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Abstract—Existing power system resilience enhancement meth-
ods, such as proactive generation rescheduling, movable sources
dispatch, and network topology reconfiguration, do not explore
the capability and flexibility of shunts to maintain voltage stability
during and after disrupting events. Besides, existing methods rely
on accurate system models that are not easily scalable for large
integrated power grids. In this paper, a data-driven multi-agent
framework based on a deep-reinforcement-learning algorithm is
proposed to overcome the computation and scalability concerns
related to precise system models and to plan for the deployment
of shunts for power system resilience enhancement. Specifically,
voltage violations due to outages of multiple lines during wind-
storms are taken as an example of a power system resilience
improvement problem. Then, a multi-agent based hybrid soft actor
critic (HSAC) algorithm is developed for offline siting and sizing as
well as online controlling of shunt reactive power compensators to
enhance voltage resilience. The HSAC algorithm is derived from
the fundamental SAC algorithms that contain both continuous
and discrete action spaces. The proposed multi-agent framework
learns from previous experiences and eventually gets trained to
determine proper locations and sizes for shunts to avoid voltage
violations during multiple line failures. The proposed approach is
demonstrated on the IEEE 57-bus and IEEE 300-bus systems. The
results show that the proposed multi-agent framework is effective
for installation planning and controlling of shunts to enhance power
system resilience.

Index Terms—Deep reinforcement learning, hybrid soft actor
critic, multi-agent framework, power system resilience, shunt
reactive power compensators, voltage control.

1. INTRODUCTION

XTREME weather events and man-made attacks have
severe impacts on power systems ranging from long outage
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duration to multiple equipment failures. This calls for devel-
oping appropriate countermeasures to improve power system
resilience. Maintaining voltage stability during and after extreme
events and multiple equipment failures is one of the key factors to
improve power system stability, resilience, and ability to prevent
cascading failures. Deployment of shunt resources can be a
promising solution to maintain voltage constraints under N — k
(k>1) contingencies through providing reactive power support.
Therefore, developing a method to plan for deploying shunts to
maintain voltage constraints during and after extreme events is
indispensable to enhance the resilience of power grids.

Several power system resilience enhancement methods have
been proposed in the literature to provide emergency response
during multiple contingencies [1]-[14]. A mixed-integer linear
programming (MILP)-based two-stage method has been pro-
posed in [1] to enhance power system resilience through chang-
ing network topology, re-dispatching generators, and shedding
loads. In [2], a two-stage control algorithm to dispatch unused
capacitors of a multi-microgrid system has been proposed to
enhance power system resilience. A MILP-based method to re-
dispatch generation during ice storms has been proposed in [4] to
enhance power system resilience. Also, resilience enhancement
approaches have been proposed to provide emergency responses
through switching topology [5], re-dispatching loads [6], [7],
forming networked microgrid [8], and using energy storage
devices [9]. Moreover, several preventive action-based strategies
such as a multi-sensor prediction-based wide-area monitoring
and control [11], a linear-programming-based optimal siting and
sizing of energy storage devices [12], a Monte-Carlo simulation
(MCs)-based proactive unit commitment framework [13], and
an MCS-based crew preposition and network reconfiguration
technique [14] have been proposed to enhance the resilience of
power systems. Although the proposed methods in [1]-[14] are
effective to enhance the resilience of power systems, these meth-
ods are not computationally flexible to use for large integrated
power grids due to their dependency on accurate system infor-
mation. Also, these methods do not have the flexibility to utilize
the necessary resources to maintain system constraints with
feeding the entire load demand during contingencies. Therefore,
a resilience enhancement method that does not require accurate
system knowledge and flexible to use expansively accessible
resources needs to be developed to achieve resilient power
grids.
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Although several model-based methods have been proposed
in [15]-[18] to control voltages of power systems, these methods
depend on accurate parameters and system knowledge, which
is quite challenging for modern power grids with increasing
dimensionality and complexity. Several deep-reinforcement-
learning (DRL)-based voltage control methods have been pro-
posed in the literature [19]-[23] to avoid the requirement of
computationally expensive exact system models. A model free
Q-learning-based voltage control algorithm has been introduced
in [19] to provide optimal control settings for the constrained
load flow problem. In [20], a Q-learning-based distributed volt-
age control method has been proposed to optimally dispatch
reactive power. In [21], optimal tap setting policy for voltage
regulation transformers has been determined using a DRL algo-
rithm. A two-time scale voltage control algorithm that uses deep
Q-network to determine optimal capacitor configuration in slow
time scale has been proposed in [22]. A single-agent centralized
automatic voltage control framework based on deep-Q-network
and deep deterministic policy gradient (DDPG) method has
been proposed in [23]. A centralized trained and decentralized
executed DDPG-based multi-agent framework has been pro-
posed in [24] to control voltages of large integrated power grids.
The proposed DRL-based methods in [19]-[24] are effective to
provide control actions without accurate system knowledge to
maintain voltage constraints under N — 1 contingency. How-
ever, these methods utilize existing system resources to provide
asingle type of corrective control actions. Therefore, developing
a DRL-based computationally efficient multi-task method to
control voltages against multiple contingencies is important to
enhance resilience of power systems.

