
1

Capacity of dynamical storage systems
Ohad Elishco Alexander Barg

Abstract—We introduce a dynamical model of node repair
in distributed storage systems wherein the storage nodes are
subjected to failures according to independent Poisson processes.
The main parameter that we study is the time-average capacity
of the network in the scenario where a fixed subset of the nodes
support a higher repair bandwidth than the other nodes. The
sequence of node failures generates random permutations of the
nodes in the encoded block, and we model the state of the network
as a Markov random walk on permutations of n elements. As
our main result we show that the capacity of the network can
be increased compared to the static (worst-case) model of the
storage system, while maintaining the same (average) repair
bandwidth, and we derive estimates of the increase. We also
quantify the capacity increase in the case that the repair center
has information about the sequence of the recently failed storage
nodes.

I. INTRODUCTION

The problem of node repair based on erasure coding for
distributed storage aims at optimizing the tradeoff of network
traffic and storage overhead. In this form it was established
by [9] from the perspective of network coding. This model
was generalized in various ways such as concurrent failure
of several nodes [7], heterogeneous architecture [2], [18],
cooperative repair [14], and others. The existing body of works
focuses on the failure of a node (or several nodes) and the
ensuing reconstruction process, but puts less emphasis on the
time evolution of the entire network and the inherent stochastic
nature of the node failures. The static point of view of the
system and of node repair leads to schemes based on the
worst case scenario in the sense that the amount of data to
be stored is known in advance, the amount of data each node
transmits is known, and the repair capacity is determined
by the least advantageous state of the network. Switching
to evolving networks makes it possible to define and study
the average amount of data moved through the network to
accomplish repair, and may give a more comprehensive view
of the system.

Several models of storage systems have been considered in
the literature. The basic model of [9] assumes that the amount
of data that each node transmits to the repair center is fixed.
The analysis of the network traffic and storage overhead relies
on [1] which quantifies the maximum total amount of data (or

This paper was presented in part at the 2019 IEEE International Symposium
on Information Theory (ISIT), Paris, France, July 2019.

O. Elishco is with Institute for Systems Research, University of Maryland,
College Park, MD 20742, email ohadeli@umd.edu. His research is supported
by NSF grant CCF 1814487.

A. Barg is with Department of Electrical and Computer Engineering and
Institute for Systems Research, University of Maryland, College Park, MD
20742 and also with Institute for Problems of Information Transmission
(IITP), Russian Academy of Sciences, 127051 Moscow, Russia. Email:
abarg@umd.edu. His research was supported by NSF grants CCF1618603
and CCF1814487.

flow) that can arrive at a specific point, but does not specify
the exact amount of data that each node should transmit
at each time instant. To use the communication bandwidth
more efficiently, we assume the amount of data that each
node transmits changes over time, while the total amount
of communicated information averaged over multiple repair
cycles is fixed.

A similar idea appears, although not explicitly, in [17],
where the authors propose to perform repair of several failed
nodes within one repair cycle with the purpose of decreasing
the network traffic. The decrease can occur if the information
sent over a particular link can be used for repair of more
than one node, thereby decreasing the repair bandwidth. This
scheme, which the authors called “lazy repair,” views the
link capacity as a resource in network optimization, which
in general terms is similar to the underlying premises of our
study. A related, more general model of storage that accounts
for time evolution of the system, given in [16], attempts to
optimize tradeoffs between storage durability, overhead, repair
bandwidth, and access latency. Coding for minimizing latency
has been considered on its own in a separate line of works
starting with [13]. We refer to [4] for an overview of the
literature where access latency is considered in the framework
of queueing theory.

To further motivate the dynamical model, recall that cloud
storage systems such as Microsoft Azure or Google file system
encode information in blocks. The information to be stored is
accumulated until a block is full, and then the block is sealed:
the information is encoded, and the encoded fragments are dis-
tributed to storage nodes [8], [15]. This implies that a storage
node contains encoded fragments from several different blocks
and that the sets of storage nodes corresponding to different
blocks may intersect partially. Therefore, a storage node may
participate in recovery of several failed nodes simultaneously,
which implies that the capacity of the link between the node
and the repair center can be considered as a shared resource.

In this work, we make first steps toward defining a dynami-
cal model of the network with random failures. The prevalent
system model assumes homogeneous storage under which the
links from the nodes to the repair center all have the same
capacity. We immediately observe that the dynamical approach
does not yield an advantage in the operation or analysis of this
model. For this reason we study storage systems such that
the network is formed of two disjoint groups of nodes with
unequal (average) communication costs, which was proposed
in the static case in [2]. We show that, under the assumption
of uniform failure probability of the nodes, it is possible
to increase the size of the file stored in the system while
maintaining the same network traffic. This means that, while in
[2] the node transmits the same amount of data each time that
there is a failure, in our model the same node will transmit the

2

same amount of data in the average over a sequence of repair
cycles (the time). In addition, we provide a simple scheme
that increases the size of the stored file compared to the static
model, and study state-aware dynamical networks in which
the repair center has causal knowledge of the sequence of
the failed nodes. The idea of time averaging is motivated
by the assumption that the network exhibits some type of
ergodic behavior whereby the expected capacity can be related
to minimum cut averaged over time in a sample path of
the network evolution. Since in our derivations we rely on
the value of the minimum cut, in effect we are assuming
“functional repair” of the failed nodes as opposed to the more
stringent requirement of exact repair [5], [9].

In Section II, we present the dynamical model and give
a formal definition of the storage capacity. The evolution
of the network is formalized as a random walk on the set
of node permutations. Using this representation, we argue
that it suffices to limit oneself to discrete time. We also
prove the basic relationship between the storage capacity
of a continuous-time network and the time-average min-cut
of the corresponding discrete-time network (Sec. II-D). This
part relies on standard arguments related to the discrete-time
Markov chain obtained by sampling a Poisson process at the
times of change. The main results of this paper are collected
in Sec. III where we derive estimates of the average capacity
of the fixed-cost storage model. We examine two approaches
toward estimating the capacity. The first of them is related
to a specific transmission protocol while the second relies
on an averaging argument. In Section IV we analyze state-
aware networks and extend the ideas of the previous section
to obtain a lower bound on their capacity. Finally, in Section
V we consider the case of different failure probabilities of the
nodes and establish a partial result regarding a lower bound
on capacity.

II. MODEL DEFINITION

In this section we define a storage network that evolves
in time and describe the basic assumptions that characterize
this evolution. We also define a sequence of information flow
graphs, which enables us to define the capacity of a randomly
evolving network.

A. Evolution of the network

A storage network is a set of data storage units that save
information (“file”) with the purpose of being able to retrieve
it at a later time. The file is partitioned into fragments placed
on different storage drives or nodes of the system. Node
failures occur regularly, and to maintain the integrity of the
data, the file is encoded using an erasure-correcting code. This
incurs a penalty in terms of both the storage overhead and
increased network communication and delay in the course of
repair of the failed nodes. Once a node has failed, the system
initiates the reconstruction process in the course of which the
centralized computing unit (CU) downloads information from
a subset of functional storage nodes and performs the recovery
of the data stored on the failed node. The amounts of data
downloaded from the different helper nodes to the CU vary

over time, and are selected with the objective of minimizing
the repair bandwidth. Thus, the sequence of node repairs is a
time-dependent process which accounts for the time evolution
of the network in terms of the information flow graph.

Apart from node repair, the system also performs the
operation of data collection (reading the file). This operation is
performed by a Data Collector (DC) which contacts storage
nodes that allow the retrieval of the data. Since the file is
encoded with an erasure-correcting code, the DC can retrieve
the file by contacting a subset of the storage nodes.

Let us give a formal description of our storage network
model. A storage network is a pair (N , β) where N is a
triple N = (V,DC,CU) in which V is a set of n nodes
(storage units) V = {v1, . . . , vn}, DC is the data collector
node, and CU is the centralized computing unit node. The
real nonnegative vector β = (β1, . . . , βn) gives the maximum
average amount of data communicated from vi for the node
repair, and will be discussed in more detail below.

Every node vi, i ∈ [n] ≜ {1, 2, . . . , n} has the ability to
store up to α symbols over some finite alphabet F . To store
a file of size M we encode the file using an (n, k) code
C. The coordinates of the codeword are vectors over F, and
each coordinate is stored in its own storage node in V. To
read the file, the DC accesses at least k nodes, obtaining the
information stored in them, and retrieves the original file.

The time evolution of the storage network is related to a
random process of node failures. We begin our study assuming
that time is continuous starting at t = 0, when the encoded file
is stored in the network. The time instances t1, t2, . . . indicate
consecutive node failures. Let s = (s1, s2, . . .) ∈ V ∞ be the
sequence of failed nodes, where sj is the node that fails at time
tj . We assume that in order to restore the data to a failed node
(reconstruct the node), the CU contacts a group of storage
nodes, called helper nodes, accesses some of the data stored
on them, and uses this data to accomplish the recovery. In this
work we assume that CU contacts all the nodes except the
failed node, i.e., we assume that the number of helper nodes
is n− 1. Further, we assume that the definition of the storage
network includes a set of parameters βi, i = 1, . . . , n, where
βi is the maximum amount of information that is downloaded
from vi to CU for node repair, averaged over the time
instances ti. Specifically, we define a sequence of functions
{hj}j , where hj : Aj → N, that determines the number of
symbols that each node transmits for the recovery of the node
sj . Thus, node vi provides hj(vi) symbols of F for the repair
of node sj . It is assumed that lim supl→∞

1
l

∑l
j=1 hj(vi) ⩽ βi

for all i. The case of hj(vi) = βi will play a special role, and
we introduce a notation for it: Let

h∗
j (vi) =

{
βi for all j : sj ̸= vi

0 for all j : sj = vj .
(1)

We will also write h, h∗ to refer to the infinite sequences
{hj}j , {h

∗
j}j , respectively.

Note that by definition, the weight function h∗ does not
achieve β with equality. This is because h∗

j (vi) = 0 whence
sj = vi. Thus, it is possible to increase the maximum file
size that can be stored by taking hj(vi) = (1 + 1

n−1)h
∗
j (vi).

However, this increment in the file size will also increase the

3

repair bandwidth. Although, for simplicity, the results in this
paper are compared to the constraints β, it is straightforward
to compare the results to the constraints (1 + 1

n−1)β.
Given N and a sequence s = (s1, s2, . . .) of nodes, we

define a sequence of directed graphs {X s
j }j∈N, called infor-

mation flow graphs, where X s
j corresponds to t ∈ [tj , tj+1)

and is a subgraph of X s
j+1. When no confusion occurs, we

will write Xj . The sequence of information flow graphs is a
formalization of the notion of a (time-evolving) information
flow graph that appears in the foundational paper [9]. For ease
of description (and in accordance with [9]), we introduce a
new node ṽ which is called the source node.

Definition:
1: Let V0 = V ∪ ṽ and put X0 = (V0, E0), i.e., all the nodes

in N and the source node ṽ, with edges

E0 = {(ṽ, vi) : i ∈ [n]} .

The nodes in the set A0 := V are called the active nodes
of the graph X0. We define A−1 = {ṽ}.

2: Suppose that s1 = vi1 , i1 ∈ [n] and define a new node
(newcomer) v1i1 . The superscript 1 implies that there was
one failure and vi1 is the node that failed, and the recovered
node is v1i1 . The graph X1 = (V1, E1) is formed as follows:

V1 = V0 ∪ {CU1, v
1
i1}

E1 = E0 ∪ {(vj , CU1), j ∈ [n]\{i1}} ∪ (CU1, v
1
i1).

The set of active nodes of X1 is defined as A1 :=
(A0\{vi1}) ∪ {v1i1}.

3: Suppose we are given the graph Xj−1, j ⩾ 2. Suppose that
sj = vij and consider the corresponding node vj

′

ij
in Xj−1

for some j′ < j. The superscript j′ means that the node
vij is the (j′)th node that had been recovered (i.e., the
superscript serves as a counter for the number of failures).
Define a new node vjij and define Xj(Vj , Ej) as follows:

Vj = Vj−1 ∪ {CUj , v
j
ij
}

Ej = Ej−1 ∪ {(u,CUj) : u ∈ Aj−1\{vj
′

ij
}} ∪ (CUj , v

j
ij
).

