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Abstract—Recently Reed-Solomon (RS) codes were shown to
possess a repair scheme that supports repair of failed nodes with
optimal repair bandwidth. In this paper, we extend this result
in two directions. First, we propose a new repair scheme for the
RS codes constructed in [Tamo-Ye-Barg, IEEE Transactions on
Information Theory, vol. 65, May 2019] and show that repair is
robust to erroneous information provided by the helper nodes
while maintaining the optimal repair bandwidth. Second, we
construct a new family of RS codes with optimal access for the
repair of any single failed node. We also show that the constructed
codes can accommodate both features, supporting optimal-access
repair with optimal error-correction capability.

Going beyond RS codes, we also prove that any scalar MDS
code with repair bandwidth attaining the cutset bound affords a
repair scheme with optimal access property.

Index Terms—Distributed storage, Regenerating codes, Reed-
Solomon codes, Error correction, Optimal access.

I. INTRODUCTION

The problem of efficient erasure correction in various
classes of algebraic codes has recently attracted renewed
attention because of its links to applications of erasure coding
for distributed storage. Compared to the classic setting of
erasure correction, efficient functioning of distributed storage
systems critically depends on the volume of communication
exchanged between the nodes for the purposes of data recov-
ery. The constraint on the amount of communication, termed
“repair bandwidth,” adds new features to the problem, and has
motivated a large amount of research in coding theory in the
last decade.

Consider an (n,k,l) array code € over a finite field F,
i.e., a collection of codewords ¢ = (cy,...,c,), Where ¢; =
(Ci707CZ‘71, ey Ci7l_1)T € Fl,i = 1, o, n. A node Ci,i € [TL]
can be repaired from a subset of d > k helper nodes {c; : j €
R}, R < [n]\{i}, by downloading §;(R) symbols of F if there
are numbers ;5,7 € R, functions f;; : F'' - FPi je R, and
a function g; : F2sex s — Fl guch that

ci = gi({fij(cj),jeR}) forall ¢ = (c1,...,¢,) €C
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D Bij = Bi(R).
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Codes that we consider form linear spaces over F'. If C is not
linear over F, it is also called a vector code, while if it is,
it is called scalar to stress the linearity property. A code C
is called MDS if any k coordinates {c;,,¢ = 1,...,k} of the
codeword suffice to recover its remaining n —k coordinates. In
this paper we study the repair problem of scalar MDS codes.

It is well known [[] that for any MDS code € (scalar or
vector), any i € [n], and any R < [n]\{i} of cardinality |R| >
k, we have

l
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For an MDS code C, we define the minimum bandwidth
of repair of a node from a d-subset R of helper nodes as
B(d) = MaX;e[n] minyc[n]\{i}ym‘:d ﬁ,(ﬁ) It follows imme-
diately from () that

l
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An MDS code that attains the bound () with equality is said
to afford optimal repair, and a repair scheme that attains this
bound is called optimal. Such codes are also termed minimium
storage regenerating or MSR codes, and the parameter [ is
called node size or sub-packetization. Multiple constructions
of vector MDS codes with optimal repair are available in the
literature, including papers [2], [B], [2], [5], [6], [Z].

The basic repair problem of MDS codes has been extended
to the case that some of the helper nodes provide erroneous
information (or arbitrary nature). Suppose that a subset of
e nodes out of d helpers provide erroneous information and
define (d, e) to be the minimum number of symbols needed
to repair a failed node in the presence of such errors. It was
shown [&], [9] that for d > k + 2e,

dl
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A repair scheme that achieves this bound is said to have opti-
mal error correction capability. Constructions of MDS array
codes with optimal error correction capability are presented,
for instance, in [2].

Another parameter of erasure codes for distributed storage
that affects the system performance is the so-called access,
or input-output cost of repair. Indeed, while the code may
support parsimonious exchange between the helper nodes and
the repair center, generation of the symbols to be transmitted
from the helper node may require reading the entire contents
of the node (trivial access), which increases delays in the



system. The smallest number of symbols accessed on each
of the helper nodes in an MSR code is [/(d —k + 1), and such
codes are said to have the optimal access property. Advantages
of having this property are well recognized in the literature
starting with [I0], and a number of papers were devoted to
constraints that it imposes on the code parameters such as
sub-packetization [1], [I2]. Many families of MSR codes
including early constructions in [B], [[3] as well as code
families for general parameters in [4], [S], [I4], [T5] have
the optimal access property.

The optimal-access repair and optimal error correction ca-
pability can be combined. According to (B), we say that a
code family/repair scheme have both properties if repair can
be performed in the presence of e errors, while the number
of symbols accessed on each of the helper nodes equals
1/(d — 2e — k + 1) proportion of the contents of each of d
helper nodes.

While the aforementioned papers mostly deal with vector
codes, in this paper we focus on the repair problem for scalar
MDS codes, more specifically, for Reed-Solomon (RS) codes.
This code family continues to attract attention in multiple
aspects of theoretical research (list decoding of variants of
RS codes, locally recoverable codes, to name a few) and it is
also one of the most used coding methods in a vast variety
of practical systems. The first work to isolate and advance the
repair problem for RS codes was [I6] which itself followed
and developed the ideas in [[4]. In [I6], the authors view
each coordinate of RS codes as a vector over some subfield
and characterize linear repair schemes of RS codes over this
subfield. For RS codes (and more generally for scalar codes),
the node size [ is defined as the degree of extension of the
symbol field over the subfield. Following [I6], several papers
attempted to optimize the repair bandwidth of RS codes [I8],
[9], [P0]. A family of optimal-repair RS codes in the case
of repairing a single failed node as well as multiple nodes
was constructed in [21]. Later this construction was extended
to the case of the rack-aware storage model, resulting in a
family of codes with optimal repair of a single node [I35], and
this problem was addressed again in [27].

In this paper we address two problems related to RS repair,
namely,

(i) repair schemes of RS codes with optimal error correction,
and
(i) RS codes with optimal-access repair.

Error correction during repair of failed storage nodes was
previously only considered for vector codes [R], [9], []. The
problem of low-access RS codes was studied in [Z3]-[P5].
In particular, the last of these works analyzed the access
(input/output) cost of the family of RS codes of [21], providing
an estimate of this parameter, but stopping short of achieving
optimal access.

Our main results provide a solution to problems (i)-(ii).
Specifically, we construct a repair scheme for RS codes in [21]
that has optimal error correction capability (i.e., attains the
bound (B)), and we also construct a family of RS codes with
optimal access repair for any single failed node. Additionaly,
we prove that the constructed codes can be furnished with a
repair scheme that supports both optimal error correction and
optimal-access repair.

Apart from this, we also show that any scalar MDS code
with optimal repair of a single node from d helpers, k£ <
d < n — 1, affords a repair scheme with optimal access, and
this includes the RS codes in [21]. While our arguments do
not provide an explicit construction, we give a combinatorial
search procedure, showing that it exists for any scalar MSR
code. The resulting optimal access codes have the same sub-
packetization as the original MDS codes.

The constructions are technically involved, and we begin in
Sec. [ with illustrating them in an example. The three sections
that follow it are devoted to the results described above.

II. A SIMPLE EXAMPLE

In this section, we construct an RS code together with a
repair scheme that can recover its first node with both optimal
access and optimal error correction capability.

A. Preliminaries

1) We begin with some standard definitions. Recall that a
generalized RS code (GRS code) of length n and dimension
k over a finite field F' is obtained by fixing a set of n distinct
evaluation points Q := {a1,@2,...,a,} < F and a vector
(v1,...,v,) € (F*)™ with no zero coordinates. Then the GRS
code is the set of vectors

GRSF(na kvv’ Q) = {(vlf(al)a'UQf(aQ)v e aUnf(an)) :
f € Flz],deg f < k}.

In particular, if (vq,...,v,) = (1,...,1), then the GRS
code is called the Reed-Solomon (RS) code and is denoted
by RSp(n,k,Q). It is a classic fact that the dual code
(RSp(n, k,Q))* is GRSp(n,n — k,v,Q), where v € (F*)"
is some vector. In particular, if ¢ = (¢1,...,¢,) € F™ is
a vector such that »,"" , ¢;h(a;) = 0 for every polynomial
h(zx) of degree < k — 1, then ¢ is contained in a GRS code
of dimension n — k. Rephrasing this, we have the following
obvious proposition that will be frequently used below.

Proposition 1. Let ¢ = (c1,...,¢,) € F™ and suppose that
S cal =0forallt =0,1,...,k—1. Then the vector c is
contained in a code GRSp(n,n — k,v,Q), where v e (F*)"
and Q = {ay,...,an}.

Let E be an algebraic extension of F’ of degree s. The trace
mapping trp,p is given by x 142l Fl 4 gl FP g F1
For any basis 7g,...,7s—1 of E over F' there exists a trace-
dual basis 0y, . . ., 0,1, which satisfies trg/p(7i0;) = L—jy
for all pairs ¢,j. For an element x € FE the coefficients
of its expansion in the basis (v;) are found using the dual
basis, specifically, z = Zf;& trg, r(xd;)vi. As a consequence,
for any basis (;) the mapping E — F*° given by z —
(tr(xd;),i =0,...,8 — 1) is a bijection.

2) Before we define the RS code that will be considered
below, let us fix the parameters of the repair scheme. We
attempt to repair a failed node using information from d helper
nodes. Suppose that at most e of them provide erroneous
information. Assume that d—2e > k, and let s := d—2e—k+1.
Let F be a finite field of size |F| = n — 1. Choose a set



of distinct evaluation points €2 := {ay, @a,...,a,} such that
a; € F for all 2 < i < n and «; is an algebraic element
of degree s over I’ (which means that the extension field
E := F(«;) forms an s-dimensional vector space over F).
Consider the code

€:=RSg(n, k Q).

In this section we present a repair scheme of the code C that
can repair the first node of C over the field F'; in other words,
we represent the coordinates of C as s-dimensional vectors
over F' in some basis of F over F. Thus, the node size of this
code is s. We note that the code C represented in this way is
still a scalar code.

