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Enabling optimal access and error correction for the
repair of Reed-Solomon codes

Zitan Chen Min Ye Alexander Barg

Abstract—Recently Reed-Solomon (RS) codes were shown to
possess a repair scheme that supports repair of failed nodes with
optimal repair bandwidth. In this paper, we extend this result
in two directions. First, we propose a new repair scheme for the
RS codes constructed in [Tamo-Ye-Barg, IEEE Transactions on
Information Theory, vol. 65, May 2019] and show that repair is
robust to erroneous information provided by the helper nodes
while maintaining the optimal repair bandwidth. Second, we
construct a new family of RS codes with optimal access for the
repair of any single failed node. We also show that the constructed
codes can accommodate both features, supporting optimal-access
repair with optimal error-correction capability.

Going beyond RS codes, we also prove that any scalar MDS
code with repair bandwidth attaining the cutset bound affords a
repair scheme with optimal access property.

Index Terms—Distributed storage, Regenerating codes, Reed-
Solomon codes, Error correction, Optimal access.

I. INTRODUCTION

The problem of efficient erasure correction in various
classes of algebraic codes has recently attracted renewed
attention because of its links to applications of erasure coding
for distributed storage. Compared to the classic setting of
erasure correction, efficient functioning of distributed storage
systems critically depends on the volume of communication
exchanged between the nodes for the purposes of data recov-
ery. The constraint on the amount of communication, termed
“repair bandwidth,” adds new features to the problem, and has
motivated a large amount of research in coding theory in the
last decade.

Consider an pn, k, lq array code C over a finite field F ,
i.e., a collection of codewords c “ pc1, . . . , cnq, where ci “

pci,0, ci,1, . . . , ci,l´1qT P F l, i “ 1, . . . , n. A node ci, i P rns

can be repaired from a subset of d ě k helper nodes tcj : j P

Ru,R Ď rnsztiu, by downloading βipRq symbols of F if there
are numbers βij , j P R, functions fij : F

l Ñ F βij , j P R, and
a function gi : F

ř

jPR βij Ñ F l such that

ci “ giptfijpcjq, j P Ruq for all c “ pc1, . . . , cnq P C
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and
ÿ

jPR

βij “ βipRq.

Codes that we consider form linear spaces over F . If C is not
linear over F l, it is also called a vector code, while if it is,
it is called scalar to stress the linearity property. A code C
is called MDS if any k coordinates tcji , i “ 1, . . . , ku of the
codeword suffice to recover its remaining n´k coordinates. In
this paper we study the repair problem of scalar MDS codes.

It is well known [1] that for any MDS code C (scalar or
vector), any i P rns, and any R Ď rnsztiu of cardinality |R| ě

k, we have

βipRq ě
l

|R| ´ k ` 1
|R|. (1)

For an MDS code C, we define the minimum bandwidth
of repair of a node from a d-subset R of helper nodes as
βpdq “ maxiPrns minRĂrnsztiu,|R|“d βipRq. It follows imme-
diately from (1) that

β :“ βpdq ě
l

d ´ k ` 1
d. (2)

An MDS code that attains the bound (2) with equality is said
to afford optimal repair, and a repair scheme that attains this
bound is called optimal. Such codes are also termed minimium
storage regenerating or MSR codes, and the parameter l is
called node size or sub-packetization. Multiple constructions
of vector MDS codes with optimal repair are available in the
literature, including papers [2], [3], [4], [5], [6], [7].

The basic repair problem of MDS codes has been extended
to the case that some of the helper nodes provide erroneous
information (or arbitrary nature). Suppose that a subset of
e nodes out of d helpers provide erroneous information and
define βpd, eq to be the minimum number of symbols needed
to repair a failed node in the presence of such errors. It was
shown [8], [9] that for d ě k ` 2e,

βpd, eq ě
dl

d ´ 2e ´ k ` 1
. (3)

A repair scheme that achieves this bound is said to have opti-
mal error correction capability. Constructions of MDS array
codes with optimal error correction capability are presented,
for instance, in [4].

Another parameter of erasure codes for distributed storage
that affects the system performance is the so-called access,
or input-output cost of repair. Indeed, while the code may
support parsimonious exchange between the helper nodes and
the repair center, generation of the symbols to be transmitted
from the helper node may require reading the entire contents
of the node (trivial access), which increases delays in the
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system. The smallest number of symbols accessed on each
of the helper nodes in an MSR code is l{pd´k`1q, and such
codes are said to have the optimal access property. Advantages
of having this property are well recognized in the literature
starting with [10], and a number of papers were devoted to
constraints that it imposes on the code parameters such as
sub-packetization [11], [12]. Many families of MSR codes
including early constructions in [3], [13] as well as code
families for general parameters in [4], [5], [14], [15] have
the optimal access property.

The optimal-access repair and optimal error correction ca-
pability can be combined. According to (3), we say that a
code family/repair scheme have both properties if repair can
be performed in the presence of e errors, while the number
of symbols accessed on each of the helper nodes equals
1{pd ´ 2e ´ k ` 1q proportion of the contents of each of d
helper nodes.

While the aforementioned papers mostly deal with vector
codes, in this paper we focus on the repair problem for scalar
MDS codes, more specifically, for Reed-Solomon (RS) codes.
This code family continues to attract attention in multiple
aspects of theoretical research (list decoding of variants of
RS codes, locally recoverable codes, to name a few) and it is
also one of the most used coding methods in a vast variety
of practical systems. The first work to isolate and advance the
repair problem for RS codes was [16] which itself followed
and developed the ideas in [17]. In [16], the authors view
each coordinate of RS codes as a vector over some subfield
and characterize linear repair schemes of RS codes over this
subfield. For RS codes (and more generally for scalar codes),
the node size l is defined as the degree of extension of the
symbol field over the subfield. Following [16], several papers
attempted to optimize the repair bandwidth of RS codes [18],
[19], [20]. A family of optimal-repair RS codes in the case
of repairing a single failed node as well as multiple nodes
was constructed in [21]. Later this construction was extended
to the case of the rack-aware storage model, resulting in a
family of codes with optimal repair of a single node [15], and
this problem was addressed again in [22].

In this paper we address two problems related to RS repair,
namely,

(i) repair schemes of RS codes with optimal error correction,
and

(ii) RS codes with optimal-access repair.

Error correction during repair of failed storage nodes was
previously only considered for vector codes [8], [9], [4]. The
problem of low-access RS codes was studied in [23]–[25].
In particular, the last of these works analyzed the access
(input/output) cost of the family of RS codes of [21], providing
an estimate of this parameter, but stopping short of achieving
optimal access.

Our main results provide a solution to problems (i)-(ii).
Specifically, we construct a repair scheme for RS codes in [21]
that has optimal error correction capability (i.e., attains the
bound (3)), and we also construct a family of RS codes with
optimal access repair for any single failed node. Additionaly,
we prove that the constructed codes can be furnished with a
repair scheme that supports both optimal error correction and
optimal-access repair.

Apart from this, we also show that any scalar MDS code
with optimal repair of a single node from d helpers, k ď

d ď n ´ 1, affords a repair scheme with optimal access, and
this includes the RS codes in [21]. While our arguments do
not provide an explicit construction, we give a combinatorial
search procedure, showing that it exists for any scalar MSR
code. The resulting optimal access codes have the same sub-
packetization as the original MDS codes.

The constructions are technically involved, and we begin in
Sec. II with illustrating them in an example. The three sections
that follow it are devoted to the results described above.

II. A SIMPLE EXAMPLE

In this section, we construct an RS code together with a
repair scheme that can recover its first node with both optimal
access and optimal error correction capability.

A. Preliminaries

1) We begin with some standard definitions. Recall that a
generalized RS code (GRS code) of length n and dimension
k over a finite field F is obtained by fixing a set of n distinct
evaluation points Ω :“ tα1, α2, . . . , αnu Ă F and a vector
pv1, . . . , vnq P pF˚qn with no zero coordinates. Then the GRS
code is the set of vectors

GRSF pn, k, v,Ωq “ tpv1fpα1q, v2fpα2q, . . . , vnfpαnqq :

f P F rxs, deg f ă ku.

In particular, if pv1, . . . , vnq “ p1, . . . , 1q, then the GRS
code is called the Reed-Solomon (RS) code and is denoted
by RSF pn, k,Ωq. It is a classic fact that the dual code
pRSF pn, k,ΩqqK is GRSF pn, n ´ k, v,Ωq, where v P pF˚qn

is some vector. In particular, if c “ pc1, . . . , cnq P Fn is
a vector such that

řn
i“1 cihpαiq “ 0 for every polynomial

hpxq of degree ď k ´ 1, then c is contained in a GRSF code
of dimension n ´ k. Rephrasing this, we have the following
obvious proposition that will be frequently used below.

Proposition 1. Let c “ pc1, . . . , cnq P Fn and suppose that
řn

i“1 ciα
t
i “ 0 for all t “ 0, 1, . . . , k´1. Then the vector c is

contained in a code GRSF pn, n ´ k, v,Ωq, where v P pF˚qn

and Ω “ tα1, . . . , αnu.

Let E be an algebraic extension of F of degree s. The trace
mapping trE{F is given by x ÞÑ 1`x|F |`x|F |2 `¨ ¨ ¨`x|F |s´1

.
For any basis γ0, . . . , γs´1 of E over F there exists a trace-
dual basis δ0, . . . , δs´1, which satisfies trE{F pγiδjq “ 1ti“ju

for all pairs i, j. For an element x P E the coefficients
of its expansion in the basis pγiq are found using the dual
basis, specifically, x “

řs´1
i“0 trE{F pxδiqγi. As a consequence,

for any basis pδiq the mapping E Ñ F s given by x ÞÑ

ptrpxδiq, i “ 0, . . . , s ´ 1q is a bijection.

2) Before we define the RS code that will be considered
below, let us fix the parameters of the repair scheme. We
attempt to repair a failed node using information from d helper
nodes. Suppose that at most e of them provide erroneous
information. Assume that d´2e ě k, and let s :“ d´2e´k`1.
Let F be a finite field of size |F | ě n ´ 1. Choose a set
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of distinct evaluation points Ω :“ tα1, α2, . . . , αnu such that
αi P F for all 2 ď i ď n and α1 is an algebraic element
of degree s over F (which means that the extension field
E :“ F pα1q forms an s-dimensional vector space over F ).
Consider the code

C :“ RSEpn, k,Ωq.

In this section we present a repair scheme of the code C that
can repair the first node of C over the field F ; in other words,
we represent the coordinates of C as s-dimensional vectors
over F in some basis of E over F. Thus, the node size of this
code is s. We note that the code C represented in this way is
still a scalar code.

The repair scheme presented below has the following two
properties:

‚ the optimal error correction capability, i.e., the repair
bandwidth achieves the bound (3) for any pair pd, eq such
that d ´ 2e “ s ` k ´ 1;

‚ in the absence of errors it has the optimal access property,
i.e., the number of symbols accessed during the repair
process is d. Thus, in this case e “ 0 and s “ d´ k ` 1.

