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Abstract—This paper proposes a machine learning-based ap-
proach to dispatch shunt reactive power compensators for en-
hancing operational resilience of power systems against wind-
storms. Existing resilience enhancement approaches do not dis-
patch shunts to maintain voltage magnitudes within the standard
limits during extreme weather events, and are computationally
expensive. In this work, a data-driven approach is proposed to
both exploit the capability of shunts in enhancing power system
operational resilience against windstorms and to overcome the
computational burden of analytical optimization methods. In the
proposed approach, a multi-agent framework is developed using
the fundamental continuous soft actor critic algorithm to dispatch
shunts during windstorms. The developed multi-agent framework
is trained using hypothetical multiple line outages, which are
generated based on line fragility curves against windstorms. The
trained network dispatches shunt compensators whenever there
are voltage violations during windstorms (i.e., dependent multiple
line outages in the path of a windstorm), thereby enhancing the
operational resilience of power systems against windstorms. The
proposed method is demonstrated on the IEEE 30-Bus system.
The results show that voltage magnitudes can be maintained
within the standard limits for most of simulated scenarios.

Index Terms—Deep reinforcement learning, power system
resilience, shunt reactive power, soft-actor-critic algorithm.

I. INTRODUCTION

The frequency and intensity of extreme weather events have
imposed significant impacts on the performance of power grids
resulting in prolonged power outages and economic losses
[1], [2]. Various resilience enhancement strategies have been
proposed in the literature to reduce, mitigate, and prevent the
impacts of weather events on performance of power systems.
These strategies include mobile energy storage devices, topol-
ogy switching, and load shedding. Nonetheless, probabilistic
strategies that encounter the stochastic behavior of extreme
events, in particular windstorms, have not gained much inter-
est. In addition, challenges that face providing a fast acting
enhancement algorithm, which provides an immediate action
to maintain voltage magnitudes within predefined limits, need
to be addressed. Furthermore, neglecting impacts of future
potential failures, diverse failure scenarios, and infeasible
steady-state operation may yield less realistic models and
results [1]. Consequently, it has become important to develop
a resilience enhancement strategy that provides a proactive
voltage control prior to or during extreme weather events.

Numerous power system resilience enhancement methods
have been proposed from different standpoints [3]–[14]. In [3],
a mixed-integer linear programming (MILP)-based method has

been proposed to enhance power system resilience through re-
dispatching generators, re-configuring network topology, and
shedding loads. An algorithm for enhancing the resilience of
a multi-microgrid system via dispatching of unused capacitor
banks has been proposed in [4]. Additionally, an MILP-based
generation re-dispatch strategy has been proposed in [5] to
enhance power system resilience during ice storms. Moreover,
several preventive action-based strategies such as a multi-
sensor prediction-based wide-area monitoring and control [11],
a linear-programming-based optimal siting and sizing of en-
ergy storage devices [12], a Monte-Carlo simulation (MC)-
based proactive unit commitment framework [13], and an MC-
based crew preposition and network reconfiguration technique
[14] have been proposed to enhance power system resilience.

It is important to highlight here that the methods proposed
in [3]–[14] are effective means to enhance the resilience of
power systems. However, these methods do not fully explore
the potential of using shunt compensators to enhance power
system resilience. More significantly, these methods are not
computationally flexible to enhance operational resilience of
power systems due to their dependency on accurate system
information. Therefore, a resilience enhancement method that
does not require accurate system knowledge and flexible to
control shunt compensators output power needs to be devel-
oped to enhance operational resilience of power grids.

This paper proposes a machine learning-based approach
to enhance power system resilience against windstorms. The
proposed method is developed based on dispatching of reactive
power compensators, and thereby preserving bus voltages
within the acceptable limits in case of single or multiple
line outages. The fundamental continuous soft actor critic
(CSAC) algorithm is used to develop a multi-agent framework
to control the reactive power output of shunt compensators. In
the proposed method, power systems are divided into regions,
where each region represents an agent. The algorithm is trained
using historical data and fragility curves of transmission lines
against windstorms. The trained algorithm is then used to
provide corrective control actions when a power system is
impacted by a windstorm. The proposed algorithm is tested
on several systems including the IEEE 30-bus system.

The rest of the paper is organized as follows. Section II
describes the proposed approach. Section III illustrates the
proposed algorithm. Section IV provides case studies. Section
V provides concluding remarks.



II. THE PROPOSED MULTI-AGENT FRAMEWORK

A. Policies for Actor-networks of the Proposed Framework

Each agent in the proposed multi-agent framework has one
actor network to provide actions, which is developed using
a squashed Gaussian distribution function. The policy of the
actor network to provide actions is expressed as follows.