In this paper, a data-driven multi-agent framework using
a DRL algorithm is proposed to plan for the deployment of
shunts to enhance power system resilience against multiple line
failures. Each agent of the multi-agent framework is constructed
using a hybrid soft-actor-critic (HSAC) algorithm. The HSAC
is developed using the fundamental SAC algorithms for contin-
uous [25] and discrete [26] actions. To plan for the deployment
of shunts using the proposed multi-agent framework, first, the
entire power system is partitioned into several regions. Then,
offline training of the multi-agent framework is performed in
centralized fashion to determine locations and sizes of shunts
to maintain voltage constraints against multiple line failures.
The training algorithm is performed using historical data and
fragility curves of transmission lines and is periodically up-
dated to capture changes in system parameters. At each training
period, a reward function is used to evaluate the effectiveness
of actions—selected locations and sizes for shunts. Actions,
rewards of the agents, and system states at each training period
are stored in a replay buffer. A randomly sampled minibatch is
used to periodically update the parameters of the multi-agent
framework. Through the penalization mechanism designed in
the reward function, the agents learn from experiences to avoid
the execution of inaccurate actions and eventually get trained
to provide accurate actions. Similar to the other DRL-based
methods [20]-[21], the proposed multi-agent SAC (MASAC)
framework can provide a near-optimal or occasionally optimal
solution. Therefore, after installing the shunts, the trained agent
can be used to provide support to grid operators to control
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dispatched power from shunts using local measurements of
power grids. However, decisions from the agents can be firstly
confirmed by system operators to avoid risks. Contributions of
the proposed work in comparison with existing methods are
summarized as follows.

® The proposed multi-agent MASAC framework can im-

prove the scalability issues of existing DRL-based meth-
ods. In addition to the voltage control problem of power
systems, the proposed algorithm is also flexible to extend
and apply for other control problems.

® The agents of the proposed framework provide both con-

tinuous and discrete actions simultaneously, which provide
the flexibility to determine locations and sizes for expan-
sively accessible resources to maintain system security
during contingencies.

® Policies of the proposed method to provide actions are

trained to maximize the trade-off between entropy (ran-
domness measure of the policy) and expected return, which
is closely related to the exploitation and exploration per-
formance. The increase in the entropy leads to more explo-
ration that accelerates the learning rates of the agents. This
also avoids premature convergence of the policies, which
is important to obtain local optimum.

® All actor networks of the proposed MASAC framework

share information with a centralized critic network directly
and update their policies based on the provided rewards by
the critic network and regional states (bus voltages of each
region). This eliminates the requirement of coordinators
to share information among the actor networks. This also
provides flexibility to apply the proposed MASAC frame-
work for large-scale integrated power systems with a low
computational burden.

The rest of the paper is arranged as follows. Section II
describes problem formulation to control voltages under ex-
treme events using the MASAC framework. Section III explains
the formulation of the HSAC. Section IV describes proposed
power system resilience enhancement algorithm. Section V
provides the training and execution algorithm of the multi-
agentframework. Section VI demonstrates the proposed solu-
tion. Section VII provides several concluding remarks.

II. PROBLEM FORMULATION

To achieve the goal of enhancing power system resilience
using the developed MASAC framework, first, the entire power
system is divided into several small regions based on the geo-
graphic locations/electrical distances of buses. Then, each agent
of the MASAC framework is assigned to control voltages of
a region. It should be noted that the number of agents of the
MASAC framework is equal to the number of regions. Finally,
the voltage control problem under extreme events is formulated
for the MASAC framework. In the MASAC framework, the
agents provide actions based on system states, which are imple-
mented in the environment (power system) to control voltages.
These actions are also transmitted to the critic network using a
centralized communication network during the training process.
The critic network provides a reward to agents, which is used
to update policies of actor networks. Well-trained agents of
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TABLE1
CALCULATION OF REWARDS FOR POWER SYSTEM BUSES
Operation Zone | Bus voltage (Vk‘) ’”fc
n | TN
N 1 Vies, V¥ —_
orma. [ f ] Vub _ V;-ej‘
Vi — Vlb
Normal [V, Vsl k
Vref — Vi
Vi-V,
Violation [Vub,1.25] i
Vees — 1.25
Vies = V,
Violation 0.8, V1®] ef — Tk
0.8 = Viey
Diverge [0.0,0.8] -5
Diverge [1.25, 00] =5

the MASAC framework use only the states to provide control
commands during testing/execution without a communication
network. Therefore, we need to properly design states, obser-
vations, actions, and rewards to formulate the voltage control
problem for the MASAC framework. This section describes
states, observations, actions, and rewards in the context of power
system resilience enhancements.

1) States, Observations, and Actions: Various parameters
can be used to represent system states [24], [27], [28]; however,
for reactive power control studies, voltage magnitudes have been
widely used. It indicates the effectiveness of DRL algorithms
in streaming valuable information using partial states, which
provides flexibility to save a large number of measurements and
communication [24]. In this study, voltage states are divided into
three zones as shown in Table L.

We assume that each agent can observe and manage voltage
magnitudes of its own region. The control actions are defined
as a vector of locations and amount of output reactive power
of shunts. Each element of this vector is updated continuously
by adjusting both the locations and amount of output reactive
power of shunts. The amount of output reactive power from
shunts are adjusted within a predefined range of minimum and
maximum values. The discrete actions taken by the agents are
used to determine locations for shunts. Each or a selected number
of buses of a region can be used as candidate buses in the discrete
action space to select locations by an agent.

