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Error Correction Based on Partial Information

Itzhak Tamo

Abstract— We consider the decoding of linear and array codes
from errors when we are only allowed to download a part of the
codeword. More specifically, suppose that we have encoded k data
symbols using an (n, k) code with code length n and dimension
k. During storage, some of the codeword coordinates might be
corrupted by errors. We aim to recover the original data by
reading the corrupted codeword with a limit on the transmission
bandwidth, namely, we can only download an a proportion of
the corrupted codeword. For a given «, our objective is to
design a code and a decoding scheme such that we can recover
the original data from the largest possible number of errors.
A naive scheme is to read an coordinates of the codeword.
This method used in conjunction with MDS codes guarantees
recovery from any | (an — k) /2] errors. In this paper we show
that we can instead download an o proportion from each of
the codeword’s coordinates. For a well-designed MDS code, this
method can guarantee recovery from |(n — k/a)/2]| errors,
which is 1/« times more than the naive method, and is also the
maximum number of errors that an (n, k) code can correct by
downloading only an o proportion of the codeword. We present
two families of such optimal constructions and decoding schemes
of which one is based on Interleaved Reed-Solomon codes and the
other on Folded Reed-Solomon codes. We further show that both
code constructions attain asymptotically optimal list decoding
radius when downloading only a part of the corrupted codeword.
We also construct an ensemble of random codes that with high
probability approaches the upper bound on the number of
correctable errors when the decoder downloads an o proportion
of the corrupted codeword.

Index Terms— Distributed storage, a-decoding radius, MDS
codes, random coding, Reed-Solomon codes.

I. INTRODUCTION

ECOVERY of information under limitations on the
repair bandwidth has received signification attention
in information theory literature. In particular, a well-known
approach to enhance resilience of distributed storage systems
against failures of storage disks relies on Maximum Distance
Separable (MDS) codes which are optimal in terms of the

Manuscript received September 9, 2018; revised May 30, 2019; accepted
November 13, 2019. Date of publication November 19, 2019; date of current
version February 14, 2020. The work of I. Tamo was supported in part by the
ISF under Grant 1030/15 and in part by the NSF-BSF under Grant 2015814.
The work of M. Ye was supported by the NSF under Grant CCF1422955.
The work of A. Barg was supported by the NSF under Grant CCF1814487,
Grant CCF1618603, and Grant CCF1422955. This article was presented at
the 2017 IEEE International Symposium on Information Theory.

I. Tamo is with the Department of EE-Systems, Tel Aviv University,
Tel Aviv 6997801, Israel (e-mail: zactamo@gmail.com).

M. Ye is with the Data Science and Information Technology Research
Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
(e-mail: yeemmi@gmail.com).

A. Barg is with the Department of ECE and ISR, University of Maryland,
College Park, MD 20742 USA, and also with the IITP, Russian Academy of
Sciences, 127051 Moscow, Russia (e-mail: abarg@umd.edu).

Communicated by A. Rudra, Associate Editor for Complexity.

Digital Object Identifier 10.1109/TIT.2019.2954409

, Member, IEEE, Min Ye™, and Alexander Barg

, Fellow, IEEE

redundancy-reliability tradeoff. More specifically, an MDS
code with r parity symbols can recover the original data from
any r erasures of the codeword coordinates. In practice, single
disk failure is the most common scenario. Upon observing this,
Dimakis et al. [2] introduced the concept of repair bandwidth,
which is the minimum possible amount of data one needs
to download in order to recover any single node failure.
An MDS code with optimal (minimum) repair bandwidth is
called Minimum Storage Regenerating (MSR) code. In the low
rate regime, Rashmi et al. gave an explicit construction of
MSR codes [3]. Constructions of optimal-repair regenerating
codes with no limitations on the code rate were given in several
works of the authors [4]-[7]. Guruswami and Wootters
studied the repair bandwidth of Reed-Solomon (RS) codes [8].
Constructions of RS codes with optimal repair bandwidth were
given in [9]-[11].

In this paper we consider the problem of decoding linear
and array codes from errors when we are allowed to rely only
on a part of the corrupted codeword. Before proceeding to
a more detailed description of this problem, we first provide
one possible application to motivate it. Suppose that the code
is deployed in a wireless system, for instance, in low-power
wide-area networks (LP-WAN) or narrow-band Internet of
Things, wherein the links between the nodes are prone to
errors that arise because of physical separation and energy
constraints. An associated and natural constraint in such sys-
tems is the requirement to transmit as little information as
possible to the data collector (whose goal is to decode the
codeword). The information received by the collector may
therefore be corrupted by errors either because of unreliable
storage devices or of the noisy links. Moreover, bandwidth
considerations may require to limit communication to only a
part of the codeword that encodes the data. This motivates the
problem of error correction under communication constraints
called here fractional decoding.