αcit ∼ πξci(αcit |Oit), (1)

where i represents the ith agent of the multi-agent framework;
Oit is the observation vector of the ith agent at time t; αcit is
the provided action by the actor-network of the ith agent; ξci

is the parameter for policy of the ith agent; and πξci(αcit |oit) is
an unbounded Gaussian policy of the ith agent. A squashing
function need to be applied on πξci(αcit |oit) to bound actions
of the ith agent to a finite value.

B. Policy Training Algorithm for Actors

In the fundamental CSAC algorithm, the policy is updated
in each iteration to maximize the expected return and entropy
(randomness measure of the policy). Following the same
convention, policies of the proposed algorithm are also updated
in each iteration. A value function, V ciψi(O

i
t), which is used

to measure the soft value for policy of the ith agent can be
expressed as follows.

V ciψi(O
i
t) = E

αcit ∼πξci

[
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t )−αci log
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where ψi represents parameter of the value function network
for the ith agent; θ represents parameter for the Q value
function; Qθ(st, αcit , α

−ci
t ) is a critic or centralized policy

evaluation function for all the actors; α−cit is the action
provided by actors of agents except agent i; αci represents a
parameter to determine the relative importance between reward
and entropy of the ith agent; and st is a set for system states.

The expression provided in (3) is used to minimize the
residual squared error of a soft Bellman function to train value
functions of the actors.
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where D is a replay buffer to store experiences of the actors.
The gradient of (3) using an unbiased estimator is deter-

mined as follows to sample actions from the current policy.

∇̂ψiJciv (ψi) = ∇ψiV ciψi(O
i
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In this work, we have modified the expression for training the
soft-Q parameters of the basic actor given in [15], which can
be expressed as follows.
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and β ∈ [0, 1] is a discount factor and ψ̄i is an average of the
weights for the value network of ith agent.

The value of Q-function (5) is optimized as follows.

∇̂θiJciQθ (θ
i) = ∇θi(Qθ(st, αcit , α−cit )

(
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)2

(7)

The policy needs to be updated in each iteration to maximize
the rewards for improving the policy. The authors of [15]
directed the policy update toward exponential of new soft Q-
function as they intended to track the policy update. Also, the
potential policies are restricted to a parameterized distributions
(i.e., Gaussian) family. Following the same convention, we
updated the expression for policy update of basic CSAC
algorithm for the proposed algorithm as follows.

πnewξci = arg minDKL

(
πξci(.|Oit)

∣∣∣∣∣∣Qθ(st, .)
Zθ(st)

)
(8)

where Zθ(st) is an intractable partition function, which does
not contribute to the gradient with respect to the new policy.

The policy πξci(.|Oit) is parameterized for action setting
using the policy network of agent, i, with parameter ξci.
Finally, the expected KL-divergence of (8) is multiplied by
αci, and then, minimized ignoring Zθ(st) to train the policy
parameters of agent, i, as follows.

Jciπξci (ξ
ci) = Escit ∼D

[
Eαcit ∼πξci
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αci log
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)
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]]
(9)

Although several options are available to minimize the
objective function Jciπξci (ξ

ci), the authors of [16] have applied
the reparameterization trick to achieve target density which
is Q-function. The modified expression to reparameterize the
policy of agent, i, is as follows.

αcit = fξci(ε
ci
t ; oit) (10)

where εcit is a noise vector that is using a spherical Gaussian
distribution.

Thus, the new policy objective for agent, i, is as follows.

Jciπξci (ξ
ci) = Escit ∼D, ε
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where f−ciφ (ε−cit ; s−it ) is the parameterized policies of other
actors.

In [17], the authors provided detailed formulation of an
alternative approach to obtain the temperature parameter learn-
ing objective function, which is not strictly relevant to this
work. However, we modify their temperature objective func-
tion for the actors of each agent of the proposed framework
as follows.

Jci(αci) = Eαcit ∼ πξci
[
−αci
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log
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)
+ H̄

)]
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where H̄ is an equivalent constant vector of the hyper-
parameter to represent target entropy. Equation (12) cannot be
minimized directly due to the expectation operator. Therefore,
it is minimized using a MC estimator after sampling experi-
ences from replay buffer based on the procedure from [17]. In
the proposed multi-agent algorithm, two soft Q-networks for
all agents are trained, and then, the minimum value among the
outputs of two Q-networks is used in the objective function
of (12) to combat state-value overestimation [18].