The repair scheme presented below has the following two
properties:

« the optimal error correction capability, i.e., the repair
bandwidth achieves the bound (B) for any pair (d, e) such
that d —2e = s+ k —1;

« in the absence of errors it has the optimal access property,
i.e., the number of symbols accessed during the repair
process is d. Thus, in this case e =0 and s =d —k + 1.

B. Repair scheme with optimal error correction capability

Let ¢ = (¢1,¢2,...,¢,) € C be a codeword and suppose
that ¢, is erased. Since C* = GRSg(n,n — k,v, Q) for some
v € (E*)", we have

t t t
viajcr+vaasca+o - tvpage, =0, t=0,1,...,n—k—1,

or

t t t
V101 C1 = —V205C — =+ — UpQ),Cp,

t=0,1,....n—k—1. (4

Evaluating the trace tr = trg/r on both sides of (8), we obtain
the relation

tr(viate)) = —tr(vaabes) — - - — tr(v,al cp)
= —abtr(vacy) — -+ — ol tr(vnen), ®)
t=0,1,....n—k—1,

where the second equality follows from the fact that
ag,...,a, € F. Therefore, knowing the values of
(tr(vaca), . .., tr(v,ey,)) enables us to compute tr(vyafeq) for
all 0 <t < n—k — 1. Since degp(ay) = s, the elements
1,aq,... ,ozf_l form a basis of E over F'. As a consequence,
one can recover c¢; from the values of {tr(viafc;): 0 <t <
s — 1}. By definition, s — 1 =d—2e—k<n—k—1, so
{tr(viadcy) : 0 <t < s—1} € {tr(viade1): 0 <t <n—k—
1}. Combining this with (H), we see that the value ¢; is fully
determined by the set of elements (tr(vacs), ..., tr(v,c,)).

Recalling our problem, we will show that in order to repair
¢1, it suffices to acquire the values tr(v;c;) from any d helper
nodes provided that at least d —e = (d + s + k — 1)/2 of
these values are correct. This will follow from the following
proposition.

Proposition 2. Let f(x) € F[x] be the minimal polynomial
of ay. For any s <n —k and any ¢ = (¢1,...,¢p) € C the
vectors (f(asg) tr(vaca), ..., flap) tr(v,cy)) are contained in
an (n—1,s +k — 1) GRS code over F.

Proof. Let T :={0,1,...,n —k —s—1}. Since o; € F,i =
2,...,n by definition we have f(«a;) # 0 for all such 4. Next,
deg(f) = s, and thus for all t € T

(v10] f(ar), v205 f(as), ..., vnay, flan)) € €.
This implies that for all t € T
vl far)er +vaab f(ao)ea + - + vl flan)e, =0,
but f(ay1) = 0, so taking the trace, we obtain

ab f(aw) tr(vecy)+-- '+ozf1f(an) tr(vpen) =0, t€T. (6)

By Proposition [0, this implies that the vectors
(f(ag) tr(vacs), ..., flay) tr(v,c,)) are contained in a
GRS code of length n — 1 with n — s — k parities. O

The GRS code identified in this proposition can be punc-
tured to any subset R of d coordinates, retaining the dimension
and the MDS property. This means that the punctured code is
capable of correcting any e = (d — s — k + 1)/2 errors. There-
fore, as long as no more than e helper nodes provide incorrect
information, we can always recover (tr(veca),...,tr(v,c,))
by acquiring a subset {tr(v;,c;;),j = 1,...,d} from any d
helper nodes and correcting the errors based on any decoding
procedure of the underlying MDS code. Finally note that
the case s = n — k can be added trivially because then
d=n—1 and e = 0, so all the helper nodes provide accurate
information, and no error correction is required (or possible).

C. Optimal access property

Following the discussion in the first part of this section, we
show that the code € = RSg(n, k, ) defined above supports
optimal-access repair of the node c;. In this part we assume
that the helper nodes provide accurate information about their
contents, and we do not attempt error correction.

To represent the code, we choose a pair of trace-dual bases
(bi), (b¥) of E over F, where we assume w.l.o.g. that by = 1.
Next, represent the ith coordinate of the code, i € {1,...,n},
using the basis (v;ibm, m=0,...,s—1), where (v1,...,v,)
is defined by the code CL. Namely, for a codeword c € C we
have

s—1
-1
ci=v; ' Y] cimbl, (7
m=0

where ¢; ,, € F for all m = 0,1,...,s — 1. We assume that
each storage node contains the vector (¢;0,¢i1,---,Cis—1)-

As discussed above, the value c¢; can be recovered from
any d-subset of the set of elements {tr(v;c;),j = 2,...,n}.
Further, for all ¢ = 2,...,n and m = 0,...,s — 1 we have
tr(vicibm) = ¢i.m, SO in particular,

tr(vici) = Ci,().

Thus, to repair c; it suffices to access and download a
single symbol ¢; o from the chosen subset of d helper nodes.
According to the bound (), the minimum number of symbols
downloaded from a helper node for optimal repair is the
(1/s)th proportion of the node’s contents. Overall this shows
that the repair scheme considered above has the optimal access

property.



The above discussion sets the stage for constructing RS
codes with optimal-access repair for each of the n co-
ordinates. Namely, we took a basis 1,b1,...,bs_1 of F
over F' and represented each c; in the basis (v; 'b¥). The
only element of the helper coordinate that we access and
download is ¢; 0. For more complicated constructions of RS
codes, e.g., the ones constructed in [Z1] and below in the
paper, we assume that E is an [-degree extension of F'
The known repair schemes require to download elements
of the form tr(vic;ap), tr(viciar), . .., tr(viciaqys)—1), where
aop, a1, -.,a(s—1 are linearly independent over F. In this
case, we can extend the set ag,ai,...,aq/s)—1 to a ba-
sis (b;) of E over F. Following the approach in (@), we
store the code coordinate c¢; as the vector of its coefficients

(¢i,0,€i1,--.,Ciy—1) in the dual basis (bf,i = 0,...,1 —1)
of the basis (b;). Since ¢;,, = tr(vican,) for all m =
0,1,...,1/s—1, this choice of the basis enables one to achieve

optimal access. This idea underlies the construction presented
below in Sec. [V=Al.

D. Optimal access with error correction

Thus far, we have assumed that errors are absent for
optimal-access repair. To complete the picture, we address the
case of codes with both optimal access and optimal error cor-
recting capability for the repair of node c; . It is easily seen that
both properties can be combined. Indeed, since tr(vic;) = ¢; 0
for all ¢ = 2,...,n, and since by Proposition @ these elements
form a codeword of a GRS code, it is immediately clear that
c1 can be repaired with optimal error correction capability and
optimal access. To enable this property for any c;, below we
add extra features to the general repair scheme with optimal
access. Specifically, error correction and optimal access are
based on two different structures supported by the code. We
show that it is possible to realize the error-correction structure
in an extension field located between the base field and the
symbol field of the code. Further reduction to the base field
enables us to perform repair with optimal access. These ideas
are implemented in detail in Sec. [V=B below.

III. ENABLING ERROR CORRECTION FOR REPAIR OF RS
CODES OF [21]

In this section we propose a new repair scheme for the
optimal-repair family of RS codes of [Z1]] that supports the
optimal error correction capability.

A. Preliminaries

We begin with briefly recalling the definition of the sub-
family of RS codes of [ZT]. The construction depends on the
number of helper nodes d used for the purpose of repair of a
single node, k <d <n — 1.

Definition 1 ([X1]). Let p be a prime, let s == d — k + 1,
and let p1, ..., pn be distinct primes that satisfy the condition
pi = 1 mods,i = 1,...,n, Let C := RSk(n,k,Q) be a
Reed-Solomon code, where

e Q={ay,...,an}, where a;,i = 1,...,nis an algebraic
element of degree p; over I,

o« K =TF(B), where (3 is an algebraic element of degree s
over F:=Fp(ai,...,an).

As shown in [2T], this code supports optimal repair of any
node i from any set of d helper nodes in [n]\{i}. Below we
use this construction, choosing the value of s based not only
on the number of helpers but also on the target number of
errors tolerated by the repair procedure.

In this section we consider an RS code € given by Def. [,
where we take s = d — 2e — k + 1. For this code we will
present a new repair scheme that has the property of optimal
error correction. This repair scheme as well as the original
repair scheme developed in [Z1] rely on the following lemma:

Lemma 3 ([21], Lemma 1). Let F' be a finite field. Let r be
a prime such that r = 1 mod s for some s = 1. Let o be an
element of degree r over F and [ be of degree s over the
field F(a). Let K = F(«, 8) be the extension field of degree
rs. Consider the F-linear subspace S of dimension r with the
basis

E = {B“a““’s|uzO,...,sfl;qz(),...,%—l}
s—1

U{ Z 6uar—1}.

u=0

Then S + Sa + --- 4+ Sa®~! = K, and this is a direct sum.

Without loss of generality, we only present the repair
scheme for the first node ¢, and all the other nodes can be
repaired in the same way (this is different from the previous
section where the code was designed to support optimal repair
only of the node c1). The scheme is complicated, and we take
time to develop it, occasionally repeating similar arguments
more than once rather than compressing the presentation.

The repair of c¢; is conducted over the field F} :=
Fp(oo,3,...,a,). It is clear that F = Fy(a;) and K =
F(3), where degp, (1) = p1 and deggp(3) = s. Below we
use tr = trg/p, to denote the trace mapping from K to Fj.

Define the set

By i= {80 [u=0,.. s~ Lg=0,. 27 1)
s—1

U{g e}
u=0
Clearly, |E;| = pi, and we write the elements in E; as
€0,€1,---,€p,—1. Then Lemma B implies that the set of
elements

{e;ad :i=0,...,p1—1,7=0,...,s—1} ©)

forms a basis of K over Fj.