B. Repair scheme with optimal error correction capability

Let c “ pc1, c2, . . . , cnq P C be a codeword and suppose
that c1 is erased. Since CK “ GRSEpn, n ´ k, v,Ωq for some
v P pE˚qn, we have

v1α
t
1c1`v2α

t
2c2`¨ ¨ ¨`vnα

t
ncn “ 0, t “ 0, 1, . . . , n´k´1,

or

v1α
t
1c1 “ ´v2α

t
2c2 ´ ¨ ¨ ¨ ´ vnα

t
ncn,

t “ 0, 1, . . . , n ´ k ´ 1. (4)

Evaluating the trace tr “ trE{F on both sides of (4), we obtain
the relation

trpv1α
t
1c1q “ ´ trpv2α

t
2c2q ´ ¨ ¨ ¨ ´ trpvnα

t
ncnq

“ ´αt
2 trpv2c2q ´ ¨ ¨ ¨ ´ αt

n trpvncnq, (5)
t “ 0, 1, . . . , n ´ k ´ 1,

where the second equality follows from the fact that
α2, . . . , αn P F . Therefore, knowing the values of
ptrpv2c2q, . . . , trpvncnqq enables us to compute trpv1α

t
1c1q for

all 0 ď t ď n ´ k ´ 1. Since degF pα1q “ s, the elements
1, α1, . . . , α

s´1
1 form a basis of E over F . As a consequence,

one can recover c1 from the values of ttrpv1α
t
1c1q : 0 ď t ď

s ´ 1u. By definition, s ´ 1 “ d ´ 2e ´ k ď n ´ k ´ 1, so
ttrpv1α

t
1c1q : 0 ď t ď s´1u Ď ttrpv1α

t
1c1q : 0 ď t ď n´k´

1u. Combining this with (5), we see that the value c1 is fully
determined by the set of elements ptrpv2c2q, . . . , trpvncnqq.

Recalling our problem, we will show that in order to repair
c1, it suffices to acquire the values trpviciq from any d helper
nodes provided that at least d ´ e “ pd ` s ` k ´ 1q{2 of
these values are correct. This will follow from the following
proposition.

Proposition 2. Let fpxq P F rxs be the minimal polynomial
of α1. For any s ă n ´ k and any c “ pc1, . . . , cnq P C the
vectors pfpα2q trpv2c2q, . . . , fpαnq trpvncnqq are contained in
an pn ´ 1, s ` k ´ 1q GRS code over F.

Proof. Let T :“ t0, 1, . . . , n ´ k ´ s ´ 1u. Since αi P F, i “

2, . . . , n by definition we have fpαiq ‰ 0 for all such i. Next,
degpfq “ s, and thus for all t P T

pv1α
t
1fpα1q, v2α

t
2fpα2q, . . . , vnα

t
nfpαnqq P CK.

This implies that for all t P T

v1α
t
1fpα1qc1 ` v2α

t
2fpα2qc2 ` ¨ ¨ ¨ ` vnα

t
nfpαnqcn “ 0,

but fpα1q “ 0, so taking the trace, we obtain

αt
2fpα2q trpv2c2q`¨ ¨ ¨`αt

nfpαnq trpvncnq “ 0, t P T. (6)

By Proposition 1, this implies that the vectors
pfpα2q trpv2c2q, . . . , fpαnq trpvncnqq are contained in a
GRS code of length n ´ 1 with n ´ s ´ k parities.

The GRS code identified in this proposition can be punc-
tured to any subset R of d coordinates, retaining the dimension
and the MDS property. This means that the punctured code is
capable of correcting any e “ pd´ s´k`1q{2 errors. There-
fore, as long as no more than e helper nodes provide incorrect
information, we can always recover ptrpv2c2q, . . . , trpvncnqq

by acquiring a subset ttrpvijcij q, j “ 1, . . . , du from any d
helper nodes and correcting the errors based on any decoding
procedure of the underlying MDS code. Finally note that
the case s “ n ´ k can be added trivially because then
d “ n´ 1 and e “ 0, so all the helper nodes provide accurate
information, and no error correction is required (or possible).

C. Optimal access property

Following the discussion in the first part of this section, we
show that the code C “ RSEpn, k,Ωq defined above supports
optimal-access repair of the node c1. In this part we assume
that the helper nodes provide accurate information about their
contents, and we do not attempt error correction.

To represent the code, we choose a pair of trace-dual bases
pbiq, pb˚

i q of E over F, where we assume w.l.o.g. that b0 “ 1.
Next, represent the ith coordinate of the code, i P t1, . . . , nu,
using the basis pv´i

i bm,m “ 0, . . . , s´1q, where pv1, . . . , vnq

is defined by the code CK. Namely, for a codeword c P C we
have

ci “ v´1
i

s´1
ÿ

m“0

ci,mb˚
m, (7)

where ci,m P F for all m “ 0, 1, . . . , s ´ 1. We assume that
each storage node contains the vector pci,0, ci,1, . . . , ci,s´1q.

As discussed above, the value c1 can be recovered from
any d-subset of the set of elements ttrpviciq, j “ 2, . . . , nu.
Further, for all i “ 2, . . . , n and m “ 0, . . . , s ´ 1 we have
trpvicibmq “ ci,m, so in particular,

trpviciq “ ci,0.

Thus, to repair c1 it suffices to access and download a
single symbol ci,0 from the chosen subset of d helper nodes.
According to the bound (1), the minimum number of symbols
downloaded from a helper node for optimal repair is the
p1{sqth proportion of the node’s contents. Overall this shows
that the repair scheme considered above has the optimal access
property.
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The above discussion sets the stage for constructing RS
codes with optimal-access repair for each of the n co-
ordinates. Namely, we took a basis 1, b1, . . . , bs´1 of E
over F and represented each ci in the basis pv´1

i b˚
i q. The

only element of the helper coordinate that we access and
download is ci,0. For more complicated constructions of RS
codes, e.g., the ones constructed in [21] and below in the
paper, we assume that E is an l-degree extension of F .
The known repair schemes require to download elements
of the form trpvicia0q, trpvicia1q, . . . , trpviciapl{sq´1q, where
a0, a1, . . . , apl{sq´1 are linearly independent over F . In this
case, we can extend the set a0, a1, . . . , apl{sq´1 to a ba-
sis pbiq of E over F. Following the approach in (7), we
store the code coordinate ci as the vector of its coefficients
pci,0, ci,1, . . . , ci,l´1q in the dual basis pb˚

i , i “ 0, . . . , l ´ 1q

of the basis pbiq. Since ci,m “ trpviciamq for all m “

0, 1, . . . , l{s´1, this choice of the basis enables one to achieve
optimal access. This idea underlies the construction presented
below in Sec. IV-A.

D. Optimal access with error correction

Thus far, we have assumed that errors are absent for
optimal-access repair. To complete the picture, we address the
case of codes with both optimal access and optimal error cor-
recting capability for the repair of node c1. It is easily seen that
both properties can be combined. Indeed, since trpviciq “ ci,0
for all i “ 2, . . . , n, and since by Proposition 2 these elements
form a codeword of a GRS code, it is immediately clear that
c1 can be repaired with optimal error correction capability and
optimal access. To enable this property for any ci, below we
add extra features to the general repair scheme with optimal
access. Specifically, error correction and optimal access are
based on two different structures supported by the code. We
show that it is possible to realize the error-correction structure
in an extension field located between the base field and the
symbol field of the code. Further reduction to the base field
enables us to perform repair with optimal access. These ideas
are implemented in detail in Sec. IV-B below.

III. ENABLING ERROR CORRECTION FOR REPAIR OF RS
CODES OF [21]

In this section we propose a new repair scheme for the
optimal-repair family of RS codes of [21] that supports the
optimal error correction capability.

A. Preliminaries

We begin with briefly recalling the definition of the sub-
family of RS codes of [21]. The construction depends on the
number of helper nodes d used for the purpose of repair of a
single node, k ď d ď n ´ 1.

Definition 1 ([21]). Let p be a prime, let s :“ d ´ k ` 1,
and let p1, . . . , pn be distinct primes that satisfy the condition
pi ” 1 mod s, i “ 1, . . . , n, Let C :“ RSKpn, k,Ωq be a
Reed-Solomon code, where

‚ Ω “ tα1, . . . , αnu, where αi, i “ 1, . . . , n is an algebraic
element of degree pi over Fp,

‚ K “ Fpβq, where β is an algebraic element of degree s
over F :“ Fppα1, . . . , αnq.

As shown in [21], this code supports optimal repair of any
node i from any set of d helper nodes in rnsztiu. Below we
use this construction, choosing the value of s based not only
on the number of helpers but also on the target number of
errors tolerated by the repair procedure.

In this section we consider an RS code C given by Def. 1,
where we take s “ d ´ 2e ´ k ` 1. For this code we will
present a new repair scheme that has the property of optimal
error correction. This repair scheme as well as the original
repair scheme developed in [21] rely on the following lemma:

Lemma 3 ([21], Lemma 1). Let F be a finite field. Let r be
a prime such that r ” 1 mod s for some s ě 1. Let α be an
element of degree r over F and β be of degree s over the
field F pαq. Let K “ F pα, βq be the extension field of degree
rs. Consider the F -linear subspace S of dimension r with the
basis

E :“ tβuαu`qs | u “ 0, . . . , s ´ 1; q “ 0, . . . , r´1
s ´ 1u

ď

!

s´1
ÿ

u“0

βuαr´1
)

.

Then S ` Sα ` ¨ ¨ ¨ ` Sαs´1 “ K, and this is a direct sum.

Without loss of generality, we only present the repair
scheme for the first node c1, and all the other nodes can be
repaired in the same way (this is different from the previous
section where the code was designed to support optimal repair
only of the node c1). The scheme is complicated, and we take
time to develop it, occasionally repeating similar arguments
more than once rather than compressing the presentation.

The repair of c1 is conducted over the field F1 :“
Fppα2, α3, . . . , αnq. It is clear that F “ F1pα1q and K “

Fpβq, where degF1
pα1q “ p1 and degFpβq “ s. Below we

use tr “ trK{F1
to denote the trace mapping from K to F1.

Define the set

E1 :“ tβuαu`qs
1 | u “ 0, . . . , s ´ 1; q “ 0, . . . , p1´1

s ´ 1u

ď

!

s´1
ÿ

u“0

βuαp1´1
1

)

. (8)

Clearly, |E1| “ p1, and we write the elements in E1 as
e0, e1, . . . , ep1´1. Then Lemma 3 implies that the set of
elements

teiα
j
1 : i “ 0, . . . , p1 ´ 1, j “ 0, . . . , s ´ 1u (9)

forms a basis of K over F1.
Let CK “ GRSKpn, n´k, v,Ωq be the dual code. For every

codeword pc1, . . . , cnq P C we have

v1α
t
1c1`v2α

t
2c2`¨ ¨ ¨`vnα

t
ncn “ 0, t “ 0, 1, . . . , n´k´1.

Multiplying by ei on both sides of the equation and evaluating
the trace, we obtain the relation

trpeiv1α
t
1c1q “ ´

n
ÿ

j“2

trpeivjα
t
jcjq
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“ ´

n
ÿ

j“2

αt
j trpeivjcjq, t “ 0, 1, . . . , n ´ k ´ 1, (10)

where the second equality follows since αj P F1 for all 2 ď

j ď n. Therefore, the elements ttrpeivjcjq : 2 ď j ď nu

suffice to compute ttrpeiv1α
t
1c1q : 0 ď t ď n ´ k ´ 1u. Since

s “ d ´ 2e ´ k ` 1 ď d ´ k ` 1 ď n ´ k, we can calculate
ttrpeiv1α

t
1c1q : 0 ď t ď s´1u from ttrpeivjcjq : 2 ď j ď nu.

Thus knowing the values of ttrpeivjcjq : 2 ď j ď n, 0 ď i ď

p1 ´ 1u suffices to find the set of elements

ttrpeiv1α
t
1c1q : 0 ď t ď s ´ 1, 0 ď i ď p1 ´ 1u. (11)

Since the set (9) forms a basis of K over F1, the set teiv1α
t :

0 ď i ď p1´1, 0 ď t ď s´1u also forms a basis of K over F1,
and therefore we can recover c1 from (11). In conclusion, to
recover c1, it suffices to know the set of elements ttrpeivjcjq :
2 ď j ď n, 0 ď i ď p1 ´ 1u.