The set of active nodes of Xj is defined as Aj =

(Aj−1\{vj
′

ij
})∪vjij . We refer to Figure 1 for an illustration.

The sequence of information flow graphs is an important tool
used to represent the time evolution of the network. Each
graph in the sequence accounts for a new node failure, and
also records the information regarding all the past failures that
occurred from the t = 0 time. For a given j, the information
for the repair of sj is communicated over the edges in the
graph Xj , wherein the edge (vℓi , CUj) carries hj(vi) symbols
of F , the index ℓ < j corresponds to the last instance when
the node vi has failed.

We will sometimes write (N , β, s, t, h) to denote a network
(N , β) with the sequence of failed nodes s, the sequence of
failure times t = (t1, t2, . . .), and a sequence of functions
{hj}j .

In our model, the evolution of the network is random.
Following earlier literature on storage networks, e.g., [16], we
represent this evolution by assuming that the failure of each
node is a Poisson arrival process with rate λ, and these arrivals

occur independently for different nodes. The interarrival time
between two failures of a specific node v ∈ V is an exponential
random variable with pdf λe−λt. Since node failures are
independent, the overall rate of node failures in the system
is a Poisson process with parameter nλ. This implies that
we can formulate the network time evolution as follows. Let
(X1, X2, . . .) be a sequence of i.i.d. random variables with
pdf fX(t) = nλe−nλt. Let T = (T1, T2, . . .) be the sequence
of failure times defined as Tj =

∑j
i=1 Xi for j ∈ N and let

S = (S1,S2, . . .) be the sequence of failed nodes defined
as a sequence of i.i.d. random variables distributed uniformly
over [n]. Note that with probability zero the values Tj can
be infinite. Denote by µ1 the infinite direct power of the
uniform distribution on V and by µ2 the infinite power of
the exponential distribution on [0,∞). We will assume that
the sequence (S, T) is distributed according to µ1 × µ2.

B. Data retrieval and network capacity

To retrieve the file, the DC contacts k or more storage
nodes and reads the information stored on them. Assume that
the read request occurs at time t ∈ [tj , tj+1) for some j ∈ N.
In the information flow graph Xj , the reading process amounts
to introducing a new node DCj with at least k incoming edges.
Each edge originates in an active node. The set of these in-
neighbors of DCj is denoted by Dj ⊆ Aj , |Dj | ⩾ k. The
edges {(v,DCj) : v ∈ Dj} have infinite weight. We denote
by k′ the minimal number of active nodes from which the
entire file can be retrieved.

We are interested in the storage capacity of the network
which is the maximum size of the file that can be stored in
the network and be retrieved at any time while satisfying the
average bandwidth constraints given by β. Before defining the
storage capacity, we need the following definition.

Definition 1 Let (N , β, s, t, h) be a storage network with a
sequence of functions {hj}j . The h-capacity of N , denoted
by caph(N), is the maximum file size that can be saved on
the network N and retrieved at any time.

Example 1 Let (N , β, s, t, h∗) be a storage network and
assume βi = β0 for all i ∈ [n]. Note that in this case when a
node fails all the active nodes transmit exactly β0 symbols for
the recovery process. It was shown in [9] that the capacity in
this case is equal to caph∗(N) =

∑k′

i=1 min {(n− i)β0, α}.

Note that the h∗-capacity expression contains a minimum. In
order to simplify notation, we assume throughout that α is
large enough, i.e., the storage nodes can contain any amount
of information. This assumption allows us to remove the
minimum in the capacity expression. In the previous example,
we obtain that caph∗(N) =

∑k′

i=1(n− i)β0.
We now define the storage capacity.

Definition 2 Let (N , β, s, t) be a storage network and let H
denote the set of all sequences of functions h that satisfy the
constraints given by β. The storage capacity (or just capacity)
of (N , β, s, t), denoted by cap(N), is defined as

cap(N) = sup
h∈H

caph(N).

4

Fig. 1. An illustration of X s
1 (left figure) and X s

2 (right figure) with s = (v1, v3, . . .). The set of active nodes for j = 1 is A1 =
{
v11 , v2, v3, v4, v5

}
and

the set of active nodes for j = 2 is A2 =
{
v11 , v2, v

2
3 , v4, v5

}
.

The random evolution of the network makes the sequence of
failed nodes a sequence of random variables which we hence-
forth denote by S. This makes cap(N) a random variable
as well. As such, we will analyze the expected value of the
storage capacity which is defined as follows.

Definition 3 Let (N , β,S, t) be a (random) storage network.
The expected capacity is defined as

cap(N) ≜ E [cap(N)] .

For any realization s of S, the storage capacity of a network
can be calculated using the sequence of information flow
graphs {Xj}j . Indeed, let (N , β, s, t, h) be a storage network
with a corresponding sequence of information flow graphs
{Xj}j . For a time t ∈ [tj , tj+1], j ∈ N, let Dt denote a
selection of k′ nodes from Aj (from which the entire file can
be retrieved). As shown in [9], the storage capacity of the
network is equal to the minimum weight of a cut between ṽ
and Dt. In other words, the maximum file size that can be
reliably stored in the network and retrieved at time t is equal
to the minimum weight of a cut between ṽ and Dt. A cut
between ṽ and Dt is a partition of the vertices into two sets
where ṽ is contained in the first set and the k′ nodes in Dt are
contained in the second set. The weight of the cut is the sum
of the weights of the edges from the first set to the second
set. Therefore, if we can find a weight function h such that for
every time instance t and for every selection Dt of k′ active
nodes a minimum cut between ṽ to Dt is bounded below by
a constant C, then C is the maximum file size that can be
saved in the network. Our goal is to bound C by specifying
a weight function h that obeys the restrictions given by the
average bandwidth of the nodes.

In this work, we consider the time-average minimum cut
(as defined below) and hence we define the minimum cut
accordingly.

Definition 4 Let Ch
t (Dt) denote the value of the minimum

cut in Xj between
(∪j−1

i=−1 Ai

)
\Aj and Dt under the weight

assignment h. Further, let Ch
t denote the minimum cut over

all selections Dt,

Ch
t = Ch

t (Aj) ≜ min
Dt⊆Aj , |Dt|=k′

{
Ch

t (Dt)
}
. (2)

When h = h∗, we will sometimes write Ct instead of Ch∗

t .

In this definition we again assume that the DC is not
aware of the state of the network, i.e., the order of the failed
nodes, and the minimum accounts for the worst case. If DC
can choose which nodes to contact, the minimum should be
replaced with a maximum.

Definition 5 Let (N , β, s, t, h) be a storage system. Define
the average cut as

Ch
avg(N) ≜ lim sup

t→∞

1

t

∫ t

0

Ch
τ dτ.

Note that the average cut is a function of s. Hence, if the
network is random s = S, then the average cut is a random
variable. As shown in the following lemma, for a storage
system (N , β, s, t, h∗), the average cut Ch∗

avg(N) can be used
to bound below the capacity of the network N .

Lemma 1 Let (N , β, s, t) be a storage system. Assume that
for any n−k′ nodes vi1 , . . . , vin−k′ ∈ V and all failure times
t = t1, t2, . . .

n−k′∑
j=1

βij ⩾ max
Dt⊆At,|Dt|=k′

∣∣∣Ch∗

t (Dt)− Ch∗

avg

∣∣∣ . (3)

If every node fails infinitely often, then

cap(N) ⩾ Ch∗

avg(N). (4)

Remark: Eq. (4) in effect states that there exists a weight
assignment h ∈ H such that caph(N) is at least the size of
the average cut under h∗.

Proof: We prove the lemma by describing an algorithm
for weight selection. In order to simplify the notation, for
t ∈ [tj , tj+1) we use the subscript j instead of t, for example,
we write Cj instead of Ct. Let j1 be the first occurrence

5

when Cj1 < Ch∗

avg. If j1 is infinite, then there is nothing to
prove; otherwise, for j < j1 take hj = h∗

j . Let vi be the
node that failed at time t ∈ [tj1 , tj1+1). For every vℓ ∈ Aj

(vℓ ̸= vi) define hj1(vℓ) = (1 + ε0)h
∗
j1
(vℓ) for ε0 > 0 such

that the minimum cut Ch
j1
(N) = Ch∗

avg(N), i.e., every active
node transmits more information to enlarge the minimum
cut to Ch∗

avg(N). For time tj1+1 again find ε1 such that for
every vℓ ∈ Aj1+1, taking hj1+1(vℓ) = (1 + ε1)h

∗
j1+1(vℓ)

yields Ch
j1+1(N) = Ch∗

avg(N). Note that ε1 can be positive or
negative. Continue this way to define hj1+r, and the respective
values of εr, r ⩾ 2.

By construction, the average number of symbols that node
vi transmits is βi. Moreover, at any time instance tℓ, the file
can be reconstructed from any selection Dℓ of k′ storage
nodes. Hence, the minimum cut between ṽ and Dℓ (the storage
capacity) is at least Ch∗

avg(N).

To explain assumption (3) note the following. Suppose a
node was one of the nodes selected by DCt−1, and suppose
that it fails at time t− 1. If the recovered node is selected by
DCt, the weight of the cut between the source and the selected
nodes is affected only by the n− k′ in-edges that connect the
nodes not selected by DCt to the failed node. Assumption
(3) implies that for every selection Dt of the k′ nodes and
for every r ⩾ 1, it is possible to find an εr ⩾ −1, which
ensures the consistency of the transmission. The physical
interpretation of the assumption given in (3) is that any set
of n − k′ nodes contain more “new information” than the
information unavailable due to the node failure. Throughout
the paper we assume that (3) holds true.

We will establish a more detailed lower bound on cap(N)
in terms of Ch∗

avg(N) in Sec. II-D below.

C. Network evolution as a sequence of permutations

In this subsection we define a set of permutations related
to the sequence of failed nodes s = (s1, s2, . . .). Each node
in Aj is denoted by vj

′

ij′
for some j′ ⩽ j, and it can be

identified with the node vi ∈ V . Therefore, if at some point
tj0 all the nodes have failed at least once, then for j ⩾ j0 the
order in which the nodes in Aj have failed can be identified
with a permutation of the set [n]. For example, if Aj ={
vj11 , vj22 , . . . , vjnn

}
, then the corresponding permutation π

is such that π(i) ⩽ π(ℓ) iff vjii , vjℓℓ ∈ Aj with ji ⩽ jℓ.
Below we identify V and [n] and consider πt, t ⩾ tj0 as a
permutation of either of these sets as appropriate. We denote
by Sn the set of all permutations of [n]. The permutations
πt are associated with the sequence of the information flow
graphs (Xj), and we call πt the associated permutation (at time
t). Note that the associated permutation πt ∈ Sn corresponds
to the order of the n most recent node failures. Hence, for
t ∈ [tj , tj+1) we will sometimes write πj instead of πt to
refer to the associated permutation at time t. Observe that
the minimum cut Ct(Aj) is a function of the associated
permutation πt for every t ∈ [tj , tj+1) and j ⩾ j0, so we
can write Ch

t (Aj) = Ch
t (πt).

It is possible to obtain πt, t ⩾ tj0 from s by considering
only the last appearance of each node as seen in the next
example.

Example 2 Assume that |V | = 5 and assume that s =
(v1, v2, v3, v4, v5, v2, v1, v5, . . .) with t = (1, 2, 3, . . .). Then
πt, t ∈ [1, 5) is not defined and πt = (v1, v2, v3, v4, v5) = id
for t ∈ [5, 6) since all the nodes had failed by t = 5. At t = 6
the node v2 fails again, hence the new order is given by πt =
(v1, v3, v4, v5, v2) for t ∈ [6, 7), i.e., vπt(1) = v1, vπt(2) = v3
and so on. This is because the second node appears twice in
s61 and we consider only the last appearance. Following the
same reasoning, πt = (v3, v4, v5, v2, v1) for t ∈ [7, 8) and
πt = (v3, v4, v2, v1, v5) for t ∈ [8, 9).

We remark that if πt is an associated permutation, then
vπt(i) denotes the node that appears in the ith location and
π−1
t (i) denotes the location of the node vi. In Example 2, we

have π6(2) = 3 since v3 occupies the second position, and
π−1
6 (2) = 5. Although πt is a function from [n] to [n], for

a node vi we will often write π−1(vi) to denote π−1(i). In
Example 2, we have π−1

6 (v2) = 5.
Now suppose that the evolution of the network is random

and let tj0 be the time by which all the nodes fail at least once.
The next lemma shows that such j0 exists almost surely and
that the associated permutation πtj0

is uniformly distributed
on Sn.