Let Gt = GRSk (n,n—k,v, Q) be the dual code. For every
codeword (cy,...,c,) € C we have
v c1+vaabeat- - tupatic, = 0, t=0,1,...,n—k—1.
Multiplying by e; on both sides of the equation and evaluating
the trace, we obtain the relation

n
tr(eviadey) = — Z tr(e;vjae;)
Jj=2



n

=— Z oz§- tr(e;vici), t=0,1,...,
j=2

n—k—1, (10)

where the second equality follows since «; € Fy for all 2 <
j < n. Therefore, the elements {tr(e;v;c;) : 2 < j < n}
suffice to compute {tr(e;v1adci): 0 <t <n—k—1}. Since
s=d—2e—k+1<d—k+1<n-—k, we can calculate
{tr(e;viatcr) : 0 <t < s—1} from {tr(ev;c;) : 2 < j < n}.
Thus knowing the values of {tr(e;v;c;) :2<j <n,0<i<
p1 — 1} suffices to find the set of elements

{tr(e;uiadc;):0<t<s—1,0<i<p —1}. (D

Since the set (8) forms a basis of K over F}, the set {e;v1at
0<i<p—1,0<t<s—1} also forms a basis of K over F},
and therefore we can recover ¢; from (). In conclusion, to
recover c1, it suffices to know the set of elements {tr(e;v;c;) :
2<j<n,0<i<p —1}.

B. The repair scheme

For j = 2,3,...,n define the vector r; := (tr(e;v,c;),i =
0,...,p1 — 1). In this section we design invertible linear
transformations M that send these vectors to a set of vectors
z; that support error correction. The following proposition
underlies our repair scheme.

Proposition 4. Consider the set of vectors z; =

(24,0, 25,15+, zj,pl_l),j = 2,3,...,n defined by
— MyT, (12)
where Mo, ..., M, are invertible matrices of order pi.

Suppose that for every i = 0,1,...,p1 — 1, the vector
(22,05 23,35 - - -, 2n,i) is contained in an MDS code of length
n—1 and dimension s+k—1. Then there is a repair scheme of
the code C that supports recovery of the node ci with optimal
error correction capability.

Note that, by the closing remark in Sec. [I=B, it suffices to
assume that s <n — k.

Proof. 1If (22,23, ...,2,) is a codeword in an MDS array code
of length n — 1 and dimension s + k — 1, then the punctured
codeword (z; : j € R) is contained in an MDS array code of
length d = |R| and dimension s + k — 1 = d — 2e, and such
the code can correct any e errors.

To repair the failed node c¢;, we download p;-dimensional
vectors 7;,j € R, where R < [n]\{1},|R| = d is a set of
d helper nodes. For all but e or fewer values of j, we have
7; = r;. The repair scheme consists of the following steps:

Mjr] ,jER,

(if) Find the vectors z;,j € R using the error correction
procedures of the underlying MDS codes,

(i) Find the vectors 2

(iii) Forevery i =0,...,p; —1 use the d-subset {z;;,j € R}

to recover the codeword (22 ,;, 234, - - -, Zn,i)s

(iv) Find the vectors 77 = M;'2T,j = 2,...,

finally recover c;.

n — 1 and

Step (ii) is justified by the fact that, by assumption, at most
e of the elements Z; are incorrect. In step (iii) we rely on the
fact that d symbols of the MDS codeword suffice to recover

the remaining n — 1 — d symbols, and in step (iv) we use
invertibility of the matrices M; and recover c; using (I0),
().

The total number of downloaded symbols of F} equals p;d,
and it is easy to verify that the repair bandwidth of our scheme
meets the bound () with equality. O

Why do we need the matrices M; and why were they not
involved in the example in Sec. I=B? The answer is related
to the fact that we need to remove the failed node from
consideration and obtain a codeword of the MDS code that
contains all the other nodes. In the example the degree of
the minimal polynomial of «y, denoted f(x), is s < n — k,
so the evaluations of z'f are dual codewords (see (B) in
Prop. D). This implies that the downloaded symbols form
a codeword in an MDS code over F' which supports error
correction. Importantly, this codeword does not involve the
erased coordinate.

Switching to the RS codes of [ZT] considered here, the
element o is of degree p; over the repair field F'(as, . .., ay),
and generally p; > n — k — 1, so the minimal polynomial of
oy is not a dual codeword. This requires us to modify the
above idea. In general terms, we will find suitable elements of
the set £ such that Eq. (I0) yields linear relations between
the entries of the form tr(e;v,c;). The coefficients of these
relations form the rows of the matrix M.

C. The matrices M;

In this section we will construct the matrices M; and the
vector z;, and also prove the full rank condition. Rather than
writing the expressions at this point in the text, We proceed in
stages, by deriving p; linear relations involving components
of the vectors on both sides of (I2). (the notation is rather
complicated and would not be intuitive; if desired, the reader
may nevertheless consult Sec. =0, particularly, Eq.(72)).

1) The first py — s — 1 relations:

Proposition 5. Forall 0 <u<s—1and 0 <q< P2 -2,

the vector

(af tr(B a T %c;) — tr(ﬂ“off“qﬂ)qv icj)j =2,...,n)

(13)
is a codeword in a GRS code of length n — 1 and dimension
s+k—1.

Proof. Let us write (I0) for e; of the form e; = f%a} ™% .

tr(ﬁuaill«+qs+t

Z a tr(B e} v c;)),

t=0,1,....n—k—1

(see also (B)). Writing this as

n

Z s+t— Sir Bu u+qs’UJCj),

j=2

t=0,1,.

+(g+1)s+t—
tr(B%al (@FDstizs,, 1)

,n—k—1



and performing the change of variable (¢ — s) — ¢, we obtain
the relation

n

Z s+t tI‘ u U+q5vjcj)’

Jj=2

tr(ﬁuaili-ﬁ-(q-i—l)s-&-t vie

(14)

t=-s,—s+1,...,—s+n—k—1.

On the other hand, substituting e; = 8%a; ut(a+D)s jnto (M),

we obtain

tr(ﬂ“aqfﬂq“)”tvlcl) =— Z oz;- tr(ﬂ“aqfﬂq“)svjcj),
j=2
(15)
t=0,1,...,n—k—1.
Note that the left-hand sides of (Id) and (I¥) conicide for

=0,1,...,n — k —s — 1, and thus so do the right-hand
sides. We obtain

n
K +
M ast (B el ;) =
j=2

n
t u+(g+1)s

2 o tr(B oy v;¢5)

j=2

or

Z a Str(BUa) T Puje;) — tr(Bha) ut(atl)s *vjc;)) =0,

fort =0,1,...,n —k — s — 1. On account of Proposition [
this implies the claim about the GRS code; moreover, since
there are n — k — s independent parity-check equations, the
dimension of this code is (n—1)—(n—k—s) = s+k—1. O

We note that the components of the vector (I3) are formed
as linear combinations of the elements tr(e;v;c;), and so this
gives us p; — s — 1 vectors z;.

2) One more relation:

Proposition 6. The vector

(Zas “er(Btay T 1”101 tf(zﬂu 1 1%01')’

j:2,...,n> (16)

is a codeword in a GRS code of length n — 1 and dimension
s+k—1.

Proof. Going back to (M), take e; = 6“0/1”’)1_8_1 for u =
0,1,...,s — 1. We obtain the relation

tr(ﬂua11t+p1—s—1+t

Za tr(8"af Utpr=s— 1vjcj),

n—k—l.

Ulcl

t:O,l,...,

Changing the variable (¢ + u — s) — ¢ in the above equation,
we obtain that for every v =0,1,...,s — 1,

n

Z t— u+str bm U+pr—s— 11} C')
i)

(5u pP1— 1+’U01 _

7)

t=u—s,u—s+1,....u—s+n—k—1.

Since
s—1
ﬂ{u—&u—s—i-1,...,u—s+n—k—1}
u=0
={-1,0,1,...,n—k—s—1}, (18)

we have

n

t u+s u u+p1 s—1
2 tr(8%« v;c;5),
Jj=2

-1<t<n—-k—s—1,

tr(B%a o)

O0<u<s—1.

Taking the cue from (I¥), let us sum these equations on u =

0,1,...,5—1, and we obtain
s—1
tr ( Z ﬂ“afﬁHtmq)
u=0
n S—
_ Z Z t—uts tr Bu U+p;—s— l’U]Cj),
j=2u=0
—1<t<n—-k—s—1. (19
Turning to (B) again, let us substitute the element
ZZ;E ﬂ“afﬁl into (I):
s—1
tr ( 2 BUalr— iy, 61) 2 a tr ( 2 al*” lvjcj>,
u=0 u=0

0<t<n—k—1 (20)

From ([9) and (Z0) we deduce the equality

S

t—u+s u u+p1 s—1 )
Z tr (B v]cj>

_Za tr(ZB“ P 1v]cj),

or

s—1

n
S o (3 e an(al )
j=2

u=0
—tr(E Sralt™ 11)]0]-)) =0

for 0 <t < n—k—s— 1. By Proposition [, the proof is
complete. O

3) The remaining s relations: Following the plan outlined
in Sec. I=B, we have constructed p; — s vectors z;, listed
in (3) and (08). In order to find the remaining s linear
combinations of the elements r; ;, we develop the idea used
in the example in Sec. [I=B.

We begin with introducing some notation. Let f(x) be the
minimal polynomial of oy over Fy. For h = 0,1,...,s — 1

define
fu(x) = 2P (mod f (),

then deg f, < deg f = p1 and o2 ™" = fi, (). Let fyq €
Filz],q = 0,...,(p1 — 1)/s — 1 be the (uniquely defined)
polynomials such that

1)



(i) deg frng <s—1,¢q=0,1,..., 21 9

(ii) degfh,(lh—l)/s—l SN
(iif)
(pr—1)/s—1

fule) = )]

q=0

% fp, o(2). (22)

— 1, the vector

Proposition 7. For every h =0,1,... s
p1—1)/s—1 h
u+qs
Z Z h—u,q(a) tr(ay " B v c5)
=0 w=0
s—1
h+1—u+s u, u+pr—s—1
+ 2 aj tr(8"oq v;cj)
u=h+1

s—1
h+1 D
af tr(z Btadt
u=0

is contained in a GRS code of length n — 1 and dimension
s+k—1.