B. The repair scheme

For j “ 2, 3, . . . , n define the vector rj :“ ptrpeivjcjq, i “

0, . . . , p1 ´ 1q. In this section we design invertible linear
transformations Mj that send these vectors to a set of vectors
zj that support error correction. The following proposition
underlies our repair scheme.

Proposition 4. Consider the set of vectors zj “

pzj,0, zj,1, . . . , zj,p1´1q, j “ 2, 3, . . . , n defined by

zTj “ Mjr
T
j , (12)

where M2, . . . ,Mn are invertible matrices of order p1.
Suppose that for every i “ 0, 1, . . . , p1 ´ 1, the vector
pz2,i, z3,i, . . . , zn,iq is contained in an MDS code of length
n´1 and dimension s`k´1. Then there is a repair scheme of
the code C that supports recovery of the node c1 with optimal
error correction capability.

Note that, by the closing remark in Sec. II-B, it suffices to
assume that s ă n ´ k.

Proof. If pz2, z3, . . . , znq is a codeword in an MDS array code
of length n ´ 1 and dimension s ` k ´ 1, then the punctured
codeword pzj : j P Rq is contained in an MDS array code of
length d “ |R| and dimension s ` k ´ 1 “ d ´ 2e, and such
the code can correct any e errors.

To repair the failed node c1, we download p1-dimensional
vectors r̂j , j P R, where R Ă rnszt1u, |R| “ d is a set of
d helper nodes. For all but e or fewer values of j, we have
r̂j “ rj . The repair scheme consists of the following steps:

(i) Find the vectors ẑTj “ Mj r̂
T
j , j P R,

(ii) Find the vectors zj , j P R using the error correction
procedures of the underlying MDS codes,

(iii) For every i “ 0, . . . , p1 ´1 use the d-subset tzj,i, j P Ru

to recover the codeword pz2,i, z3,i, . . . , zn,iq,
(iv) Find the vectors rTj “ M´1

j zTj , j “ 2, . . . , n ´ 1 and
finally recover c1.

Step (ii) is justified by the fact that, by assumption, at most
e of the elements ẑj are incorrect. In step (iii) we rely on the
fact that d symbols of the MDS codeword suffice to recover

the remaining n ´ 1 ´ d symbols, and in step (iv) we use
invertibility of the matrices Mj and recover c1 using (10),
(11).

The total number of downloaded symbols of F1 equals p1d,
and it is easy to verify that the repair bandwidth of our scheme
meets the bound (3) with equality.

Why do we need the matrices Mj and why were they not
involved in the example in Sec. II-B? The answer is related
to the fact that we need to remove the failed node from
consideration and obtain a codeword of the MDS code that
contains all the other nodes. In the example the degree of
the minimal polynomial of α1, denoted fpxq, is s ă n ´ k,
so the evaluations of xtf are dual codewords (see (6) in
Prop. 2). This implies that the downloaded symbols form
a codeword in an MDS code over F which supports error
correction. Importantly, this codeword does not involve the
erased coordinate.

Switching to the RS codes of [21] considered here, the
element α1 is of degree p1 over the repair field F pα2, . . . , αnq,
and generally p1 ą n ´ k ´ 1, so the minimal polynomial of
α1 is not a dual codeword. This requires us to modify the
above idea. In general terms, we will find suitable elements of
the set E1 such that Eq. (10) yields linear relations between
the entries of the form trpeivjcjq. The coefficients of these
relations form the rows of the matrix Mj .

C. The matrices Mj

In this section we will construct the matrices Mj and the
vector zj , and also prove the full rank condition. Rather than
writing the expressions at this point in the text, We proceed in
stages, by deriving p1 linear relations involving components
of the vectors on both sides of (12). (the notation is rather
complicated and would not be intuitive; if desired, the reader
may nevertheless consult Sec. III-D, particularly, Eq.(27)).

1) The first p1 ´ s ´ 1 relations:

Proposition 5. For all 0 ď u ď s´ 1 and 0 ď q ď
p1´1

s ´ 2,
the vector
`

αs
j trpβ

uαu`qs
1 vjcjq ´ trpβuα

u`pq`1qs
1 vjcjq, j “ 2, . . . , n

˘

(13)
is a codeword in a GRS code of length n ´ 1 and dimension
s ` k ´ 1.

Proof. Let us write (10) for ei of the form ei “ βuαu`qs
1 :

trpβuαu`qs`t
1 v1c1q “ ´

n
ÿ

j“2

αt
j trpβ

uαu`qs
1 vjcjq,

t “ 0, 1, . . . , n ´ k ´ 1

(see also (8)). Writing this as

trpβuα
u`pq`1qs`t´s
1 v1c1q “ ´

n
ÿ

j“2

αs`t´s
j trpβuαu`qs

1 vjcjq,

t “ 0, 1, . . . , n ´ k ´ 1
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and performing the change of variable pt´ sq ÞÑ t, we obtain
the relation

trpβuα
u`pq`1qs`t
1 v1c1q “ ´

n
ÿ

j“2

αs`t
j trpβuαu`qs

1 vjcjq,

(14)
t “ ´s,´s ` 1, . . . ,´s ` n ´ k ´ 1.

On the other hand, substituting ei “ βuα
u`pq`1qs
1 into (10),

we obtain

trpβuα
u`pq`1qs`t
1 v1c1q “ ´

n
ÿ

j“2

αt
j trpβ

uα
u`pq`1qs
1 vjcjq,

(15)
t “ 0, 1, . . . , n ´ k ´ 1.

Note that the left-hand sides of (14) and (15) conicide for
t “ 0, 1, . . . , n ´ k ´ s ´ 1, and thus so do the right-hand
sides. We obtain

n
ÿ

j“2

αs`t
j trpβuαu`qs

1 vjcjq “

n
ÿ

j“2

αt
j trpβ

uα
u`pq`1qs
1 vjcjq

or
n

ÿ

j“2

αt
j

`

αs
j trpβ

uαu`qs
1 vjcjq ´ trpβuα

u`pq`1qs
1 vjcjq

˘

“ 0,

for t “ 0, 1, . . . , n ´ k ´ s ´ 1. On account of Proposition 1
this implies the claim about the GRS code; moreover, since
there are n ´ k ´ s independent parity-check equations, the
dimension of this code is pn´1q´pn´k´sq “ s`k´1.

We note that the components of the vector (13) are formed
as linear combinations of the elements trpeivjcjq, and so this
gives us p1 ´ s ´ 1 vectors zj .

2) One more relation:

Proposition 6. The vector

´

s´1
ÿ

u“0

αs´u
j trpβuαu`p1´s´1

1 vjcjq´tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

,

j “ 2, . . . , n
¯

(16)

is a codeword in a GRS code of length n ´ 1 and dimension
s ` k ´ 1.

Proof. Going back to (10), take ei “ βuαu`p1´s´1
1 for u “

0, 1, . . . , s ´ 1. We obtain the relation

trpβuαu`p1´s´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt
j trpβ

uαu`p1´s´1
1 vjcjq,

t “ 0, 1, . . . , n ´ k ´ 1.

Changing the variable pt ` u ´ sq ÞÑ t in the above equation,
we obtain that for every u “ 0, 1, . . . , s ´ 1,

trpβuαp1´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt´u`s
j trpβuαu`p1´s´1

1 vjcjq,

(17)
t “ u ´ s, u ´ s ` 1, . . . , u ´ s ` n ´ k ´ 1.

Since

s´1
č

u“0

tu ´ s, u ´ s ` 1, . . . , u ´ s ` n ´ k ´ 1u

“ t´1, 0, 1, . . . , n ´ k ´ s ´ 1u, (18)

we have

trpβuαp1´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt´u`s
j trpβuαu`p1´s´1

1 vjcjq,

´1 ď t ď n ´ k ´ s ´ 1, 0 ď u ď s ´ 1.

Taking the cue from (18), let us sum these equations on u “

0, 1, . . . , s ´ 1, and we obtain

tr
´

s´1
ÿ

u“0

βuαp1´1`t
1 v1c1

¯

“ ´

n
ÿ

j“2

s´1
ÿ

u“0

αt´u`s
j trpβuαu`p1´s´1

1 vjcjq,

´ 1 ď t ď n ´ k ´ s ´ 1. (19)

Turning to (8) again, let us substitute the element
řs´1

u“0 β
uαp1´1

1 into (10):

tr
´

s´1
ÿ

u“0

βuαp1´1`t
1 v1c1

¯

“ ´

n
ÿ

j“2

αt
j tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

,

0 ď t ď n ´ k ´ 1 (20)

From (19) and (20) we deduce the equality

n
ÿ

j“2

s´1
ÿ

u“0

αt´u`s
j tr

´

βuαu`p1´s´1
1 vjcj

¯

“

n
ÿ

j“2

αt
j tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

,

or

n
ÿ

j“2

αt
j

´

s´1
ÿ

u“0

αs´u
j trpβuαu`p1´s´1

1 vjcjq

´ tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯¯

“ 0

for 0 ď t ď n ´ k ´ s ´ 1. By Proposition 1, the proof is
complete.

3) The remaining s relations: Following the plan outlined
in Sec. III-B, we have constructed p1 ´ s vectors zj , listed
in (13) and (16). In order to find the remaining s linear
combinations of the elements ri,j , we develop the idea used
in the example in Sec. II-B.

We begin with introducing some notation. Let fpxq be the
minimal polynomial of α1 over F1. For h “ 0, 1, . . . , s ´ 1
define

fhpxq “ xp1`hpmodfpxqq, (21)

then deg fh ă deg f “ p1 and αp1`h
1 “ fhpα1q. Let fh,q P

F1rxs, q “ 0, . . . , pp1 ´ 1q{s ´ 1 be the (uniquely defined)
polynomials such that
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(i) deg fh,q ď s ´ 1, q “ 0, 1, . . . , p1´1
s ´ 2;

(ii) deg fh,pp1´1q{s´1 ď s;
(iii)

fhpxq “

pp1´1q{s´1
ÿ

q“0

xqsfh,qpxq. (22)

Proposition 7. For every h “ 0, 1, . . . , s ´ 1, the vector

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjq trpαu`qs
1 βuvjcjq

`

s´1
ÿ

u“h`1

αh`1´u`s
j trpβuαu`p1´s´1

1 vjcjq

´ αh`1
j trp

s´1
ÿ

u“0

βuαp1´1
1 vjcjq, j “ 2, 3, . . . , n

¯

(23)

is contained in a GRS code of length n ´ 1 and dimension
s ` k ´ 1.

The proof of this proposition is rather long and technical,
and is given in Appendix A.

Concluding, expressions (13), (16), and (23) yield
p1 linear combinations of the elements ptrpe0vjcjq,
trpe1vjcjq, . . . , trpep1´1vjcjqq for every j P t2, 3, . . . , nu.
It is these linear combinations that we denote by
zj “ pzj,0, zj,1, . . . , zj,p1´1q in (12). We have shown that for
every i P t0, 1, . . . , p1 ´ 1u, the vector pz2,i, z3,i, . . . , zn,iq is
contained in an MDS code of length n ´ 1 and dimension
s ` k ´ 1. The next subsection treats the remaining part of
the assumptions in Proposition 4 above.