1) Calculation of Rewards: We design the reward function
through a hierarchical assumption to evaluate the effectiveness
of the actions taken by the MASAC. The first objective to design
the reward, ., is to encourage each agent to decrease bus voltage
magnitude deviation during contingencies from a predefined
reference value, V;..; = 1.0 p.u. The definitions of rewards, r,f PR
are provided in Table L ,

From Table I, it can be seen that buses with small deviations
are awarded large rewards. If the values of all bus voltages remain
in normal or violation zones after dispatching shunts then, the
total reward is calculated as follows,

NbE
i
= g

where R is the total reward at time step ¢; r}. is the reward for
k'R bus at time step ¢; V! is the voltage magnitude of bus & at
time ¢; and N? is the total number of buses.

=
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If the voltage magnitude of a bus is in the divergence zone,
then a relatively large penalty is assigned.

III. PROPOSED MULTI-AGENT FRAMEWORK

Each agent of the proposed MASAC framework provides
both continuous and discrete actions using two separate policy
functions. The fundamental SAC algorithms provided in [25],
[26] are adapted in this study to construct policy functions and
training algorithms of the proposed framework.

A. Policies for Actor-Networks of the Proposed Framework

Similar to the single agent SAC algorithm for either continues
or discrete action, in the proposed multi-agent SAC (MASAC)
framework, the continuous actor-network of each agent is devel-
oped based on a squashed Gaussian distribution function and the
discrete actor-network is developed based on a Gumbel soft-max
distribution function. The policies for the actor-networks can be
expressed as,

af‘ ~ T e (aﬂoi), (2)
af ~ myai (af'|o}), 3)

where o} is the observation vector at time ¢ for agent i; a$* is
the action provided by the continuous actor-network of agent
i; a% is the provided action by discrete actor-network of agent
i; ¢ is the parameter for continuous policy network of agent
i; ¢4 is the parameter for discrete policy network of agent i;
Tgei(ag'|o}) is an unbounded Gaussian policy; and 7 4. (af?|o})
is the discrete policy. The continuous actions need to be bounded
to a finite value in practice and, therefore, a squashing function
is applied to the Gaussian samples.

B. Policy Training Algorithm for Continuous Actors

Following the same convention of fundamental SAC algo-
rithms, policies of the MASAC are updated in each iteration to
maximize the trade-off between entropy (randomness measure
of the policy) and expected return. The policy used in the
fundamental SAC algorithm to maximize entropy is modified
as follows.

ir

* ci ci _—ei
Myes = argmax ) B(se,af') ~ 7. [1eR(se, a7, a; %,
¢t 1T
t=0

afl, a7 ™) +a Hrgei (.]se)] @

where .., is the optimal policy for agent i; T" and R represent
the number of time steps and reward function; v € [0, 1] is a dis-
count factor; a; “ is the selected actions by continuous actors of
all other agents; a; % is the selected actions by discrete actors of
all other agents; o is a temperature parameter which determines
the relative importance between entropy and reward of agent i;
s¢ is the set of system states; 7., is the induced trajectories by
the policy mge:; and Hmgei (.|s¢ ) is the entropy of the policy e
for state s;, which is calculated as Hmrye: (.|s;) = —logd®(.|s,).

As the continuous policy needs to be bounded in practice, an
approximation to soft policy iteration needs to be derived. Sim-
ilar to the fundamental SAC algorithm, an alternative method
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between the policy evaluation and improvement is used to max-
imize the entropy. The policy evaluation requires the calculation
of value of the policy. The soft value function, V,7i (0}), that is
used to measure the value of continuous policy for agent, i, is
expressed as,

V‘ff(o:) = Eafi“‘ﬂ'&ci [QG (St 3 a?v a‘t_CiJ atdi H at_di)

— alog (e (ag’|of))] (5)

where 9" is the parameter for the value function network
of agent i; f is the parameter for Q value function; and
Qo(ss,al, a7, adt, a; %) is acentralized soft policy evaluation
or critic function for the continuous actors.

The expression to minimize the squared residual error of a soft
Bellman function to train the soft value functions of continuous
actors of the MASAC framework is expressed as,

T = B | 3VieD) — [Qus ',

a;di) —a“log (?qu.cf (aﬂoi))] 2] ©)

where D is a replay buffer to store previous experiences.
The expression to determine the gradient of (6) based on an
unbiased estimator is as follows.

Ve J5H) = Ve Vi) (Vigh(el) — Qolseraf', ar,
af‘l, a;di) + alog (ﬂqbﬂ-{afﬂoi))) (7

The actions in (7) are sampled from the current policy. The
expression to train the soft-Q parameters for single-agent con-
tinuous actor provided in [25] is modified for the MASAC
framework as,

P 1 s m e o
Jg,(0") = ]E(SE,-,G?}ND 2 (Qg(st,af‘:at = a2 a7

= . 7 ¢ v D
—ei di _—d
_Q(Sha‘ggnat m:atl:a‘t 1)) ] ()]

with
A ci _—eci _di _—diy __ ci _—ei _di _—di
Q(St:at 3Gy 0y 0y )_T(S'ﬁ:at 1 0 40y )

+ F}(IE-?;-;-l’”P [V‘(gf (Ofi-!-l)] (9)

where 7' is an exponentially moving average of the value
network weights for agent i.

The gradient to optimize the soft Q-function of (8) is as
follows.