Lemma 2 Let (S, T) = ((Si, Ti), i ⩾ 1) be an infinite
sequence distributed according to µ1×µ2. Then almost surely,
there exists a finite t0 ∈ R such that all the nodes have failed
at least once by t0. Moreover, πt0 is distributed uniformly on
Sn.

Proof: We denote by t0 the first time instance when all the
nodes have failed at least once and note that t0 is a stopping
time for the sequence (Ti). Under our model, the failures of a
node are independent of other nodes and defined as a Poisson
arrival process. For each node v, the probability that the node
has not failed up to time t is e−λt. Thus, we obtain

Pr(t0 ⩽ t) =

n∏
i=1

(
1− e−λt

)
=
(
1− e−λt

)n
.

This proves the finiteness claim. The uniform distribution of
πt0 follows by symmetry.

Since t0 ⩽ ∞ a.s., the time t′ = t − t0 is well defined.
Consider a continuous-time Markov chain X(t′) with the state
space Sn constructed as follows. Let l ∈ [n] and let τl =
(l, n, n − 1, . . . , l + 1) be a permutation (in cycle notation)
that moves entry l to the last position, and shifts everything
to the right of l one step to the left. Then P (π → σ) = 1

n if
and only if σ = τl ◦ π for some l, and P (π → σ) = 0 for all
other pairs π, σ.

Let N(t′) be the number of nodes that failed until time
t′. This is a Poisson counting process with rate nλ, i.e.,
N(t′) ∼ Poi(nλ). At time t′ = 0, X(0) is chosen uniformly
at random. For t′ ⩾ 0 define X(t′) = πN(t′), where π with
an integer index is defined above before Example 2. Due to
the memoryless property of the exponential distribution, we
obtain that X(t′) is indeed a Markov chain.

6

Next note that X(t′) is positive recurrent since the discrete-
time chain on Sn defined by the kernel P is recurrent and the
expected return time to a state in X(t′) is finite for any state
in Sn. For a positive recurrent continuous-time Markov chain,
the limiting probability distribution µ is unique, exists almost
surely, and is given by

µ(π) = lim
τ→∞

1

τ

∫ τ

0

1π (X(t′)) dt′ =
1

nλE [(π → π)]
, (5)

where (π → π) is the time to return to state π starting from π
(See, for example, [11, p. 332]). In our model, E [(π → π)]
does not depend on π. In words, (5) implies that for t large
enough, the time that the network spends in each state is
almost the same. We use this fact next to find an upper bound
for the capacity.

Lemma 3 Let (N , β,S, t, h) be a storage network, where S
is a (random) sequence of failed nodes and h is a weight
function satisfying the constraints given by β. Assume also
that hj is a function of the last failed node, i.e., if Sj = vℓ
then hj = hvℓ . Then almost surely

cap(N) ⩽ k′(2n− k′ − 1)

2

1

n

n∑
i=1

βi. (6)

Proof: The capacity of N is equal to the minimum weight
under h of a cut between ṽ and DCt where DCt can connect
to any set of k′ nodes from At. Assume that the set of
weight functions is given by {hv}v∈V . Since there is a weight
function for every node v, we will denote by hv(u) the weight
that hv assigns to the edge (u,CU). Let tj0 be the first time
instance by which all the nodes have failed at least once.
According to Lemma 2, tj0 is almost surely finite. By (5)
we may assume that all permutations appear as associated
permutations with equal probability.

Let D :=
{
vi1 , . . . , vik′

}
⊂ V and assume that the

associated permutation π is such that π−1(vi1) ⩽ π−1(vi2) ⩽
. . . ⩽ π−1(vik′). Then the weight of the cut between ṽ and D
is at most [9]

Ch
t (D) ⩽

k′∑
ℓ=1

(∑
v∈V \viℓ

hvi1
(v)−

ℓ−1∑
r=1

hviℓ
(vir)

)
. (7)

Since cap(N) is the minimum weight value of a cut, we
can bound it above by the average weight:

cap(N) ⩽ 1

n!
(
n
k′

) ∑
D⊆V
|D|=k′

∑
πt∈Sn

Ch
t (D). (8)

For the moment let us fix D and consider how many times
the term hv(u) appears on the right-hand side of (8) as we
substitute Ch

t (D) from (7) and evaluate the sum on πt. If
both u, v ∈ D then this term appears for those πt in which v
appears after u and does not (is canceled in (7)) if v precedes
u. Thus, overall this term appears n!/2 times. If v ∈ D and
u ̸∈ D then no cancellations occur, and the term hv(u) appears
n! times. Further, there are

(
n−2
k′−2

)
choices of D for the first

of these options and
(
n−2
k′−1

)
for the second one of them. Thus,

for each pair of nodes u, v ∈ V the term hu(v) appears in (8)(
n− 2

k′ − 2

)
n!

2
+

(
n− 2

k′ − 1

)
n! =

(
n− 2

k′ − 2

)
n!

2

2n− k′ − 1

k′ − 1

times. Substituting this into (8) and performing cancellations,
we obtain that

cap(N) ⩽ k′(2n− k′ − 1)

2n(n− 1)

n∑
i=1

∑
j ̸=i

hvi(vj).

Since h is a weight function and since the nodes fail with equal
probability, we obtain that

∑
i ̸=j hvi(vj) = (n − 1)βj , j =

1, . . . , n. Thus,
n∑

i=1

∑
j ̸=i

hvi(vj) = (n− 1)

n∑
j=1

βj

and the result follows.

Remark 1 Lemma 3 holds also for hj that is a function of
the current associated permutation, i.e., hj = hπtj

.

It is intuitively clear (and is confirmed by Lemmas 3 and 1)
that if βi = β0 for every i ∈ [n], the fact that S is random does
not affect the storage capacity, which implies that cap(N) is
equal to the minimum cut. Hence, in the case that βi = β0,
both cap(N) and its expected value are given in [9].

D. Discrete Time Evolution

In this subsection we define a discrete-time storage network,
which will enable us to simplify the analysis of the average
cut in the information flow graph and of network capacity. A
discrete-time storage network is a network (N , β, s, t, h) with
t = (1, 2, . . .). For such a network with weight function h,
the average cut is defined as

Ch
avg(N) = lim sup

l→∞

1

l

l∑
t=1

Ch
t (N).

For a discrete-time network (N , β, s, t, h) we will sometimes
omit the time notion t. Also, when a weight function is not
specified we will omit the weight function notion and write
(N , β, s). The following lemma shows that for a random
discrete-time storage network with h = h∗, the limit superior
in this definition is almost surely a limit.

Lemma 4 Let (N , β,S, h∗) be a random discrete-time stor-
age network with S = (Si, i ⩾ 1) a sequence of independent
RVs uniformly distributed on [n]. Then

E
[
Ch∗

avg(N)
]
= lim

l→∞

1

l

l∑
t=1

E[Ch∗

t (N)].

Proof: Let t0 be the first time instance by which all the
nodes have failed at least once. Note that t0 is a stopping time
and each failed node is chosen uniformly and independently.
Referring to the Coupon collector’s problem [12, p.210], we
obtain that Pr(t0 ⩾ cn log n) ⩽ n1−c, for every c ⩾ 1. Thus,
t0 is finite almost surely.

By symmetry, πt0 is distributed uniformly on the set of
all permutations. Moreover, since Si is chosen uniformly and

7

independently, for t ⩾ t0 we have that Pr(πt = π|πt−1
0) =

Pr(πt = π|πt−1), so the sequence {πt} is a Markov chain,
which is irreducible and aperiodic. Because of this, a limiting
distribution µ exists, and is unique and positive. Hence, as t
grows, Pr(πt) → µ(πt). Together with the fact that Ch∗

t is
uniformly bounded from above for all t, we obtain that the
limit liml→∞

1
l

∑l
t=1 E[Ch∗

t (N)] exists.
Now define Xt = 1

t

∑t
i=1 C

h∗

i (N) and note that Xt is a
function of S. Following the previous discussion, for almost
every S, the sequence Xt converges. Since Xt is non-negative
and upper bounded for every t, by the dominated convergence
theorem we have limt→∞ E[Xt] = E[limt→∞ Xt] (the last
limit exists a.s.), which is the desired result.
Since t0 is almost surely finite and since πt is an ergodic
Markov chain, defining the initial state to be π0 = id does not
affect the expected capacity. Hence, from now on we assume
π0 = id.

The problem of finding the limiting distribution of our
Markov chain on Sn is similar to the classic question of the
mixing time for the card shuffling problem called Top in at
random shuffle. We use the following result from [3, Thm.1].

Theorem 1 (ALDOUS AND DIACONIS) Consider a deck of n
cards. At time t = 1, 2, . . . take the top card and insert it in
the deck at a random position. Let Qt denote the distribution
after t such shuffles and let U be the uniform distribution on
the set of all permutations Sn. Then for all c ⩾ 0 and n ⩾ 2,
the total variation distance satisfies

∥Qn logn+cn − U∥TV ⩽ e−c. (9)

To connect this result to our problem, we note that choosing
the next failed node uniformly at random corresponds to
selecting a random card from the deck and putting in at
the bottom. The mixing time of this chain is stochastically
equivalent to the mixing time of the Top in at random shuffle,
and we obtain the following lemma.

Lemma 5 Let N be a storage network with |V | = n ⩾ 2
nodes and let S be a random sequence of failed nodes.
Consider the sequence of associated permutations (πt, t ⩾ 0)
where π0 = id. Then for any c ⩾ 0, n ⩾ 2 and any π ∈ Sn,∣∣∣Pr(πn logn+cn = π)− 1

n!

∣∣∣ ⩽ e−c.

Proof: Let T ⩾ 1 be a time instant, and consider a
realization (πt, t = 0, 2, . . . , T) of the Markov chain of
failed nodes. Let π̃t, t ⩾ 0 denote a realization of the card
permutations in the top in at random shuffle. Then

Pr(πT = τ |π0 = id) = Pr(π̃T = id|π̃0 = τ)

for any τ ∈ Sn. Taking T = n log n+cn, c ⩾ 0 and using the
definition of the total variation distance, we obtain the claimed
result from (9).

The next lemma, whose proof is given in Appendix A,
relates the values of average cut in the storage networks with
continuous and discrete time.

Lemma 6 Let (N1, β,S, t, h
∗) be a continuous-time storage

network and let (N2, β,S, h
∗) be a discrete-time storage

network. Then

Ch∗

avg(N1)
a.s
= Ch∗

avg(N2).

As a result, we obtain the following statement which forms a
basis of our subsequent derivations.

Theorem 2 Let (N1, β,S, t) be a continuous-time storage
network. Then ((µ1 × µ2)-a.s.)

cap(N1) ⩾
1

n!

∑
πt∈Sn

Ch∗

t (πt).

Proof: From Lemma 1 we have that for any realization
s such that every node fails infinitely often, cap(N1) ⩾
Ch∗

avg(N1). According to Lemma 2, there exists a finite t0
by which all the nodes have failed at least once and by
(5) the stationary distribution of the permutations is uniform.
This implies that almost surely, all the nodes fail infinitely
often. According to Lemma 6, if (N2, β,S, h

∗) is a discrete-
time storage network, almost surely Ch∗

avg(N1) = Ch∗

avg(N2).
From Lemmas 4 and 5, Ch∗

avg(N2) is almost surely a con-
stant, which is equal to 1

n!

∑
πt∈Sn

Ch∗

t (πt). Hence, almost
surely, Ch∗

avg(N2) = E
[
Ch∗

avg(N2)
]
= 1

n!

∑
πt∈Sn

Ch∗

t (πt).
Altogether these statements imply the claim of the theorem.

From this point, unless stated otherwise, we restrict our-
selves to discrete-time networks.