D. The linear transforms Mj are invertible

The object of this section is to show that the mapping

ptrpe0vjcjq, trpe1vjcjq, . . . , trpep1´1vjcjqq

ÞÑ zj “ pzj,0, zj,1, . . . , zj,p1´1q

is invertible. In other words, we will show that rankpMjq “

p1 for all j. Let us first simplify the notation. Recall the set
E1 “ te0, e1, . . . , ep1´1u in (8) and let us order its elements
in the order of increase of the powers of α1 :

eu`qs :“ βuαu`qs
1

for u “ 0, 1, . . . , s ´ 1 and q “ 0, 1, . . . , p1´1
s ´ 1

ep1´1 :“
s´1
ÿ

u“0

βuαp1´1
1 .

Using the notation ri,j “ trpeivjcjq introduced above, the
vectors in (13) can be written as

pαs
jru`qs,j ´ ru`qs`s,j , j “ 2, . . . , nq

for 0 ď u ď s´1 and 0 ď q ď
p1´1

s ´2, or, writing i “ u`qs,
as

pαs
jri,j ´ ri`s,j , j “ 2, . . . , nq (24)

for 0 ď i ď p1 ´ s ´ 2. Similarly, the vector in (16) can be
written as

´

s´1
ÿ

u“0

αs´u
j ru`p1´s´1,j ´ rp1´1,j , j “ 2, . . . , n

¯

, (25)

and the vectors in (23) can be written as

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjqru`qs,j

`

s´1
ÿ

u“h`1

αh`1´u`s
j ru`p1´s´1,j

´ αh`1
j rp1´1,j , j “ 2, . . . , n

¯

,

0 ď h ď s ´ 1. (26)

For a fixed value of j, the entries in (24)–(26) form the
vector zj “ pzj,0, zj,1, . . . , zj,p1´1q, and we list its coordinates
according to the chosen order:

zj,i :“ αs
jri,j ´ ri`s,j for 0 ď i ď p1 ´ s ´ 2,

zj,p1´s´1 :“
s´1
ÿ

u“0

αs´u
j ru`p1´s´1,j ´ rp1´1,j ,

zj,p1´s`h :“
h

ÿ

u“0

pp1´1q{s´1
ÿ

q“0

fh´u,qpαjqru`qs,j

`

s´1
ÿ

u“h`1

αh`1´u`s
j ru`p1´s´1,j ´ αh`1

j rp1´1,j

,

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

-

(27)

for 0 ď h ď s ´ 1. Our objective is to show that the linear
mapping pr0,j , r1,j , . . . , rp1´1,jq

Mj
Ñ pzj,0, zj,1, . . . , zj,p1´1q is

invertible. This will follow once we show that its kernel is
trivial, i.e., that if pzj,0, zj,1, . . . , zj,p1´1q is an all-zeros vector,
then so is pr0,j , r1,j , . . . , rp1´1,jq. If zj,i “ αs

jri,j ´ri`s,j “ 0
for 0 ď i ď p1 ´ s ´ 2, then

ru`qs,j “ αs
jru`pq´1qs,j “ ¨ ¨ ¨ “ αqs

j ru,j

for 0 ď u ď s ´ 1 and 1 ď q ď
p1 ´ 1

s
´ 1. (28)

Using (28) in the expression for zj,p1´s`h, 0 ď h ď s´1, we
obtain the following s relations:

zj,p1´s`h “

h
ÿ

u“0

pp1´1q{s´1
ÿ

q“0

fh´u,qpαjqαqs
j ru,j

`

s´1
ÿ

u“h`1

αh`1´u`s
j αp1´s´1

j ru,j ´ αh`1
j rp1´1,j

“

h
ÿ

u“0

fh´upαjqru,j `

s´1
ÿ

u“h`1

αp1`h´u
j ru,j ´ αh`1

j rp1´1,j ,

(29)

where the second equality follows from (22). Using (28) in
the expression for zj,p1´s´1, we obtain

zj,p1´s´1 “

s´1
ÿ

u“0

αs´u
j αp1´s´1

j ru,j ´ rp1´1,j

“

s´1
ÿ

u“0

αp1´u´1
j ru,j ´ rp1´1,j . (30)

Since we assumed that the z-vector is zero, coordinates
zp1´u, u “ s ` 1, s, . . . , 1 that appear in (29), (30) are zero.
Writing these conditions in matrix form using the above order,
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»

—

—

—

—

—

—

—

—

–

αp1´1
j αp1´2

j αp1´3
j . . . αp1´s

j ´1

f0pαjq αp1´1
j αp1´2

j . . . αp1´s`1
j ´αj

f1pαjq f0pαjq αp1´1
j . . . αp1´s`2

j ´α2
j

f2pαjq f1pαjq f0pαjq . . . αp1´s`3
j ´α3

j
...

...
...

...
...

...
fs´1pαjq fs´2pαjq fs´3pαjq . . . f0pαjq ´αs

j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

r0,j
r1,j
r2,j

...
rs´1,j

rp1´1,j

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0, (31)

we obtain relation (31). We aim to show that the matrix on
the left-hand side is invertible.

Recall that fpxq is the minimal polynomial of α1 and from
(22), fpxq ` f0pxq “ xp1 . Since fpxq is irreducible over F1

and αj P F1, we have fpαjq ‰ 0 for all j “ 2, . . . , n.
Multiplying the first row of the matrix in (31) by αj and

then subtracting the second row from the first row, we obtain
»

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0
f0pαjq αp1´1

j αp1´2
j . . . αp1´s`1

j ´αj

f1pαjq f0pαjq αp1´1
j . . . αp1´s`2

j ´α2
j

f2pαjq f1pαjq f0pαjq . . . αp1´s`3
j ´α3

j

...
...

...
...

...
...

fs´1pαjq fs´2pαjq fs´3pαjq . . . f0pαjq ´αs
j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since fpαjq ‰ 0, we can use elementary row operations to
erase the first column, obtaining
»

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0

0 αp1´1
j αp1´2

j . . . αp1´s`1
j ´αj

0 f0pαjq αp1´1
j . . . αp1´s`2

j ´α2
j

0 f1pαjq f0pαjq . . . αp1´s`3
j ´α3

j
...

...
...

...
...

...
0 fs´2pαjq fs´3pαjq . . . f0pαjq ´αs

j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proceeding analogously, let us multiply the second row of this
matrix by αj and then subtract the third row from the second
one to obtain
»

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0
0 fpαjq 0 . . . 0 0

0 f0pαjq αp1´1
j . . . αp1´s`2

j ´α2
j

0 f1pαjq f0pαjq . . . αp1´s`3
j ´α3

j
...

...
...

...
...

...
0 fs´2pαjq fs´3pαjq . . . f0pαjq ´αs

j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

As above, we can eliminate all the nonzeros in the second
column except for fpαjq, and so on. In the end we obtain the
matrix diagpfpαjq, . . . , fpαjq,´αs

jq with nonzero diagonal.
This proves that the matrix in (31) is invertible. Therefore,
r0,j “ r1,j “ ¨ ¨ ¨ “ rs´1,j “ rp1´1,j “ 0. Combining this
with (28), we conclude that ri,j “ 0 for all 0 ď i ď p1 ´ 1.
This proves that the matrices Mj , j “ 2, . . . , n in (12) are in-
vertible, providing the last missing element to the justification
of the repair scheme with optimal error correction.

IV. A FAMILY OF OPTIMAL-ACCESS RS CODES

In this section, we construct a new family of RS codes that
is similar to the construction in [21] but affords repair with
optimal access.

The input-output cost of node repair for the RS codes of [21]
was analyzed in [25] for d “ n ´ 1. According to (2), in this
case the minimum access cost per helper node equals l

n´k . The
authors of [25] showed that it is possible to adjust the repair
scheme so that the access cost is p1 ` n´k´1

pi
q l
n´k , i.e., at

most twice the optimal value. However, more is true: namely,
it turns out that any fixed node in the construction of [21]
(Def. 1) can be repaired with optimal access. This observation,
which is the starting point of the new construction, is based
on the fact that it is possible to construct a basis of the field K
over the base field that reduces the access cost of the repair of
the chosen node. If the option of choosing the basis for each
erased node were available, we could use the arguments in
Sec. II-C to perform repair with optimal access. The difficulty
arises because this would entail rewriting the storage contents,
which should be avoided. To address this issue, we construct
the code over a field that contains n elements βi instead of
a single element β, and this supports efficient repair of any
single failed node. This idea is developed below.

A. New construction

Consider the following sequence of algebraic extensions of
Fp : let K0 “ Fp and for i “ 1, . . . , n let

Fi “ Ki´1pαiq,Ki “ Fipβiq, (32)

where αi is an algebraic element of degree pi over Fp and βi

is an element of degree s “ d´ k ` 1 over Fi. In the end we
obtain the field

K :“ Kn “ Fppα1, . . . , αn, β1, . . . βnq. (33)

We still assume that p1, . . . , pn are distinct primes satisfying
the condition pi ” 1 mod s for all i “ 1, . . . , n. Consider the
code C :“ RSKpn, k,Ωq, where as before, the set of evaluation
points is given by Ω “ tα1, . . . , αnu. We will show that the
code C affords optimal-access repair.

The repair scheme follows the general approach of [16] and
its implementation in [21]. Let c “ pc1, . . . , cnq P C be a
codeword. Suppose that the node i has failed (coordinate ci
is erased), and we would like to repair it from a set of helper
nodes R Ď t1, . . . , nuztiu with |R| “ d. Let

hpxq “
ź

jPt1,...,nuzpRYtiuq

px ´ αjq.

Clearly, we have degpxthpxqq ă n ´ k for t “ 0, . . . , s ´

1. Therefore, for some nonzero vector v “ pv1, . . . , vnq, we
have pv1α

t
1hpα1q, . . . , vnα

t
nhpαnqq P CK for t “ 0, . . . , s´1,

where CK “ GRSKpn, k, v,Ωq. In other words, we have

viα
t
ihpαiqci “ ´

n
ÿ

j“1
j‰i

vjα
t
jhpαjqcj , t “ 0, . . . , s ´ 1. (34)
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The repair scheme in [21] as well as in this paper relies on
this set of s dual codewords to recover the value of ci.
Remark 1. The dual codewords xthpxq have zero values in
the complement of the set R̂ :“ RY tiu. In other words, they
are contained in the shortened code pCKqR̂ of the dual code.
Thinking dually, we can start with the code CK and construct
a repair scheme for its coordinates based on the punctured
code C

R̂
(coordinate projection of C on R̂). This approach is

equivalent to the scheme used in [21] and in this paper because
ppCKqR̂qK – C

R̂
.

Let us establish a few simple properties of the tower of
fields defined above in (32), (33).

Lemma 8. The extension degrees in the field tower Fp “

K0 Ă ¨ ¨ ¨ Ă Ki Ă ¨ ¨ ¨ Ă Kn “ K are as follows:

rKi : Fps “ si
i

ź

j“1

pj , i “ 1, . . . , n

rK : Fps “ l :“ sn
n

ź

i“1

pi.

Proof. The proof is obvious from the definition: for each i we
adjoin two elements αi, βi to Ki´1, and their degrees over
Ki´1 are coprime, so they contribute spi to the result.

We will use an explicit form of the basis of K over Fp. For
m “ 0, . . . , l ´ 1, let us write

m “ pmn,mn´1, . . . ,m1, m̄n, m̄n´1, . . . , m̄1q (35)

where mi “ 0, . . . , pi ´ 1 and m̄i “ 0, . . . , s ´ 1 for i “

1, . . . , n.

Lemma 9. Let

A “ tam :“
n

ź

i“1

αmi
i

n
ź

j“1

β
m̄j

j | mi “ 0, . . . , pi ´ 1,

m̄j “ 0, . . . , s ´ 1;m “ 0, 1, . . . , l ´ 1u.