More precisely, if we encode the original data using an
(n, k) MDS code with code length n and dimension k, it is
well known that we can recover the original data from any
[(n — k)/2| errors when we receive the whole codeword.
In a distributed system, reading the whole codeword requires
certain amount of disk I/Os and transmission bandwidth. Now
suppose that we have a limit on the bandwidth and we can
only download an @ < 1 proportion of the whole codeword;
a natural question then is how many errors we can guarantee
to correct in this setup. Rephrasing this question, we are
interested how much of the error correcting capability is
sacrificed by reducing the transmission bandwidth.

Similarly to the study of MSR codes, we also resort to array
codes [12]. An (n,k,l) array code C over a finite field F
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maps an [ x k data matrix (Dy,..., D) € (FY)* toan I xn
codeword matrix (C1,...,C,) € (F')". Each column C; of
the matrix is a codeword coordinate. The distance between two
codewords is measured by the Hamming metric in a usual way:
d(CW, 0@y = |{i : ¢V # CP}|. Motivated by the works
in distributed storage, we assume that each coordinate is stored
on a separate node in the system, and we call the parameter
[ that determines the dimension of the column vector C; sub-
packetization. Note that a scalar code can also be viewed as
an array code with [ = 1.

Definition I.1 (Fractional decoding and «a-decoding radius).
Consider an (n, k,1) array code C = {(C1,...,Cy)} over F,
where C; € F'i=1,...,n.

(i) We say that C can correct up to t errors by downloading
an « proportion of the codeword if there exist n+ 1 functions
fi o F'— Pty = 1,2, .00 with Y1 oy < no and
g: Fimiedl o Pl sych that

9(f1(C1 + En), f2(Co + Es), ...
:(01, CQ, e

,Cn) ey

for any codeword (Cy,...,C,) € C and any error vector
(E1, Ea, ..., Ey) of Hamming weight |{i : E; # 0}| < t.

(ii) For a > k/n, define the a-decoding radius r(C) as
the maximum number of errors that the code C can correct by
downloading an a-proportion of the codeword.

(iii) For « > k/n, we further define the a-decoding radius
of (n, k) codes as

ro(n, k) = Cénj\f/:[mxk ro(C),

where M., i, is the set of all (n, k) codes.

Remark L.2. Since the information contents of the codeword
C' is kl symbols of the field F, the inequality o > k/n forms
a trivial necessary condition for decoding even without errors.
This condition will be assumed throughout the paper.

It is well known that for any (n, k) code C, we have r1(C) <
[(n — k)/2], and the equality holds for MDS codes. Thus
ri(n,k) = [(n—k)/2]. Moreover, we have an obvious lower
bound for an MDS code C:

ra(C) = |(an —k)/2]. 2

To see this, we can simply read any an coordinates of the
codeword. Since a punctured MDS code is still an MDS code
with the same dimension, we obtain the lower bound (2).

In this paper, we show that

ra(n, k) = [(n—k/a)/2] ©)

for any n, k and «, and we give two families of explicit con-
structions of MDS codes together with the decoding schemes
which achieve the optimal a-decoding radius in (3). The
optimal a-decoding radius in (3) improves upon the lower
bound (2) obtained from the naive decoding strategy by a
factor of 1/a.

The underlying idea of the two optimal code constructions
and decoding schemes is to download from each of the
codeword coordinates a number of field symbols that forms
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an « proportion of the coordinate’s size, and to ensure that the
downloaded symbols constitute a codeword in an (n, k/a, o)
MBDS code, which can be used to recover the original data. One
of our constructions is based on Interleaved Reed-Solomon
codes [13], [14]. In particular, we propose an optimal frac-
tional decoding scheme for Interleaved RS codes. The other
construction is based on Folded Reed-Solomon (FRS) codes
of Guruswami and Rudra [15]. While FRS codes solve the
problem somewhat trivially, our solution based on Interleaved
RS code has the advantage of smaller sub-packetization as well
as smaller encoding/decoding/fractional decoding complexity.

Furthermore, we show that random codes with high proba-
bility asymptotically achieve the bound (3) on the a-decoding
radius. The ensemble of random codes that we consider is
based on randomly chosen “contracting” linear maps of the
coordinates of an MDS code. Finally, we take up the question
of constructing MDS codes with optimal repair bandwidth
(also called MSR codes) which at the same time have the
optimal a-decoding radius. A construction of codes with both
these properties is obtained by using an idea in a recent
paper [5] by the authors.

The paper is organized as follows. In Section II we prove
an upper bound on the a-decoding radius, which we show to
be attainable in several ways. Specifically, in Section III we
show that random linear mappings are asymptotically optimal
for fractional decoding. Subsequently, in Sections IV and V
we present the two families of code constructions achieving
the upper bound for finite code length. Then in Section V we
introduce the notion of a-list decoding capacity, and show that
both code constructions achieve it. Finally, in Section VI-B,
we present the MSR code construction with optimal
a-decoding radius.