III. THE FIXED-COST MODEL

In this section, we define the fixed-cost storage model and
derive lower bounds on the storage capacity. Suppose that
the set of nodes is V = U ∪ L, where U = (v1, . . . , vn1)
and L = (vn1+1 . . . , vn1+n2) are disjoint non-empty subsets.
Suppose that the repair bandwidth of the node vi is given by

βi =

{
β1 if vi ∈ U

β2 if vi ∈ L
.

where β1 ⩾ β2 > 0. Let C be the minimum cut of N in the
static case (i.e., the worst-case weight of the cut):

C ≜ min
π∈Sn

{Ch∗

t (π)} = min
t⩾0,

s∈V ∞

{Ch∗

t }. (10)

Let a ≜ k−n1 and let us assume that a > 0 because otherwise
the file reconstruction problem is trivially solved by contacting
k nodes in U . The minimum cut is given by the following
result from [2] (we cite it using our assumptions of a > 0 and
large α).

Lemma 7 Let (N , β, s, h∗) be a fixed-cost storage network.
Then

C =
n1(n1 − 1)

2
β1 +

(
n2(n1 + a− 1)− a(a+ 1)

2

)
β2.

(11)

In this section we consider a dynamical equivalent of the
above model, where the sequence of node failures S is

8

random. Note that if n2 = 1 then k = n which implies that
no coding is used in the storage network, so we will assume
that n2 ⩾ 2. To avoid boundary cases, we will also assume
that n1 > 1 (the case of n1 = 1 is not very interesting and
can be handled using the same technique as below).

Expression (11) gives the size of the minimum cut in the
static model of [9] and it also gives a lower bound for the cut
Ch∗

t for all t and s in the dynamical model. We shall now
demonstrate by example that by controlling the transmission
policy it is possible to increase the storage capacity of the
(N , β,S, h) network compared to (11).

The idea of the example is as follows. Assume that sj
is a failed node that needs to be recovered. Recall that in
the static case, every active node transmits a fixed number
of symbols for the recovery of sj , namely, the nodes in U
transmit β1 symbols and the nodes in L transmit β2 symbols.
In the dynamic case we can choose how many symbols each
node transmits for the recovery of sj as long as the average
constraint is satisfied. We change the number of symbols that
node vj transmits for the recovery of sj depending on whether
each of them is in U or L (the exact expressions are given in
the example below). We then show that the average constraint
is satisfied, and that this yields an increase of the capacity of
the system.

Example 3 Let (N , β,S, h) be a storage network with n =
20, k′ = 13, U = (v1, . . . , v10), L = (v11, . . . , v20), and β1 =
2β2. Assume that α is large enough (in this case taking α ⩾
33.5β2 suffices). By (11), the value of the minimum cut with
h = h∗ is 214β2, and thus the maximum file size that can
be stored in the static case is M = 214β2. The task of node
repair is accomplished by contacting 19 nodes.

Now we will show that, under the dynamic model, it is
possible to increase the file size by using the weight function
h defined as follows. Suppose that at time t (recall that time
is discrete) a node v ∈ U has failed, i.e. St = v where v ∈ U ,
and define

ht(vi) =


β2 vi ∈ L

β1 +
1
20β2 vi ∈ U \ v

0 vi = v.

If St = v where v ∈ L, define

ht(vi) =


β2 vi ∈ L \ v
β1 − 9

200β2 vi ∈ U

0 vi = v.

A straightforward calculation of the minimum cut yields that

min
π∈S10

{
Ch

t (π)
}
= (214 + 2.25)β2 (12)

and it is obtained when π = id and the active nodes selected
are Dt = (v1, v2, . . . , v13). This shows an increase over the
static case estimate (11).

We now calculate the expected number of symbols a node
transmits under h. Recall that in the random model, each node
has the same probability of failure which in this case equals
to 1

20 . Let t0 denote the first time instance by which all the

nodes have failed. For every t ⩾ t0 we have that if vi ∈ U
then

E [ht(vi)] =
9

20
(β1 +

1

20
β2) +

10

20
(β1 −

9

200
β2) < β1

and if vi ∈ L then

E [ht(vi)] =
9

20
β2 +

10

20
β2 < β2.

Therefore, the average amount of symbols each node transmits
satisfies the constraints given by β.

The above simple procedure is not optimal in terms of the
file size M : As we show below, it is possible to construct
a different transmission scheme which allows for storage of
a larger-size file. Note also that the upper bound (6) gives
cap(N) ⩽ 235.5β2, while the improvement of (12) over (11)
is relatively minor.

Example 3 provides a procedure to construct the weight
function h such that the maximum file size can be increased.
Below we generalize this idea and also explore other ways
of using time evolution to increase the storage capacity of a
fixed-cost network

A. A protocol to increase capacity

In this section we construct a weight function that increases
the storage capacity and analyze the increase. The next theo-
rem states the increase explicitly. In order to state the theorem,
we need the following assumptions. For ε1 > 0, assume that

β1 − β2 ⩾ n(n1 − 1)

n2
ε1. (13)

Note that n(n1−1)
n2

⩾ 1 and that this assumption is satisfied in
Example 3 above.

We now prove the following theorem which quantifies the
increase of the average storage capacity over the static case.

Theorem 3 Let (N , β,S) be a fixed-cost storage network.
For any ε1 ⩾ 0 such that assumption (13) is satisfied, the
storage capacity is bounded below by

cap(N)
a.s.
⩾ C +

n1(n1 − 1)

2
ε1,

where C is the static storage capacity given in (11).

To prove the theorem we define a weight function along the
lines of Example 3. Let us put ht(vi) = hU (vi) if st ∈ U and
ht(vi) = hL(vi) if st ∈ L where

hU (vi) =


β1 + ε1 vi ∈ U \ sj
β2 vi ∈ L

0 vi = sj ,

(14)

and

hL(vi) =


β1 − n1−1

n2
ε1 vi ∈ U

β2 vi ∈ L \ sj
0 vi = sj

(15)

and 0 ⩽ ε1 ⩽ β1.
We now show that the weight function h satisfies the

constraints given by β.

9

Lemma 8 Let (N , β,S, h) be a fixed-cost storage network
with h as defined above. Then h satisfies the average con-
straints given by β.

Proof: Fix a node vi ∈ U and for each time instance t,
let us calculate the expected number of symbols vi transmits.
Recall that vπt(n) denotes the node that failed at time t. Recall
that the failures of the nodes are uniformly distributed, so we
obtain

Pr(vπt(n) = vj) =


1
n if j = i
n1−1

n if j ∈ [n1] \ i
n2

n otherwise.

Hence, the expected number of symbols that the node vi
transmits is

n1 − 1

n
hU (vi) +

n2

n
hL(vi)

=
n1 − 1

n
(β1 + ε1) +

n2

n

(
β1 −

n1 − 1

n2
ε1

)
< β1.

If vi ∈ L we have

Pr(vπt(n) = vj) =


1
n if j = i
n1

n if j ∈ [n1]
n2−1

n otherwise.

In this case the expected number of trnasmitted symbols equals

n1

n
hU (vi) +

n2 − 1

n
hL(vi) =

n1

n
β2 +

n2 − 1

n
β2 < β2.

Thus, on average the number of symbols is within the allotted
bandwidth.

The next two lemmas are used in the proof of Theorem 3 in
order to estimate the minimum cut. The first lemma shows that
the minimum cut for any permutation πt, t ⩾ t0 is obtained
when Dt ⊇ U . The second lemma shows that the minimum
cut is obtained for πt = id.

Lemma 9 Let (N , β, s, h) be a network with h as defined
above. If assumption (13) is satisfied, then for t > t0, the
value Ch

t (N) is attained when Dt ⊇ U .

Proof: We formulate our question as a dynamic pro-
gramming problem and provide an optimal policy for node
selection. Assume that πt is a fixed permutation that represents
the order of the last n failed nodes. We will consider the
information flow graph Xt and show that the cut is minimized
when all the nodes from U are selected.

Consider a k′-step procedure which in each step selects one
node from At. Each step entails a cost as explained next. Let
t′ ⩽ t and assume that node vt

′

it′
∈ At was selected. The cost

is defined as the added weight values of the in-edges of CUt′

that are not out-edges of previously selected nodes. Our goal
is to choose k′ nodes that minimize the total cost and hence
minimize the cut between

(∪t−1
j=−1 Aj

)
\ At and DCt.

In order to simplify notation, we write πt =
(u1, u2, . . . , un), i.e., ul = vπt(l) is the storage node
that appears in the lth position in πt. Moreover, with a
slight abuse of notation, if uj failed at time t′ we will write
hj(ui) instead of ht′(ui) to denote the number of symbols

that node ui transmits for the recovery of uj . For κ ⩽ k′

consider the sub-problem in step κ − 1, where the DCt has
already chosen κ − 1 nodes (ui1 , . . . , uiκ−1) and we are
to choose the κth node. Assume that the chosen nodes are
ordered according to their appearance in the permutation, i.e.,
i1 ⩽ i2 ⩽ . . . ⩽ iκ−1. Let uj1 , . . . , ujm ∈ U be nodes that
were not selected up to step κ− 1, i.e.,

{uj1 , . . . , ujm} ∩ {ui1 , . . . , uiκ−1} = ∅,

and assume also that j1 ⩽ j2 ⩽ . . . ⩽ jm. We refer to Figure
2 for an illustration. We show that choosing uj1 accounts for
the minimum cut. First, we claim that choosing uj1 minimizes
the cut over all other nodes from U . Denote by Cκ−1 the total
cost (or the cut) in step κ− 1. Fix 2 ⩽ ℓ ∈ [m] and note that
since j1 ⩽ jℓ, we can write

i1 ⩽ . . . ⩽ ir1 ⩽ j1 ⩽ ir1+1 ⩽ . . . ⩽ irℓ ⩽ jℓ ⩽ iℓ+1 ⩽ . . . ,

where the set of indices {i1, . . . , ir} can be empty. Let C(j1)
be the value of the cut once we add uj1 in the κth step. The
change from Cκ−1 is formed of the following components.
First, we add the values of all the edges from U\{uj1} to uj1

and from L to uj1 , accounting for (n1 − 1)(β1 + ε1) + n2β2

symbols. Further, we remove the values of all the edges from
the nodes ui1 , . . . , ur1 to uj1 and all the edges from uj1 to
ur1+1, . . . uκ−1. Overall we obtain

C(j1) = Cκ−1 + (n1 − 1)(β1 + ε1) + n2β2

−
r1∑
q=1

hj1(uiq)−
κ−1∑

q=r1+1

hiq (uj1). (16)

Similarly, let Cjℓ be the value of Cκ if in step κ we select the
node ujℓ , ℓ ⩾ 2. Following the same argument as in (16), we
obtain

C(jℓ) = Cκ−1 + (n1 − 1)(β1 + ε1) + n2β2

−
rℓ∑
q=1

hjℓ(uiq)−
κ−1∑

q=rℓ+1

hiq (ujℓ).

Since hjℓ(ui) = hj1(ui) and hi(uj1) = hi(ujℓ) for all i ∈ [n],
we have

C(j1)− C(jℓ) =

rℓ∑
q=r1+1

(
hjℓ(uiq)− hiq (uj1)

)
.

For uiq ∈ U , we obtain

hjℓ(uiq)− hiq (uj1) = β1 + ε1 − (β1 + ε1) = 0.

For uiq ∈ L, we obtain

hjℓ(uiq)− hiq (uj1) = β2 −
(
β1 −

n1 − 1

n2
ε1

)
,

which is nonpositive by assumption (13). Therefore,

C(j1)− C(jℓ) ⩽ 0.

Now we show that uj1 minimizes the cut over a selection
of any node ujℓ from L. We divide the argument into 2 cases:

1) Assume that jℓ < j1. Denote by
(i1, . . . , irℓ , jℓ, irℓ+1, . . . , ir1 , j1, . . .) the indices of

10

the selected nodes and let C(jℓ), C(j1) be the cut values
if we choose ujℓ , uj1 , respectively. We have

C(jℓ) = Cκ−1 + n1

(
β1 −

n1 − 1

n2
ε1

)
+ (n2 − 1)β2 −

rℓ∑
q=1

hjℓ(uiq)−
κ−1∑

q=rℓ+1

hiq (ujℓ).

On account of (16) and (13) we now obtain

C(j1)− C(jℓ) = −(β1 − β2) +
n(n1 − 1)

n2
ε1

+

rℓ∑
q=1

hjℓ(uiq)−
r1∑
q=1

hj1(uiq)

+
κ−1∑

q=rℓ+1

hiq (ujℓ)−
κ−1∑

q=r1+1

hiq (uj1)

⩽
rℓ∑
q=1

(
hjℓ(uiq)− hj1(uiq)

)
−

r1∑
q=rℓ+1

hj1(uiq)

+

r1∑
q=rℓ+1

hiq (ujℓ) +
κ−1∑

q=r1+1

(
hiq (ujℓ)− hiq (uj1)

)
.