Ve: JG, (6") = Vs Qo(st, af', a7, o a7 ™)
x (Qo(st,af’,a; %, af’, a7 ®)
- T(sta a:i, at_m:: a’fi': a’t_di) - 7V53(0§+]))
(10)

To improve the policy, the policy needs to be updated in such a
way that it will maximize the rewards. In [25], the authors have
used the soft Q-value during policy evaluation to guide the policy
update. In actual scenario, the policy update has been directed
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toward exponential of new soft Q-function to make the policy
tractable. Also, the authors restricted the possible policies to a
parameterized distributions family (e.g., Gaussian). Following
the same convention, the policy update expression of single agent
SAC in terms of Kullback-Leibler divergence is modified for the
MASAC as,

new
Trgbci

an

Qo (s, -))

— argmjnDKL (?T¢ci(.|0§) m

where Zg(s;) is an intractable partition function which does not
contribute to the gradient with respect to the new policy.

The policy myei(.|o}) is parameterized for continuous action
setting using the continuous policy network of agent, ¢, with
parameter ¢°. Finally, the expected KL-divergence of (11) is
multiplied by a®, and then, minimized ignoring Zy (s, ) to train
the policy parameters of agent, 7, as follows.

J;;’ZC‘_ (o) = Eeeip [Eag"mn“‘- [ log (4e: (af|o}))

—Qo(st,af", a7 %, af’, a; ™)]] (12)

Although several options are available to minimize the ob-
jective function J;ﬁ: .. (@), the reparameterization technique
has been applied in [29] to achieve target density which is
Q-function. The modified expression to reparametrize the policy
of agent, 7, is as follows.

ag’ = fgei (€f'; 0}) (13)

where €§* is a noise vector that is sampled using a spherical
Gaussian distribution.

Thus, the new continuous policy objective for agent, 7, is as
follows.

J;.:d (qﬁm) = Esgimp, 6? ~ N [Ct'mi log (ﬂ¢ci (fqbci (e?; o;) |o;))
—Qo(st, fpes (€55 01), fo-ei (€7 % 577), a8 a7 ™))

where f; (e, “;s;") is the parameterized policies of other
continuous actors.

In [30], an alternative approach has been provided to learn
the temperature parameters of SAC algorithm for continuous
actions without the need of setting hyper-parameter. Instead of
reproducing rigorous formulation of obtaining the temperature
parameter learning objective function, the provided temperature
objective function in [30] is modified for continuous actors of
the proposed MASAC framework as follows.

Ja®) = Eget ~ mges [—a“ (log (:rr¢,=s (af”oi) + H)] (15)

(14)

where H is an equivalent constant vector of the hyper-parameter
to represent target entropy. The (15) cannot be minimized di-
rectly due to the expectation operator. Therefore, it is mini-
mized using a Monte-Carlo estimator after sampling experiences
from replay buffer based on the procedure from [30]. In the
proposed MASAC, two soft Q-networks for all continuous
agents are trained, and then, the minimum value among the
outputs of two Q-networks is used in the objective function of
(15). We do this because it is beneficial to combat state-value
overestimation [31].
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C. Policy Training Algorithm for Discrete Actors

The developed policy update procedure in [26] is modified
in this study to develop the policy update procedure for dis-
crete actor-networks of the proposed MASAC framework. The
steps involved in deriving objectives for the continuous actor-
networks of each agent hold for the discrete actor-networks. The
only change that happens for the discrete actor-networks is that
the policy of agent 7, w4, (af’|o}) provides a probability instead
of a density. Therefore, the objective functions for the continuous
actor-networks described in (10), (12), and (15) remain same for
the discrete actor-networks. However, the following changes are
necessary to optimize these objective functions.

e Using output value (Q-value) of the soft-Q function for
each possible action is more efficient than providing
only actions as input to train discrete actors. There-
fore, the Q-function for discrete actors changes from
Qo(s¢,af,a; %, ad?) to Qg(s¢), which is not possible for
infinitely many possible actions of continuous actors.

® The discrete policy can directly provide action distribution
without the need of calculating the mean and covariance
of action distribution. Therefore, application of a softmax
function in the output layer can provide a valid probability
distribution of discrete actions.

® The estimation of the soft state value in (5) requires taking
an expectation over the distribution of continuous actions.
Therefore, sampled actions from replay buffer needs to be
used to minimize the cost of the soft Q-function, J&, (6°),
in (8) using the Monte Carlo estimate of the soft state-
value function (5). On the other hand, as the action space
is discrete for the discrete actors, actions can be recovered
fully, which removes the requirement of using a Monte
Carlo estimator for expectation calculation. This reduces
the variance involved in estimating the objective, Jg, (6"),
(8).

The soft-value function, Vﬁ‘ff(oi), for the discrete actor-

network of agent, 7, is as follows.

Vi(0}) = mga (s0)" [Qo(se) — a®*log (mya(o}))]

where § is the parameter for Q value function; Qy(s;) is a cen-
tralized soft policy evaluation or critic function for the discrete
actors; and o' is a temperature parameter that determines the
relative importance between entropy and reward for agent 7.

It can be noticed that the centralized Q-function for discrete
actors receives observation from all agents. Thus, the continuous
policy objective function in (14) is modified for the discrete
actors as follows.

T8 (6") = Eygip [mgas () [0 log (mgas(0})
EE Q9(5t)]]

The temperature function described in (15) is modified for the
discrete actors as follows.

(16)

a7)

J% (%) = T i (se)T [—adﬁ (log (mga: (0}) + H)]

A hypothetical architecture of the proposed MASAC frame-
work based on the above descriptions is shown in Fig. 1.

(18)
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— Centralized soft Q-function for actors, Q° = {S, A, A%} |
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Fig. 1.  Architecture of the proposed MASAC framework.