III. THE PROPOSED SHUNT DISPATCH ALGORITHM

A. Modeling of Windstorms

The performance of power system components is directly
impacted by the propagation of extreme weather events
through the system topology. Most resilience-based studies
have used probabilistic fragility curves to model the stochastic
behavior of component failures against extreme weather events
[19]. Developing a novel algorithm to model windstorms is
not germane to the presented work. Consequently, we adopted
the provided method in [20] to model windstorms using
probabilistic fragility curves. Also, instead of reproducing the
provided rigorous mathematical model in [20], we provide
only the required expressions to model failures of power
system components due to windstorms. During windstorms,
component failure rates can be evaluated as follows.

λwt = [1 + ζ · (w2
t /w

2
crit − 1)] · λnorm (13)

where λwt represents the failure rate at time t during wind-
storms; wt is the wind speed in m/s during windstorm; wcrit
is the critical wind speed in m/s; ζ is the scaling parameter;
and λnorm is the failure rate during normal operation.

Weibull distribution is used to model wind speed. The
parameters of the Weibull distribution vary according the
geographical location based on detailed statistical analysis. On
the other hand, critical wind speed defines the threshold upon
which a windstorm can be identified. In other words, wind
speed below critical value implies normal wind conditions.
Also, the scaling parameter varies according the climate and
weather fluctuations in specific geographical regions.

B. States, Observations, and Actions

Various parameters can be used to represent system states
[21]–[23]; however, for reactive power control studies, voltage
magnitudes have been widely used. In this study, voltage states
are divided into three zones as shown in Table I.

Each agent is assumed to observe and control voltage profile
of the assigned region. Voltage magnitudes are readjusted
based on the reactive power output of shunt compensators
as well as their locations. The two control variables are
continuously updated within their predefined range limits.

C. Calculation of Rewards

A proper reward value, Rtk, should be defined to assess
the effectiveness of the actions. Each agent is encouraged
to reduce the deviation of voltage magnitudes during con-
tingencies from a predefined reference value, Vref = 1.0

p.u. Rewards could be classified based on voltage operating
limits as described in Table I. Generally, the reward value
increases as the voltage deviation decreases. If the value of
all bus voltages remain in normal or violation zones after
dispatching shunts, then the total reward is calculated using
(14); otherwise, a relatively large penalty is assigned.

TABLE I. Reward Value based on Voltage Levels

Operation Zone V t
k rtk

Normal [Vref , V
ub]

V ub − V t
k

V ub − Vref

Normal [V lb, Vref ]
V t
k − V lb

Vref − V lb

Violation [V ub, 1.25]
V t
k − Vref

Vref − 1.25

Violation [0.8, V lb]
Vref − V t

k

0.8− Vref

Diverge [0.0, 0.8] −5
Diverge [1.25,∞] −5

rt =

Nb∑
k=1

Rtk/N
b (14)

D. Training and Execution Algorithms

The power grid is divided into several regions based on the
electrical distance between components such that each region
is controlled by one agent. The number of regions (agents)
varies according to system sizes. The set of bus voltages
in each region during a contingency is regulated within the
acceptable voltage limits. The set of control actions for each
agent, i, can be expressed as follows.

αcit =

{
πφci(α

ci
t |oit), if | Λit |> 0

acit−1, if | Λit |= 0
(15)

where | Λit | represents the number of violated bus voltages
in the ith region; and αcit represents the action specifying the
amount and locations of dispatch shunts for the ith agent.

To train all agents, a replay buffer is used as follows.

D ←
(
st, o

i
t, α

ci
t , α

−ci
t , rt, st+1, o

i
t+1, α

ci
t+1, α

−ci
t+1

)
(16)

The training and testing/execution steps for the multi-agent
framework are summarized in algorithm 1 and algorithm 2.

IV. RESULTS AND DISCUSSION

The proposed approach is applied on a modified IEEE 30-
bus system [24]. A windstorm is assumed to pass through the
system as shown in Fig. 1. For assessment purpose, we assume
that five shunt compensators are located at buses 3, 7, 11, 18,
and 27 of the IEEE-30 bus system. Each shunt has a reactive
power capacity of 13 MVAr.

To validate the accuracy and effectiveness of the pro-
posed method, the following procedures are implemented
sequentially. First, several failure scenarios are created using
windstorm modeling approach provided in section III for the
defined windstorm in Fig. 1. To capture wide range of failure



Algorithm 1 Training of the Multi-agent Framework

1: for episode = 1 to M do
2: Create failure scenario using fragility curve.
3: Solve power flow to determine oti and st of each agent.
4: Count | Λit | for each agent.
5: while voltages violate and step < N do
6: Evaluate actions, αcit for agent i using (15).
7: Execute actions αcit using power flow solver environ-

ment (e.g., Pypower).
8: Observe st+1, rt, and d to check terminal conditions.
9: Store (st, oit, α

ci
t , α−cit , rt, st+1, d) in Di using (16).