Then A is a basis for K over Fp.

Proof. By co-primality, for i “ 1, . . . , n we have
degKi´1

pαiq “ pi, and by construction, we have degFi
pβiq “

s. Thus, the elements am,m “ 0, . . . , l ´ 1 are linearly
independent over Fp.

Lemma 10. For m “ 0, . . . , l ´ 1 let J “ tj P rns :
pm̄j ,mjq “ ps ´ 1, pj ´ 1qu and let

bm “

n
ź

i“1

αmi
i ¨

ź

jPJ

´

s´1
ÿ

u“0

βu
j

¯

¨
ź

jRJ

β
m̄j

j .

Then the set B :“ tbm | m “ 0, . . . , l ´ 1u is a basis of K
over Fp.

Furthermore, for i “ 1, . . . , n, let Ai “ tam P A |

pmi, m̄iq “ p0, 0qu and Bi “ tbm P B | pmi, m̄iq “ p0, 0qu,
then

SpanFp
Ai “ SpanFp

Bi.

Proof. Since |B| “ l, to prove that B is a basis it suffices
to show that the elements am can be expressed as linear

combinations of the elements in B. Let J Ă rns and let
ApJq “ tam P A : pm̄j ,mjq “ ps ´ 1, pj ´ 1q, j P

J; pm̄j ,mjq ‰ ps ´ 1, pj ´ 1q, j R Ju. We argue by induction
on |J|. If m is such that J “ H, then am P B, and there is
nothing to prove. Now assume that for all J Ă rns, |J| ď J ´1
the elements am are linearly generated by the elements in B,
and let m be such that |J| “ J. We have

am “

n
ź

i“1

αmi
i

ź

jRJ

β
m̄j

j

ź

jPJ

βs´1
j

and

bm “

n
ź

i“1

αmi
i

ź

jRJ

β
m̄j

j

ź

jPJ

s´1
ÿ

u“0

βu
j

“

n
ź

i“1

αmi
i

´

ź

jRJ

β
m̄j

j

¯´

s´1
ÿ

t1,...,tJ“0

J
ź

u“1

βtu
ju

¯

.

Multiplying out the sums on right-hand side, we note that the
term with all ti “ s´1 equals am, while the remaining terms
contain fewer than J factors of the form α

pju´1
ju

βs´1
ju

. Each
of such terms is contained in some ApJq with |J| ď J ´ 1,
and is linearly generated by the elements bm by the induction
hypothesis. This implies that am is also expressible as a linear
combination of the elements in B.

To prove the second claim, note that SpanFp
Ai Ě

SpanFp
Bi. Therefore, to show that SpanFp

Ai “ SpanFp
Bi,

it suffices to show that for any a “ 0, . . . , n ´ 1 and any
J Ď t1, . . . , nuztiu, the set AipJq can be generated linearly
by the set Bi. This proof amounts essentially to the same
calculation as above, and will be omitted.

The role of the basis pbmq is to eliminate as many terms on
the right-hand side of (34) as possible. To repair the node ci
we use the dual basis pb˚

mq of pbmq, writing

ci “ v´1
i

l´1
ÿ

m“0

ci,mb˚
m. (36)

Below tr “ trK{Fp
denotes the absolute trace.

Lemmas 8 and 3 immediately imply the following.

Proposition 11. For i “ 1, . . . , n, there exists vector space
Si over Ki´1 such that dimKi´1 Si “ pi and Si ` Siαi `

¨ ¨ ¨ `Siα
s´1
i “ Ki. Furthermore, a basis for Si over Ki´1 is

given by

Ei :“ tβu
i α

u`qs
i | u “0, . . . , s ´ 1; q “ 0, . . . , pi´1

s ´ 1u

ď

!

αpi´1
i

s´1
ÿ

u“0

βu
i

)

.

We continue with the description of the repair scheme
where we left in (34). As a remark, below we write the
scheme over Fp rather than over its extensions (the latter
approach was chosen in [21]). Multiplying both sides of (34)
by

śn
i1“1 ei1

śn
j1‰i α

tj1

j1 , where ei1 P Ei1 and tj1 “ 0, . . . , s´1,
and evaluating the trace, we obtain

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 viα
t
ihpαiqci

¯
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“ ´ tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1

n
ÿ

j‰i

vjα
t
jhpαjqcj

¯

“ ´

n
ÿ

j‰i

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcj

¯

“ ´
ÿ

jPR

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcj

¯

. (37)

On account of Proposition 11 and the fact that vihpαiq ‰ 0,
the set

!

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 viα
t
ihpαiq

)

, (38)

where ei1 P Ei1 , i1 P rns; t “ 0, . . . , s ´ 1; tj1 “ 0, . . . , s ´

1, j1 P rnsztiu, is a basis of K over Fp. Therefore, we can
recover ci once we know the right-hand side of (37).

For j P R, from (36) we have

trp
n

ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcjq

“ tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 α
t
jhpαjq

l´1
ÿ

m“0

cj,mb˚
m

¯

“

l´1
ÿ

m“0

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb˚

m

¯

cj,m. (39)

From (39), we see that in order to recover ci we need to access
only those symbols cj,m for which

trp
n

ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb˚

mq ‰ 0.

Now, the element
śn

i1‰i ei1
śn

j1‰i α
tj1

j1 αt
jhpαjq does not

include αi, βi, and thus it can be written as an Fp-linear
combination of the elements in the set Ai. By Lemma 10,
it can further be expressed as an Fp-linear combination
of the elements in the set Bi. Therefore, the elements
śn

i1“1 ei1
śn

j1‰i α
tj1

j1 αt
jhpαjq for ei1 P Ei1 and tj1 “ 0, . . . , s´

1 can be linearly generated over Fp by the set
ď

eiPEi

eiBi Ď B.

Since B and B˚ are dual bases,

tr
´

n
ź

i1“1

ei1

n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb˚

m

¯

‰ 0

if and only if bm P
Ť

eiPEi
eiBi. It follows that to calculate

the left hand side of (37), we need to access
ř

eiPEi
|eiBi| “

pil{spi “ l{s symbols on each helper node j P R, which
implies that the node ci affords optimal-access repair.

In conclusion, we note that the repair scheme of each of
the nodes i relies on its own element βi. Looking back at the
construction of [21], Sec. III above, it contains one such β.
Thus, these codes can be furnished with a repair scheme that
has the optimal access property for any one (fixed) node in
the encoding; see also the discussion at the end of Sec. II-C.

B. Error correction with optimal access

In this section we present a repair scheme of the RS codes
defined in the beginning of Sec. IV-A that supports both the
optimal access and optimal error correction properties. The
scheme relies on a combination of ideas of Sections IV-A and
III. A full presentation of the proof would require us to repeat
the arguments in Sec. III-C; we shall instead confine ourselves
to pointing to the similarity of the starting point and argue
that once this is recognized, the remaining part is reproduced
directly following the proof in Sec. III-C.

Let us modify the construction of RS codes of Sec. IV-A
as follows. Let us assume that the number of helper nodes
is d. We will construct our RS code over the symbol field
K “ Fppα1, . . . , αn, β1, . . . , βnq (33), where as before,
degKi´1

pαiq “ pi but degFi
pβiq “ s :“ d´2e´k`1. Define

the code C :“ RSKpn, k,Ωq, where Ω “ tα1, . . . , αnu.

Without loss of generality suppose that the failed node is
the first one and let R Ď t2, 3, . . . , nu with |R| “ d, 2e` k ď

d ď n ´ 1 be the subset of helper nodes. Consider a basis of
K over Fp given by

Ťs´1
t“0 α

t
1Λ, where

Λ “

!

n
ź

i“1

ei

n
ź

j“2

α
tj
j | ei P Ei, i P rns;

tj “ 0, . . . , s ´ 1, j P rnszt1u

)

.

That this is a basis is apparent from (38).
Next, note that pv1α

t
1, . . . , vnα

t
nq P CK for some v “

pv1, . . . , vnq P pK˚qn and for t “ 0, . . . , n´k´1. Therefore,
for every λ P Λ we have

λv1α
t
1c1 “ ´

n
ÿ

j“2

λvjα
t
jcj , t “ 0, . . . , n ´ k ´ 1.

Let G1 :“ Fppα2, α3, . . . , αnq. Evaluating the trace trK{G1
on

both sides of the above equation, we obtain

trK{G1
pλv1α

t
1c1q “ ´

n
ÿ

j“2

αt
j trK{G1

pλvjcjq, (40)

t “ 0, . . . , n ´ k ´ 1.

The repair scheme for the code C is based on (40) in exactly
the same way as the repair scheme of Proposition 4 is based
on (10). Namely, suppose that there are invertible linear trans-
formations that map the vectors ptrK{G1

pλvjcjq, λ P Λq, j “

2, 3, . . . , n to codevectors in an MDS code of length n´1 and
dimension s`k´1. Then it is possible to correct e errors in the
information collected from the helper nodes upon puncturing
of this code to any d coordinates in the same way as is done
in Proposition 4. Thus, the main step is to prove existence of
such transformations. Here we observe that the terms involved
in (40) are formed of e1 times the remaining factors in λ. The
element e1 plays the same role as ei in (10), and the multiplier
in front of it in λ does not affect the proof. For this reason,
the required proof closely follows the proof in Sec. III-C, and
we do not repeat it here.

Thus, the vectors ptrK{G1
pλvjcjq, λ P Λq, j P R suffice to

recover the value of the failed node. We argue that these values
can be calculated by accessing the smallest possible number
of symbols on the helper nodes, and thus support the claim
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of optimal access. Let B “ pbmq be the basis of K over Fp

defined in Lemma 10, let B˚ “ pb˚
mq be its dual basis, and

let B1 “ tbm P b|pm1, m̄1q “ p0, 0qu. From (36), for every
λ P Λ and all j “ 2, 3, . . . , n we have the equality

trK{G1
pλvjcjq “ trK{G1

´

λ
l´1
ÿ

m“0

b˚
m

¯

ci,m.

Let Γ be a basis for G1 over Fp. Then from the above equation,
for every γ P Γ we have

trG1{Fp
pγ trK{G1

pλvjcjqq

“ trG1{Fp

´

γ trK{G1

´

λ
l´1
ÿ

m“0

b˚
m

¯¯

ci,m.

Since γ P G1 and trG1{Fp
˝ trK{G1

“ trK{Fp
, it follows that

trK{Fp
pγλvjcjq “ trK{Fp

´

γλ
l´1
ÿ

m“0

b˚
m

¯

ci,m. (41)

Note that the elements γλ “ γ
śn

i“1 ei
śn

j“2 α
tj
j can be

written as Fp-linear combinations of the elements in the set
Ť

e1PE1
e1B1 Ď B. By the duality of B and B˚, the number

of symbols that each helper node accesses to calculate the
left hand side of (41) equals |

Ť

e1PE1
e1B1| “ l{s, which, as

remarked in the introduction, is the smallest possible number
of symbols. Further, since Γ is a basis of G1 over Fp, we can
recover trK{G1

pλvjcjq from the set ttrK{Fp
pγλvjcjq | γ P Γu.

Finally, evaluating the trace trG1{Fp
on both sides of (40),

we obtain

trK{Fp
pλv1α

t
1c1q “ ´

n
ÿ

j“2

trG1{Fp
pαt

j trK{G1
pλvjcjqq,

t “ 0, . . . , s ´ 1. (42)

Since the set tλv1α
t
1 | λ P Λ; t “ 0, . . . , s ´ 1u forms a basis

for K over Fp, we conclude from (42) that we can perform
optimal error correction for the code C with optimal access.
As a final remark, the locations of the entries accessed on each
helper node depend only on the index of the failed node, and
are independent of the index of the helpers.