(17)

Our goal is to show that the right-hand side of (17) is
nonpositive. Let 1 ⩽ q ⩽ rℓ. For uiq ∈ U we have

hjℓ(uiq)− hj1(uiq) = β1 −
n1 − 1

n2
ε1 − (β1 + ε1) ⩽ 0

and for uiq ∈ L we have

hjℓ(uiq)− hj1(uiq) = β2 − β2 = 0.

Now let rℓ+1 ⩽ q ⩽ κ− 1. For uiq ∈ U we have

hiq (ujℓ)− hiq (uj1) = β2 − (β1 + ε1)

and for uiq ∈ L we have

hiq (ujℓ)− hiq (uj1) = β2 − (β1 −
n1 − 1

n2
ε1),

both of which are non-positive by assumption (13).
The remaining terms in (17) contribute∑r1

q=rℓ+1

(
hiq (ujℓ)− hj1(uiq)

)
to the value of the

cut. As before, for uiq ∈ U we have

hiq (ujℓ)− hj1(uiq) = β2 − (β1 + ε1) ⩽ 0

by (13), and for uiq ∈ L we have

hiq (ujℓ)− hj1(uiq) = β2 − β2 = 0.

Thus, C(j1)− C(jℓ) ⩽ 0.

2) Assume that jℓ > j1. This case is symmetric to the case
jℓ < j1 and the analysis is similar.

By the principle of optimality in dynamic programming,
which states that every optimal policy consists only of optimal
sub-policies [6, Ch. 1.3], we now conclude that the minimum
cut is formed by first taking all the nodes from U and then
take the remaining nodes from L.

Remark 2 Suppose that in forming the cut, we have added
all the nodes from U , and there are a more nodes (from L) to
select. To minimize the value of the cut, these nodes should
be taken to be the a most recently failed nodes from L. This is
because choosing the most recently failed node vπ(n) assures
that as few as possible of the previously selected nodes contain
information from vπ(n).

To justify this formally, consider the proof of Lemma 9.
Indeed, if uj1 , ujℓ ∈ L with j1 < jℓ, then

C(j1)− C(jℓ) =

rℓ∑
q=r1+1

hjℓ(uiq)− hiq (uj1),

which is non-negative by assumption (13).

Before stating the second lemma, we need the following
notation. Let π ∈ Sn and let D ⊂ V, |D| = k′. For a node
vj ∈ D, denote by fπ(vj) the number of nodes in D ∩L that
appear before vj in π, i.e.,

fπ(v) :=
n∑

i=1

1D∩L(vi) · 1[1,π−1(vj)](π
−1(vi)).

Let Tj , j = 1, . . . , n − 1 be an adjacent transposition of π,
i.e., Tj ◦ π exchanges π(j) and π(j + 1).

Lemma 10 Let (N , β,S, h) be a fixed-cost storage network
with h as defined above. Let πt be a permutation obtained at
time t > t0 and let Dt be a set of k′ active nodes selected by
the DCt. If assumption (13) is satisfied, then

Ch
t (πt) = Ch

t (id) +
∑

v∈Dt∩U

fπt(v)(β1 − β2)

−
∑

v∈Dt∩U

fπt(v)
n1 − 1

n2
ε1,

where Ch
t (id) is the minimum cut for πt = id.

Proof: Recall that by assumption (13), β1−β2−n1−1
n2

ε1 ⩾
0. We start with showing that for every permutation πt ∈ Sn

and for any j ∈ [n],

Ct(Tj(πt)) ∈

{
Ct(πt) + (β1 − β2)

+
n1 − 1

n2
ε1, Ct(πt), Ct(πt)− (β1 − β2)−

n1 − 1

n2
ε1

}
.

First, observe that if πt and σt are two permutations such
that

{π−1
t (vi) : i ∈ [n1]} = {σ−1

t (vi) : i ∈ [n1]},

i.e., if the nodes from U occupy the same positions in πt as
in σt, then Ct(πt) = Ct(σt).

Let πt ∈ Sn and let Dt denote the k′ storage nodes
selected. Assume that vπt(j) ∈ U , vπt(j+1) ∈ L and that
{vπt(j), vπt(j+1)} ⊆ Dt for some j ∈ [n− 1]. It is easy to see
that

Ch
t (Tj(πt)) = Ch

t (πt) + (β1 − β2)−
n1 − 1

n2
ε1.

11

Fig. 2. An illustration of the procedure in the proof of Lemma 9 with κ = 4, where the 3 dashed nodes were selected by the DCt, and we are to select the
next node out of uj1 , uj2 . The current cost of the procedure equals the sum of the weights of the dotted edges. Suppose that node uj2 is selected next. Then
the weight of the edge from uj1 to CUj2 (which equals hj1 (uj2)) and the weight of the solid in-edge of CUj2 will be added to the cost, while the weight
of the edge from uj2 to CUi3 (which equals hj2 (ui3)) will be deducted. Otherwise, if node uj1 is selected, the weights of the solid in-edges of CUj1 will
be added and the weights of all the dotted out-edges of uj1 will be deducted.

On the other hand, if vπt(j) ∈ L, vπt(j+1) ∈ U and{
vπt(j), vπt(j+1)

}
⊆ Dt, then

Ch
t (Tj(πt)) = Ch

t (πt)− (β1 − β2) +
n1 − 1

n2
ε1.

Recall that according to Lemma 9, the set Dt which yields
the minimum cut contains U . Hence, for id, the minimum
cut is given by Ct(id) and is obtained by selecting the first
k′ nodes, Dt = {vi : i ∈ [k′]}. Moreover, every permutation
πt ∈ Sn can be obtained from id by repeated applications of
T , such that at each application, the size of the minimum cut
is not decreased.

Note that Lemma 7 is an immediate corollary of Lemmas 9
and 10. Indeed, taking the weight function h = h∗ implies that
ε1 = 0 which satisfies assumption (13). Hence, the minimum
cut is obtained when πt = id and Dt ⊇ U , and is equal to C.

Let us prove Theorem 3.
Proof of Theorem 3: From Lemma 9 we obtain that

there exists ε1 > 0 such that assumption (13) is satisfied and
such that at each time t, the selection Dt that minimizes the
cut, contains U . Lemma 10 implies that the minimum cut is
obtained for πt = id. Taking πt = id and Dt = {v1, . . . , vk′},
it is straightforward to check that

Ch
t (Dt) =

n1−1∑
j=1

j(β1 + ε1) + n1n2β2 +
a∑

j=1

(n2 − j)β2

= Ch∗

t (πt) +
n1(n1 − 1)

2
ε1, (18)

which together with Theorem 2 concludes the proof.

Remark 3 The function h can be defined with an additional
parameter 0 ⩽ ε2 ⩽ β2 such that when a node vi ∈ U (vi ∈ L)
fails, nodes from L transmit β2 − ε2 (resp., β2 + ε2) symbols
instead of β2 symbols. This change may increase the storage
capacity even more, but requires additional assumptions on the
parameters and can be developed along the same ideas.

In conclusion, we have shown that the maximum file size
that can be stored in a dynamical fixed-cost storage network
is always greater than its static counterpart. While it is always
possible to choose ε1 so that (13) holds true (e.g., ε1 =

n2

n(n1−1) (β1 − β2)), the capacity increase is relatively small
because the allowable values of ε1 are small as a proportion
of β1−β2. In the next section we take an alternative approach
to bounding the average capacity.

B. The average min-cut bound on cap

We consider the same storage model as in the previous
section and prove the following result.

Theorem 4 Let (N , β,S, h∗) be a fixed-cost storage network.
Then almost surely,

cap(N) ⩾ C + β1−β2

2
an1

n

(
a+ 1 + n1−1

n−1 (a− 1)
)
. (19)

We will need the following two lemmas.

Lemma 11 Let (N , β,S) be a storage network, let 0 ⩽ ℓ ⩽
min(n1, a) and denote by P ℓ

t the probability that πt contains
ℓ nodes from U in the last a = k′ − n1 positions. As t → ∞,

P ℓ
t →

(
n1

ℓ

)(
n2

a− ℓ

)(
n

a

)−1

.

Proof: Assume that πt is distributed uniformly over Sn.
We have P ℓ

t =
(
n1

ℓ

)(
n2

a−ℓ

)(
n
a

)−1. By Lemma 5, the distribution

12

of πt converges to the uniform distribution exponentially fast
(after a certain time, the TV distance decreases by a factor of
1/e every n time units). By the definition of the total variation
distance, for every ℓ∣∣∣∣∣P ℓ

t −
(
n1

ℓ

)(
n2

a− ℓ

)(
n

a

)−1
∣∣∣∣∣ ⩽ elogn− t

n ,

which implies the lemma.
For the next lemma we need the following notation. Let Sℓ

n

be the set of all permutations over [n] with exactly ℓ numbers
from U in the last a positions, i.e.,

Sℓ
n ≜ {π ∈ Sn : |{π(n− a+ 1), . . . , π(n)} ∩ [n1]| = ℓ} .

Given π = (i1, . . . , in−a, in−a+1, . . . , in) ∈ Sn, let πc :=
(i1, . . . , in−a, in, . . . , in−a+1).

Lemma 12 Let (N , β,S, h∗) be a fixed-cost storage network.
Let πt be the permutation at time t and for every ℓ, define
µℓ(πt) := Pr(πt|Sℓ

n). Then,

lim
t→∞

Eµℓ
[Ch∗

t (N)] ⩾ C +
1

2
ℓ(a+ ℓ)(β1 − β2)

where C is given in Lemma 7.

Proof: As above, let t0 be time by which all the nodes
have failed at least once, and recall that P (t0 < ∞) = 1.
Therefore, πt (and hence, µℓ) is well defined almost surely.
From Lemma 5, we obtain that for every ϵ > 0, there exists
tϵ > t0 large enough such that

∣∣∣µℓ(πt)− 1
|Sℓ

n|

∣∣∣ ⩽ ϵ and
therefore the limit exists almost surely.

For t > tϵ consider∑
πt∈Sℓ

n

Pr(πt|Sℓ
n)Ct(πt) ⩾

(1

|Sℓ
n| − ϵ

) ∑
πt∈Sℓ

n

Ct(πt)

⩾ 1

|Sℓ
n|

∑
πt∈Sℓ

n

Ct(πt)− ϵR,

where R = maxπt∈Sn Ct(πt). To bound this sum below we
fix the last a entries of the permutation. Since for h = h∗

(i.e., ε1 = 0), assumption (13) is satisfied. Thus we can use
Lemma 9, according to which Ct(πt) is minimized if n1 − ℓ
entries from U appear in the first n1 − ℓ positions, followed
by n2 − a + ℓ entries from L (in any order). Fix the first
n−a entries. Again according to Lemma 9, the minimum cut
will be obtained when all the ℓ nodes from U are in positions
n− a+1, n− a+2, . . . , n− a+ ℓ, and according to Lemma
10 it is equal to Cmin := C+ℓ2(β1−β2). Also, the maximum
cut will be obtained when all the ℓ nodes from U are located
in the last positions. This yields Cmax := C + ℓa(β1 − β2).

Let πt ∈ Sℓ
n be any permutation with vπt(i) ∈ U for i ∈

{1, . . . , n1 − ℓ}. We claim that

Ct(πt) + Ct(π
c
t) = 2C + ℓ(a+ ℓ)(β1 − β2) = Cmin + Cmax.

(20)

Indeed, assume πt = π and let D be a selection of k active
nodes that minimizes the cut. By Lemma 9 if there is at least
one node from U in the last a places, the minimum cut will be

obtained by selecting the last a places as a part of D. More-
over, if vi ∈ U with π−1(vi) = n− a+m for some m ∈ [a],
and fπ(vi) = b then

∣∣{vπ(1), . . . , vπ(n−a+m)

}
∩ (D ∩ L)

∣∣ =
b. Together with the fact that |D ∩ L| = a, this im-
plies that

∣∣{vπ(n−a+1), . . . , vπ(n−a+m)} ∩ (D ∩ L)
∣∣ = b − ℓ.