*1vjcj),j=2,3,...,n> 23)

The proof of this proposition is rather long and technical,
and is given in Appendix Al

Concluding, expressions ([3), ([H), and (3) yield
p1  linear combinations of the elements (tr(egvjc;),
tr(e1v;cj), ..., tr(ep, —1v5¢;)) for every j € {2,3,....n
It is these linear combinations that we denote by
zj = (250,21, -+ %jp1—1) in (I2). We have shown that for
every i € {0,1,...,p1 — 1}, the vector (z2,25,i,...,%n,i) 18
contained in an MDS code of length n — 1 and dimension
5 + k — 1. The next subsection treats the remaining part of
the assumptions in Proposition @ above.

D. The linear transforms M; are invertible

The object of this section is to show that the mapping

(tr(eovjcj), tr(eivicy), ..., tr(ep, —1v5¢5))
= 2 = (2,00 23,15+ Zjpi-1)

is invertible. In other words, we will show that rank(}M;) =
py for all j. Let us first simplify the notation. Recall the set

Ey = {eg,e1,...,ep,—1} in (B) and let us order its elements
in the order of increase of the powers of a; :
+q:
Curgs i= Bl
-1
foru=0,1,...,s —land ¢ =0,1,..., 2= —1
o—1
ep_1 Z Bu p1—1
u=0

Using the notation r; ; = tr(e;vjc;) introduced above, the
vectors in (3) can be written as

S .
(ajru+qs,j — TutqstsgrJ =25 .n)

for0<u<s—1land0 < q< %—2, or, writing i = u+g¢s,
as

(@frij —TitsjrJ =2,...,n) (24)
for 0 < ¢ < p; — s — 2. Similarly, the vector in (If) can be
written as

( Z Oé;iuru‘fpl—s—lvj —Tpi—1:] =2, .. 7”)7 (25)
u=0

and the vectors in (Z3) can be written as

(p1—1)/s—
2,
q=0

1

h
Z w,q () Tutgs,j

s—1
h+1—u+s
+ Z ; Tutpr—s—1,j

u=h+1
)

70/L+1 . 2
O<h<s—1

i Tm-15:0 =

(26)

For a fixed value of j, the entries in (Z4)—(H) form the
vector z; = (2,0, 25,1, -, %j,p1 —1), and we list its coordinates
according to the chosen order:

Zji for0<i<ps —s—2,

Py— S PR — . .
= ajrz,] Tz-‘rs,_]

s—1
_ s—u
- Z @
u=0
h (p1—1)/s—1

=Y
u=0

q=0

Zjp1—s—1 Tut+pi—s—1,5 = T'p1—1,55
(27)
fh—u,q(Q)Tusgs,j

s—1
h+1—u+s . h+1 .
+ Z Q; Tutpi—s—1,5 — &5 Tp—1,5
u=h+1

for 0 < h < s — 1. Our objective is to show that the linear

. M; .
mapping (7o, 71,5, - - -, Tp1—1,5) — (25,0, 2,155 Zjpy—1) i8
invertible. This will follow once we show that its kernel is
trivial, i.e., that if (2,0, 2;.1,.. ., 2j,p,—1) is an all-zeros vector,

then so is (To’j,rl’j, co ,Tplflyj). If Zji = ajri’j—r”s_j =0
for 0 < i <p; —s—2, then
_ S _ _ qs
Tutgs,j = XjTut(g—1)s,j = " = &) Tuj
p1—1
for0<u<s—land1<qg< —1. (28)

Using (Z8) in the expression for z; ,, —s+h,0 < h < s—1, we
obtain the following s relations:

h (p1—1)/s—1

Zipmsth = ), )
u=0 q=0

fhfu,q(aj)a?%u,j

s—1
+ Z a;:,-ﬁ-l—u-&-sazjnfsfl?a%j _a?+1rp1717j
u=h+1
h s—1
Z w(a)ry; + Z ap1+h “rug — a;?+17“p1,17j7
u=0 u=h+1
(29)

where the second equality follows from (Z2J). Using (Z8) in
the expression for z;,, _s—1, we obtain

s—1

— s—u p1—s—1 o .
= Z Q- ay Tu,j = Tpi—1,j
u=0

Zjp1—s—1

_ p1—u—1 L .
= Z a; Tu,g = Tpi—1,-

(30)

Since we assumed that the z-vector is zero, coordinates
Zp,—u, % = s+ 1,s,...,1 that appear in (Z¥), (BI) are zero.
Writing these conditions in matrix form using the above order,



— 04;;-)1_1 a;;;l—Z 04?1 -3
folag) o™ o™
filey)  folay) abt ™!
folag)  filey)  foley)

| fs—l.(aj) fs—Q.(O‘j) fs—S.(aj)

we obtain relation (BIl). We aim to show that the matrix on
the left-hand side is invertible.

Recall that f(x) is the minimal polynomial of «; and from
@), f(z) + fo(x) = xP*. Since f(x) is irreducible over Fj
and o € Fy, we have f(a;) #0forall j =2,...,n.

Multiplying the first row of the matrix in (B1l) by «; and
then subtracting the second row from the first row, we obtain

F(ay) 0 0 .. 0 0

folay) a?l_l a?l_Q .. a?l_sﬂ —a;
fl(aj) fo(Oéj) Oé?lil e a§175+2 —a?
f2(a) folay) . o —ad

fi(ey)

fs—ll(Oéj) fs—2.(04j) fs—sl(aj) fo(.aj) —.Oéﬁ

Since f(c;) # 0, we can use elementary row operations to
erase the first column, obtaining

© flay) 0 0 0 0 7
O a?l—l 0[51—2 a;;)l—s+1 —Olj
0 folay) ozgl_l .. a§1_5+2 o?
0 filay)  folay) ... T —al
L 0 fealay) feos(oy) folag)  —af |

Proceeding analogously, let us multiply the second row of this
matrix by «; and then subtract the third row from the second
one to obtain

B f(a]) 0 0 0 0
0 flay) 0 0 0
0 fo(%‘) ainfl p1fs+2 Oé?
0 filay)  folay) no ol
|0 fus(ay) faslay) folay)  —ai |

As above, we can eliminate all the nonzeros in the second
column except for f(c;), and so on. In the end we obtain the
matrix diag(f(a;),..., f(a;), —aj) with nonzero diagonal.
This proves that the matrix in (BI) is invertible. Therefore,
To,y = T,j = = Ts—1,5 = Tpi—1,5 = 0. Combining this
with (E8), we conclude that 7; ; = 0 for all 0 < ¢ < p; — 1.
This proves that the matrices M;,j = 2,...,n in (I2) are in-
vertible, providing the last missing element to the justification
of the repair scheme with optimal error correction.

IV. A FAMILY OF OPTIMAL-ACCESS RS CODES

In this section, we construct a new family of RS codes that
is similar to the construction in [Z1] but affords repair with
optimal access.

pP1—s _
9 ! 70,5
YR :
I o J 71,5
—S
o —a 72,5
p1—s5+3 3 = 0, (31)
o —a?
j J
: : Ts—1
fo(a ) —ab Tp1—1,j
J J

The input-output cost of node repair for the RS codes of [[21]
was analyzed in [235] for d = n — 1. According to (B), in this
case the minimum access cost per helper node equals ni %~ The
authors of [Z75] showed that it is possible to adjust the repair
scheme so that the access cost is (1 + ”‘T’H)ﬁ, ie., at
most twice the optimal value. However, more is true: namely,
it turns out that any fixed node in the construction of [IZ1]
(Def. M) can be repaired with optimal access. This observation,
which is the starting point of the new construction, is based
on the fact that it is possible to construct a basis of the field K
over the base field that reduces the access cost of the repair of
the chosen node. If the option of choosing the basis for each
erased node were available, we could use the arguments in
Sec. =0 to perform repair with optimal access. The difficulty
arises because this would entail rewriting the storage contents,
which should be avoided. To address this issue, we construct
the code over a field that contains n elements [3; instead of
a single element (3, and this supports efficient repair of any
single failed node. This idea is developed below.

A. New construction

Consider the following sequence of algebraic extensions of
F,:let Ko =T, and fori=1,...,n let

Fi = Ki_1(), K; = Fi(8;), (32)

where «; is an algebraic element of degree p; over ), and 3;
is an element of degree s = d — k + 1 over F;. In the end we
obtain the field

KZ= Kn=Fp(a17...,an,ﬂ17...ﬁn). (33)
We still assume that pq, ..., p, are distinct primes satisfying
the condition p; = 1 mod s for all 7 = 1,...,n. Consider the

code € := RSk(n, k, ), where as before, the set of evaluation
points is given by = {a1,...,a,}. We will show that the
code C affords optimal-access repair.

The repair scheme follows the general approach of [I&] and
its implementation in [1]. Let ¢ = (c¢1,...,¢,) € C be a
codeword. Suppose that the node ¢ has failed (coordinate c;
is erased), and we would like to repair it from a set of helper
nodes R < {1,...,n}\{i} with |R| =d. Let

hay= J]
JefLye s\ (R{i})
Clearly, we have deg(zth(z)) < n —k fort = 0,...,s —
1. Therefore, for some nonzero vector v = (vq,...,v0y,), We
have (viaih(ay),. .., val h(ay,)) € G fort =0,...,5—1,
where €+ = GRSk (n, k,v,Q). In other words, we have

(z —ay).

viakh(ag)e; = — Z 'Ujoz;h(ozj)cj, t=0,...,s—1. (34
=1



The repair scheme in [2Z1] as well as in this paper relies on
this set of s dual codewords to recover the value of ¢;.
Remark 1. The dual codewords x*h(z) have zero values in
the complement of the set R := R U {i}. In other words, they
are contained in the shortened code (€+)* of the dual code.
Thinking dually, we can start with the code C* and construct
a repair scheme for its coordinates based on the punctured
code C4 (coordinate projection of C on R). This approach is
equivalent to the scheme used in [Z1] and in this paper because
(eHR)t = Ci-

Let us establish a few simple properties of the tower of
fields defined above in (B2), (E3).