II. UPPER BOUND ON THE ov-DECODING RADIUS
Theorem II.1. Let n > an > k. Then

ra(n, k) < |[(n—k/a)/2]. “)

Proof. Let C be an (n,k,l) code, and let f;;i = 1,...,n
be the mappings that satisfy the conditions in Definition I.1.
Consider the “projected” code C'* obtained by applying the
functions f;,7 =1,...,n to the coordinates of the codewords
of C:

CO( = {(fl(Cl), ey fn(Cn)) : (Cl, e

We will argue that the minimum Hamming distance of the code
C® (as defined above) is at most n — (g] + 1, implying (4).
Suppose otherwise, then the code C* corrects any n — [g] +1
erasures, i.e., it is possible to recover the codeword from any
given subset of s := [£] — 1 of its coordinates.

Assume w.l.o.g. that a7 < ay < < ay. By the
assumption, it is possible to recover the codeword from the
first s coordinates, i.e., the projection mapping on the first s
coordinates is injective, or, rephrasing again, Ele a; > k.
This implies that csy1 > «s > k/s. With this we obtain

;Ozi:;ai—l— Z a¢2k+(n—s)§:%>an

i=s+1

,Cp) € C}
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since s < § At the same time, by Def. 1.1, the sum

ZZ’:I a; < an, which contradicts the assumption. The proof
is complete. m|

III. RANDOM CODING BOUNDS

Here we examine another view of the codes defined above
with the aim of estimating the parameters of codes C* obtained
from MDS codes under a random contracting mapping. To put
the arguments in context, recall the construction of concate-
nated codes which combine two codes, say an [n, k] MDS code
C, over the finite field F' = [F; and an [m, [] code Co over the
field F,, into a code of length nm over F,. To transform
a codeword C' = (Cy,...,Cy,) of C; to the codeword of
the concatenated code, each symbol C; is replaced with a
codeword of the code Cy using some injective map from
F, to Cz. Thereby, the number of coordinates in the g-ary
representation of C; is increased from [ to m. In our current
situation, we are interested in the code obtained by mapping
the coordinate C; to an element in the field [F a1, where o < 1
(Definition I.1 considers a slightly more general case wherein
« depends on 7, while the constructions in the next sections
assume equal «;’s). Thus, codes for fractional decoding may
be viewed as “inverse concatenation codes” which shrink the
dimension of each coordinate of the original codes instead of
expanding it.

This point of view suggests an approach to random coding
bounds similar to the earlier results on concatenated codes
e.g., [16]. Namely, we start with an [n,k] MDS code C;
over the field F; and map each coordinate to an element in
Fja: using a uniformly random linear mapping. Specifically,
suppose that A = (Ay,..., A,) is an n-tuple of linear maps
Fql — qul and let

Co = A(Ch)
- {(Al(cl)a v ;An(cn)) : (Cl, .

be the resulting linear code. In this section we compute the
typical parameters of the code C®, which will be shown
to meet or approach the bound (3) with high probability.
We consider two different asymptotic regimes, of fixed n and
I — o0, and of n = ¢ — oo, with the above conclusion
applying to both of them.

We will call the mapping A optimal for the fractional
decoding of C; if for every subset Z C [n] of size L = k/a+1,
the restriction of A to Z defined as

Az C, — (qu)L
(Cl, .. ,Cn) — (Az(C’z),z S I)

7Cn) € Cl}

5)

is injective. Recalling Definition 1.1 and the bound (3), if A
is optimal, then the code C* corrects n — L erasures, and so
its distance equals n — k/«. Suppose that A = (44,...,4,)
is realized by random [ x «l matrices A; whose elements are
chosen from F, independently and with uniform distribution.
Before proceeding, recall the following classic fact about
the weight distribution of an [n, k] MDS code C; over F :

{C e wi(C) = i}] < (") LD s )
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Indeed, the restriction of C; to any k coordinates is injective.
Once we fix n — i coordinates to 0 in any of the possible (7})
ways, there are (¢! — 1)*~("=%) possible choices of nonzero
coordinates before the codeword is identified uniquely. This
gives the claimed upper bound.

Proposition IIL.1. Ler Cy be an [n,k] MDS code over the
field Fi. Let o > k/n and let A : C; — C® be the random
linear mapping defined above. Suppose that n,k are fixed
and | — oo, then A is an optimal mapping for the fractional
decoding of Cy with probability 1 — o(1).

Proof. Let C = (C4,...,C,),C # 0 be a codeword of
C; and suppose its Hamming weight is wt(C') = w. Since
A = (Ay,...,A,) is linear, 4,(C;) = 0 if C; = 0 and
Pr(4;(C;) = 0) = g~ if C; # 0. Therefore

Pr(A(C) = 0) = g~ v,

Observe that for any subset Z C [n] of size L > k, the code
Cy restricted to the coordinates in Z is an [L, k] MDS code.
Now let us fix a subset Z C [n] of size L > k/a and show
that the mapping A : C; — C® with high probability has a
trivial kernel. We have

>

Pr(ker(Az) #0}) <
CeCy,C#0

L

>, > Pr(4z(C)=0)
w=L—k+1wt(C)=w

oL
Z < >ql(wL+k)qawl

w

w=L—k+1

L

Z <L> ql(wfawaJrk). (6)
w

w=L—-k+1

Pr(Az(C) = 0)