V. EVERY SCALAR MSR CODE AFFORDS OPTIMAL-ACCESS
REPAIR

This section is devoted to establishing the claim in the title.
We begin with a discussion of repair schemes with a particular
property of having constant repair subspaces and use it to show
that every MSR code with this property can be repaired with
optimal access. In the last part of the section we remove this
assumption, establishing the general result, which is stated as
follows.

Theorem 12. Let C be an pn, kq scalar MDS code over a finite
field K of length n such that any single failed node can be
optimally repaired from any subset of d helper nodes, k`1 ď

d ď n´1 with optimal repair bandwidth. Then there exists an
explicit procedure that supports optimal-access repair of any
single node from any subset of d helpers, k ` 1 ď d ď n ´ 1.

A. Constant repair subspaces

Observe that the repair scheme presented above in Sec. IV
has the property that for a given index of the failed node i, the
procedure for recovering the node contents does not depend on
the chosen subset of d helper nodes. Indeed, to repair node i,
the scheme accesses symbols tcj,m | m : bm P

Ť

eiPEi
eiBiu

on the node j, i.e., the symbols cj,m with m “ pmi, m̄iq and

pmi, m̄iq P tpu ` qs, uq | u “ 0, . . . , s ´ 1;

q “ 0, . . . , ppi ´ 1q{s ´ 1u Y tppi ´ 1, s ´ 1qu.

Clearly the values of m are independent of j P R. This simpli-
fies the implementation, and therefore represents a desirable
property of the scheme. In this section, we generalize this
observation and give conditions for it to hold.

Let C be an pn, kq linear scalar MDS code of length n over
finite field K, and let r “ n ´ k be the number of parity
nodes. Let F be a subfield of K such that rK : F s “ l. For a
subset M Ă K we write dimF pMq to refer to the dimension
of the subspace spanned by the elements of M over F . The
following result is a starting point of our considerations.

Theorem 13 ([16]). The code C has an optimal linear repair
scheme over F with repair degree d “ n´1 if and only if for
every i “ 1, . . . , n there exist l codewords pcK

t,1, . . . , c
K
t,nq P

CK, t “ 1, . . . , l such that

dimF pcK
1,i, . . . , c

K
l,iq “ l,

n
ÿ

j‰i

dimF pcK
1,j , . . . , c

K
l,jq “

pn ´ 1ql

r
.

We go on to define the main object of this section.

Definition 2. Let C be a scalar MDS code that has a linear
repair scheme for repair of a single node with optimal band-
width, based on dual codewords cK

1 , . . . , c
K
l . The scheme is

said to have constant repair subspaces if for every i “ 1, . . . , n
and every R Ă rnsztiu, |R| “ d, the information downloaded
from a helper node cj , j P R to repair the failed node
ci does not depend on the index j. Namely, the subspace
S

piq
j :“ SpanF pcK

1,j , . . . , c
K
l,jq, j P R is independent of the

index j, i.e., Spiq
j “ Spiq for some linear subspace Spiq Ď K.

The notion of constant repair subspaces was mentioned
earlier in the literature on general MSR codes, for instance,
see [11].

The algorithms below in this section rely on a proposition
which we cite from [21].

Proposition 14. Let C be an pn, n ´ rq MDS code and let
rns “ JYJc, where J, |J | “ r is the set of parity coordinates.
Let H “ ph1, . . . , hnq be a parity-check matrix of C, where hi

denote its columns. The code C has an optimal linear repair
scheme over F with repair degree d “ n ´ 1 if and only if
for each j P Jc there exist r vectors au P Kl{r, u “ 1, . . . , r
such that

dimF pAhjq “ l, (43)

dimF pAhiq “
l

r
, i P t1, . . . , nuztju, (44)
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where A :“ Diagpa1, . . . , arq is an lˆr block-diagonal matrix
with blocks formed by single columns. Furthermore for every
subspace Au “ SpanF pauq, u “ 1, . . . , r (the F -linear span
of the entries of au) we have

dimF pAuq “
l

r
. (45)

Remark 2. The matrix A in Proposition 14 depends on the
matrix H and the choice of J , but we suppress this dependence
from the notation for simplicity.

Before presenting the algorithms for finding a basis for
optimal-access repair we briefly digress to state some con-
ditions for an optimal linear repair scheme to have constant
repair subspaces. First, we rephrase their definition based
Proposition 14.

Definition 3. An optimal linear repair scheme for the code
C is said to have constant repair subspaces if for every j “

1, . . . , n there exists a vector h P Kr such that

SpanF pAhiq “ SpanF pAhq

for every i P t1, . . . , nuztju. Here the matrix A is as in
Proposition 14, and it depends on H and the particular choice
of the information coordinates.

Proposition 15. Suppose that A1 “ A2 “ ¨ ¨ ¨ “ Ar for each
i “ 1, . . . , n, and that for every j P t1, . . . , nuztiu there exists
v P t1, . . . , ru such that hv,j P F , then there exists an optimal
linear repair scheme for the code C which has constant repair
subspaces.

Proof. Let V denote any of the (coinciding) repair subspaces.
By Proposition 14, we have dimF pVq “ l{r. Suppose that
J is the subset of parity coordinates, and the matrix H is
represented in systematic form. In this case, for every j P Jc,
hu,j ‰ 0 for all u “ 1 . . . , r, and we have dimF pVhu,jq “ l{r.
Note that

SpanF pAhjq “

r
ÿ

u“1

Auhu,j “

r
ÿ

u“1

Vhu,j , j P t1, . . . , nuztiu,

(46)

where the sum on the right is a sum of linear spaces.
By Proposition 14, we also have l{r “ dimF pAhjq “

dimF p
řr

u“1 Vhu,jq. Therefore,

Vh1,j “ Vh2,j “ ¨ ¨ ¨ “ Vhr,j , j P Jcztiu. (47)

Since for each j ‰ i there exists v P t1, . . . , ru such that
hv,j P F, it follows that Vhv,j “ V. On account of (46) and
(47), we have SpanF pAhjq “ V “ SpanF pA ¨ 1q for every
j P t1, . . . , nuztiu, where 1 is the all-ones column vector of
length r. By Definition 3 this completes the proof.

The assumptions of this proposition are satisfied, for in-
stance, for the RS subfamily of [21], which therefore have
constant repair subspaces (this observation was previously not
stated in published literature).

Proposition 16. If there exists an optimal linear repair scheme
for the code C which has constant repair subspaces, then A1 “

A2 “ ¨ ¨ ¨ “ Ar for every j “ 1, . . . , n.

Proof. Indeed, since HJ is the identity, for j P J we have
SpanF pAhjq “ At for some t P t1, . . . , ru. It follows that
A1 “ A2 “ ¨ ¨ ¨ “ Ar.

B. Optimal access for the case of constant repair subspaces

The codes constructed in Sec. IV above form essentially
the only known example of RS codes that afford repair with
optimal access. For instance, the optimal-repair RS codes in
[21] are not known to support optimal access, and the repair
scheme in [21] is far from having this property. Prior works
on the problem of access cost for RS repair [23]–[25] also
do not give examples of repair schemes with optimal access.
In this section we show that any family of scalar MDS codes
with optimal repair can be furnished with a repair scheme
with optimal access, and this includes the code family in [21].
Unfortunately, our results are not explicit; rather, we present
an algorithm that produces a basis for representing nodes of
the codeword that supports optimal-access repair.

As in Sec. V-A, let F be a subfield of K such that
rK : F s “ l. Let C be an pn, k “ n ´ rq linear scalar
MDS code of length n over K equipped with a repair scheme
over F that attains the bound (2) for repair of a single node.
Let us represent C in systematic form, choosing a subset
J Ď t1, . . . , nu, |J | “ r for the parity symbols and Jc for
the data symbols. Let H be an r ˆ n parity-check matrix for
C such that HJ is the r ˆ r identity matrix,

In this section we assume that there exists an optimal repair
scheme over F for C that has constant repair subspaces,
and that the repair degree is d “ n ´ 1. We will lift both
assumptions and show that our result holds in general in
the next section. For a given j “ 1, . . . , n consider the
subspaces Ai, i “ 1, . . . , r defined in Proposition 14. Under
the assumption of constant repair subspaces, they coincide,
and we use the notation Vj to refer to any of them.

Consider the following procedure (Algorithm 1) that inter-
atively collects vectors to form a basis of K{F that supports
optimal-access repair.

Algorithm 1: Construction of an optimal basis
Input: Subspaces V1, . . . ,Vn.
Output: A basis B for K over F .

1 for j Ð 1 to n do
2 Bj Ð H;
3 Bj Ð t0u;

4 for i Ð 0 to n ´ 1 do
5 foreach I Ď t1, . . . , nu such that |I| “ i do
6 Ī Ð t1, . . . , nuzI;
7 UI Ð

Ş

jPĪ Vj ;
8 for j Ð 1 to n do
9 if j P Ī then

10 Bj Ð Bj ` UI ;
11 Extend the set Bj to a basis of Bj over

F ;

12 B̄ Ð
Ťn

j“1 Bj ;
13 Extend the set B̄ to a basis B of K over F ;
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Proposition 17. Upon completion of Algorithm 1 we have
Bj “ Vj for j “ 1, . . . , n, and thus Bj is a basis for Vj over
F .

Proof. From Algorithm 1, we have

Bj “

n´1
ÿ

i“0

ÿ

|I|“i,
IĎt1,...,nu

1tjPĪu

č

tPĪ

Vt, (48)

so clearly Bj Ď Vj . Suppose that v P VjzBj , then there exists
a subset Ī Ă t1, . . . , nu with 1 ď |Ī| ď n such that j P Ī and
that

v R
č

tPĪ

Vt.

However, Bj Ě
Ş

tPĪ Vt for every Ī with 1 ď |Ī| ď n such
that j P Ī , which is a contradiction. Hence, Bj “ Vj .

Proposition 18. Algorithm 1 returns a basis B for K over F .

Proof. From Algorithm 1, for every Ī Ď t1, . . . , nu with 1 ď

|Ī| ď n and for every j P Ī , the set Bj contains a basis of
the subspace UI “

Ş

tPĪ Vt. It follows that for every Ī Ď

t1, . . . , nu with 1 ď |Ī| ď n, the set
Ş

tPĪ Bt is a basis for
Ş

tPĪ Vt.

Now by Proposition 17, B1, B2 are bases for V1,V2 over
F , respectively. From the above, we have B1XB2 is a basis of
V1 XV2 over F . It follows that dimF pV1 XV2q “ |B1 XB2|.
Then

dimF pV1 ` V2q “ dimF pV1q ` dimF pV2q

´ dimF pV1 X V2q

“ |B1| ` |B2| ´ |B1 X B2|

“ |B1 Y B2|.

By definition, SpanF pB1 Y B2q “ V1 ` V2, and so the set
B1 Y B2 is a basis of V1 ` V2 over F . By a straightforward
induction argument, we conclude that

Ťn
j“1 Bj is a basis for

řn
j“1 Vj over F .

Since
řn

j“1 Vj Ď K, we have |
Ťn

j“1 Bj | ď rK : F s “ l.
It follows that we can extend the set B̄ “

Ťn
j“1 Bj to a basis

B of K over F .