IV. IMPLEMENTATION OF THE MASAC FRAMEWORK TO
ENHANCE POWER SYSTEM RESILIENCE

To implement the proposed approach for power system re-
silience enhancement, we need to construct scenarios under
extreme events to train and execute the MASAC framework. This
section describes implementation procedures of the proposed
resilience enhancement algorithm.

A. Resilience Enhancement

An approach to construct power system component failure
scenarios and a resilience index are necessary to demonstrate
power system resilience enhancement using the proposed ap-
proach. As the main focus of this paper is to develop a resilience
enhancement strategy, instead of proposing new resilience in-
dices and approaches to construct scenarios, an existing scenario
construction approach from [32] and a resilience index from [33]
are used in this study. The adapted scenario construction ap-
proach and resilience index are described as follows.

1) Line Outage Scenarios Based on Fragility Curves: Al-
though the proposed approach is applicable to enhance the
resilience of power systems under any extreme event, in this
work, we use line failures due to high wind speed as an example
of extreme events. A fragility curve from [32] is used to construct
line failure scenarios based on wind speed.

The failure probability of a transmission line based on the
adapted fragility curve can be expressed as follows.

D z itical
P,  ifw, < wgritica
Rh, ifwgrittmi Cithy & w:ol!apse

1, otherwise

Fi(w) = (19)

where P, (w) represents a function to determine failure probabili-
ties of lines in terms of wind speed; P, is the failure probability of
aline under normal wind speed that is assumed as 1 x 10-2[32];
and the failure probability between wind speeds of wS*@! and
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weellapse follows a linear relationship. The value of weria! and
weellapse are assumed as 30 m/sec and 55 m/sec, respectively.

2) Resilience Index: A resilience index “Survivability”
from [33] is used in this work to measure the resilience. Sur-
vivability can be defined as the ability of a power system to
supply the maximum amount of loads without compromising
the most critical loads during contingencies. As the main focus
of this paper is to develop a method to avoid load shedding during
multiple contingencies, the “Survivability” is represented by a
binary string—*°1" indicates the power system is capable to feed
the entire load demand and ‘0’ indicates that the system fails to
satisfy its entire demand.

3) Training and Execution Algorithms for the MASAC
Framework: To train and execute the MASAC framework for
resilience enhancement, first, the power grid is partitioned into
several regions based on the electrical distance where each re-
gion is controlled by an agent. The users/power system operators
have the privilege to select the number of agents for the MASAC
framework depending on system sizes. The voltage of a region
during contingencies is regulated within predefined limits by
control actions of an agent. The control actions of an agent based
on the provided input states of its region can be expressed as
follows.

; Taei(alol), if |A¥|>0
a:z _ :; ( t | t) . | i | (20)
a1, if |Aj|=0
and,
di| iy ; i
5 mgei(al?|o?), if |A}|>0
atd?, s ;bi { t | t) : | : | (21)
ag’,, if | At |=0

where | A} | represents the number of violated bus that exist
in the respective region of agent 7; the continuous action, a{’,
represents the amount of the dispatched shunt reactive power
for agent i; and the discrete action, a, represents the dispatch
Status of the shunts for agent 7. A replay buffer is used to train

all the agents, which is expressed as follows.

i ei di _—ei _—di .t )
D+ (Stzot:'a't 2By Ay 3Gy 5T 514150811,

di —ei

ci —di
Q1,041 80¢41, at+1) (22)

The training and testing/execution algorithms for the MASAC
framework to enhance the resilience under multiple line failures
due to high wind speeds are summarized in algorithm 1 and
algorithm 2, respectively.

V. TRAINING AND EXECUTION OF THE MASAC FRAMEWORK

To train and execute the proposed MASAC framework, con-
tingency scenarios for a standard test system (environment)
are constructed and power flow for each scenario is performed
using the Pypower [34]. Each agent contains continuous and
discrete actors, and all the agents have a centralized critic. At the
beginning of a scenario, discrete actors select locations whereas
continuous actors select the output power simultaneously. Then,
the discrete (locations) and continuous (output power) actions
are provided to the critic network to update both actions based
on agents’ policies and termination criterion of the algorithm.
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Algorithm 1: Training Algorithm for the MASAC Frame-
work.
1: for episode = 1to M do

2 Construct a lines outage scenario using a fragility
curve.
£ H Perform initial power flow for the constructed
scenario and send of and s; to each agent.
4:  count| Al |.
5: while voltages violate and step < N do
6: Calculate both continuous and discrete actions, ag’
and a* for each agent using (20) and (21).
T; Execute actions a$' and af* in environment using a
power flow solver (e.g., Pypower).
8: Observe s; 1 and r; to check terminal conditions.
9: Store (s;, o}, af, a2, a; %, at_dt, Tt, S¢11) in
replay buffer Dy based on (22).
10: If s;; is terminal reset the environment.
il Update weights of continuous and discrete policies
of each agent using (14) and (17), respectively.
12: Update the Q-function parameters of local and
target networks of each agent using (10).
13; Update temperature of actor-networks of each
agent using (15) and (18), respectively.
14: Update target networks weights of each agent

using Qm + 7Qm + (1 — 7)Q, where, m €
{1,2} and m <« 1.

I5: end while

16: end for

Algorithm 2 Testing Algorithm for the MASAC Framework
1: for episode =1to M do

2 Construct a lines trip scenario using the fragility
curve.

£ H Perform initial power flow for the constructed
scenario and send o and s; to each agent and count
| AL .

4: while voltages violate and step < N do

3: Calculate both continuous and discrete actions, af*

and af‘ for each agent using (20) and (21).
6: Execute actions a¢® and a! in environment using

the power flow solver.