IA

The exponent in the last expression, given by w —aw — L+ k,
is an increasing function of w, so w —aw — L+ k < k —
ol < 0 for all w < L. Therefore ql(“’*aw*L*k) — 0 for all
w < L when [ — oo, and thus Pr(ker(Az) # 0}) — 0 for
every subset Z C [n] of size L > k/a. Since there are only
finitely many such subsets, we conclude that with probability
approaching one, the mapping A7 is injective for every choice
of 7. This completes the proof of the proposition. m|

Now let us analyze the case when the code length
n =q' — oo. In this case it is more convenient to consider
asymptotic optimality of the mapping A. Given an [n, k = Rn)]
MDS code C; over the field F,; and a linear mapping A :
Cy — C%, we call A asymptotically optimal for the fractional
decoding of C; if the following two conditions are satisfied:

1) A is injective;

2) the distance of the code C® satisfies d(C*) >

n(l — R/a—o(1)).
In other words, the mapping A is asymptotically optimal if
the cardinality of the code C'“ is unchanged from that of Cy,
and its relative distance asymptotically satisfies the bound (3).

Proposition IIL2. Let Cy be an [n,k] MDS code over F,
where n = ¢ and k = Rn. Let A = (Ay,..., A,) be
the random linear mapping C; — C% defined above, where
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a > R. Suppose that R is fixed and n — oo,' then A is an

asymptotically optimal mapping for the fractional decoding of
C1 with probability 1 — o(1).

Proof. Let us prove the injectivity condition. Proceeding as in

(6), we have

Pr(ker(A) #0}) < Y Pr(A(C)=0)

ceCy,C#0

= > > Pr(A(C) =0)

w=n—k+1wt(C)=w

n
n l(w—n+k) —awl

<

= E (w> q q

w=n—k+1
n

—nl(l— n wl(l—a
— g~ n(=F) Z <w>q I(1—a)

w=n—k+1

< g Ma-R) Z (Z) gla-a)
w=0

_ q—nl(l—R)(l + ql(l—a))n
_ (qfl(lfR) + qfl(afR))n = 0.

This shows that the mapping A is injective with probability
1—o0(1).

Next we prove that with probability 1 — o(1) the distance
d(C*) satisfies

d(C*) >n—— — =
() zn a alogyn "

i 2n (1 R 0(1)). %)

«

Starting with a nonzero codeword C' € C; of weight wt(C') =
w, let us estimate the probability that it maps on a codeword
of C* of weight no larger than 7 for some ¢ < w :

Pr(wt(A(C)) < i) < (1:’) gl w=0),
By the union bound,
Pr(d(C®) <i) < Pr({3C € C1 : 1 < wt(A(C)) < i})
< > Pr(wt(A(C)) <)

CeC1,C#0

> > Pr(wt(A(Q)) <)

w=n—k+1 wt(C)=w

zn: (’I’L) ql(w—n—i-k) (’LU) q—al(w—i)
w 1

w=n—k+1

n
E (n> (w> nwfawfnJrkJrai
w )
w=n—k+1

(a) -

>

w=n—k+1
n+(k—an+ai) lo n
§ k4 ( ) logy ,

IN

4nn—ozn+k+ozi

Tt doesn’t matter how ¢ and [ scale as long as n = g! — oo. In the proof,
we only use the condition n = ¢! — oo, and we do not use any property of
q and [ themselves.
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where inequality (a) follows from the facts that () <
2", (%) <2", and w—aw —n+k+ai < —an+k+ i for

all w<mn. Thusifi=n— £ — —22 _ then

a alogy, n’

Pr(d(C®) <i) <4 "k — 0

when n — oo. This implies (7) and concludes the proof. O

Concluding this section, we note a difference between the
results for classic binary concatenated codes [16] and the
results above. In the former case, symbols of the MDS code
are mapped on random binary codewords, and the resulting
code with high probability approaches the Gilbert-Varshamov
bound, matching the best known parameters for the binary case
(under some additional assumption on the component codes,
derived in [16].) In our case, the alphabet size of the resulting
code C* is allowed to grow, and the rate and distance of C* are
as good as those obtained from MDS codes in a deterministic
way in the next two sections.

IV. OPTIMAL FRACTIONAL DECODING SCHEME
FOR INTERLEAVED RS CODES

In this section we propose an optimal fractional decoding
scheme for Interleaved RS codes. This code family as well as
the other constructions in this paper derive from the standard
RS codes, defined as follows.

Definition IV.1. A Reed-Solomon code RS¢(n, k,Q2) C G
of dimension k over a field G with evaluation points Q) =
{wi,wa,...,wn} C G is the set of vectors

{(h(w1),...,h(wy)) € G" : h € Glz],degh < k — 1}.

The idea behind the concept of Interleaved RS codes is as
follows. Suppose that the points w; in the above definition
are elements of a subfield F' of G such that [G : F] = I.
By expanding the coefficients of the polynomial & into vectors
over F, we can view the codevector (h(w1),...,h(w,)) as
vectors of an RS code over F'. This motivates the following
definition.