For πc, we obtain that (πc)−1(vi) = n − m + 1 and∣∣{vπc(n−m+1), . . . , vπc(n)} ∩ L
∣∣ = b − ℓ which means that∣∣{vπc(1), . . . , vπc(n−m+1)} ∩ (D ∩ L)

∣∣ = a− (b− ℓ).
With a slight abuse of notation, for a node vi we write

π(vi), π
−1(vi), and (πc)−1(vi) to denote π(i), π−1(i), and

(πc)−1(i), respectively. By Lemma 10 we have

Ct(π) = C +
∑

v∈D∩U

fπ(v)(β1 − β2) ⩾ C

+
∑

v∈D∩U
π−1(v)∈{n−a+1,...,n}

fπ(v)(β1 − β2).

For πc we obtain

Ct(π
c) ⩾ C +

∑
v∈D∩U

(πc)−1(v)∈{n−a+1,...,n}

fπc(v)(β1 − β2)

= C +
∑

v∈D∩U
(πc)−1(v)∈{n−a+1,...,n}

(a− (fπ(v)− ℓ))(β1 − β2).

This implies that

Ct(π) + Ct(π
c) ⩾ 2C + ℓ(a+ ℓ)(β1 − β2).

Note that for every πt ∈ Sℓ
n, the permutation πc

t ∈ Sℓ
n and

that (πc
t)

c = πt. Thus, for every ϵ > 0, there exists tϵ > t0
such that for every t > tϵ∑

πt∈Sℓ
n

µℓ(πt)Ct(π) ⩾
1

|Sℓ
n|

1

2

∑
πt∈Sℓ

n

Ct(πt) +Ct(π
c
t)− ϵR

⩾ C +
1

2
ℓ(a+ ℓ)(β1 − β2)− ϵR,

which concludes the proof.

We can now complete the proof of Theorem 4.
Proof of Theorem 4: From Lemma 4 and Lemma 5, we

have

Ch∗

avg(N)
a.s.
= lim

t→∞

1

t

t∑
r=1

E[Ct(N)]

a.s.
= lim

t→∞

1

t

t∑
r=t0

∑
π∈Sn

Pr(πr = π)Cr(π).

Observe that (Sℓ
n)ℓ partitions the set Sn, and we can continue

as follows:

Ch∗

avg(N)
a.s.
= lim

t→∞

1

t

t∑
r=t0

min{a,n1}∑
ℓ=0

∑
π∈Sℓ

n

Pr(πr = π|Sℓ
n)

× Pr(πr ∈ Sℓ
n)Cr(π)

= lim
t→∞

1

t

t∑
r=t0

min{a,n1}∑
ℓ=0

Pr(πr ∈ Sℓ
n)Eµℓ

[Cr(N)] .

13

By Lemma 11, for every ϵ > 0, there is tϵ > t0 such that∣∣Pr(πr ∈ Sℓ
n)−

(n1
ℓ)(

n2
a−ℓ)

(na)

∣∣ ⩽ ϵ. Hence, for every ϵ > 0,

Ch∗

avg(N)
a.s.
⩾ lim

t→∞

1

t

(t∑
r=tϵ

min{a,n1}∑
ℓ=0

(
n1

ℓ

)(
n2

a−ℓ

)(
n
a

) Eµℓ
[Cr(N)]

−
tϵ∑

r=t0

n1R
)
,

where R = maxπt∈Sn Ct(πt).Together with Lemma 12 this
yields

Ch∗

avg(N)
a.s.
⩾ C +

n1∑
ℓ=0

(
n1

ℓ

)(
n2

a−ℓ

)(
n
a

) ℓ(a+ ℓ)(β1 − β2)

2
. (21)

By Lemma 1, the right-hand side of this inequality gives a
lower bound on capacity. It can be transformed to the expres-
sion on the right-hand side of (19) by repeated application of
the Vandermonde convolution formula.

Thus, we have proved that the average minimum cut (and
thus, the capacity) is almost surely bounded below by an
expression which is strictly greater than C, and accounting for
the dynamics of the fixed-cost network enables one to support
storage of a larger file than in the static case of [2].

To summarize the results of this section, we have proved
that

cap(N)− C
a.s.
⩾ max

{n1(n1 − 1)

2
ε1,

β1 − β2

2

an1

n

(
a+ 1 +

n1 − 1

n− 1
(a− 1)

)}
, (22)

where the first of the bounds on the right is valid under
assumption (13). To give numerical examples, let us return
to Example 3. Applying Theorem 4 to Example 3 yields
cap(N) ⩾ 214β2+3.7β2. At the same time, Theorem 3 states
that the storage capacity is bounded below by 214β2 +

9
4β2,

showing that the choice of h is not always optimal. Generally,
the lower bound on capacity of Theorem 3 is C+n1n2

2n (β1−β2)

and the bound of Theorem 4 is approximately C + n1a
2

2n .
Therefore, Theorem 4 provides a better bound on the storage
capacity when a is roughly above

√
n2.

Since the storage capacity can be increased while the
average amount of symbols each node vi transmits is at most
βi, after a long period of time (for large enough t), the total
bandwidth that was used for repair in the dynamical model is
equal to the total bandwidth that was used for repair in the
static model.

To conclude this section, we address the question regarding
the accuracy of the derived bounds on E

[
Ch∗

avg(N)
]
. In the

next proposition we derive an upper bound on this quantity.

Proposition 1 Let (N , β,S, h∗) be a storage network. We
have (µ1-a.s.)

Ch∗

avg(N) ⩽ C +
an1(a+ n1)

2n
(β1 − β2).

Proof: Given π ∈ Sℓ
n, denote by π the permutation in

which the first n2−a+ ℓ positions contain nodes from L, the
next n1 − ℓ positions contain nodes from U , and the last a

positions are the same as π. Lemma 9 and Remark 2 imply
that Ct(πt) ⩾ Ct(πt). By (20) and by Lemma 10 we obtain

Ct(πt) + Ct(π
c
t) = 2C + ℓ(a+ n1)(β1 − β2).

Hence,

Ct(πt) + Ct(π
c
t) ⩽ Ct(πt) + Ct(π

c
t)

= 2C + ℓ(a+ n1)(β1 − β2),

which implies that∑
πt∈Sn

Pr(πt)Ct(πt)

=

min{a,n1}∑
ℓ=0

∑
πt∈Sℓ

n

Pr(πt|Sℓ
n) Pr(S

ℓ
n)Ct(πt)

=

min{a,n1}∑
ℓ=0

Pr(Sℓ
n)

∑
πt∈Sℓ

n

Pr(πt|Sℓ
n)Ct(πt).

For t → ∞, Pr(πt|Sℓ
n) is uniform. Hence,

Ch∗

avg(N) =

min{a,n1}∑
ℓ=0

Pr(Sℓ
n)
(1

|Sℓ
n|

∑
πt∈Sℓ

n

Ct(πt)
)

⩽
min{a,n1}∑

ℓ=0

Pr(Sℓ
n)

(∑
πt∈Sℓ

n
(Ct(πt) + Ct(π

c
t))

2|Sℓ
n|

)

=

min{a,n1}∑
ℓ=0

Pr(Sℓ
n)
(
C +

1

2
ℓ(a+ n1)(β1 − β2)

)
= C +

n1∑
ℓ=0

(
n1

ℓ

)(
n2

a−ℓ

)(
n
a

) ℓ(a+ n1)(β1 − β2)

2
,

where the last equality follows from Lemma 11. By Vander-
monde’s identity we obtain that almost surely

Ch∗

avg(N) ⩽ C +
an1(a+ n1)

2n
(β1 − β2).

Proposition 1 and Theorem 4 jointly result in the following
(a.s.) inequalities for the average cut of the fixed-cost storage
network:

an1(β1 − β2)

2n

(
a+ 1 +

n1 − 1

n− 1
(a− 1)

)
⩽ Ch∗

avg(N)− C ⩽ an1(β1 − β2)

2n
(a+ n1), (23)

where C is given in Lemma 7. For the above example, we
obtain for the gap between Ch∗

avg(N) and C an upper bound
of 9.75. Generally, the difference between the upper and lower
bounds (discounting the common multiplier) is (n−a)(n1−1)

n−1 .
Of course, this does not directly result in an upper bound on
capacity of N , which appears to be a difficult question (a loose
upper bound was obtained in (6), which in the example gives
a gap of at most 21.5).

14

IV. NETWORKS WITH MEMORY

Let us assume that the data collector DCt in the dynamical
fixed-cost model is aware of the state of the network; specifi-
cally, we assume that it selects the set Dt of k′ active nodes for
data retrieval with full knowledge of the permutation πt. Under
this assumption, DCt can choose the nodes that maximize the
cut between itself and Dt.

With this in mind, we give the following definition. Let
(N , β,S, h) be a storage network and let Ch

t (Dt) denote the
cut at time t for the selection of Dt active storage nodes. Let

Cmax,h
t (N) = Cmax,h

t (At) ≜ max
Dt⊆At, |Dt|=k′

{Ch
t (Dt)}.

(24)
(cf. (2)). Although the memory property does not affect the
storage capacity when βi = β0 for all i ∈ [n], using our idea
of controlling the transmission policy enables us to increase
the storage capacity. As a main result of this section, we show
that the capacity of the network can be increased over the non-
causal model.

Recall our notation [n] = U ∪L, where |U | = n1, |L| = n2.
Throughout this section we denote â ≜ k′ − n2 ⩾ 0. The
following lemma is a natural minimax analog of Lemma 7.

Lemma 13 Let (N , β, s, h∗) be a static fixed-cost storage
network and let

C ′ ≜ min
π∈Sn

{
Cmax,h(π)

}
= min

t⩾0,
s∈V ∞

{
Cmax,h

t

}
. (25)

Then

C ′ =
â∑

i=1

n1β1 + n2β2 − iβ1 +

n2∑
j=1

(n1 − â)β1

+ n2β2 − jβ2. (26)

Lemma 13 can be obtained from the next lemma which is a
modified version of Lemma 9, together with the fact that every
permutation appears as an associated permutation in (N , β,S)
µ1-almost surely.

Lemma 14 Let (N , β, s, h∗) be a storage network. For t >

t0, Cmax,h∗

t (N) is obtained when Dt ⊇ L.

The proof of Lemma 14 is similar to the proof of Lemma 9
and is given in the appendix. Note that according to Lemma
9, the selection that minimizes the cut at time t is the node
from U that has failed before the other nodes in U .

Remark 4 Similarly to Remark 2, from the proof of Lemma
9 it follows that after choosing the nodes in L, we should
choose the remaining â nodes in the order reversed from the
order of their failure, starting with the most recently failed
node.

For a network with memory (N , β,S) we denote
the average (maximum) cut and the storage capacity by
Cmax,h

avg , capm(N), respectively. The main result of this sec-
tion is stated in the following theorem.

Theorem 5 Let (N , β,S) be a (random) storage network
with memory. We have (µ1-a.s.)

capm(N) ⩾ C ′ +
β1 − β2

2

n1n2â

n

(
2− â− 1

n− 1

)
.

In this section we denote by Ŝℓ
n the set of all permutations

over [n] with exactly ℓ elements from U in the last â positions.
To prove Theorem 5 we need the following lemma.

Lemma 15 Let (N , β,S, h∗) be a storage network with mem-
ory. Let πt be the permutation at time t and assume that πt

is distributed uniformly over Ŝℓ
n. We have

E
[
Cmax,h∗

t (N)
]
⩾ C ′ +

1

2
ℓ (2n2 − â+ ℓ) (β1 − β2),

where C ′ is given in (25).

Proof: For any permutation π ∈ Ŝℓ
n, let π ∈ Ŝℓ

n be a
permutation in which the first n1 − ℓ positions contain only
nodes from U, and the last â positions are exactly as in π. Then
by Lemma 14 and Remark 4 we have Cm

t (πt) ⩾ Cm
t (πt). This

implies that by fixing the last â positions in πt, we can bound
Cmax,h∗

t (πt) below by Cmax,h∗

t (πt). We claim that

Cmax,h∗

t (πt) + Cmax,h∗

t (πc
t)

⩾ C ′ +
1

2
ℓ(2n2 − â+ ℓ)(β1 − β2).

Note that if πt ∈ Ŝℓ
n then πc

t ∈ Ŝℓ
n as well. Hence,

Cmax,h∗

t (πt) +Cmax,h∗

t (πc
t) ⩾ Cmax,h∗

t (πt) +Cmax,h∗

t (πc
t).