7 Observe s; 1 and r; to check terminal conditions.
8: end while
9: end for

Also, a centralized replay buffer is used to store the information
of all agents. In algorithm 1 and algorithm 2, M and N represent
sizes of the training data set (total number of episodes) and the
maximum number of iterations in each episode, respectively.
The size of the training dataset (total number of scenarios) needs
to be large enough to capture extensive operation Status of power
systems. On the other hand, the maximum number of iterations
should not be too large to avoid the negative impacts on training
due to consequential transitions with ineffective actions. The
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Fig. 2. The flow of information during training of the agents.

process to flow information during training of the agents of the
MASAC is shown in Fig. 2.

The detailed training and execution process of the proposed
MASAC to enhance resilience is as follows.

e Step 1. Power flow is solved for the environment (failure
scenario of power system) at the beginning of each episode
to obtain initial grid states (bus voltage magnitudes). Then,
grid states are divided based on the predefined regions.
After this point, the states of a region is fed as input to the
assigned agent for the respective region. If an agent detects
voltage violations in its region, then the observations are
extracted. Otherwise, move to the next episode (i.e., redo
step 1).

e Step 2. If an agent does not find voltage violations, then that
agent maintains original actions in the respective region. If
an agent detects a violation, then the agent executes new
actions in the respective region using (20) and (21). Then,
power flow is performed for the modified environment to
obtain new system states. According to the obtained new
states, the reward and new observations of each agent are
calculated and extracted, respectively.

® Step 3. Each agent stores the transitions in the centralized
replay buffer. Periodically, the actor and critic networks are
updated in turn with a randomly sampled minibatch.

e Step 4. Along with the training, each agent keeps reducing
the noise to decrease the exploration probability. If one of
the episode termination conditions is satisfied, store the
information and go to the next episode (i.e., redo Step 1).

The above closed-loop process continues for all of the

episodes in the training dataset. For each episode, the training
process terminates when one of two conditions is satisfied: i)
violation cleared; ii) the maximum number of iterations reached.
It does not matter whether voltage violation still exists if the
episode is terminated under condition ii). Through the penal-
ization mechanism designed in the reward function, the agents
can learn from the experience to avoid providing inaccurate
actions. It is worth mentioning here that the proposed MASAC
framework requires a centralized communication network to
provide actions of all agents to the critic network during train-
ing. After receiving these actions, the critic network provides
rewards to agents, which are used to update policies of the actor
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networks. It should be noted that this process can be executed
offline without real-time interaction with the system. During
testing/execution, well-trained agents of the MASAC frame-
work use only local measurements to provide control commands,
which can be checked by grid operators before execution. This
decentralized execution regulates the regional voltage without
any communication.

VI. NUMERICAL EXAMPLES

The proposed approach is demonstrated on the IEEE 57-bus
and IEEE 300-bus systems to analyze its effectiveness on differ-
ent system sizes. The training scenarios are constructed using
a adapted fragility curve from [32]. Also, training data for the
constructed scenarios are synthetically generated from a feasible
power flow solution. The specific generation process for the
training data is summarized as follows. First, one or multiple
lines are tripped based on the fragility curve to construct contin-
gency scenarios. Variations in the wind velocity are considered
between 30-60 m/s to capture both minor (failure of a small
number of lines) and major (failure of a large number of lines)
contingency scenarios. Then, the power flow solver (Pypower) is
used to check whether the given contingency case is solvable or
not. Finally, feasible power flow cases are stored as training data.
During training, the locations and sizes for shunts are determined
using actions of the agents. The case studies for both the IEEE
57-bus and IEEE 300-bus system are as follows.

Case I—Training the MASAC for the IEEE 57-bus system.
The IEEE 57-bus system has 57 buses and 80 branches. It is
worth mentioning here that the proposed MASAC framework
can determine appropriate sizes and locations for shunts based on
selected potential locations and minimum and maximum limits
of shunts during training. Also, it should be noted that power
system planners have the privilege to select potential locations,
and minimum and maximum sizes of shunts. In this study,
we demonstrated the effectiveness of the proposed framework
through providing a snapshot, which is as follows.

To train and execute the MAS AC framework, the IEEE 57-bus
system is partitioned into six regions. The MASAC is con-
structed using six agents to provide actions for the six regions.
The allocation of bus numbers to different regions are shown in
Fig. 3.

We assume that a windstorm passes through the entire system.
The selected vulnerable candidate lines are (1-2), (9-12), (18—
19), (31-32), (38-44), (50-51), and (56-41). At each iteration
of an episode, an agent identifies both size and location (a
candidate bus) from its own region to install a shunt. We assume
that output reactive power of shunts varies between 0—6 MVAr.
Variations in the shunt output power should not be too high
to avoid the negative impacts on training due to exploration of
a very large action space. Total 20 000 episodes are used to
train the MASAC using Algorithm 1. The maximum number of
iterations used for each episode is 30. Fig. 4(a) and 4(b) show
the number of iterations and reward amounts, respectively, for
training episodes.

From Fig. 4(a) and Fig. 4(b), we can see that the action
time (number of iterations) decreases while the reward amounts
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Fig. 4. (a) Required number of iterations (b) amount of rewards of training
episodes for the IEEE 57-bus system.

increase with the increase of training episodes. This indicates
that the agents are learning from previous experiences to avoid
inaccurate actions. For instance, from 1-13 000 episodes, the
agents took bad actions and failed to resolve the impacts of
contingencies on voltage constraints for a large number of
episodes. Reward amounts during this period are also low for a
large number of episodes. However, when the agents get trained,
impacts of all contingencies on voltage constraints are resolved
very quickly (within few iterations) and the reward amount
increased significantly.