Lemma 8. The extension degrees in the field tower F, =
Koyc---cK;c - c K, =K are as follows:

i
[Ki:Fp]zslnpj,izl,...,n
j=1

[K:F,] =1:=s"][p:
i=1

Proof. The proof is obvious from the definition: for each ¢ we
adjoin two elements «;,3; to K;_1, and their degrees over
K;_1 are coprime, so they contribute sp; to the result. O]

We will use an explicit form of the basis of K over F,,. For

m=20,...,0l—1, let us write
m:(m’ﬂ7m’n717-"7m17mnamn717'-')ml) (35)
where m; = 0,...,p;, — 1 and m; = 0,...,s — 1 for ¢ =
1,...,n.
Lemma 9. Let
n n B
= {am = Ha:m Hﬁ;ﬂj | m; =0,...,p
i=1 j=1
m; =0,...,s —1;m=0,1,...,1—1}.
Then A is a basis for K over [,
Proof. By co-primality, for ¢« = 1,...,n we have
degy,  (a;) = p;, and by construction, we have deg. (5;) =
s. Thus, the elements a,,,m = 0,...,l — 1 are linearly
independent over F,,. O
Lemma 10. For m = 0,...,0 — 1 let J = {j € [n] :
(mjymj) = (s — 1,p; — 1)} and let

~[Tar TT(S ) 10

i=1 jed u=0 Jj¢d

Then the set B := {b,, |m=0,...,
over Iy,

1 —1} is a basis of K

Furthermore, for i = 1,....n, let A; = {a,, € A |
(mi,mi) = (0,0)} and B; = {bm e B | (mi,mi) = (0,0)},
then

Spany A; = Spang B;.

Proof. Since |B| = [, to prove that B is a basis it suffices
to show that the elements a,, can be expressed as linear

combinations of the elements in B. Let J < [n] and let
A(d) {am € A : (mj7mj) = (s — Lpj — 1),j €
J;(mj,m;) # (s—1,p; — 1),7 ¢ J}. We argue by induction
on |J|. If m is such that J = ¢, then a,, € B, and there is
nothing to prove. Now assume that for all § < [n], |J]| < J—1
the elements a,, are linearly generated by the elements in B,
and let m be such that |J| = J. We have

:H 'rnlnﬁmjl_[ﬂa 1

=1 Jj¢d Jjed
and

n _

=[[e™]]8" HZ

i=1 J¢d jed u=0
n _

[T (1) % Hﬂu)

i=1 j¢d t1,.ty=0u=1

Multiplying out the sums on right-hand side, we note that the
term with all ¢; = s — 1 equals a,,, while the remammg terms
contain fewer than .J factors of the form o BS Each
of such terms is contained in some A(J) with ] < J -1,
and is linearly generated by the elements b,,, by the 1nduction
hypothesis. This implies that a,, is also expressible as a linear
combination of the elements in B.

To prove the second claim, note that SpanFP A; 2
Spang  B;. Therefore, to show that Spany A; = Spang B;,
it suffices to show that for any ¢ = 0,...,n — 1 and any
J < {1,...,n}\{i}, the set A;(J) can be generated linearly
by the set B;. This proof amounts essentially to the same
calculation as above, and will be omitted. O

The role of the basis (b,,) is to eliminate as many terms on
the right-hand side of (B4 as possible. To repair the node c;
we use the dual basis (b%,) of (b,,), writing

Z Ci m nL

Below tr = trg/p, denotes the absolute trace.

(36)

Lemmas B and B immediately imply the following.
Proposition 11. For ¢ = 1,...,
Si over K;_1 such that dimg,

st Siaffl
given by

E;:={Bray ™t | u=0,...,

n, there exists vector space
S; = p; and S; + S;o; +
= K. Furthermore, a basis for S; over K;_1 is

s—1;9g=0,...,
s—1

U{ar Y e}
u=0

We continue with the description of the repair scheme
where we left in (Bd). As a remark, below we write the
scheme over IF, rather than over its extensions (the latter
approach was chosen in [Z1]). Multiplying both sides of (B4)
by [T5_, e ]_[] i at, ,where ey € Eyandtj =0,...,5—1,
and evaluating the trace we obtain

E=-1

n

n
tr( 1_[ e H a;i/viaﬁh(ai)ci)

=1 i
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(37)

I
|
g
-+
L}
o
s
Q
=
QQ
o
N—

On account of Proposition I and the fact that v;h(c;) # 0,

the set
{nez Hoz T vialh( ozz)} (38)
1 i
where ey € Ey,i' € [n];t = 0,...,s —1;t; = 0,...,5 —

1,5" € [n]\{s}, is a basis of K over F,. Therefore, we can
recover ¢; once we know the right-hand side of (B).

For j € R, from (Bd) we have

=1 7'
n n
=tr<Hei/Hasi o’ haj Z cjmb*)
=1 i
-1 n
= tr(n na aha] )cjm 39)
m=0 =1 J'#i

From (B9), we see that in order to recover c¢; we need to access
only those symbols c; ,, for which

r(n

n
tir ot *

er | | o alh(a;)bk) # 0.
ir=1  j'#i
~ Now, the element 1 21 € an 7Ha ath(aj) does not
include «;,B;, and thus it can be written as an IFj-linear
combination of the elements in the set A;. By Lemma [0,
it can further be expressed as an [F,-linear combination
of the elements 1n the set B,. Therefore the elements
[lier [T #a 7 alih(ay) for ey € Ey and ty = 0,
1 can be linearly generated over [F, by the set

U e;B; € B.
EiEEi

;85—

Since B and B* are dual bases,

n

tr ( H ey n a;f/a§h(aj)bfn> #0

=1 i

if and only if b, € Ue cE; e; B;. It follows that to calculate
the left hand side of (BZ), we need to access Yieser, leiBil =
pil/sp; = 1/s symbols on each helper node j € ‘R, which
implies that the node ¢; affords optimal-access repair.

In conclusion, we note that the repair scheme of each of
the nodes 4 relies on its own element /3;. Looking back at the
construction of [ZT], Sec. I above, it contains one such 3.
Thus, these codes can be furnished with a repair scheme that
has the optimal access property for any one (fixed) node in
the encoding; see also the discussion at the end of Sec. =01

B. Error correction with optimal access

In this section we present a repair scheme of the RS codes
defined in the beginning of Sec. [N=Al that supports both the
optimal access and optimal error correction properties. The
scheme relies on a combination of ideas of Sections [V=Al and
M. A full presentation of the proof would require us to repeat
the arguments in Sec. II=0; we shall instead confine ourselves
to pointing to the similarity of the starting point and argue
that once this is recognized, the remaining part is reproduced
directly following the proof in Sec. II=Cl.

Let us modify the construction of RS codes of Sec. [V-A
as follows. Let us assume that the number of helper nodes
is d. We will construct our RS code over the symbol field
K = Fplar,...,0n,01,...,0,) (B3), where as before,
degy, ,(a;) = p; but degp, (B;) = s := d—2e—k+1. Define
the code C := RSk(n, k,Q), where Q = {a1,...,a,}.

Without loss of generality suppose that the failed node is
the first one and let R < {2,3,...,n} with |R| =d,2e + k <
d < n — 1 be the subset of helper nodes. Consider a basis of
K over F,, given by Ut o alA where

:{ﬁeZﬁ Y | e; € By, i€ [n);

i=1  j=2
s—1je M1},
That this is a basis is apparent from (B8).

Next, note that (vial,...,v,al) € @ for some v =
(v1,...,0,) € (K*)™ and for t =0, ...,n — k — 1. Therefore,
for every A € A we have

n
—Zkvja§cj, t=0,....,n—k—1.

Aviate, =

Let Gy := Fy(az,as, ..., ay). Evaluating the trace trg g, on
both sides of the above equation, we obtain

Z ot trK/Gl()\vij) (40)
j=2

t=0,...,

trK/G ()\Ul Oél Cl

n—k—1.

The repair scheme for the code C is based on (E0) in exactly
the same way as the repair scheme of Proposition B is based
on (). Namely, suppose that there are invertible linear trans-
formations that map the vectors (trg/q, (Avjc;), A € A),j =
2,3,...,n to codevectors in an MDS code of length n—1 and
dimension s+k—1. Then it is possible to correct e errors in the
information collected from the helper nodes upon puncturing
of this code to any d coordinates in the same way as is done
in Proposition B. Thus, the main step is to prove existence of
such transformations. Here we observe that the terms involved
in (E0) are formed of e; times the remaining factors in A. The
element e; plays the same role as e; in (), and the multiplier
in front of it in A does not affect the proof. For this reason,
the required proof closely follows the proof in Sec. =0, and
we do not repeat it here.

Thus, the vectors (trk/q, (Avjc;), A € A),j € R suffice to
recover the value of the failed node. We argue that these values
can be calculated by accessing the smallest possible number
of symbols on the helper nodes, and thus support the claim



of optimal access. Let B = (b,,) be the basis of K over F,
defined in Lemma [0, let B* = (b*)) be its dual basis, and
let By = {b,, € b|(m1,m1) = (0,0)}. From (BB), for every
A€ Aandall j =2,3,...,n we have the equality

-1
trg/c, (Avjcj) = trg e, ()\ Z bfn)ci’m.
m=0

Let I be a basis for G over [F),. Then from the above equation,
for every v € I' we have

trg, /v, (7 trx/a, (Avjc)))
-1

= tra,/F, (’ytrK/Gl ()\ Z bfn))ci_ym.

m=0

Since v € G and trg, r, © trx/q, = trg/r,, it follows that

-1
o, (YA ;) = trige, (y)\ 3 bfn)ci’m. 1)
m=0

Note that the elements YA = y[[;_, e[/, a;j can be
written as IF,-linear combinations of the elements in the set
UeleE1 e1B1 € B. By the duality of B and B*, the number
of symbols that each helper node accesses to calculate the
left hand side of (&) equals || J, cp, €1B1| = I/s, which, as
remarked in the introduction, is the smallest possible number
of symbols. Further, since I' is a basis of G; over F,,, we can
recover try, (Avjc;j) from the set {trgr, (YAvjc;) [ v €T}

Finally, evaluating the trace trg, /F, On both sides of (E0),
we obtain

trK/]Fp()wla'icl) = — Z tra, /v, (a§ trr/q, (Avjcy)),
j=2

t=0,....,5s—1. (42)
Since the set {A\via} | A€ A;¢=0,...,s— 1} forms a basis
for K over [F,, we conclude from (B2) that we can perform
optimal error correction for the code € with optimal access.
As a final remark, the locations of the entries accessed on each
helper node depend only on the index of the failed node, and

are independent of the index of the helpers.