By Lemma 10 we obtain

Cmax,h∗

t (πt) = C ′ +
∑

v∈Dt∩U

fπt(v)(β1 − β2)

= C ′ +
∑

v∈Dt∩U
(πt)

−1(v)∈{n−â+1,...,n}

fπt(v)(β1 − β2)

and the same holds for πc
t .

Let v ∈ Dt ∩ U with (πt)
−1(v) ∈ {n− â+ 1, . . . , n},

meaning that v is in one of the last â positions. Let

b := |L ∩ {n− â+ 1, . . . , (πt)
−1(v)}|.

Using definition of πt ∈ Ŝℓ
n and Lemma 14, we now observe

that fπt(v) = n2 − (â− ℓ) + b. For πc
t we have

fπc
t
(v) = n2 − (â− ℓ) + (â− ℓ)− b = n2 − b.

Overall we obtain

Cmax,h∗

t (πt) + Cmax,h∗

t (πc
t)

= 2C ′ +
∑

v∈Dt∩U

(
fπt(v) + fπc

t
(v)
)
(β1 − β2)

= 2C ′ + ℓ (2n2 − â+ ℓ) (β1 − β2) ,

which in turn implies that

Cmax,h∗

t (πt) + Cmax,h∗

t (πc
t) ⩾ 2C ′

+ ℓ (2n2 − â+ ℓ) (β1 − β2) .

We conclude the proof by noticing that

E[Cmax,h∗

t (N)] =
∑

πt∈Ŝℓ
n

Pr(πt)C
max,h∗

t (πt)

=
1∣∣∣Ŝℓ
n

∣∣∣ 12
∑

πt∈Ŝℓ
n

(
Cmax,h∗

t (πt) + Cmax,h∗

t (πc
t)
)

⩾ C ′ +
1

2
ℓ (2n2 − â+ ℓ) (β1 − β2).

15

We can now prove Theorem 5.
Proof of Theorem 5: Consider E[Cmax,h∗

t (N)] and note
that since (Ŝℓ

n)ℓ partition the set Sn we have

Eµ[C
max,h∗

avg (N)] =
∑

πt∈Sn

Pr(πt)Ct(πt)

=

min{â,n1}∑
ℓ=0

∑
πt∈Sℓ

n

Pr(πt|Ŝℓ
n) Pr(Ŝ

ℓ
n)Ct(πt)

=

min{â,n1}∑
ℓ=0

Pr(Ŝℓ
n)

∑
πt∈Sℓ

n

Pr(πt|Ŝℓ
n)Ct(πt)

⩾
min{â,n1}∑

ℓ=0

Pr(Ŝℓ
n)
(
C ′ +

ℓ(2n2 − â+ ℓ)β1

2

+
ℓ(2n2 − â+ ℓ)β2

2

)
=C ′ +

â∑
ℓ=0

(
n1

ℓ

)(
n2

â−ℓ

)(
n
â

) ℓ(2n2 − â+ ℓ)(β1 − β2)

2
,

where the inequality follows from Lemma 12 and the last
equality follows from Lemma 11 (with â) and the fact that
the stationary distribution of πt is the uniform distribution.
The final expression is obtained by repeated use of the
Vandermonde convolution formula. The average cut bounds
the storage capacity below since we can follow the same
arguments as in Lemma 1 with Cmax,h∗

t instead of Ch∗

t .

For a numerical example we return to Example 3. If at each
time t, DCt chooses the k′ nodes which yield the maximum
cut, by Theorem 5, the storage capacity is capm(N) ⩾ C ′ +
13 1

3β2, where C ′ = 269β2. This is much greater than the
lower bound computed earlier for the non-causal case, and in
fact even breaks above the static-case upper bound of (6).

As seen from Theorem 5, if β1 = β2 the bound below is
equal to the storage capacity of the static model. This comes as
no surprise since the network is invariant under permutations
of the storage nodes.

V. EXTENSIONS: DIFFERENT FAILURE PROBABILITIES

The dynamical model that we studied so far assumes that
all the storage nodes have the same probability of failure. In
reality, this may not be the case. An interesting extension of the
above results would address a fixed-cost model in which the
failure probability depends on the node (or a group to which
the node belongs). We immediately note that the assumption
of different failure probabilities does not affect the storage
capacity of the static fixed-cost model.

Switching to the dynamical models, let us first assume that
nodes from L fail independently with probability p and nodes
from U fail (independently) with probability q. It is possible
to adjust the weight function used in Section III to prove a
lower bound on the network capacity. As before, let (N , β,S)
be a fixed-cost storage network with n storage nodes and let

|U | = n1, |L| = n2. For st ∈ U we put ht(vi) = hU (vi) and
for st ∈ L we put ht(vi) = hL(vi), where

hU (vi) =


β1 + ε1 vi ∈ U \ sj
β2 vi ∈ L

0 vi = sj ,

and

hL(vi) =


β1 − q(n1−1)

pn2
ε1 vi ∈ U

β2 vi ∈ L \ sj
0 vi = sj

and 0 ⩽ ε1 ⩽ β1. By a calculation similar to Lemma 8
it is straightforward to check that the constraints given by
β are satisfied. Moreover, the proof of Theorem 3 does not
use the fact that the stationary distribution of the associated
permutations is uniform. Thus, from Lemma 9 and Lemma 10
we obtain the following statement.

Theorem 6 Let (N , β,S, h) be a fixed-cost storage network
with weight function h as defined above. Assume that the
failure probability of a node from U is q > 0 and of a node
from L is p > 0. Fix ε1 > 0 such that β1 − β2 ⩾ qn(n1−1)

pn2
ε1.

The storage capacity is bounded below by

cap(N)
a.s.
⩾ C +

n1(n1 − 1)

2
ε1, (27)

where C is given in Lemma 7.

For a numerical example consider Example 3 with q = 1
40 and

p = 3
40 . Let us choose ε1 = pn2

qn(n1−1)β2 = 1
6β2. From (27)

we now obtain

cap(N) ⩾ (214 + 7.5)β2,

where as above, C = 214β2 is the value of the min-cut in
the static case. As above in this paper, the assumption on ε1
introduced in the theorem limits the increase of the network
capacity. Lifting the assumption suggests following the path
taken in Theorem 4 of Sec. III-B. To implement this idea, we
need to find the stationary distribution of the Markov random
walk on Sn that arises under our assumption. This is however
not an easy task, and the classic (asymptotic) results such as
in [10] seem not to be of help here. We have succeeded to
perform the analysis in the simple case of n = n2 + 1, i.e.,
of the “upper” set formed of a single node U = {u}, and we
present this result in the remainder of this section.

Suppose that the failed nodes in the sequence S are chosen
independently and that Pr(Si = v) = p if v ∈ L and
Pr(Si = v) = q if v ∈ U. Assuming that p, q ̸= 0, almost
surely there exists a finite time t0 such that all the nodes have
failed at least once by t0. Choosing the next failed node gives
rise to a permutation on Sn, and the conditional probabilities
Pr(πt|πt−1) between the permutations are well defined and
can be found explicitly. The probabilities Pr(πt|πt−1) define
an ergodic Markov chain with a unique stationary distribution
ν.

Define a partition of Sn into n blocks Pi, i ∈ [n]. Let
π ∈ Pi if and only if π−1(u) = i where u is the (unique)
node in U . The partition (Pi) defines an obvious equivalence
relation on Sn, and |Pi| = (n− 1)! for all i.

16

It turns out that the stationary probabilities of equivalent
permutations are the same, i.e., ν(π) depends only on the block
Pi ∋ π. The distribution ν is given in the next lemma.

For any real number r and natural number k we define(
r
k

)
= r(r−1)...(r−k+1)

k! , and put
(
r
0

)
= 1.

Lemma 16 Let (N , β,S) be a dynamical storage network
with n = n1 + n2 nodes, where n1 = 1. Let 0 < q ⩽ p
and suppose that Si, i = 1, 2, . . . are independent random
variables with Pr(Si = v) = p if v ∈ L and Pr(Si = v) = q
if v ∈ U . Let π ∈ Pi and define the distribution

ν(π) =
1− q

(n− 1)!

(1
p − 1

n− 2

)−1(1
p − n− 1 + i

i− 1

)
.

Then ν is the stationary distribution of the Markov chain with
state space Sn.

Proof: 1. We first note that for any t, Pr (πt+1|πt) = q if
πt+1 ∈ Pn and Pr (πt+1|πt) = p otherwise. This implies that
for a fixed πt,

(n− 1)p+ q =
n∑

i=1

Pr (πt+1 ∈ Pi|πt) = 1.

Hence, 1
p ⩾ n− 1 which implies that all the binomial coeffi-

cients in ν(π) are positive. Moreover, since (n−1)p = 1−q we
obtain that if π ∈ Pn then the expression for ν(π) simplifies
as follows

ν(π) =
1− q

(n− 1)!

(1
p − 1

n− 2

)−1(1
p − n− 1 + n

n− 1

)
=

1− q

(n− 1)!

1
p − n+ 1

n− 1

=
q

(n− 1)!
. (28)

2. Let us check that ν is a probability vector. As already
remarked, ν(π) > 0 for all π ∈ Sn. Obviously, if π, σ ∈ Pi

for some i, then ν(π) = ν(σ) = 1
(n−1)!ν ({Pi}).

By the definition of ν we have that ν({Pi+1}) =
ν({Pi})(1 + 1−pn

pi) for all i ⩽ n− 1. Therefore,

∑
π∈Sn

ν(π) =
n∑

i=1

ν ({Pi})

=
n−1∑
i=1

ν ({Pi}) + ν({Pn})

= ν({P1})
(
1 +

n−2∑
j=1

j∏
i=1

(
1 +

1− pn

pi

))
+ q.

Note that
j∏

i=1

(
1 +

1− pn

pi

)
=

(
j + 1−pn

p

j

)
,

which implies that

n−2∑
j=1

j∏
i=1

(
1 +

1− pn

pi

)
=

(1
p − 1

n− 2

)
− 1.

Since for π ∈ P1, ν ({P1}) = (n − 1)!ν(π) and ν(π) =
1−q

(n−1)!

(1
p−1

n−2

)−1
, we have

∑
π∈Sn

ν(π) = (n− 1)!

(1
p − 1

n− 2

)
ν(π) + q = 1.

Finally let us show that ν is a stationary vector
of the transition matrix. Fix t and consider the sum∑

π∈Sn
ν(π) Pr (πt+1 = σ|πt = π). For σ ∈ Pi, this sum has

exactly n non-zero terms, of which i are for π ∈ Pi+1 and
n− i for π ∈ Pi. Therefore, if σ ∈ Pi, we obtain

∑
π∈Sn

ν(π) Pr (πt+1 = σ|πt = π)

=
pi

(n− 1)!
ν({Pi+1}) +

p(n− i)

(n− 1)!
ν({Pi}).

Since ν ({Pi+1}) = ν ({Pi}) (1 + 1−pn
pi) for i ⩽ n − 1, we

have

∑
π∈Sn

ν(π) Pr (πt+1 = σ|πt = π)

=
p

(n− 1)!
ν({Pi})

(
i

(
1 +

1− pn

pi

)
+ (n− i)

)
=

1

(n− 1)!
ν({Pi})

= ν(σ).

Now assume that σ ∈ Pn. We obtain

∑
π∈Sn

ν(π) Pr(πt+1 = σ|πt = π) =
1

(n− 1)!

n∑
i=1

qν({Pi})

=
q

(n− 1)!

(
n−1∑
i=1

ν({Pi}) + ν({Pn})

)
. (29)

Using the fact that
∑n−1

i=1 ν({Pi}) = 1 − q jointly with (29),
we conclude that

∑
π∈Sn

ν(π) Pr(πt+1 = σ|πt = π) =
q

(n− 1)!
(1− q + q) ,

recovering (28). This concludes the proof.
We can now bound the storage capacity below. Recall that

Sℓ
n denotes the set of all permutations on [n] with ℓ numbers

from [n1] in the last a positions. Let us use Lemmas 10
and 16 to calculate the expected minimum cut. In the below
calculation we are taking some liberty in dealing with the
conditional distribution ν(πt|Pi) which operationally is the
limiting (conditional) probability on Sn. A more rigorous
approach requires defining a conditional distribution for a
finite time t and arguing that it approaches ν(πt|Pi) =

1
(n−1)! .