Fig. 5(a) shows the critic losses for the continuous and discrete
actors, which fluctuate at the beginning, and finally converge to
equilibrium. Thus, we can say that the MASAC is getting trained
to provide actions for removing the negative impacts of multiple
line failures on voltage constraints.

Case II—Determining locations and sizes of the shunts us-
ing the trained MASAC for the IEEE 57-bus system. In order
to determine candidate locations and sizes to install shunts
for maintaining voltage limits under multiple line failures, the
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Fig. 5. (a) Losses of critics during training and (b) Required number of
iterations and amount of rewards of testing episodes for the IEEE 57-bus system.
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dispatching shunts for outage of all candidate lines.

trained network is tested for 2000 episodes using algorithm 2.
The testing scenarios are also constructed using the fragility
curve. Fig. 5(b) shows the number of iterations and reward
amounts, respectively, for testing episodes. From Fig. 5(b), we
can see that the contingencies for the testing episodes are solved
within one iteration and the agents get the maximum rewards
for each testing episode. This indicates that the trained MASAC
framework can remove voltage violations. The calculated sizes
of the shunt reactive power compensators to maintain voltage
constraints under failures of the selected lines are approximately
3.10, 3.10, 3.10, 0.00, 3.10, and 3.10 MVArs. The determined
locations for these shunts are buses number 4, 18, 29, 42, and
51. The shunt reactive power compensators are installed in
the IEEE 57-bus system based on the calculated locations and
sizes. The accuracy of the calculated locations and sizes are
checked for two scenarios—scenario I (major outage): outage of
all the candidate lines and scenario I (minor outage): outage
of one candidate line (selected randomly). The status of the bus
voltage magnitudes before and after dispatching shunts for both
scenarios are shown in Fig. 6 and Fig. 7.

The upper and lower voltage limits of the IEEE 57-bus system
during normal operating conditions are 1.065 p.u. and 0.935 p.u.,
respectively.

From Fig. 6 and Fig. 7, we can see that voltages of three
buses are violated for the outages of all candidate lines, whereas
voltage of one bus is violated for the outage of one line (31-32).
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shunts for outage of line 31-32.

Fig. 6 and Fig. 7 also show that the voltage violations of both
scenarios are resolved successfully using the installed shunts
based on the proposed approach. Thus, the proposed approach
can be used to determine locations and sizes of shunts to achieve
‘Survivability’ of ‘1’ during the failure of multiple lines for the
IEEE 57-bus system.

Case IlI—Training of the MASAC for the IEEE 300-bus
System. The IEEE 300-bus system has 300 buses and 411
branches. Similar to Case I, the entire system is partitioned into
six regions with each region is controlled by an agent. In this
case, equal number of buses are assigned chronologically to
different agents. In other words, agents 1-6 control voltages at
buses 1-50, 51-100, 101-151, 151-200, 201-251, and 251-300,
respectively. The 300-bus system is comparatively a large test
system, and we assume that windstorm passes through one
region. Although the windstorm passes through one region, some
lines that connect buses of the affected region with other regions
may be tripped. Also, as all regions are interconnected, line
failures in one region may affect voltage constraints of other
regions. In this study, we assume that the windstorm passes
through regionl, and ten candidate lines are selected, which
may trip depending on their respective failure probabilities and
and velocity of wind. The selected candidate lines for this case
are (1-5), (3-7), (8-11), (12-21), (14-15), (19-87), (33-40),
(35-72), (45-60), and (47—113). Also, shunt values (continuous
action space) for different agents are varied as follows: agent1:
0-8 MVAr, agent2: 0—7 MVAr, agent3: 0-6 MVAr, agent4: 0-5
MVAr, agent5: 04 MVAr, and agent6: 0-3 MVAr. Each agent
identifies a bus from its own region at each iteration to dispatch
a shunt. The total number of episodes used to train the MASAC
for this case using Algorithm 1 is 15 000. The maximum number
of iterations used for each episode is 30. Fig. 8(a) and 8(b) show
the number of iterations and total reward amounts, respectively,
for each training episode.

Fig. 8(a) and Fig. 8(b) show that the action time decreases
while the amount of rewards increases with the increase of
episodes. This validates efficient learning of the agents from
the previous experiences.
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Fig. 9(a) shows that the actor and critic losses for the contin-
uous and discrete actors fluctuate at the beginning, and finally
converge to equilibrium. This indicates that the agents are learn-
ing to provide effective control actions.

Case IV—Determining locations and sizes of shunts using
the trained MASAC for the IEEE 300-bus system. Similar to
Case 11, the trained network for the IEEE 300-bus system is
tested for 2000 episodes using algorithm 2. Fig. 9(b) shows
the number of iterations and reward amounts, respectively, for
testing episodes. From Fig. 9(b), it can be seen that contingencies
for the testing episodes are solved within one iteration and the
agents get the maximum rewards. Therefore, it can be concluded
that the trained MAS AC framework can solve voltage violations.
The calculated sizes of the shunt reactive power compensators
to maintain voltage limits under failures of selected lines are
approximately 5.10, 4.10, 3.10, 2.10, 2.00, and 2.10 MVArs.
The planned locations for these shunts are buses 30, 83, 125,
185, 203, and 268.