V. EVERY SCALAR MSR CODE AFFORDS OPTIMAL-ACCESS
REPAIR

This section is devoted to establishing the claim in the title.
We begin with a discussion of repair schemes with a particular
property of having constant repair subspaces and use it to show
that every MSR code with this property can be repaired with
optimal access. In the last part of the section we remove this
assumption, establishing the general result, which is stated as
follows.

Theorem 12. Let C be an (n, k) scalar MDS code over a finite
field K of length n such that any single failed node can be
optimally repaired from any subset of d helper nodes, k+1 <
d < n—1 with optimal repair bandwidth. Then there exists an
explicit procedure that supports optimal-access repair of any
single node from any subset of d helpers, k+1 < d <n—1.

A. Constant repair subspaces

Observe that the repair scheme presented above in Sec. M
has the property that for a given index of the failed node ¢, the
procedure for recovering the node contents does not depend on
the chosen subset of d helper nodes. Indeed, to repair node ¢,
the scheme accesses symbols {c; ., | m : by, € UeieEi e;B;}
on the node j, i.e., the symbols ¢; ,, with m = (m;,m;) and

(ms,mi) € {(u+gqs,u) |u=0,...,8—1;
q:()a7(p1_1)/3_1}U{(pl_las_l)}

Clearly the values of m are independent of j € R. This simpli-
fies the implementation, and therefore represents a desirable
property of the scheme. In this section, we generalize this
observation and give conditions for it to hold.

Let C be an (n, k) linear scalar MDS code of length n over
finite field K, and let » = n — k be the number of parity
nodes. Let F' be a subfield of K such that [K : F'| = [. For a
subset M — K we write dimp (M) to refer to the dimension
of the subspace spanned by the elements of M over F'. The
following result is a starting point of our considerations.

Theorem 13 ([16]). The code C has an optimal linear repair
scheme over F with repair degree d = n— 1 if and only if for
every i = 1,...,n there exist | codewords (cﬁ:l, cee Cf‘n) €
L.t =1,...,1 such that

dimp(cl{i,...,cﬁi) =1,
LA n— 1)l
Zdlmp(ctj,...,cf,‘j) = %

J#i
We go on to define the main object of this section.

Definition 2. Let C be a scalar MDS code that has a linear
repair scheme for repair of a single node with optimal band-
width, based on dual codewords c{-, ... ,cf-. The scheme is
said to have constant repair subspaces if for everyi = 1,...,n
and every R < [n]\{i}, |R| = d, the information downloaded
from a helper node cj,j € R to repair the failed node
c; does not depend on the index j. Namely, the subspace
S;l) = SpanF(cl{j,...,cﬁj),j € R is independent of the
index j, i.e., SE—Z) = 8O for some linear subspace 8\ < K.

The notion of constant repair subspaces was mentioned
earlier in the literature on general MSR codes, for instance,
see [1].

The algorithms below in this section rely on a proposition
which we cite from [21].

Proposition 14. Let C be an (n,n — r) MDS code and let
[n] = JuJC, where J,|J| = r is the set of parity coordinates.
Let H = (hq, ..., hy) be a parity-check matrix of C, where h;
denote its columns. The code C has an optimal linear repair
scheme over F with repair degree d = n — 1 if and only if

for each j € J¢ there exist r vectors ay € K" u=1,...,r
such that
dimp(Ahj) =1, 43)
l



where A := Diag(ay,...,a,) is an I xr block-diagonal matrix
with blocks formed by single columns. Furthermore for every
subspace A, = Spanp(ay),u = 1,...,r (the F-linear span
of the entries of a, ) we have

(45)
Remark 2. The matrix A in Proposition I depends on the
matrix H and the choice of J, but we suppress this dependence
from the notation for simplicity.

Before presenting the algorithms for finding a basis for
optimal-access repair we briefly digress to state some con-
ditions for an optimal linear repair scheme to have constant
repair subspaces. First, we rephrase their definition based
Proposition [4.

Definition 3. An optimal linear repair scheme for the code
C is said to have constant repair subspaces if for every j =
1,...,n there exists a vector h € K" such that

Spang(Ah;) = Spany(Ah)

Sor every i € {1,... n}\{j}. Here the matrix A is as in
Proposition [, and it depends on H and the particular choice
of the information coordinates.

Proposition 15. Suppose that A, = Ay = --- = A, for each
i=1,...,n, and that for every j € {1,...,n}\{i} there exists
ve{l,...,r} such that h, j € F, then there exists an optimal

linear repair scheme for the code C which has constant repair
subspaces.

Proof. Let V denote any of the (coinciding) repair subspaces.
By Proposition 4, we have dimg(V) = [/r. Suppose that
J is the subset of parity coordinates, and the matrix H is
represented in systematic form. In this case, for every j € J¢,
hu,j # 0forallu =1...,r, and we have dimp(Vh,, ;) = /7.
Note that

SpanF(Ahj) = Z ‘Auhu;j = Z th7,jv .7 € {17 e ,’I’L}\{Z},
u=1 u=1
(46)

where the sum on the right is a sum of linear spaces.
By Proposition [, we also have I/r = dimp(Ah;) =
dimp (3], _; Vhy,;). Therefore,

Vhl,j = VhQJ' == Vh,«’j, _] (S Jc\{l}
Since for each j s 4 there exists v € {1,...,r} such that
hy j € F, it follows that Vh, ; = V. On account of (Ef) and
(ED), we have Spany(Ah;) =V = Spany (A4 - 1) for every
je{l,...,n}\{i}, where 1 is the all-ones column vector of
length r. By Definition B this completes the proof. O

(47)

The assumptions of this proposition are satisfied, for in-
stance, for the RS subfamily of [ZT], which therefore have
constant repair subspaces (this observation was previously not
stated in published literature).

Proposition 16. If there exists an optimal linear repair scheme
for the code C which has constant repair subspaces, then A1 =
Ag=---=A, forevery j=1,...,n.

Proof. Indeed, since H; is the identity, for 5 € J we have
Spang(Ah;) = A for some ¢ € {1,...,r}. It follows that
A=Ay =---=A,. O

B. Optimal access for the case of constant repair subspaces

The codes constructed in Sec. IM above form essentially
the only known example of RS codes that afford repair with
optimal access. For instance, the optimal-repair RS codes in
[21] are not known to support optimal access, and the repair
scheme in [Z1] is far from having this property. Prior works
on the problem of access cost for RS repair [Z3]-[25] also
do not give examples of repair schemes with optimal access.
In this section we show that any family of scalar MDS codes
with optimal repair can be furnished with a repair scheme
with optimal access, and this includes the code family in [21].
Unfortunately, our results are not explicit; rather, we present
an algorithm that produces a basis for representing nodes of
the codeword that supports optimal-access repair.

As in Sec. M=Al, let F' be a subfield of K such that
[K : F] = 1I. Let C be an (n,k = n — r) linear scalar
MBDS code of length n over K equipped with a repair scheme
over F' that attains the bound (P) for repair of a single node.
Let us represent C in systematic form, choosing a subset
J < {1,...,n},|J| = r for the parity symbols and J¢ for
the data symbols. Let H be an r x n parity-check matrix for
C such that H; is the r x r identity matrix,

In this section we assume that there exists an optimal repair
scheme over F' for C that has constant repair subspaces,
and that the repair degree is d = n — 1. We will lift both
assumptions and show that our result holds in general in
the next section. For a given j = 1,...,n consider the
subspaces A;,i = 1,...,r defined in Proposition [4. Under
the assumption of constant repair subspaces, they coincide,
and we use the notation V; to refer to any of them.

Consider the following procedure (Algorithm M) that inter-
atively collects vectors to form a basis of K/F that supports
optimal-access repair.

Algorithm 1: Construction of an optimal basis

Input: Subspaces Vi, ...,V,.
Output: A basis B for K over F.
1 for j <— 1 ton do

2 Bj «— Q;

3| B < {0

4fori—0ton—1do

5 foreach 7 < {1,...,n} such that |I| =i do

6 I—{1,....,n}\I;

7 U < (Njer Vi

8 for j — 1 ton do

9 if j € I then

10 Bj «— B]‘ + Uy;

1 Extend the set B; to a basis of B; over
F;

2 B/, B
13 Extend the set B to a basis B of K over F




Proposition 17. Upon completion of Algorithm Il we have
B;j =V; forj=1,...,n, and thus B; is a basis for V; over
F.

Proof. From Algorithm [, we have

n—1
=3 > 1gen[ Vs (48)
i=0  |I|=1, tel

I€{1,..\n}

so clearly B;
asubset I  {1,...,
that

C V;. Suppose that v € V;\B;, then there exists
n} with 1 < |[I| < n such that j € I and

U¢ﬂ\7t.

tel

However, B; 2 (,.; Vi for every I with 1 < |I| < n such
that j € I, which is a contradiction. Hence, B; = V;. O

Proposition 18. Algorithm [ returns a basis B for K over F.

Proof. From Algorithm [, for every I < {1,...,n} with 1 <
|I| < n and for every j € I, the set B; contalns a basis of
the subspace Uy = (o7 Vi. It follows that for every I <
{1,...,n} with 1 < |I| < n, the set [),.; B; is a basis for

tel Vi

Now by Proposition I, By, By are bases for V,Vs over
F, respectively. From the above, we have B n Bj is a basis of
V1 nVy over F. It follows that dimg(V; nVy) = | B N Bs.
Then

dlmF(Vl + VQ) = dlmF(Vl) + dlmF(VQ)
— dlmF(Vl M ’\72)

= |B1‘ + |B2| - ‘Bl M Bz|
= |B1 ) BQ|

By definition, Spany(B; U Bs) = Vi 4+ Vs, and so the set
B u Bs is a basis of V; + V5 over F'. By a straightforward
induction argument, we conclude that U 1 Bj is a basis for
Y, Vj over F.

