load curtailment. Table 2 shows the training perfor-
mances of CNN compared to the other approaches for this case. Similar
to Case I, K-nearest Neighbor and Support Vector Machine models are
taken as default from Scikit learn library. For Multi-layer perceptron,
three hidden layers with 150 neurons in each layer and rectified linear
unit as activation function are used. Since CNN shows the comparable
performance with other machine learning models and its performance is
better for highly reliable practical power system model such as SPC, we
have calculated the reliability indices only using the results obtained
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from the CNN.

The calculated reliability indices for this case using the proposed
method and MCS are provided in Table 5. The reduction in the number
of OPF solutions and simulation time of the proposed method compared
to the MCS is discussed in Section 4.4.

4.3. Case III: reliability evaluation of the IEEE RTS-96

The IEEE RTS-96 has 73 buses, 96 generating units, and 120 trans-
mission lines. The total generation capacity and peak load of the IEEE
RTS-96 are 10.21 GW and 8.55 GW, respectively. The detailed
description of the IEEE RTS-96 is provided in [47]. The IEEE RTS-96 is
very reliable, and therefore, loads and generators of the IEEE RTS-96 are
increased by 40% to make it stressed.

To calculate the annualized indices for the IEEE RTS-96 using the
proposed approach, a total number of 7000 unique samples are gener-
ated to train the CNN for this case. The number of failure and success
states in the training data are 2451 and 4549, respectively. The size of
the input vector for the IEEE RTS-96 is 151 (30 generation buses, 120
transmission lines, and one aggregate load). The RMSE, MAE, accuracy,
precision, recall, and F_1 score of the trained network to calculate the
annualized reliability indices are 0.40, 0.1479, 94.0366, 91.5254,
87.0967, and 89.2561, respectively. The hyperparameters of the CNN
and threshold to eliminate the prediction error of the trained network to
calculate annualized indices of the IEEE RTS-96 are shown in the fifth
row of Table 1. The calculated annualized reliability indices for this case
are provided in Table 6. The reduction in the number of OPF and
simulation time for this case is also discussed in Section 4.4.

4.4. Results and discussion

The proposed method is implemented on the above-mentioned test
systems. Annualized (for peak load) reliability indices are calculated for
all the tested systems using both the proposed method and MCS. Also, to
demonstrate the effectiveness of the proposed approach in calculating
annual reliability indices, annual indices for the IEEE RTS are calculated
as an example. In the first stage of the proposed approach, a CNN is
trained to predict load curtailments. Then, predicted load curtailments
are used to classify system states into failure and success states. Finally,
load curtailments and classified system states are used to calculate the
reliability indices.

Table 2 shows the performance of the proposed approach in terms of
RMSE, MAE, precision (P), Recall (R), and F;-score. From Table 2, we
can see that the values of RMSE and MAE are very small, which indicate
high accuracy in the predicted load curtailments. Also Table 2 shows
that the values of P, R, and F-score are very high, which validate that the
true prediction levels are almost perfect in the proposed approach.
Therefore, it can be claimed that the proposed method can predict both
the failure states and load curtailments in the failure states accurately.

Tables 3,5,6 show the calculated annualized reliability indices using
both the proposed method and MCS for IEEE RTS and SPC, respectively.
From Table 3, we can see that the difference in the calculated reliability
indices using the proposed method and MCS vary from 0.035-0.535%
for the IEEE RTS. Table 5 shows that the difference in the calculated
reliability indices using the proposed method and MCS varies from
0.802-3.67% for the SPC. Table 6 shows that the difference in the
calculated annualized reliability indices using the proposed method and

Table 5
Reliability Indices for the SPC-Canada.
Reliability Methods Difference
Indices Proposed MCS (%)
EDNS (MW/yr) 0.0377 0.0374 0.802
LOLP 0.00105 0.00109 3.67
LOLF (Occurrence/yr) 0.88270 0.89097 0.92
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Table 6

Annualized Reliability Indices for the IEEE RTS-96.
Reliability Methods Difference
Indices Proposed MCS (%)
EDNS (MW/yr) 6.3615 6.6035 3.66
LOLP 0.02975 0.02988 0.435
LOLF (Occurrence/yr) 10.5656 10.3093 2.48

MCS varies from 0.435-3.66% for the IEEE RTS-96. Table 4 shows that
the calculated annual reliability indices using both the proposed method
and MCS for IEEE RTS. The difference in the calculated annual reliability
indices of the IEEE RTS using the proposed method and MCS vary from
2.82-5.6%. This indicates that the proposed method has high accuracy
in calculating the reliability indices for the tested systems. Therefore, it
can be concluded that the CNN can capture the complex pattern within
input generations and loads and the output load curtailments precisely.

Table 7 shows the reduction in the number of OPF solutions and
simulation time for the proposed method compared to the MCS.