Now we are ready to present a repair scheme for the code
C with the optimal access property. Let B “ pbmq be the basis
of K over F constructed above and let B˚ “ pb˚

mq be its dual
basis. Given a codeword c “ pc1, . . . , cnq P C, we expand its
coordinates in the basis B˚, writing

ci “

l´1
ÿ

m“0

ci,mb˚
m. (49)

Suppose that ci is the erased coordinate of c (the “failed
node”). The starting point, as above, is Eq. (34), and our first
step is to choose l dual codewords cK

t , t “ 1, . . . , l that support
the repair. Construct the l ˆn matrix CK “ AH and take the
rows of C to be the needed codewords cK

t . Since cK
t ¨ c “ 0

for all t, we have cK
t,ici “ ´

řn
j“1
j‰i

cK
t,jcj for all t “ 1, . . . , l.

Computing the trace trK{F , we obtain

trK{F pcK
t,iciq “ ´

n
ÿ

j‰i

trK{F pcK
t,jcjq

“ ´

n
ÿ

j‰i

trK{F pcK
t,j

l´1
ÿ

m“0

cj,mb˚
mq

“ ´

n
ÿ

j‰i

l´1
ÿ

m“0

trK{F pcK
t,jb

˚
mqcj,m. (50)

Note that for each j P t1, . . . , nuztiu, we have

SpanF pcK
1,j , . . . , c

K
l,jq “ SpanF pAhjq “ Vi, (51)

where the last equality follows by the assumption of constant
repair subspaces. By Proposition 17, the set Bi Ď B is a basis
for Vi over F . Therefore, cK

t,j can be linearly generated by
the set Bi for every t “ 1, . . . , l. More precisely, let Bi “

tbi,u |u “ 1, . . . , l{ru, then we have

cK
t,j “

l{r
ÿ

u“1

γj,ubi,u (52)

for some γj,u, u “ 1, . . . , l{r. Substituting into (50), we obtain
the equality

trK{F pcK
t,iciq “ ´

n
ÿ

j‰i

l´1
ÿ

m“0

l{r
ÿ

u“1

trK{F pbi,ub
˚
mqγj,ucj,m. (53)

It follows that to determine the left-hand side of (53), on each
node cj , j ‰ i the repair procedure needs to access the set
of symbols tcj,m | trK{F pbi,ub

˚
mq “ 1u. Since Bi Ď B and

B˚ is the dual basis of B for K over F, the cardinality of
this subset equals |Bi| “ l{r, verifying that the repair can be
accomplished with the minimum possible access cost.

C. Optimal-access repair for general scalar MSR codes

In this section we extend the above arguments for optimal
repair schemes that do not necessarily have constant repair
subspaces. This is done by a simple extension of Algorithm 1.
We use the same notation as in Sec. V-B.

1) Repair degree d “ n ´ 1:

Assume that the index of the failed node is i P t1, . . . , nu. By
Proposition 14, for each j P t1, . . . , nuztiu, we have

dimF pAuq “ dimF pAhjq “
l

r
, u “ 1, . . . , r.

It follows that for j P Jcztiu we have

A1hj,1 “ A2hj,2 “ ¨ ¨ ¨ “ Arhj,r.

Let J “ pi1, . . . , irq be the set of parity nodes written in
increasing order of their indices, and for it P J let σpitq “ t.
Define

V
pjq
i “

#

A1hj,1 j P Jcztiu,

Aσpjq j P J.
(54)
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Algorithm 2: Construction of an optimal basis; repair
degree d “ n ´ 1

Input: Subspaces V
pjq
i , i P t1, . . . , nu, j P t1, . . . , nuztiu.

Output: A basis B for K over F .
1 for i Ð 1 to n do
2 foreach j P t1, . . . , nuztiu do
3 B

pjq
i Ð H;

4 B
pjq
i Ð t0u;

5 Ω Ð t1, . . . , nu2ztpi, iq | i “ 1, . . . , nu;
6 for u Ð 0 to n2 ´ n ´ 1 do
7 foreach I Ď Ω such that |I| “ u do
8 Ī Ð ΩzI;
9 UI Ð

Ş

pi,jqPĪ V
pjq
i ;

10 for i Ð 1 to n do
11 foreach j P t1, . . . , nuztiu do
12 if pi, jq P Ī then
13 B

pjq
i Ð B

pjq
i ` UI ;

14 Extend the set Bpjq
i to be a basis of

B
pjq
i over F ;

15 B̄ Ð
Ťn

i“1

Ťn
j‰i B

pjq
i ;

16 Extend the set B̄ to be a basis B for K over F ;

Proposition 19. When Algorithm 2 terminates, we have
B

pjq
i “ V

pjq
i for i P t1, . . . , nu and j P t1, . . . , nuztiu, and

thus B
pjq
i is a basis for V

pjq
i over F .

Proposition 20. Algorithm 2 returns a basis B for K over F .

The proofs of Propositions 19 and 20 follow closely the
proofs of Proposition 17 and 18 and will be omitted.

Now it is not difficult to see that we can repair the failed
node ci with optimal access cost relying on the basis B.
Indeed, for each j P t1, . . . , nuztiu, we have

SpanF pcK
1,j , . . . , c

K
l,jq “ SpanF pAhjq “ V

pjq
i . (55)

By Algorithm 2 and Proposition 19, the set Bpjq
i Ď B is a basis

for V
pjq
i over F . Therefore, cK

t,j can be linearly generated by
the set B

pjq
i for every t “ 1, . . . , l. Let B

pjq
i “ tb

pjq
i,u | u “

1, . . . , l{ru. Then, similarly to (52) and (53), we have

cK
t,j “

l{r
ÿ

u“1

γj,ub
pjq
i,u, (56)

trK{F pcK
t,iciq “ ´

n
ÿ

j‰i

l´1
ÿ

m“0

l{r
ÿ

u“1

trK{F pb
pjq
i,ub

˚
mqγj,ucj,m. (57)

Therefore, each node cj , j ‰ i needs to access the set of
symbols tcj,m | trK{F pb

pjq
i,ub

˚
mq “ 1u, whose cardinality is

given by |B
pjq
i | “ l{r. It follows that the repair scheme has

the optimal access property.

2) Arbitrary repair degree:

So far we assumed that the repair relies on all the surviving
nodes except for the single failed node, i.e., |R| “ n ´ 1. In
this section we derive the most general version of the result of
this section, that any scalar MDS code can be repaired with
optimal access from any subset of helper nodes R of size
d, k ` 1 ď d ď n ´ 1. Let s :“ d ´ k ` 1.

Let G “ rg1|g2| . . . |gns be a k ˆ n generator matrix of C,
where gi is a k-column over K. Let i P t1, . . . , nu and let
R S tiu be a subset of d helper nodes. Let R̂ “ R Y tiu
and G

R̂
be the k ˆ pd ` 1q submatrix formed by the columns

gj , j P R̂. Clearly, G
R̂

defines a pd`1, kq punctured code C
R̂

of the code C. Since C is MDS, the code C
R̂

is itself MDS.

Let HR̂ “ ph
pR̂q
i , i “ 1, . . . , d`1q be an the sˆpd`1q parity-

check matrix of the code C
R̂

. Recalling Remark 1, the code
generated by HR̂ is a shortened code pCKqR̂, i.e., a subcode
of CK formed of the codewords with zeros in the coordinates
in R̂c.

Suppose that the code C can optimally repair any single
failed node i from the coordinates in R “ R̂ztiu. This means
that the MDS code C

R̂
can optimally repair any single failed

node i from the helper nodes R̂ztiu. Let J Ď R̂, |J | “ s
and i R J and assume without loss of generality that the
submatrix HR̂

J is an sˆs identity matrix. Now Proposition 14
applied for the code C

R̂
guarantees that there exist vectors

au P Kl{s, u “ 1, . . . , s such that the block-diagonal matrix
A “ Diagpa1, . . . , asq satisfies

dimF pAh
pR̂q
i q “ l, (58)

dimF pAh
pR̂q
j q “

l

s
, j P R̂ztiu, (59)

dimF pAuq “
l

s
, u “ 1, . . . , s, (60)

where Au :“ SpanF pauq.

It follows from (59) and (60) that for j P R̂zpJ Y tiuq, we
have

A1h
pR̂q
j,1 “ A2h

pR̂q
j,2 “ ¨ ¨ ¨ “ Ash

pR̂q
j,s .

Let us define

V
pjq

R̂,i
“

#

A1h
pR̂q
j,1 j P R̂zpJ Y tiuq,

Aσpiq j P J,
(61)

where σ is a bijection between J and t1, . . . , su defined as
before (54).

The procedure to construct a basis for optimal-access repair
in this case is constructed as a modification of Algorithm 2,
and is given in Algorithm 3.

Similarly to the previous sections, we have the following
propositions, whose proofs are analogous to the proofs of
Propositions 17 and 18.

Proposition 21. When Algorithm 3 terminates, we have
B

pjq

R̂,i
“ V

pjq

R̂,i
for R̂ Ď t1, . . . , nu with |R̂| “ d ` 1, i P R̂,

and j P R̂ztiu, and thus B
pjq

R̂,i
is a basis of Vpjq

R̂,i
over F .

Proposition 22. Algorithm 3 returns a basis B of K over F .

The basis of K over F constructed in the algorithm enables
us to construct an optimal-access repair scheme for the code C.
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Algorithm 3: Construction of an optimal basis; arbitrary
repair degree

Input: Subspaces V
pjq

R̂,i
for each R̂ Ď t1, . . . , nu such that

|R̂| “ d ` 1 and i P R̂, j P R̂ztiu.
Output: A basis B for K over F .

1 foreach R̂ Ď t1, . . . , nu such that |R̂| “ d ` 1 do
2 foreach i P R̂ do
3 foreach j P R̂ztiu do
4 B

pjq

R̂,i
Ð H;

5 B
pjq

R̂,i
Ð t0u;

6 Ω Ð tpR̂, i, jq | R̂ Ď t1, . . . , nu, i P R̂, j P R̂ztiuu;
7 for u Ð 0 to

`

n
d`1

˘

ppd ` 1q2 ´ pd ` 1qq ´ 1 do
8 foreach I Ď Ω such that |I| “ u do
9 Ī Ð ΩzI;

10 UI Ð
Ş

pR̂,i,jqPĪ V
pjq
i ;

11 foreach R̂ Ď t1, . . . , nu such that |R̂| “ d ` 1 do
12 foreach i P R̂ do
13 foreach j P R̂ztiu do
14 if pR̂, i, jq P Ī then
15 B

pjq

R̂,i
Ð B

pjq

R̂,i
` UI ;

16 Extend the set Bpjq

R̂,i
to be a basis

of Bpjq

R̂,i
over F ;

17 B̄ Ð
Ť

R̂Ďt1,...,nu,|R̂|“d`1

Ť

iPR̂

Ť

j‰R̂ztiu B
pjq

R̂,i
;

18 Extend the set B̄ to be a basis B of K over F ;

Let d P tk`1, . . . , n´1u be the repair degree. Let pc1, . . . , cnq

be a codeword of the code C written on the storage nodes,
and suppose that the failed node is i and that R be the set of
d helper nodes. Let A be the block-diagonal matrix defined
above, constructed with respect to i and HR̂. Define the matrix
CK “ AHR̂ and note that its rows cK

t , t “ 1, . . . , l form
codewords of the code dual to the punctured code C

R̂
. Letting

cK
t “ pcK

t,iqiPR, we can write

cK
t,ici “ ´

ÿ

jPR

cK
t,jcj . (62)

Similarly to (50), we have

trK{F pcK
t,iciq “ ´

ÿ

jPR

l´1
ÿ

m“0

trK{F pcK
t,jb

˚
mqcj,m, (63)

where B˚ “ pb˚q is the dual basis of the basis B. Note that
for j P R we have

SpanF pcK
1,j , . . . , c

K
l,jq “ SpanF pAhjq “ V

pjq

R,i. (64)

By Algorithm 3 and Proposition 21, the set Bpjq

R,i Ď B forms a
basis for the subspace V

piq
R,j over F . Therefore, the element cK

t,j

can be linearly generated by the set Bpjq

R,i for every t “ 1, . . . , l.