Definition 1IV.2. An Interleaved Reed-Solomon code
IRSF(n, k,1,Q2) C (FY)™ is an (n, k,l) array code consisting
of | independent RS codes with the same set of evaluation
points Q = {wi,ws,...,w,} C F; see (8) at the bottom of
the next page.

Note that a codeword C' € IRSp(n, k,1,Q) is completely
determined by the choices of the polynomials hy,...,h;.
Therefore, we write a codeword in an IRS code as
C(h1, ..., h;). We assume throughout that « is rational, noting
that this constraint does not incur any loss of generality in
terms of the code parameters.

Proposition IV.3. Ler « = m/l < 1, where m and | are
positive integers. Given n and k satisfying that n > kl/m and
ml|k, and given a finite field F with |F| > n, the Interleaved
RS code IRSp(n,k,1,Q) with the evaluation points ) =
{wi,wa,...,wn} C F has the optimal a-decoding radius.

The proof is given in the remainder of this section. Let
Ay, Ag, ... A, © F be m pairwise disjoint subsets of the
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field F, each of size k/m. For j = 1,2,..
annihilator polynomial of the set A; to be

H (x —w).

wEA;

.,m, define the

pj(z) =

We further define m polynomials g1, ..., gm:

l—m
95(x) =l (2) (03 ()7 + Y () (pj ()"
o j=1,2,...,m.

(10)

It is clear that (g1(w;), g2(wi),...,gm(w;)) can be cal-
culated from (hi(w;), ho(wi),...,hi(w;)). Our strategy is
to download the m-dimensional vector (g1 (w;), g2(wi),. ..,
gm(w;)) from the ith codeword coordinate, which is exactly
an m/1 proportion of the codeword. In other words, for a code-
word C = C(hy,...,h) € IRSp(n, k,1,Q), we download the
m X n matrix in (9) at the bottom of this page.

Since deg(p;j) = k/m, we have deg(g;) < kl/m. Thus
g(C) € IRSp(n, kl/m, m, ). As a result, we can recover all
the coefficients of polynomials {g;(z)}72, as long as there
are no more than |[(n — kI/m)/2]| errors in the received
vector. Now we only need to show that given polynomials
{g;j(x)}jL,, we can recover the polynomials {h](x)}ézl
To see this, we notice that for j =1,2...,m,

gj(w) = hi(w) for all w € A;.

Consequently, we know the evaluations of hj(x) at all the
points in U2 A;. There are k distinct points in the set U7 ; A;
and the degree of hq(z) is less than k, so we can recover
hi(x). From hi(z) and {g;(z)}}L,, we can calculate the
polynomials

g(»l)(x) _ Y9 (z) — hi(x)

p;(x)
l—m
=i (@) (05 ()Y (@) (pj ()
for j =1,2,...,m. Since

g§1)(w) = ho(w) for all w € A,

we know the evaluations of ho(z) at all the points in
UJL, Aj, so we can also recover hz(x). From hi(x), ha(z)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

and {g;(z)}},, we can calculate the polynomials

g (@) = ha(a)

@) () =
9; (x) e
I—m
=i (@) (pj (2) 2+ @) (pj () °
u=3
for j =1,2,...,m. Since

93(‘2) (w) = h3(w) for all w € A;,

we know the evaluations of h3(z) at all the points in U2 A;,
so we can also recover hg(x). It is clear that we can repeat this
procedure until we recover {h; (m)}é;’ln Then the polynomials
{hi—m+;(x)}L, can be easily recovered by

— S0 (@) (py ()
(p; ()= ’
7=1,...,m.

9;(%)

hi—m+j (37) =

This shows that we can recover the polynomials {hj(fl))}‘lj:l

from the polynomials {g;(z)} 2, and consequently recover
the original codeword.

A. Advantages of Interleaved RS Codes Over
Naive MDS Code Constructions

There is a much simpler way to give MDS code construc-
tions achieving the optimal a-decoding radius. Indeed, we can
take any (nl, kl) scalar MDS code over a finite field F' with
size |F| > nl and group together blocks of [ coordinates
of it into a vector in F'. It is clear that in this way we
obtain an (n, k,l) MDS array code C. Moreover, by reading
al symbols of F from each of the coordinates of C we obtain
an (n,k/a,al) MDS array code C* which can correct up to
|(n — k/a)/2] errors, and thus C forms an optimal code for
fractional decoding.