From Table 7, it can be seen that the reduction in the number of
samples that needs to perform the OPF to calculate annualized and
annual indices of the IEEE RTS are 97.66% and 68.27%, respectively,
less for the proposed method compared to the MCS. Table 7 also shows
that the proposed method reduces 99.127% of samples that need solu-
tion of OPF compared to the MCS for the SPC. Moreover, from Table 7,
we can see that the reduction in the number of samples for which the
OPF needs to be solved for the proposed method is 91.81% compared to
the MCS for the IEEE RTS-96. This happens because the proposed
method uses the OPF only for a small number of training samples, and
the trained network emulates the OPF using weights and biases for a
large number of samples that require the calculation of the reliability
indices. Also, Table 7 shows that the reduction in the number of samples
that require OPF solutions is highest for the SPC system among the tested
systems. This happens due to the fact that the SPC system is more reli-
able compared to the other tested systems, and it takes the highest
number of samples to converge using the MCS. Moreover, Table 7 shows
that the reduction in the simulation time for the SPC is significantly
larger than the IEEE RTS and IEEE RTS-96. This happens because the
same sequence is followed in the reduction of the number of samples
that require to solve OPF.

The results show that the proposed approach not only calculates all
the reliability indices with high accuracy but also is able to reduce the
computational complexity and time significantly.

Also, the advantages of the proposed work over the state enumera-
tion, improved Monte Carlo simulation, and previously proposed ML-
based methods are demonstrated through a comparison analysis in

Table 7
Reduction in the number of DC power flow and simulation time for all the
adapted systems.

Systems Proposed MCS Reduction
method
IEEE- OPF 2,000 85,500 83,500
RTS (No. of samples)
(Annualized) Simulation time 93.59 1652.28 1558.69
O]
IEEE- OPF 33,000 104,000 71,000
RTS (No. of samples)
(Annual) Simulation time 778.203 1004.57 277.099
(s
OPF 3,000 344,000 341,000
SPC (No. of samples)
Simulation time 130.91 4136.367 4005.457
()
IEEE OPF 7,000 85,500 78,500
RTS-96 (No. of samples)
(Annualized) Simulation time 508.844 1138.1861 629.342

O]
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Table 8

International Journal of Electrical Power and Energy Systems 135 (2022) 107468

Comparison of state enumeration (SE), Monte Carlo simulation, improved Monte Carlo simulation, existing ML-based methods, and proposed methods.

Methods No. of Samples No. of power flow Applicability Computational cost
operation
SE [21] All the possible system states For all the possible To calculate LOLP, LOLF, and EDNS of small Very high
system states systems
MC simulation [44] Significantly lower than SE. For all the sampled To calculate LOLP, LOLF, and EDNS of small & High
Calculated based on (18) system states medium systems
Improved MC Significantly lower than SE. For all the sampled To calculate LOLP, LOLF, and EDNS of small, High

simulation [7-13]
Existing Ml-based

Calculated based on (18)
Significantly lower than SE.

system states
Only for training

medium, & large systems

To calculate LOLP & LOLF of all types (small,

Less than ES, MC simulation, & improved

[1-3,25-28] Calculated based on (18) samples (small No.) medium, large, & large integrated) systems MC simulation
Proposed Significantly lower than SE. Only for training To calculate LOLP, LOLF, & EDNS of all types Less than ES, MC simulation, improved MC
Calculated based on (18) samples (small No.) (small, medium, large, & very large integrated) simulation, & other ML-based approaches
systems
Table 8. References

5. Conclusion and future work

This paper has proposed a CNN-based method to evaluate the reli-
ability of composite power systems. The CNN was trained using samples
that consist of generations, transmission line capacities, and total loads
as input and total load curtailments as output. The training samples were
generated using the MCS, linear programming technique, and DC power
flow. After training the CNN, a new data set was fed as input to the
trained CNN to calculate the reliability indices. This data set was
generated based on the total loads and availability of generators and
transmission lines. The predicted load curtailments were used to
calculate the reliability indices without performing the OPF. Three case
studies were carried out to analyze the effectiveness of the proposed
method. In these case studies, the IEEE RTS, SPC, and IEEE RTS-96 were
used to verify the effectiveness of the proposed method for different
systems. The results showed that the OPF was performed for small
number of samples in the proposed method, which reduces the
computation complexity and simulation time significantly. The results
also showed that the calculated reliability indices using the proposed
method were close to those calculated using the OPF for each sampled
state. Moreover, the results showed that the number of samples that
require the solution of OPF for the proposed method for the tested sys-
tems are significantly lower compared to the Monte-Carlo simulation.

Incorporating several strategies such as data processing, hyper-
parameter optimization, feature engineering, etc. in the proposed
approach are left as future scope of research. Also, analyzing the impacts
of several composite load models on the performance of power system
reliability methods can be a great scope of future research.

Source Code

The source code of this work is provided online (https://github.com/
nbhusal/Composite-Reliability-Analysis-) for future research and
development.
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