Since >}7_, V; € K, we have || Jj_, Bj| < [K : F] = 1.
It follows that we can extend the set B = J;_, B; to a basis
B of K over F. O

Now we are ready to present a repair scheme for the code
C with the optimal access property. Let B = (b, ) be the basis
of K over F' constructed above and let B* = (b¥)) be its dual
basis. Given a codeword ¢ = (c1,...,¢,) € C, we expand its
coordinates in the basis B*, writing

Z CZ m m

Suppose that c¢; is the erased coordinate of c (the “failed
node”). The starting point, as above, is Eq. (B4), and our first
step is to choose [ dual codewords ¢}, ¢ = 1, ..., that support
the repair. Construct the | x n matrix C+ = AH and take the
rows of C' to be the needed codewords c;-. Since ¢} - ¢ = 0

(49)

for all t, we have ¢i;c; = —Yj—1 ¢ ¢ forall t = 1,...,1.

j#i
Computing the trace trg/p, we *Obtain

trK/F(Cg:iCi) == Z trK/F(CtL,jCJ')
J#i

:_ZtrK/F Ctj Z Cjmb m

J#i
=— Z Z trK/F(ctl)jbzl)cjm.
j#im=0
Note that for each j € {1,...,n}\{i}, we have
C*j) = Spanp(4h;) =V,

(50)

Spatrllp(cf]»,...7 (51

where the last equality follows by the assumption of constant
repair subspaces. By Proposition [, the set B; < B is a basis
for V; over F'. Therefore, cf:j can be linearly generated by
the set B; for every ¢t = 1,...,l. More precisely, let B; =
{bjw|u=1,...,1/r}, then we have

lr

1
Ctj = Z ’Yj,ubi,u
u=1

[/r. Substituting into (&), we obtain

(52)

for some v, u =1,...,
the equality

n 1—-1 lr

Z Z Z tr /7 (Di b ) Vi uCim- (53)

j#im=0u=1

tr/p( ct Ci) =

It follows that to determine the left-hand side of (B3), on each
node c¢;,j # i the repair procedure needs to access the set
of symbols {c; m | trx/p(biub}y,) = 1}. Since B; < B and
B* is the dual basis of B for K over F, the cardinality of
this subset equals |B;| = I/r, verifying that the repair can be
accomplished with the minimum possible access cost.

C. Optimal-access repair for general scalar MSR codes

In this section we extend the above arguments for optimal
repair schemes that do not necessarily have constant repair
subspaces. This is done by a simple extension of Algorithm [I.
We use the same notation as in Sec. V=Bl

1) Repair degree d = n — 1:

Assume that the index of the failed node is i € {1,...,n}. By
Proposition [, for each j € {1,...,n}\{i}, we have
l
dimF(.Au) =dimF(Ahj) = - u = 1,...7’)".

It follows that for j € J°\{i} we have
.Alth = AthﬁQ == Arhj,r~

Let J = (i1,...,i,) be the set of parity nodes written in
increasing order of their indices, and for i; € J let o(i;) = t.
Define
po _ JAhia e IO (54)
! Ao(j) je J.



Algorithm 2: Construction of an optimal basis; repair
degree d =n — 1
Input: Subspaces VZ(-j),i e{l,...,n},je{l,...,n}\{i}.
Output: A basis B for K over F.

for i — 1 to n do
foreach j € {1,...,n}\{i} do

1
2
3 B(J) P @
4

B {0}:

5 Q—{1,...,n}A\{(4,4) |i=1,...,n};

6 for u < 0 ton?—n—1do

7 foreach I < Q such that |I| = u do

8 I O\I;

9 Us <« ﬂ(i,j)efvz('j);

10 for i — 1 to n do

1 foreach j € {1,...,n}\{i} do

12 if (i,7) € I then

13 BY — BY) 4 U

14 Extend the set BZ-(J ) to be a basis of
BY) over F;

15 B UL, U;‘l;&_i Bz‘(j)3
6 Extend the set B to be a basis B for K over F;

-

Proposition 19. When Algorithm B terminates, we have
’BEJ) = VEJ) forie{l,...,n} and j € {1,...,n}\{i}, and
thus BZ(]) is a basis for \72(»]) over F.

Proposition 20. Algorithm O returns a basis B for K over F.

The proofs of Propositions T9 and follow closely the
proofs of Proposition [ and I8 and will be omitted.

Now it is not difficult to see that we can repair the failed
node c¢; with optimal access cost relying on the basis B.
Indeed, for each j € {1,...,n}\{i}, we have

SpanF(ij, e ,cl%j) = Spanj(Ah;) = v

?

(55)

By Algorithm @ and Proposition [, the set BZ.(j ) € Bis abasis
for ng ) over F. Therefore, ct%j can be linearly generated by
the set BZ-(j) for every t = 1,...,1. Let BZ-(j) = {b% | v =
1,...,1/r}. Then, similarly to (B2) and (B3), we have
lr
Ctl,j Z %“bz(;jzv
' 1'n, -1 Ur

ST tray e B )Y (5T)

j#im=0u=1

(56)

trK/F(ctl’ici) =

Therefore, each node ¢;,j # ¢ needs to access the set of
symbols {c; n | trK/F(bgfib;) = 1}, whose cardinality is
given by |Bi(j )| = [/r. It follows that the repair scheme has
the optimal access property.

2) Arbitrary repair degree:

So far we assumed that the repair relies on all the surviving
nodes except for the single failed node, i.e., |R| = n — 1. In
this section we derive the most general version of the result of
this section, that any scalar MDS code can be repaired with
optimal access from any subset of helper nodes R of size
dk+1<d<n-—1Lets:=d—k+1.

Let G = [g1]g2] - - - |gn] be a k x n generator matrix of C,
where ¢; is a k-column over K. Let ¢ € {1,...,n} and let
R % {i} be a subset of d helper nodes. Let R = R u {i}
and G5, be the k x (d + 1) submatrix formed by the columns
gj,J € R. Clearly, G, defines a (d + 1, k) punctured code Cy,
of the code C. Since € is MDS, the code sz is itself MDS.

Let H® = (hz(-y),i =1,...,d+1) be an the s x (d+1) parity-
check matrix of the code Cj%. Recalling Remark [, the code
generated by H™® is a shortened code (€)%, i.e., a subcode
of QL formed of the codewords with zeros in the coordinates
in R€.

Suppose that the code € can optimally repair any single
failed node 7 from the coordinates in R = R\{i¢}. This means
that the MDS code C4 can optimally repair any single failed
node i from the helper nodes R\{i}. Let J < R, |J| = s
and 7 ¢ J and assume without loss of generality that the
submatrix H ? is an s x s identity matrix. Now Proposition [4
applied for the code Cj4 guarantees that there exist vectors

ay € KY5 u = 1,...,s such that the block-diagonal matrix
A = Diag(aq,...,as) satisfies

dimp(AR®)) =1, (58)

dim p (AR) = é je R\, (59)

dimg(A,) = é, u=1,...,8s, (60)

where A, := Spang(ay,).

It follows from (89) and (B0) that for j € R\(J U {i}), we
have

Arh\Y = Akl = = AR Y.

Let us define

PO _ JARSY  je R\(T L i), 61
Rie Agiy  JE€J,
where o is a bijection between J and {1,...,s} defined as

before (B4).
The procedure to construct a basis for optimal-access repair

in this case is constructed as a modification of Algorithm 0,
and is given in Algorithm B.

Similarly to the previous sections, we have the following

propositions, whose proofs are analogous to the proofs of
Propositions 7 and IR.

Proposition 21. When Algorithm B terminates, we have
BY =V for R {1, 0} with R =d+1,ieR
and j € R\{i}, and thus Bg)i is a basis of Vgg)i over F.

Proposition 22. Algorithm B returns a basis B of K over F.

The basis of K over F' constructed in the algorithm enables
us to construct an optimal-access repair scheme for the code C.



Algorithm 3: Construction of an optimal basis; arbitrary
repair degree

Input: Subspaces Vg)i for each R {1,...,

IRl =d+1andieR,jeR\{i}.
Output: A basis B for K over F.

n} such that

1 foreach R < {1,...,n} such that |R| = d + 1 do
2 foreach i € R do
3 foreach j € R\{i} do
(@) )
4 Bii —
s 30— foy;
6 Q—{(Ri,j) | R {l,....,n},ieR,jeR{i}}:
7 for u—0to (,7,)((d+1)*> = (d+1)) — 1 do
8 foreach I < Q such that |I| = u do
9 I —O\I;
10 ulﬁm(ﬁudv(”,
1 foreach R = {1,...,n} such that |R| = d + 1 do
12 foreach i € R do
13 foreach j € R\{i} do
14 if (R,4,7) € I then
15 ng) BY 4y
16 Extend the set B%)i to be a basis
of Bg)i over I

BW.
17 B« Uﬁzcu ..... n},|R|=d+1 Uiek Uj;eaz\{ i Prit
18 Extend the set B to be a basis B of K over F

Letd e {k+1,...,n—1} be the repair degree. Let (c1, ..., ¢y,)
be a codeword of the code C written on the storage nodes,
and suppose that the failed node is 7 and that R be the set of
d helper nodes. Let A be the block-diagonal matrix defined
above, constructed with respect to ¢ and H R Define the matrix
C+ = AH™ and note that its rows cit,t = 1,...,1 form
codewords of the code dual to the punctured code Cj. Letting

¢ = (¢f)iex, we can write

ot iCi = Z i G- (62)
JER
Similarly to (&), we have
-1
tric/p(ciice) = — Z 2 tr i/ (ci ;b3 )Cjoms (63)

jeRM=0

where B* = (b*) is the dual basis of the basis B. Note that
for j € R we have

SpanF(cfj7 . ,clfj) = Spanp(Ah;) = \75@. (64)

By Algorithm B and Proposition I, the set B_r(Rj )Z C B forms a
basis for the subspace \7:(}? ; over F'. Therefore, the element cg-j

can be linearly generated by the set B(] ) for everyt=1,...,1.