The main advantage of Interleaved RS codes over this naive
MDS code construction (as well as the Folded Reed-Solomon
(FRS) code construction considered in Section V) is that
Interleaved RS codes require a smaller field size (|F| > n
for IRS compared to |F'| > nl for the other two options).
Note that the encoding and decoding procedures, as well as
the fractional decoding procedure, are all performed over the
underlying finite field F'. Therefore, the smaller field size leads
to lower complexity of all these operations.

hi(wi) hi(w2)

IRS (1, 1, Q) i— hz(:wl) , hQ(:WQ) .
hu(wr) hu(ws)
g1(w1) 91(w2)

9(C) = 92(:4J1) , 92(:4J2) ’
o Gun(2)

. . th; € Flz],degh; <k V1 <i<lI )

. ) tdegg; < kl/mV1<i<m )
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Another advantage is that IRS code allows for very efficient
decoding from random errors. In Section 2.3.2 of [17], Devet
et al. described a “linear" variant of the Cohn-Heninger
algorithm [18] that can uniquely decode IRS y(n, k, 1, 2) from
random errors with high probability when the number of errors
does not exceed l%(n — k) (this error correction radius was
also attained earlier in [13], albeit with inferior running time).
This algorithm runs extremely fast in practice. Notice that in
the fractional decoding procedure of IRS codes, we need to
decode another IRS code ¢g(C) in (9). Therefore, for both
standard decoding and fractional decoding, we can use this
fast decoding algorithm for IRS codes if the errors are random,
which is the case for most applications in practice. Note that
a probabilistic fractional decoding procedure of Interleaved
Reed-Solomon codes, following in the footsteps of [14], was
recently proposed in [19].

V. FOLDED REED-SOLOMON CODES

Folded RS (FRS) codes were introduced by Guruswami and
Rudra [15] for the problem of optimal list decoding. In this
section we show that FRS codes are optimal for the fractional
decoding in a rather straightforward way.

Let us recall the definition of FRS codes.

Definition V.1. Let F be a finite field with cardinality
|F| > nl. Let v be a primitive element of F. A Folded Reed-
Solomon code FRS(n,k,l) C (F')" is an MDS array code
with each codeword coordinate being a vector in F' defined
as follows:

{(Cl, CQ, ce ,Cn) :
C; = (h(,y(ifl)l)7 h(,y(ifl)lJrl)’ o h(,y(ifl)lJrlfl)) c Fl
for 1 <i<mn,he Flz],degh < kl —1}.

We limit ourselves to those values of sub-packetization [ for
which «l is an integer.

Proposition V.2. The a-decoding radius of FRS codes satisfies
ro(FRS(n, k, 1)) = [(n — k/a)/2].

Proof. We will construct n + 1 functions f; : ! — Fil j =

1,2,...,nand g : F(Zizi @)l — ol that (I.1). The functions
fi + F' — F! will simply project a symbol on its first al
coordinates, i.e., f; = f, where for (dy,ds,...,d;) € F',
f(dy,da,....d))) = (di,da,...,da1). 11
Thus, the code C® is a projection of the code C,
C*={(CF,C5,....C0) = (f(C1), [(Ca),..., f(Cn)) :
(C1,Cs,...,Cn) € FRS(n, k1) }
(12)

Equivalently, we can write C“ as
c* = {(C’f,C’g,...,Cﬁl’) :
C'Lq _ (h(,y(ifl)l)’ h(,y(ifl)lJrl)7 o h(,y(ifl)lJralfl) c ol
for 1 <i<n,h € Flx],degh < kl—l}.
(13)
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Since any &/« coordinates of C* contain (k/a)(al) evalua-
tions of the encoding polynomial h with degree less than kl,
we can recover h and thus the whole codeword from any &/«
coordinates of C*. We thus conclude that C* is an (n, k/a, o)
MDS array code, so it can correct up to | (n—k/a)/2] errors.

If E; is the error in the ith coordinate of the codeword,
we can write f(C;+ E;) = f(Cy)+ f(E;) fori =1,2,...,n.
Suppose that (C1,Cy,...,C,) € FRS(n, k1) and |{i : E; #
0} < L(n — k/a)/2], then (f(Ch), F(Ca), ... F(Cn)) € C°
and {7 : f(E;) # 0} < |(n — k/a)/2]|. As a result,
we can recover the codeword (f(Ch), f(C2),..., f(Cy)) €
C® and thus recover the encoding polynomial i and finally
the codeword (Cy,Cs,...,Cy) € FRS(n, k, 1) from (f(Cy +
Ev), f(Co+Es),. .., f(Cy+Ey)). By our definition in (I.1),
this shows that r,, (FRS(n, k,1)) > |(n — k/a)/2], and proof
is concluded with a reference to the upper bound (4). a

Remark V.3. Given multiple values a1, o, ..., 0y, if we
choose l in such a way that o 1, s 1, . . ., ap,l are all integers,
then FRS(n, k,1) achieves the optimal «;-decoding radius for
1 <@ < m simultaneously.

VI. FURTHER OBSERVATIONS
A. a-List Decoding Capacity

In this section we extend our study of fractional decoding to
the list decoding problem. Under unique decoding, the decoder
outputs the correct codeword as long as the received vector
is within a certain distance r,, from it. Under list decoding,
the decoder finds a list of all codewords that are within a
certain distance r; from the received vector. Denote the size of
this list by L. We say that a code corrects r; errors under list-
of-L decoding if sphere of radius r; centered at any received
vector contains at most L codewords.