17

At the same time, the final answer below is correct as written.
We proceed as follows:∑
πt∈Sn

ν(πt)C
h∗

t (πt) =
∑
i∈[n]

∑
πt∈Pi

ν(Pi)ν(πt|Pi)C
h∗

t (πt)

=
∑

i∈[n−a]

∑
πt∈Pi

ν(Pi)ν(πt|Pi)C
h∗

t (id)

+
n∑

i=n−a+1

(1− q)

(n− 1)!

(1
p − 1

n− 2

)−1(1
p − n+ i− 1

i− 1

)
×
∑

πt∈Pi

Ch∗

t (πt)

= (1− q)

(1
p − 1

n− 2

)−1(1
p − a

n− a

)
C

+
n∑

i=n−a+1

(1− q)

(1
p − 1

n− 2

)−1

×
(1

p − n+ i− 1

i− 1

)
(C + (i− n+ a)(β1 − β2)),

where C is given (11). To argue that this expression can be
used in the lower bound on cap(N) similar to the bound in
Theorem 4 (or in (21)) we can repeat the arguments used in the
proof of Lemma 12. Then a modified version of (21) together
with the above expression for ν gives a lower bound on the
capacity.

To give a numerical example, assume that we have n = 20
with n2 = 19, p = 4

95 and q = 1
5 . Assume also that β1 = 2β2

and k′ = 13 (which implies that a = 12). According to Lemma
7, the capacity in the static model is C = 150β2. Using the
results in this section, we obtain that a.s.

cap(N) ⩾ (0.022 · 150 + 155.4)β2 = 158.7β2.

Lemma 3 implies that cap(N) ⩽ 177.45β2 and thus in the
above example we have obtained the capacity increase of more
that 30% of the gap between the bounds.

VI. CONCLUDING REMARKS

In this work we introduced a dynamical model for dis-
tributed storage systems. We provided lower bounds on the
capacity for the fixed-cost model with no memory and with
memory. For the memoryless network, we also provided a
simple transmission protocol that increases the storage capac-
ity of the network over the static case. We did not manage
to optimize the weight assignment, which is left as an open
question for future work, or to provide explicit code families
that support reliable file storage while accounting for the time
evolution of the storage network. Another extension that we
did not address is to consider more than two clusters of nodes
with different values of (average) repair bandwidth. It is also
possible to argue that once the node has been repaired, it is
less likely to fail for a certain period of time. At this point
we do not have an approach to the analysis of this general
question.

APPENDIX

A. Proof of Lemma 6

First note that Lemmas 4 and 5 imply that if (N2, β,S, h
∗)

is a random discrete-time storage network, then Ch∗

avg(N2) is
almost surely a constant, which is equal to 1

n!

∑
π∈Sn

Ct(π).
On the other hand, if (N1, β,S, t, h

∗) is a continuous-time
storage network, then we can write

Ch∗

avg(N1) = lim sup
τ→∞

1

τ

∫ τ

0

Ch∗

t (N1)dt (30)

= lim sup
τ→∞

1

τ

∫ τ

t0

∑
π∈Sn

1π(πt)C
h∗

t (N1)dt

= lim sup
τ→∞

1

τ

∑
π∈Sn

∫ τ

t0

1π(πt)C
h∗

t (π)dt,

where t0 is the first time instance by which all the nodes have
failed. Moreover, since Ch∗

t (π) is a function of π and not a
function of t we denote Ch∗

t (π) by Ch∗
(π), and obtain

Ch∗

avg(N1) =
∑

π∈Sn

lim sup
τ→∞

1

τ

∫ τ

t0

1π(πt)C
h∗
(π)dt

=
∑

π∈Sn

lim
τ→∞

1

τ
Ch∗

(π)

∫ τ

t0

1π(X(t′))dt

a.s
=
∑

π∈Sn

Ch∗
(π)

nλE [(π → π)]
,

where the last equality follows from (5). Since E [(π → π)]
does not depent on π ∈ Sn we obtain that 1

nλE[(π→π)] =
1
n! , which in turn implies that Ch∗

avg(N1) = Ch∗

avg(N2) almost
surely.

B. Proof of Lemma 14

Assume that πt is a fixed permutation and consider the
information flow graph Xt. We consider a k′-step procedure
which in each step selects one node from At. Let t′ ⩽ t and
assume the node vtit ∈ At was selected. The cost it entails
is defined as the added weight values of the in-edges of CUt

that are not out-edges of previously selected nodes. Our goal
is to select k′ nodes that maximize the cut for πt.

In order to simplify notation, we write πt =
(u1, u2, . . . , un), i.e., ul = vπt(l) is the storage node
that appears in the lth position in πt. Moreover, with a slight
abuse of notation, if uj failed at time t′ we will write hj(ui)
instead of ht′(ui). For κ ⩽ k′, consider the sub-problem
at step κ − 1, where the DCt has already chosen κ − 1
nodes (ui1 , . . . , uiκ−1) and we are to choose the last node.
Assume that the chosen nodes are ordered according to their
appearance in the permutation, i.e., i1 ⩽ i2 ⩽ . . . ⩽ iκ−1. Let
uj1 , . . . , ujm ∈ L be nodes that were not selected up to step
κ− 1, i.e.,

{uj1 , . . . , ujm} ∩ {ui1 , . . . , uiκ−1} = ∅,

and assume also that j1 ⩽ j2 ⩽ . . . ⩽ jm. We show that
choosing uj1 accounts for the maximum cut.

First, we show that choosing uj1 maximizes the cut over
all other nodes from L. Denote by Cκ−1 the total cost (or the

18

cut) in step κ−1. Fix 2 ⩽ ℓ ∈ [m] and note that since j1 ⩽ jℓ
we may write

i1 ⩽ . . . ⩽ ir1 ⩽ j1 ⩽ ir1+1 ⩽ . . . ⩽ irℓ ⩽ jℓ ⩽ iℓ+1 ⩽ . . . ,

where j1 could also be 1. Let C(j1) be the cut value if DCt

chooses uj1 in the κth step, respectively. The change from
Cκ−1 is formed of the following components. First, we add
the values of all the edges from U to uj1 and from L{uj1} to
uj1 , accounting for (n1 − 1)(β1 + ε1) + n2β2 symbols. Next,
for each node uiq with r1 < q ⩽ κ− 1, we subtract h∗

iq
(uj1)

from the cut value. Overall we obtain

C(j1) = Cκ−1 + n1β1 + (n2 − 1)β2

−
r1∑
q=1

h∗
j1(uiq)−

κ−1∑
q=r1+1

h∗
iq (uj1). (31)

Following the same steps for C(jℓ), ℓ ⩾ 2 we obtain

C(jℓ) = Cκ−1 + n1β1 + (n2 − 1)β2

−
rℓ∑
q=1

h∗
jℓ
(uiq)−

κ−1∑
q=rℓ+1

h∗
iq (ujℓ).

Since uj1 , ujℓ ∈ L, we obtain that h∗
jℓ
(ui) = h∗

j1
(ui) and

hi(uj1) = hi(ujℓ) for all i ∈ [n], we have

C(j1)− C(jℓ) =

rℓ∑
q=r1+1

(h∗
jℓ
(uiq)− h∗

iq (uj1)).

For uiq ∈ U , we obtain hjℓ(uiq) − hiq (uj1) = β1 − β2 ⩾ 0
and for uiq ∈ L, we obtain hjℓ(uiq)−hiq (uj1) = β2−β2 = 0,
and so

C(j1)− C(jℓ) ⩾ 0.

Now we show that uj1 maximizes the cut over the selection
of any node ujℓ from U . We divide the argument into 2 cases:

1) Assume that jℓ < j1. Denote by
(i1, . . . , irℓ , jℓ, irℓ+1, . . . , ir1 , j1, . . .) the selected
nodes and let C(jℓ), C(j1) be the cut values if we
choose ujℓ , uj1 , respectively. We have

C(jℓ) = Cκ−1 + (n1 − 1)β1 + n2β2

−
rℓ∑
q=1

h∗
jℓ
(uiq)−

κ−1∑
q=rℓ+1

h∗
iq (ujℓ).

Subtracting C(jℓ) from C(j1) and using (31), we obtain

C(j1)− C(jℓ) = β1 − β2 +

rℓ∑
q=1

h∗
jℓ
(uiq)

−
r1∑
q=1

h∗
j1(uiq) +

κ−1∑
q=rℓ+1

h∗
iq (ujℓ)−

κ−1∑
q=r1+1

h∗
iq (uj1)

⩾
rℓ∑
q=1

(
hjℓ(uiq)− hj1(uiq)

)
−

r1∑
q=rℓ+1

hj1(uiq)

+

r1∑
q=rℓ+1

hiq (ujℓ) +

κ−1∑
q=r1+1

(
hiq (ujℓ)− hiq (uj1)

)
⩾ β1 − β2 +

r1∑
q=rℓ+1

(hiq (ujℓ)− hj1(uiq)).

Since uiq ∈ U we have hiq (ujℓ)− hj1(uiq) = 0 and for
uiq ∈ L we have hiq (ujℓ) − hj1(uiq) > 0, we conclude
that C(j1)− C(jℓ) ⩾ 0.

2) Now assume jℓ > j1. This case is symmetric to the case
jℓ < j1 and relies on the same analysis. We omit the
details.

According to the principle of optimality [6, Ch. 1.3], every
optimal policy consists only of optimal sub-policies, and
therefore we first need to choose all the nodes from U and
then choose nodes from L. This completes the proof.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–
1216, Jul. 2000.

[2] S. Akhlaghi, A. Kiani, and M. R. Ghanavati, “Cost-bandwidth tradeoff in
distributed storage systems,” Computer Communications, vol. 33, no. 17,
pp. 2105–2115, 2010.

[3] D. Aldous and P. Diaconis, “Shuffling cards and stopping times,” The
American Mathematical Monthly, vol. 93, no. 5, pp. 333–348, 1986.

[4] A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed storage systems,” IEEE Trans. Inf. Theory, vol. 65, no. 6,
pp. 4683–4698, 2019.

[5] S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan,
and P. V. Kumar, “Erasure coding for distributed storage: an overview,”
Science China Information Sciences, vol. 61, no. 10, p. 100301, 2018.

[6] D. P. Bertsekas, Dynamic programming and optimal control. Belmont,
MA: Athena Scientific, 2005.

[7] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh,
“Asymptotic interference alignment for optimal repair of MDS codes in
distributed storage.” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2974–
2987, 2013.

[8] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci et al., “Windows Azure Storage:
a highly available cloud storage service with strong consistency,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 143–157.

[9] A. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,” IEEE Trans. Inf.
Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[10] L. Flatto, A. Odlyzko, and D. Wales, “Random shuffles and group
representations,” The Annals of Probability, vol. 13, no. 1, pp. 154–178,
1985.

[11] R. G. Gallager, Stochastic processes: theory for applications. Cam-
bridge University Press, 2013.

[12] G. Grimmett and D. Stirzaker, Probability and Random Processes,
3rd ed. Oxford Univ. Press, 2001.

[13] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in Proc. 50th Annual Allerton Conf. Commun. Control Comput., 2012,
pp. 326–333.

[14] A. M. Kermarrec, N. L. Scouarnec, and G. Straub, “Repairing multiple
failures with coordinated and adaptive regenerating codes,” in Int. Symp.
on Network Coding (NetCod). IEEE, 2011, pp. 1–6.

[15] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: Minimizing I/O for recovery and
degraded reads.” in Proc. 2012 USENIX Conf. on File and Storage
Technology (FAST), 2012, 14pp.

[16] M. Luby, R. Padovani, T. Richardson, L. Minder, and P. Aggarwal,
“Liquid cloud storage,” ACM Transactions on Storage, vol. 15, no. 1,
2019, Article No. 2, 49 pp.

[17] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin, “Lazy
means smart: Reducing repair bandwidth costs in erasure-coded dis-
tributed storage,” in Proceedings of International Conference on Systems
and Storage. ACM, 2014, pp. 1–7.

[18] J. Y. Sohn, B. Choi, S. W. Yoon, and J. Moon, “Capacity of clustered
distributed storage,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 81–107,
2019.