Shunt reactive power compensators are installed in the IEEE
300-bus system based on the calculated locations and sizes.
Similar to case II, the accuracy of the calculated locations and
sizes are checked for two scenarios: major outage (outage of all
the candidate lines) and minor outage (outage of three randomly
selected lines) scenarios. The status of the bus voltage magni-
tudes before and after dispatching shunts for both scenarios are
shown in Fig. 10 and Fig. 11. The upper and lower voltage limits
of the IEEE 300-bus system during normal operating condition
are 1.074 p.u. and 0.929 p.u., respectively.
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TABLE I
COMPARISON ANALYSIS OF THE PROPOSED METHOD WITH THE PREVIOUSLY PROPOSED RL-BASED METHOD
Method || Provided Actions Types || Solution Methodology || Control Performance
[23] Continuous or discrete 1. DDPG based agent: actor + 1. With random load fluctuations and contingencies applied to
critic + replay buffer; 2. Deter- || the operation data, the DRL agent can fix the voltage violation
ministic policy issues for small systems; 2. Accuracy is approximately 80%.
[24] Continuous or discrete 1. DDPG based agent: actor + 1. With random load fluctuations and contingencies applied to
critic + coordinator + indepen- || the operation data while considering communication limits, the
dent replay buffer; 2. Operation DEL agent can solve voltage violations for maximum 200-bus
rule based deterministic policy system. 2. Accuracy is approximately 87%.
Proposed method Both Continuous & 1. SAC-based agent: actor 1. With random load fluctuations and contingencies applied
discrete + critic + independent replay to the operation data while considering communication limits,
buffer; 2. Entropy regularization- || DRL agents solve voltage violations with improved scalability
based deterministic policy and regional controllability 2. Accuracy is approximately 92%.
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shunts for the outage of all candidate lines.
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shunts for outages of line 45-60, 1415, and 12-21.

From Fig. 10 and Fig. 11, we can see that the four buses
have voltage violations for the major outage, whereas two buses
have voltage violations for the minor outage. Fig. 10 and Fig. 11
also show that voltage violations of both scenarios are resolved
successfully using the installed shunts based on the proposed
approach. Thus, the proposed approach can be used to determine
locations and sizes of shunts to achieve ‘Survivability’ of ‘1’
during the failure of multiple lines for the IEEE 300-bus system.

Fig. 12. Comparison between the MASAC method and model-based method
for outage of line 31-32 of IEEE 57-bus system.

Case V—Comparison Analysis. The proposed method is com-
pared with a conventional method for shunt planting based on the
operating rules (normalized voltage magnitudes of the buses) of
the power grids without the need for an accurate model [35]. The
simulation is performed on the IEEE 300-bus system. In [35],
the candidate nodes to install the shunts are selected based on
the normalized voltage magnitudes of the buses. The calculated
locations based on the described method in [35] are bus number
26, 30, 31, 32, and 33. We select same shunt sizes for both the
methods. Fig. 12 shows the comparison between the obtained
results using the MASAC method and conventional method.
From Fig. 12, we can see that all the voltages are within limits for
the proposed method, while the voltages of three buses violate
for the conventional method.

The main drawback of model-based methods is that they
cannot provide solutions without accurate system information.
Also, it should be noted that the model-based methods lose
their effectiveness immediately once tested systems are changed.
Under certain extreme conditions, model-based methods may
result in a large deviation from the optimal point. For instance,
the proposed DRL-based method can easily handle outages
of multiple lines, which is quite challenging for model-based
methods if line capacities or all other system information are
not immediately available. Also, it is not straightforward to
model a large number of system components such as nonlinear
power electronic devices and renewable energy sources, which
significantly limits the applicability of model-based methods
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for large systems. Therefore, it is challenging or even impos-
sible to obtain the solution using model-based methods for the
dynamically changing systems under extreme events (outages
of multiple lines). From this perspective, data-driven methods
can be a promising option to solve these issues.

The advantage of the proposed work over the previously
conducted DRL-based works to control power system voltages
is also demonstrated through a comparison analysis in Table II.
From Table II, it can be seen that the proposed method has
an improved scalability over existing methods. Also, the ac-
tor network of each agent of previous methods provide only
continuous actions, whereas the actor networks of the MASAC
framework provide both the continuous and discrete actions si-
multaneously. Moreover, as the sizes of power grids increase, the
existing works do not have potential to handle high dimensional
input-output space for the actor network. On the other hand,
the proposed method can solve the curse of dimensionality be-
cause each agent of the MASAC framework controls only local
region/sub-system.

VII. CONCLUSION

This paper has proposed a multi-agent distributed computa-
tion and implementation framework using a DRL algorithm to
explore the benifits of shunt reactive power compensators for
power system resilience enhancement against extreme events
and multi-component failures. The agents were constructed
using a hybrid SAC (HSAC) algorithms. The HSAC was for-
mulated using the fundamental SAC algorithms for both the
continuous and discrete actions. To implement the proposed
MASAC framework for power system resilience enhancement,
a power system was partitioned into several regions where each
region is controlled by an agent. Then, the proposed MASAC
framework was trained using historical data and fragility curves
of transmission lines and was periodically updated to capture
changes in system parameters. The trained MASAC framework
provided locations (candidate buses) and sizes of the shunts to
enhance resilience of power systems under multiple line failures.
The proposed approach was demonstrated on the IEEE 57-bus
and IEEE 300-bus systems through numerical examples. The
results showed that the proposed algorithm is effective to plan
for the deployment of shunt reactive power compensators to
enhance resilience of power grids under multiple line failures.
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