Complexity considerations suggest that L is a slowly grow-
ing function of the code length n (or even a constant). In this
paper, following a long line of work in algebraic list decoding,
we assume that L is a polynomial function of n. The main
result of [15] amounts to stating that (n, k,l) FRS codes of
rate R := k/n correct the asymptotically maximum number
of errors r; = n(1 — R—o(1)) under lists of polynomial size.
It turns out that FRS codes are also optimal under fractional
list decoding.

Let us define formally the fractional decoding problem.

Definition VL1 ((a, L) list decoding radius). Consider an
(n,k,1) array code C = {(Cy,...,Cy,)} over F, where
C; GFl,i: 1,...,n.

(i) We say that C corrects up to t errors under list-of-L
decoding by downloading an o proportion of the codeword if
there exist n + 1 functions f; : F* — Fol j =1,2,...,n,
S <naand g : Fi=iedl — (FPYE such that for
any codeword C = (C4,...,Cy) € C and any error vector
E = (F1,Es,...,E,) of Hamming weight < t, we have

g(fi(Ci + En), fo(Co + E3), ..., fu(Cr + Ey))
={CW i=1,....L}, and C € {CD i=1,... L}. (14)

(ii) For o > k/n, define the («, L)-list decoding radius
7a.1(C) to be the maximum number of errors that the code C
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can correct under decoding into a list of size L by download-
ing an « proportion of the codeword.

(iii) For a > R, we further define the (normalized) o-list
decoding capacity of codes of rate at least R as

pa(R) = SHP{L(C) :

n
rate(C) > R and L is polynomial in n},

where n(C) is the code length of C. More formally,

m R
pa(R) = sup lim sup "2 B
meN n—oo n
where 1o ,m (1, Rn) is the maximum of v, 1,(C) over all codes

of length n and rate R.

Repeating the proof of Theorem II.1, we can easily show
that po(R) < 1— R/a. At the same time, we can show that
the two families of RS-type codes shown above to be optimal
for a-decoding are also optimal for the fractional list decoding
problem in the sense of achieving the a-list decoding capacity.

1) a-List Decoding of Interleaved RS Codes in Sect. IV:
We recall that the IRS codes in Sect. IV can also be viewed
as RS codes with evaluation points in a subfield. Such codes
have appeared in several previous works on array codes;
in particular, in [20], Guruswami and Xing presented a list
decoding algorithm for them. This algorithm can be easily
modified for the problem of a-list decoding IRS codes.

Theorem VL2 ([20]). Let F' =T, E = F, and let C be the
code RSg(n, k,<2), where Q = F. For every R = £ € (0,1),
and €,y > 0, there exists a sufficiently large positive integer
l such that the code can be list decoded from a fraction of
1 — R — ¢ of errors in |C|Y time, outputting a list of size at
most |C|7.

This result can be modified for the a-list decoding problem,
where as before @« = m/l. This is simply because in (9),
we have g(C) € IRSp(n, kl/m,m,Q), and we can view it as
an RS code with evaluation points in a subfield.

This concludes the description, justifying the optimality
claim for a-list decoding of the codes considered here.

2) a-List Decoding of FRS Codes: 1t is also possible to
show that there exists a family of FRS codes of growing length
n and sub-packetization [ that can be list-decoded from an
1 — R/« fraction of errors by downloading an « proportion
of the codeword. To justify this claim, we again need to
construct n 4+ 1 functions f; : F!' — Fel i = 1,2,....n
and g : F(Zimiedl [l that satisfy (14). It turns out
that the projection functions suffice, and we take f; = fo =
-« = f, = f, where f is defined in (11). Downloading an «
proportion from each of the codeword coordinates, we obtain
the code C* defined in (13) whose rate is R/«. When the code
length n and sub-packetization [ of the FRS code become large
enough, we can use the list decoding algorithm introduced
in [15] to decode C* up to a fraction arbitrarily close to
1 — R/« of errors.

Thus we conclude that

pa(R) =1 —R/Oé,

and FRS codes achieve the a-list decoding capacity.
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Remark VL.3. The code C* differs from an FRS code in the
sense that the evaluation points in two consecutive coordinates
are not consecutive powers of the primitive element. However,
the list decoding algorithm introduced in [15] only requires
that within each codeword coordinate, the evaluation points
are consecutive powers of the primitive element. The code
C® satisfies this constraint, so it is possible to rely on this
algorithm in our arguments.

Note that when the code length n and the sub-packetization
l of FRS codes become large enough, they achieve the «-list
decoding capacity uniformly for all values of .

B. Minimum Storage Regenerating Codes With Optimal
a-Decoding Radius

In this section we give an explicit construction of MDS
codes with optimal bandwidth for repairing single erasure and
optimal a-decoding radius simultaneously. The construction is
a simple extension of the MSR code construction in [5].

We first recall the repair bandwidth and the cut-set bound.
Given an (n,k,l) MDS array code C over a finite field F,
a failed node C; and a set of d > k helper nodes {C},j € R},
define N(C,i,R) as the smallest number of symbols of F' one
needs to download in order to recover the failed node C; from
the helper nodes {C},j € R}. The repair bandwidth of the
code is defined as follows.