Let B, = (b Ju=1,...
and (83), we have

l/s
N )
Ctj = Z 777ubgg,)i,u7

-1 /s

72 Z Z trK/F iRzu m)V]uCJm

JERM=0u=1
(66)

Therefore, each node c;, ] € R needs to access the set
of symbol {c; ., | trK/F(bj bE) =

R,i,u”m

,1/s}. Then, similarly to (B2)

(65)

trK/F(QJ&:iCi) =

1}, whose cardinality

equals |B§g )Z| = 1/s. It follows that the constructed repair
scheme has the optimal access property.

This completes the proof of Theorem 2.

VI. CONCLUDING REMARKS

We have shown that error correction is feasible in the
original code family of [Z1] without the increase of the
extension degree of the locator field of the code (the node size).
Namely, codes from [21] use extension degree | = (d—k+1)L,
where L is the product of the first n distinct primes in an
arithmetic progression,

Pi)

L= ( I
pi=1 m(jd (1d7k+1)

The lower bound on [ from [T], necessary for repair of a
single node, has the form [ > ]_[Z.:ll pi, where p; is the i-th
smallest prime. Asymptotically for fixed d — k and growing n
we obtain the following bounds on the node size: Q(k*) <1 <
O(n™). Essentially the same node size is used in this paper for
repair with error correction. At the same time, the explicit RS
code family with optimal access that we construct comes at the
expense of larger node size, namely [ = (d — k + 1)™L. Since
there is an optimal-access repair scheme for every scalar MSR
code, this leaves a gap between what is known explicitly and
what is shown to be possible, which represents a remaining
open question related to the task of optimal repair of RS codes.

APPENDIX A
PROOF OF PROPOSITION [

First we present the proof for the case h = 0 (strictly speak-
ing, we do not have to isolate it, but it makes understanding
the general case much easier). In this case, definition (ZI),
(22) simplifies as follows. Let fo(x) = 2Pt — f(z). Write f

as
fo(x) =ag+ a1xr + a2x2 4+ e+ ap1—133p171
(p1—1)/s—1
= 2 7foq),
q=0

where

f0,0(:T) =agp+ax+ -+ a871x3—1

fO,l(IE) =as+as41T + -+ 1123_110571

+ apl,lxs,
(67)

fO,(pl—l)/s—l(x) =0ap;—1—-s T Ap;—sT + -+~



so that the degree of the last polynomial is < s and the degrees
of the remaining ones are < s — 1. Obviously, we have

oAt = folo) (68)
(p1—1)/s—1
= D> alfogla). (69)
q=0

As before, we start with (), which implies that for any
polynomial g € F[z] of degree degg < n — k — 1, we have

n

Z g(aj) tr(evjcy).

7j=2

tr(e;v19(aq)er) = (70)

Take e; = of® and g(z) = 2" fy 4(a1) and sum on g on the
left, then from (B9) we obtain tr(vi o fo(a1)e1). Summing on
q on the right of (1) and using (BX), we conclude that

(Pl*l)/sfl n

el ) == Y Y alfolay) tr(aftv;e)
q=0 j
(71)
for all t = 0,1,...,n — k — s — 1, Note that the constraint

t <n—k—s—11is implied by the condition deg(g) =
deg(z' fo 4(x)) < n —k — 1 needed in order to use (Z0) (and
(IM)). Change the variable ¢t — (t—1) to write the last equation

as
tr(ve* ey =
(p1—1)/s—1 n
— Z Z o Y fo.q(ag) tr(ad®vic;),
j=
t=1,2,....n—k—s. (72)
From (I2) and the fact that
s—1
ﬂ{u—s,u—s—l—1,...,u—s—|—n—kz—1}
u=1
={-1,0,1,...,n—k — s},
we obtain
n
(ﬁu p1— 1+tv Cl _ 2 t—u+s tr Bu u+pr—s— 1’U]Cj),
fl\t\nfk:fs, I1<u<s—1.
Summing these equations on v = 1,2,...,s — 1, we obtain

the relation

s—1
tr ( Z B“a’fl*lﬂvlcl)

u=1

n S*

t u+s u u+p1 s—1
-3 S e )
j=2u=1
—1<t<n—k-s.

For each t = 1,2,...,n — k — s let us add this equation and
(IZ). This gives n — k — s relations of the form

s—1

tr ( Z ﬁ“afl_lﬂvlcl)

u=0

_Z (Z t—uts ¢, Bu u+p1—s— lvjcj)

j=2 u=1
(p1—1)/s—1

o

q=0

o foglay) tr(af vey) ).

Observe that the left-hand side of this equation is the same as
the left-hand side of (0). Therefore,

. ol foglay) tr(advjey) )
1<t<n—-k-—s.
Replacing ¢ — 1 with ¢ in this equation, we obtain that

s—1

n
Z (Z s— u+1t1‘(ﬁu u+p1—s— 1,chj)

(p1—1)/s—1

Sy

q=0

fo.q() tr(af’vjcy)

—oz]tr(Z okt 1v]cj>) =0,

By Proposition [, the vector

(2 s— u+1tr (5u U+pr—s— lvjcj)

(p1—1)/s—1
+ 0 fogley) tr(affvjcy)
s—1
—ajtr(Zﬁ“ pi= lvjcj>7j:27...,n) (73)
u=0

is contained in a GRS code of length n — 1 and dimension
5+ k — 1. This proves the case h = 0 of the proposition.

Now let us consider the general case 0 < h < s — 1. From

(1) and (Z2) we obtain

. (p1—1)/s—1
o= fu(n) = ]

af’ fr,q(ar). (74)

This relation enables us to use the argument that yielded (IZT)
above: Take ¢; = o} %B" and g(x) = x'f) ,(x) in (@)
and sum on ¢ = 0,1,...,(p; —1)/s — 1. We obtain for h =

0,...,s—landu=0,...,s—1—h
tI‘( I)1+h+u+tﬁuv Cl)
(p1—1)/s—1
= D, (@B g (an)vren)

q=0



(P1—1)/s=1 n

—— Y Yl fuglag) (et B ey),
L4

t=0,1,....n—k—s—1.

The restriction ¢ < n — k — s — 1 is imposed in the same
way as in () (namely, it is necessary that deg(z® f, 4(x)) <

n — k — 1). Replacing i + u with h in the last equation, we
obtain that

tr(a’l’1+h+tﬁuvlcl)

pi—1)/s—=1 n
- — Z Z o fr—u,q(ay) tr(a THE B ce)),
=0

=2
O<h<s-—1, 0< <h, 0<t<n—k-s—1

Let us sum these equations on v = 0,1, ..., h to obtain

h
h+t
tr(o/flJr + Z B vicy)
u=0
(p1—1)/s=1 h

- 2 Z Z ath*u’q(aj)tr( u+qsﬂuUJ i)
=2 u=0

0<h<s—1,0<t<n—k—-—s—1.

Replacing ¢ with ¢ — 1, we obtain that

h
—1
tr (allh +h+t Z ﬁuvlcl)
u=0
n (p1—1)/s—=1 h

:_Z Z Z O‘t e u,q(aj) tr(a uﬂsﬁuvﬂ 7);

u=0
O0<h<s—1,1<t<n—k-—s. (75
According to (1) and the fact that
s—1
ﬂ {fu—s,u—s+1,...,.u—s+n—k—1}
u=h+1
={-1,0,1,...,n—k — s+ h},
for 0 < h < s—1, we have

tr(ﬂuazlhflﬂvlcl) _ _ Z a?—u+s tr(ﬂuo/lﬂrplfsflvjcj)7
j=2
n—k—s+h h+1<u<

—1<t< s — 1.

Replacing ¢ with ¢ + h, we have

tr(ﬁ“ p171+h+tvlcl)

n
htt— tpr—s—1
Za]Jr St (Bal TP T T wseg),

]:2
—h—-1<t<n—-k—s, h+1<u<s—1.
Summing these equations on u = h+1,h+2,...,s—1, we
obtain
s—1
tr ( Z Bua;lzlfuhﬂvlcl)
u=h+1

v;cj),

n s—1
_ h+t—u+s w, u+pr—s—1
3 S gy

j=2u=h+1

—h—-1<t<n—k-—s.

Finally, adding together this equation and (), we obtain that

n (p1—1)/s—1 h

== N o fuglay) tr(ad T B )
j=2

q=0 u=0
n

s—1
_ —s—1
_ Z 2 Oz?_H u+s tr(ﬂuoff-‘rpl s

j=2u=h+1

v;¢;),
0<h<s—1,1<t<n—k-—s.
(76)

Going back to (E0), let us perform the change ¢t — ¢+ h, then
we obtain

s—1

tr ( Z Bua;ll?1—1+h+tvlcl)
u=0
Z ah+t tr ( Z Bl

—h

chj)’

<n—-k—h-1. (77

Fort=1,2,...,n—k— s the left-hand sides of (IZf) and (IZ2)
coincide, and therefore,
1 )
Vi€
n (p1—1)/s—1 h

n s—1

Z a;-”t tr ( Z gral?

j u=0

= Z Z Z azilfh—u,q(aj)tr( u+qsﬂuvjcj)
j=2 q=0 u=0

j=2

n s—1
h+t—u+s w, u+pi—s—1_
+Z Z o tr(8% oy vic),
j=2u=h+1

1<t<n—k—s.
Replacing ¢ by ¢ + 1, we obtain that

n (pr=1)/
ILIQEDY

s—1

h
Z uq(j) tr(e u+qs6uvj ;)

Jj=2

s—1
ht1— +pi—s—1
Z ol +1—u+s tr(ﬁ“o/f p1—s chj)

u=h+1
s—1
a?“ tr ( Z gral ™ vjcj)) =0,
u=0
0<t<n—-k—-—s—1.
The proof is complete.
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