Let Bpjq

R,i “ tb
pjq

R,i,u |u “ 1, . . . , l{su. Then, similarly to (52)
and (53), we have

cK
t,j “

l{s
ÿ

u“1

γj,ub
pjq

R,i,u, (65)

trK{F pcK
t,iciq “ ´

ÿ

jPR

l´1
ÿ

m“0

l{s
ÿ

u“1

trK{F pb
pjq

R,i,ub
˚
mqγj,ucj,m.

(66)

Therefore, each node cj , j P R needs to access the set
of symbol tcj,m | trK{F pb

pjq

R,i,ub
˚
mq “ 1u, whose cardinality

equals |B
pjq

R,i| “ l{s. It follows that the constructed repair
scheme has the optimal access property.

This completes the proof of Theorem 12.

VI. CONCLUDING REMARKS

We have shown that error correction is feasible in the
original code family of [21] without the increase of the
extension degree of the locator field of the code (the node size).
Namely, codes from [21] use extension degree l “ pd´k`1qL,
where L is the product of the first n distinct primes in an
arithmetic progression,

L “

ˆ n
ź

i“1
pi”1 mod pd´k`1q

pi

˙

.

The lower bound on l from [21], necessary for repair of a
single node, has the form l ě

śk´1
i“1 pi, where pi is the i-th

smallest prime. Asymptotically for fixed d´k and growing n
we obtain the following bounds on the node size: Ωpkkq ď l ď

Opnnq. Essentially the same node size is used in this paper for
repair with error correction. At the same time, the explicit RS
code family with optimal access that we construct comes at the
expense of larger node size, namely l “ pd´ k ` 1qnL. Since
there is an optimal-access repair scheme for every scalar MSR
code, this leaves a gap between what is known explicitly and
what is shown to be possible, which represents a remaining
open question related to the task of optimal repair of RS codes.

APPENDIX A
PROOF OF PROPOSITION 7

First we present the proof for the case h “ 0 (strictly speak-
ing, we do not have to isolate it, but it makes understanding
the general case much easier). In this case, definition (21),
(22) simplifies as follows. Let f0pxq “ xp1 ´ fpxq. Write f0
as

f0pxq “ a0 ` a1x ` a2x
2 ` ¨ ¨ ¨ ` ap1´1x

p1´1

“

pp1´1q{s´1
ÿ

q“0

xqsf0,qpxq,

where
f0,0pxq “ a0 ` a1x ` ¨ ¨ ¨ ` as´1x

s´1

f0,1pxq “ as ` as`1x ` ¨ ¨ ¨ ` a2s´1x
s´1

. . .

f0,pp1´1q{s´1pxq “ ap1´1´s ` ap1´sx ` ¨ ¨ ¨ ` ap1´1x
s,
(67)
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so that the degree of the last polynomial is ď s and the degrees
of the remaining ones are ď s ´ 1. Obviously, we have

αp1

1 “ f0pα1q (68)

“

pp1´1q{s´1
ÿ

q“0

αqs
1 f0,qpα1q. (69)

As before, we start with (10), which implies that for any
polynomial g P F1rxs of degree deg g ď n ´ k ´ 1, we have

trpeiv1gpα1qc1q “ ´

n
ÿ

j“2

gpαjq trpeivjcjq. (70)

Take ei “ αqs
1 and gpxq “ xtf0,qpα1q and sum on q on the

left, then from (69) we obtain trpv1α
t
1f0pα1qc1q. Summing on

q on the right of (70) and using (68), we conclude that

trpv1α
p1`t
1 c1q “ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt
jf0,qpαjq trpαqs

1 vjcjq

(71)
for all t “ 0, 1, . . . , n ´ k ´ s ´ 1, Note that the constraint
t ď n ´ k ´ s ´ 1 is implied by the condition degpgq “

degpxtf0,qpxqq ď n ´ k ´ 1 needed in order to use (70) (and
(10)). Change the variable t ÞÑ pt´1q to write the last equation
as

trpv1α
p1´1`t
1 c1q “

´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt´1
j f0,qpαjq trpαqs

1 vjcjq,

t “ 1, 2, . . . , n ´ k ´ s. (72)

From (17) and the fact that

s´1
č

u“1

tu ´ s, u ´ s ` 1, . . . , u ´ s ` n ´ k ´ 1u

“ t´1, 0, 1, . . . , n ´ k ´ su,

we obtain

trpβuαp1´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt´u`s
j trpβuαu`p1´s´1

1 vjcjq,

´1 ď t ď n ´ k ´ s, 1 ď u ď s ´ 1.

Summing these equations on u “ 1, 2, . . . , s ´ 1, we obtain
the relation

tr
´

s´1
ÿ

u“1

βuαp1´1`t
1 v1c1

¯

“ ´

n
ÿ

j“2

s´1
ÿ

u“1

αt´u`s
j trpβuαu`p1´s´1

1 vjcjq,

´ 1 ď t ď n ´ k ´ s.

For each t “ 1, 2, . . . , n ´ k ´ s let us add this equation and
(72). This gives n ´ k ´ s relations of the form

tr
´

s´1
ÿ

u“0

βuαp1´1`t
1 v1c1

¯

“ ´

n
ÿ

j“2

´

s´1
ÿ

u“1

αt´u`s
j trpβuαu`p1´s´1

1 vjcjq

`

pp1´1q{s´1
ÿ

q“0

αt´1
j f0,qpαjq trpαqs

1 vjcjq

¯

.

Observe that the left-hand side of this equation is the same as
the left-hand side of (20). Therefore,

n
ÿ

j“2

αt
j tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

“

n
ÿ

j“2

´

s´1
ÿ

u“1

αt´u`s
j trpβuαu`p1´s´1

1 vjcjq

`

pp1´1q{s´1
ÿ

q“0

αt´1
j f0,qpαjq trpαqs

1 vjcjq

¯

,

1 ď t ď n ´ k ´ s.

Replacing t ´ 1 with t in this equation, we obtain that

n
ÿ

j“2

αt
j

´

s´1
ÿ

u“1

αs´u`1
j trpβuαu`p1´s´1

1 vjcjq

`

pp1´1q{s´1
ÿ

q“0

f0,qpαjq trpαqs
1 vjcjq

´ αj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯¯

“ 0,

0 ď t ď n ´ k ´ s ´ 1.

By Proposition 1, the vector

´

s´1
ÿ

u“1

αs´u`1
j tr

´

βuαu`p1´s´1
1 vjcj

¯

`

pp1´1q{s´1
ÿ

q“0

f0,qpαjq trpαqs
1 vjcjq

´ αj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

, j “ 2, . . . , n
¯

(73)

is contained in a GRS code of length n ´ 1 and dimension
s ` k ´ 1. This proves the case h “ 0 of the proposition.

Now let us consider the general case 0 ď h ď s ´ 1. From
(21) and (22) we obtain

αp1`h
1 “ fhpα1q “

pp1´1q{s´1
ÿ

q“0

αqs
1 fh,qpα1q. (74)

This relation enables us to use the argument that yielded (71)
above: Take ei “ αu`qs

1 βu and gpxq “ xtfh,qpxq in (70)
and sum on q “ 0, 1, . . . , pp1 ´ 1q{s ´ 1. We obtain for h “

0, . . . , s ´ 1 and u “ 0, . . . , s ´ 1 ´ h

trpαp1`h`u`t
1 βuv1c1q

“

pp1´1q{s´1
ÿ

q“0

trpαqs`u`t
1 βufh,qpα1qv1c1q
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“ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt
jfh,qpαjq trpαu`qs

1 βuvjcjq,

t “ 0, 1, . . . , n ´ k ´ s ´ 1.

The restriction t ď n ´ k ´ s ´ 1 is imposed in the same
way as in (71) (namely, it is necessary that degpxtfh,qpxqq ď

n ´ k ´ 1). Replacing h ` u with h in the last equation, we
obtain that

trpαp1`h`t
1 βuv1c1q

“ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt
jfh´u,qpαjq trpαu`qs

1 βuvjcjq,

0 ď h ď s ´ 1, 0 ď u ď h, 0 ď t ď n ´ k ´ s ´ 1.

Let us sum these equations on u “ 0, 1, . . . , h to obtain

trpαp1`h`t
1

h
ÿ

u“0

βuv1c1q

“ ´

n
ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt
jfh´u,qpαjq trpαu`qs

1 βuvjcjq,

0 ď h ď s ´ 1, 0 ď t ď n ´ k ´ s ´ 1.

Replacing t with t ´ 1, we obtain that

tr
´

αp1´1`h`t
1

h
ÿ

u“0

βuv1c1

¯

“ ´

n
ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1
j fh´u,qpαjq trpαu`qs

1 βuvjcjq,

0 ď h ď s ´ 1, 1 ď t ď n ´ k ´ s. (75)

According to (17) and the fact that

s´1
č

u“h`1

tu ´ s, u ´ s ` 1, . . . , u ´ s ` n ´ k ´ 1u

“ t´1, 0, 1, . . . , n ´ k ´ s ` hu,

for 0 ď h ď s ´ 1, we have

trpβuαp1´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt´u`s
j trpβuαu`p1´s´1

1 vjcjq,

´1 ď t ď n ´ k ´ s ` h, h ` 1 ď u ď s ´ 1.

Replacing t with t ` h, we have

trpβuαp1´1`h`t
1 v1c1q

“ ´

n
ÿ

j“2

αh`t´u`s
j trpβuαu`p1´s´1

1 vjcjq,

´ h ´ 1 ď t ď n ´ k ´ s, h ` 1 ď u ď s ´ 1.

Summing these equations on u “ h ` 1, h ` 2, . . . , s ´ 1, we
obtain

tr
´

s´1
ÿ

u“h`1

βuαp1´1`h`t
1 v1c1

¯

“ ´

n
ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`s
j trpβuαu`p1´s´1

1 vjcjq,

´ h ´ 1 ď t ď n ´ k ´ s.

Finally, adding together this equation and (75), we obtain that

tr
´

s´1
ÿ

u“0

βuαp1´1`h`t
1 v1c1

¯

“ ´

n
ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1
j fh´u,qpαjq trpαu`qs

1 βuvjcjq

´

n
ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`s
j trpβuαu`p1´s´1

1 vjcjq,

0 ď h ď s ´ 1, 1 ď t ď n ´ k ´ s.
(76)

Going back to (20), let us perform the change t ÞÑ t`h, then
we obtain

tr
´

s´1
ÿ

u“0

βuαp1´1`h`t
1 v1c1

¯

“ ´

n
ÿ

j“2

αh`t
j tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

,

´ h ď t ď n ´ k ´ h ´ 1. (77)

For t “ 1, 2, . . . , n´k´s the left-hand sides of (76) and (77)
coincide, and therefore,

n
ÿ

j“2

αh`t
j tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

“

n
ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1
j fh´u,qpαjq trpαu`qs

1 βuvjcjq

`

n
ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`s
j trpβuαu`p1´s´1

1 vjcjq,

1 ď t ď n ´ k ´ s.

Replacing t by t ` 1, we obtain that

n
ÿ

j“2

αt
j

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjq trpαu`qs
1 βuvjcjq

`

s´1
ÿ

u“h`1

αh`1´u`s
j trpβuαu`p1´s´1

1 vjcjq

´ αh`1
j tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯¯

“ 0,

0 ď t ď n ´ k ´ s ´ 1.

The proof is complete.
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