Definition VI.4 (Repair bandwidth). Let C be an (n, k,1) MDS
array code over a finite field F. Let d > k be the number of
helper nodes. The d-repair bandwidth of the code C is given by

B(d) := N(C,i,R). (15)

max
i€[n],|R|=d,igR

According to the cut-set bound derived in [2],
. dl
N4 R) > o
for all R C ([n] \ {¢}) with cardinality d. If the d-repair
bandwidth meets the cut-set bound with equality, i.e.,
dl
bld) = d—k+1
we say that the code C has the d-optimal repair property, and
C is referred to as MSR code in the literature.

Let « =m/s < 1, where m and s are positive integers. In
this section we present an (n, k,l = s(d—k+1)") MDS array
code C over a finite field F' with d-optimal repair property
and optimal a-decoding radius simultaneously, where the field
size |F| > s(d — k + 1)n. We write a codeword of C as
(Cy,C,...,C,) and write each coordinate as C; = (¢; ;.4 °
j€els],ae{0,1,...,d—k}"), ie., the coordinates of C; is
indexed by a scalar j € [s] and a vector @ = (a1, ag, ..., apn) €
{0,1,...,d — k}™, so each C; indeed has [ = s(d — k + 1)"
coordinates. Let {)\; j; : i € [n],j € [s],t € {0,1,...,d—k}}
be s(d— k+1)n distinct elements of F'. The code C is defined
by the following set of parity check equations:

n S
t . _
E : E :)‘z‘,j,aicz‘,y,g =0,

i=1 j=1
t=0,1,...,

(16)

(n—k)s—1, ac{0,1,...,d—k}"
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We can see that for each fixed ¢ € {0,1,...,d — k}",
the vector (¢; ;4 : ¢ € [n],J € [s]) forms a Generalized Reed-
Solomon (GRS) code with length sn and dimension sk, so C
is indeed an (n,k,l = s(d — k + 1)™) MDS array code.

Proposition VI.5. The code C has optimal a-decoding radius.

Proof. From each C; we download f(C;) := (¢ija @ J €
[m],a € {0,1,...,d — k}") € F™d=F+1" "which contains
a m/s = « proportion of coordinates in C;. Since (c¢; 4 :
i € [n],7 € [s]) forms an (sn,sk) MDS code for every a €
{0,1,...,d — k}", we can calculate (¢;;q : ¢ € [n],j €
[s]) from {f(C;) : i € I} for every a € {0,1,...,d — k}"
and every subset Z C [n] with cardinality |Z| > sk/m =
k/«. In other words, we can recover the original codeword
(C1,Cs,...,Cy) from {f(C;) : i € I} from every subset
Z C [n] with cardinality |Z| > k/a. We thus conclude that we
can do fractional decoding up to [(n — k/a)/2] errors. O

Proposition VL.6. The code C has the d-optimal repair
property.

Proof. Without loss of generality suppose that we want to
repair Cy. For u € {0,1,...,d — k}, we write a(1,u) =
(u,as,as,...,a,), namely we replace a; with u in vector a
to obtain a(1,u). Replacing a with a(1,w) in (16), we obtain
that for every v € {0,1,...,d — k},

S n S
t t _
> A jwCliaa) T D A jaiCigaa =0,
=1

i=2 j=1
t=0,1,....,(n—k)s—1, a€{0,1,...,d—k}".
Summing these equations over u € {0, 1,...,d—k}, we have

d—k s
DD A juCrietat
u=0 j=1

n s d—k

>3 Mg (2 isan) =0,

i=2 j=1 u=0
t=0,1,....,(n—k)s—1, a€{0,1,...,d—k}".

Since all the \’s in the equation above are distinct, we con-
clude that for every fixed a € {0,1,...,d — k}", the vector

({CL]"Q(LU) TUu € {0, 17 ceey d— k},] S [5]},

d—k
{3 Cijau i €{2,3,...,n},j € [s]}) (17)

u=0
forms a GRS code with length s(d — k + 1) + s(n — 1) =
s(d — k +n) and dimension s(d — k +n) — s(n — k) = sd.
As an immediate consequence, we can calculate the vector in
(17) from

d—k
{ Z Ci,j,g(l,u) 11 € R,j S [8]}
u=0
for any subset R C [n] with cardinality |R| = d. Therefore
we can download the following dfd—klﬂ symbols in F
d—k
{ Z Cija(lu) xS R,] S [S],
u=0

gg{@,1,...,d—k}”,a1:o}
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from the d helper nodes {C; : i € R}, and we will be able to
calculate

{Cl,j,g(l,u) HURS {07 ]-a e 'ad_ k}a] € [8]7
QE{O,l,...,d—k‘}",al:O}
:{Cl,j,gaj € [S],Q € {Oalv"'vd_ k}n}v

which is the set of all the coordinates of C. This completes
the proof of the d-optimal repair property. |
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