10: If st+1 is terminal, reset the environment.
11: Update weights of the policies using (11).
12: Update the Q-function parameters of local and target

networks of each agent using (7).
13: Update temperature of actor-networks using (12).
14: Update target networks weights of each agent us-

ing Q̄m ← τQm + (1 − τ)Q̄,where, m ∈
{1, 2} and m� 1.

15: end while
16: end for

Algorithm 2 Testing of the Multi-agent Framework

1: for episode = 1 to M do
2: Create failure scenario using fragility curve.
3: Solve power flow to determine oti and st of each agent.
4: Count | Λit | for each agent.
5: while voltages violate and step < N do
6: Evaluate actions, αcit for using (15).
7: Execute actions αcit using power flow solver.
8: Observe st+1, rt, and d to validate terminal condi-

tions.
9: end while

10: end for

scenarios, wind speed is assumed to be within 15–51 m/s.
For each failure scenario, power flow solution is obtained.
Algorithm 1 is used for training the multi-agent framework.

The proposed algorithm is implemented for a fixed number
of episodes (failure scenarios). The number of iterations and
corresponding rewards for each episode are plotted as shown
in Fig. 2a and Fig. 2b, respectively. It is obvious that as the
algorithm explores more scenarios, the action time decreases
and the reward value increases. The learning rate of agents
is enhanced based on previous experiences to avoid bad
actions. From Fig. 2a and Fig. 2b, we can see that the ability
of agents to resolve the impacts of windstorms on voltage
constraints advances very quickly after 15000 episodes and
noticeable increase happens in the reward values. For further
details, Fig. 3a shows the losses for the critics that fluctuate
at the beginning of episodes’ period, and finally converge
to equilibrium solutions. For accuracy validation, the trained
agents are tested using a set of failure scenarios included in
testing data. Fig. 3b shows the number of iterations and reward
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Fig. 1. IEEE 30-bus System.
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Fig. 2. (a) Required number of iterations (b) amount of rewards
of training episodes for the IEEE-30 bus system.

values, respectively, for testing data. The trained agents are
able to determine proper actions to control shunt compensators
within one iteration with maximum reward value for testing
scenarios. Thus, the proposed multi-agent framework is trained
to provide actions to control shunts reactive power output.

Finally, the trained agent is used to check it’s effectiveness
on improving power system resilience against several wind-
storms. The performance of the agent for 9 unique line failure
scenarios among these windstorms is given in Table II.

From Table II, it can be seen that the trained agent can
maintain voltage stability with and without the trained agent
violates for 2 and 6 scenarios, respectively. Thus, the proposed
algorithm can enhance the resilience of the power system
through controlling shunt reactive power output.

Also, from Table II, we can see that the trained agent cannot
maintain the voltage stability for scenarios 9 and 10. This
happens due to the fact that the shunts alone cannot maintain
voltage magnitudes within limits.



(a) (b)
Fig. 3. (a) Losses of critics during training and (b) number of
iterations and amount of rewards for testing episodes.

TABLE II. Resilience Enhancement Using the Trained Agent
S/L Tripped Voltage Violations (Bus No.)
No. Lines Without Agent With Agent
1 2–5 None None
2 1–3, 2–6, 2–5 5, 6, 7, 8 None
3 2–6, 2–5, 2–4 5, 6, 7, 8, 28 None
4 2–5, 2–4 7 None
5 2–5, 1–3, 2–4 7, 8 None
6 2–6, 2–5, 1–3, 2–4 None None
7 2–4, 3–4, 2–5, 1–3 None None
8 1–3, 2–5, 3–4, 2–6 All All
9 2–6, 3–4, 2–5, 2–4, 1–3 All All

V. CONCLUSION

This paper has proposed a data-driven-based approach
for shunt dispatching to enhance voltage stability in power
systems during windstorms, thus defining a new role for
shunts in enhancing power system operational resilience. A
multi-agent framework was developed using continuous soft
actor critic algorithm to determine optimal shunt dispatch
in case of single or multiple line outages. The algorithm
was trained using hypothetical datasets, which were generated
using system responses to outages and fragility curves of
system components to windstorms. The trained algorithm was
tested on several systems including the IEEE 30-bus system.
The results showed that the proposed approach could maintain
voltage magnitudes at system buses within the standard limits
for most of the cases. Voltage magnitudes in some cases could
not be maintained within the limits, which is not surpris-
ing. Since shunts alone cannot maintain voltage magnitudes
within limits in some cases, the proposed approach can be
extended (or integrated with existing algorithms) to include
other resources such as generation dispatch, load shedding,
and reconfiguration, to name a few.
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